
j
I

~~

i ,.....,
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.6.07 PAGE 1

Published: 07/27/67

jdentification

The Device Signal Table Manager
J. H. Saltzer, M. J. Spier

purpose

The Device Signal Table Manager is a hardcore ring procedure
which serves two apparently (but not) unrelated functions:

1. Interface to interprocess communication for the hardcore
ring. The device signal table contains, for each device
attached to the system, storage space which is used for
communicating signals arriving from the device to the
device manager process.

2. Repository of device-index receiving-process id assignments.
Entries are provided to establish such an assignment
and to check whether a given assignment exists. (The
assignment of device indexes to devices is a different
problem, discussed in section BT.1.02.)

Jhe Device Signal Table

The device signal table contains one entry for each device
.attached to the system and which may be under the control
of some process. Such devices include, for example, typewriters,
magnetic tape channels, magnetic tape drives, and the
system clocks. Each such device has a device index, which
is the index of the device in the device s1gnal table.
The device signal table contains four items of information
for each device:

1. Identification number of the process to which this
device is currently assigned. If this number is zero,
the device is, by convention, unassigned. This item
is used to check the validity of requests by a process.
to use the device, and to determine what process to
wake up when the signals come from the device.

2. An event_id generated by set_dev_signal (see below)
in response to a signal arriving from t.he device. Due
to memory shortage (the Device Signal Table is wired
down) this table item can accommodate only one event id
at a time. It is read and reset to zero by the receTving
process' Wait Coordinator. Set_dev_signal stores the
event id only if this table item is reset to zero, any
event-ids generated in response to subsequent device
signaTs are ignored for as long as this item's value is
non zero.

.,.-....
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.07

3. Event_count. This count is incremented by one
whenever an event is signalled by the device. It
is read and reset by the wait-coordinator together
with the event_id.

PAGE 2

Note: Items 2 and 3 are the device signal channel referred
to in MSPM section 80.6.03. This is a wired down event-count­
mode channel dedicated to a specific I/O device. It is
associated with and coupled to some receiving process'
event channel for as long as the process has the authorization
to use the device. The Wait Coordinator reads all the
device signal channels associated with the receiving process
and transcribes their contents into the corresponding
event channels.

4. Route information. This is a bit string in which may
be stored information needed to figure out the hardware
route to the device. The format and interpretation of
this information varies from device to device.

The device signal table manager

The device signal table manager contains two types of
entries. protection entries and signalling entries. The
protection entries are used by hardcore modules as part
of their validation procedures.

Three protection entries are provided:

call dstm$set_auth(dev_inx.prcs_id.ev_chn)

declare dev_inx fixed bin(17), prcs_id bit(36). ev_chn bit(?O);

places the process identifier ''pres id' in the device
signal table as the process responsible for the device
whose index is ''dev inx", then calls the Interprocess
Group Event Channel-Manager's entry ipgecm$link_dev_chn(ev_chn.
dev inx) (see MSPM section BQ.6.05) to couple the device
signal channel (dev_inx) to the event channel identified
by "ev_chn".

The entry set auth is used. for example, by the GIOC
Interface Module in response to a call from the Registry
File Maintainer to assign a device to a process.

The second protection entry is used to disassociate an
entry in the device signal table from a process.

call dstm$reset_auth(dev_inx)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION 80.6.07 PAGE 3

~laces a zero-value process_id into the entry whose index
J.S "dev_inx"# then performs a call to the Interprocess
Group Event Channel Manager~s entry ipgecm$unlink dev chn
(dev_inx) which looks up the process~ device-signal-channel­
list in the Event Channel Table# finds the event channel
associated with "dev_inx" and disassociates it.

The third protection entry is used to check the validity
of a request to use the device

f=dstm$check_auth(dev_lnx#prcs_id)

The returned value of ''f" is "1"b if "pres id" is currently
assigned the device "dev inx" as indicated-by the device
signal table entry for "dev lnx". Otherwise# the returned
value of "f" is "O"b. This-entry would be called, for
example# by the GIOC Interface Module when it receives
a request from some process to do I/O on a typewriter.
Unless check_auth returns ''1''b# the GIM would reject the
request.

Note: The Basic File System calls the DSTM even though
it is not a user of the Interprocess Communication Facility.
It therefore does not specify an event channel name when
it calls set_auth, thus circumventing the automatic coupling
of the device signal channel to an event channel.

Signalling entries

Two entries are provided for the purpose of interprocess
event signalling.

call dstm$set_dev_signal(dev_inx)

increments the event count for '' dev_i nx'' and generates
and stores an event id in the "ev id'' location if that
location is reset to zero. Set_dev_signal then calls
"wakeup" in the process exchange for the.process whose
(non-zero value) id it finds in "dev_inx''. This entry
would be used# for example# by an interrupt handler which
has decoded an interrupt only far enough to determine
what device it came from. The interrupt handler would
call set_dev_signal to increment the device~s event count
and to notify the process interested.

The second signalling entry is

call dstm$read_dev_signal(dev_inx#ev_id#ev_count)

I .

i---·
MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION 80.6.07· PAGE 4

declare (dev_inx.ev_count) fixed bin(17), ev_id bit(70);

which checks to make sure that the cal ling process is
the one to which the device signal ch(lnnel pointed
to by "dev_inx" -- is assigned. It then copies thedevice
signal channel's contents into "ev id" and "ev count",
resets the device signal channel and returns to its ca11er.

Entry read_dev_signal is the only entry of the device
signal table procedure which is accessible to administrative
ring procedures. It is intended to be called by the Wait
Coordinator whenever a wakeup occurs and the process waking
up is armed for signals arriving from hardcore devices.

The Wait Coordinator calls a ring 1 procedure named
ecm$get_dev_signal and hands it as argument the device­
signal-channel-list (see figure 1 in MSPM section BQ.6.06).
Get dev signal calls read dev signal for each element
(device=signal-channel) of the list, and on return from the
device signal table manager enters the received event signal
into that event channel.

Physical Route Information

The device signal table contains, for convenience. an
extra item for each device, the ro¥te informati9n. This
bit string has a device dependent nterpretatlon, but
in general it is a handle which will lead ultimately to
the hardware address of the device. For example, the
GIOC Interface Module stores as route infonnation the
segment number of a block of data describing the hardware
channel to the device. Two entries are provided. to set
and to read the route information.

call dstm$set_route(dev_inx.route)

declare dev_inx fixed bin(17). route bit(18);

wi 11 place the bit string 11 route" in the route infonnation
for device " dev11 •

call dstm$get_route(dev_inx.route)

wi 11 obtain the route information for device "dev" and
place it in the bit string "route11 •

.. :;.::; .:c

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.6.07 · .:~A:~E 5
.-; ,,

The device siQnal table declerat!on
' /.-

Following is the EPL declaration of the device signaL·t:abJe.

declare 1 dst(n) ctl(dst ptr),
2 prcs_id bit(36)
2 ev id bit(70)
2 ev-count fixed bin(17)
2 route bit(18)

I ."••

1·k Process id ,'rl ,•. ····~
I* Event id *I, ~
I* Event count *I# .
l''r Route informatlon *l;

.I

•I

. I

'I

