
Identification 

Configuration Checker 

J. H. Saltzer 

Purpose 

SECTION BL;J3.05 PAGE 1 

DRAFT 1/2'1:768 
).) 

The configuration checker is a subroutine which is called to check (so far 

as possible) that the configuration information in the Major Module Con­

figuration Table (Section BK.4.04) agrees with the actual hardware switch 

settings. 

Specification 

Calling sequence: 

declare status fixed; 

call check-configuration (status); 

if all tests are successful, meaning that the contents of MMCT agree, as 

far as can be tested, with the actual hardware switch settings, then the 

argument "status" is set to zero. If any test fails, status is set to 

an appropriate non-zero value as given below. Check-config does not at­

tempt to communicate messages about problems encountered except by its 

single status return. 

In general, it is not possible for a program to directly sense the settings 

of configuration switches. Instead, it is necessary to perform indirect 

tests to attempt to verify the hypothesis that th~ Major Module Configuration ,.,..e14 ... t...l 
Table is correct. There~"at:e,in fact, certainl'differences between the MMCT 

description and the actual configuration settings which are not detect­

able by program. These differences in general are not of consequence to 

the running Multics except in messages to an operator which could then re­

fer to the wrong piece of physical hardware. 



MULTICS SYSTEM - PROGRAMMERS MANUAL SECTION BL.3.05 PAGE 2 

Check-config does not attempt to verify that major modules indicated as 

"not present" are indeed "not present". It only checks for correct con­

figuration of those major modules claimed to be present in the system. 

Check-config operates in the limited EPL environment provided by Bootstrap. 

I and II. (BC.4) .That is, it may be written in EPL, it is called on a 

standard stack, etc. In making its tests, Check-config will save andre­

store any permanently assigned storage areas (e.g., GIOC mailboxes or CPU 

fault vector locations) which it must change. Certain subroutines of 

check-config must be written in EPLBSA. 

Discussion 

Following is a list of the specific tests made by check-config. With each 

test is given the status return if the test fails. 

1. Test each connected system controller for proper addressing range. 

2. Test each connected system clock for: 

- proper address 

- :·roas'Ollab!e ·setting 

- counting 

- correct interrupt cell assignment 

3. Test each connected GIOC for 

- proper base address 

- response 

- correct interrupt cell assignment 

4. Test each connected Drum controller for 

- proper base address 

- read 1 record 

- correct interrupt cell assignment. 

5. Tes.t each connected CPU for 

- proper base address 

- correct controller assignment 

- correct CPU tag. 


