
MULTICS SYSTEM-PROGRAMMERS"' f\'IANUAL SECtiON BT .2.02 PAGE 1

Published: 02/07/68

Identification

Media Request Management
R. c. Daley, c. M. Mercer, J. H. Saltzer

Purpose

This section specifies a ring 0 queue management procedure,
the Media Request Manager (MRM), designed to buffer requests
that must be serviced by a media operator. The kind of
request conveyed by MRM prescribes media operator action
in the handling of detachable 1/0 media. Procedure calls
are defined for use in performing initialization, queueing
requests, and access i ng requests for service.

General

The reader must be thoroughly familiar with the Interprocess
Corrmunication Facility, including the Wait Coordinator,
described in Section BQ.6. ·

The following terms are used extensively in describing MRM:

Requester - any process group that indicates the need
for media operator service by calling
mrntl put_reques t.

Responder - a single process group that is the recipient
of requests queued by any requester using
mrntlput_request. The responder uses the
calls mrntlget_request and mr~put_status
in performing its functions.

The procedures that constitute MRM are available to more
than one process group, although the function performed
by a given process group in relation to MRM determines
what procedures that process group may successfully invoke.
For example, requesters (each a process group) are not
permitted to use procedures dedicated to the authorized
responder (a single process group). The call to mrotlput_request
1s available to all process groups. A restricted MRM
procedure performs its functions only if the current process
group id (found in the process_info segment) agrees with
the one authorized.

~·.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 2

The Media Request Table

The system-wide data base used by MRM is known as the ·'
Media Request Table (MRT) and resides in ring o. The
structure of the MRT is illustrated as an implementation
aid. Requests for operator service reside in slots in
the MRT in one of the following states:

1. New - the request has not been examined by the
media operator process.

2. Active - the request is being serviced.

An additi0nal state, void, is used to indicate slots that
are no longer occupied by requests. Void slots form a
chain linked by a next slot index and exist as a pool
to be used for storing new requests.

Slots containing new requests form a chain with links
sequenced such that requests enter the active state on .
a first-in first-out basis.

The address space occupied by the MRT is comprised of
a table control section followed by a serial table containing
sequentially-indexed slots, each of which is in one of
the three states mentioned above. A request remains in
the same slot throughout its residence in the MRT, and
may be referenced by an index while in the active state.
The MRT address space expands when new requests are received
and no void slots are available, and.contracts when the
slot referenced by the highest index allocated passes
from the active state. Except where conditions cause
MRT expansion or contraction, a slot passes successively
through the void, new, and active states; then returns
to the void state. Slots released by contraction are
considered to be in the null state.

Because the MRT could otherwise be accessed simultaneously·
from multiple process groups, interlock procedures are
used by MRM to prevent multiple access errors.

I n i t i a 1i za t ion C a 1 1 s

Before requests can be routed from the requester to the
responder, the MRT must be initialized and a communications
path must be es tab 1 i shed. Procedures mrrrfl in i t_mrt and
mr~op_group_id, both described below, perform their functions
only if the process group id in effect when they are called
is that of System Control.

,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 3

1 • Call issued by System Control to initiali~e the MRT:

call mr~init_mrt (cstat);

del cstat fixed bin (18); I* set by MRM to
indicate call status
0 = va 1 i d ca 11
1 = caller not

system control *I

This call produces an empty MRT with no connection to
a responder.

2. Call issued by System Control to identify the authorized
responder:

call mr~op_group_id (op_grp, cstat);

del op_grp char (50), I* responder process group
id *I

cstat fixed bin (18); I* set by MRM to indicate
call status
0 = valid call
1 = caller not system

control *I

MRM interprets a blank op_grp as an indication to
cease signalling a previously authorized responder
when subsequent mrm$put_request calls are received.

If a call to mr~op_~roup_id is issued when there
are active requests 1n the MRT, these requests are
linked to the beginning of the new request chain
and retrieved for the responder before any new
requests. A responder call to mr~get_request
retrieves a request and an indication that it is
either new or active~

Calls to MRM that are available only to the authorized
responder are va 1 ida ted by a comparison between the ·
process group id in effect at the time of the call
and that supplied in the call to mr~op_group_id.

3. Calls issued by the responder to supply MR~1 with. the
identity of an event channel:

call mrrr4op_event (event, cstat);

,
'

··-I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT .2. 02 PAGE 4

del event bit (70)~ I* responder event channel

cstat fixed bin (18) 1

name *I ,-~':.:..;-

1* set by MRM to indicate
call status
0 = va 1 id ca 11
1 = responder group id

error *I

Each time a new request becomes available. MRM uses the
lnterprocess Group Event Channel Manager {IPGECM) to
signal over the event channel supplied by the responder.
IPGECM requires a process id as an argument and the one
supplied by MRM is the one in effect (available in the
process_info segment) when mr~op_event is called.

Prior to calling mrm$op_event~ the responder must issue
at least two Event Channel Manager calls to initialize
the event channel:

I* create event channel for ring 0 sending
procedure "I: I

call ec~create_ev_chn (ev_chn, mode, 0);

I* open event channel for all process groups~
argument acc_list is ignored *I

call ec~give_access (ev_chn, 11 011 b, acc_list);

Calls by Requester

A single call is defined for use by a process that needs
media operator service: mrm$put_request. If a medium
or device is specified in the request (as indicated by
the appropriate character string being neither null nor
blank), assignment is validated before the request is
accepted for transmission to the responder. In order
to use MRM, the requester must first create an event channel
and its identity must be supplied as an argument in the
call to mrm$put_request. Changes in request status that
occur during service are made known to the requester in
the form of an event signal and an event id.

The event id returned to the requester contains two components:
(1) an end-of-service flag recognized by MRM~ and (2)
a status component having values known only to the requester
and respondero The requester may monitor the progress ·
of its request using Wait Coordinator options.

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 5

The requester must issue at least two Event Channel Manager
calls to initialize an event channel for notification
of request status changes:

I* create an event channel for use by ring 0
sending prQGedure *I
call ecm9create_ev_chn (ev_chn, mode, 0);

I* open event channel access to any authorized responder,
argument acc_list is ignored *I
ca 11 ecrrfl gi ve_access (ev_chn, 11 011 b, acc_l is t);

After an event channel is initialized, the requester initiates
media operator service with the following call:

call mrm9put_request (op, type, medium, device_type,
device, event, cstat);

I* arguments op, type, medium, device_type, and device
may each be replaced with a literal character strinq
no longer than 32 characters *I -·

del op char (32) , I'~' media operator action

type char (32), I* medium description *I
medium char (32), ''" medi urn name *I

device_type char (32), /~r device description '"I
device char (32), I* name of device *I

event bit (70), I* event channel name */

cstat fixed bin (18); I* set by mrm to indicate
ca 1 1 s tat us ,
0 = request accepted,

operator present
1 = request accepted,

operator absent
2· = rejected, medium

unassigned
3 = rejected, device

unassigned
4 = rejected, both

unassigned '"I

'"I

·'·

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 6

Calls by Responder

Each time the responder is signalled over the event channel
made known to MRM through an mr~op_event call, a new
request is waiting for service. A request is retrieved
each time the responder calls mr~get_request. The function
performed by the responder, be it a service operation
or a scheduling operation, is of no significance to MRM.
The responder may notify the requester of status changes
during request sendee by calling mrrrtJput_status. When
service is terminated, the responder must issue a final
mr~put_status call with an end-of-'service flag set.
MRM interprets this flag as a signal to output final status
and delete the request from the MRT.

\\)hen a request is retrieved using mr~get_request·, additional
information is also retrieved including:

Index- a value that must be furnished in each_mr~put_status
call for the request retrieved

Key -a value that must be furnished along with index

State ~ a character string indicating that a request is ~
either new (state= "new") or has been retrieved
by a previous responder but not completed (state =
'' actv").

A request is retrieved using the following call:

call mrm$get_request (op, type, medium, device_type,
device, state, index, key, cstat);

del op char (32), I* operator action *I
type char (32), I* medium description

medium char (32), I* medium name 'It/

device_type char (32),/* device description

device char (32),

state char (4),

I* device name *I
I* set by mrm to 11 new"

or "actv11 */

*I

*I

index fixed bin (18), /* set by mrm for put_status
ca 11 */

' .

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 7

key bit (7 0) ..

cstat fixed bin (18)J

I* set by mrm for put_status
call *I

I* set by mrm to indicate
call status
0 = no special conditions
1 = responder group id

error
2 = no requests queued *I

The following call is used to notify the requester of
a change in the status of a media request:

call mr~put_status (index., key., status., eos., cstat);

Summary

del index fixed bin (18) ..

key bit (70).,

status bit (18).,

eos bit (1).,

cstat fixed bin (18) 1

I* saved from get_request *I
I* saved from get_request *I
I* status of media

request *I
I* 11 111 b =end of service *I

I* set by mrm to indicate
call status
0 =valid call
1 = responder group

id error
2 =illegal index and/or

key *I

In addition to summarizing interface between a requester
and responder., the following paragraphs detail the exchange
of status information and describe the final disposition
of a request.

The requester indicates media operator action is necessary
by calling mr~put_request which stores the request in
the MRT and informs the responder that a request is waiting.
The requester may then use Wait Coordinator options to
detect changes in request status. The Wait Coordinator
test_event and wait options return an array (ev_ind) of
three elements. The second element, ev_ind (2), contains
an event id set when the responder calls mr~put_status.
The requester may use the following substr function references
to access status information:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 8

end_flag = substr (ev_ind (2), 1, 1); /*get end-of-service
flag
II Q11 0 = reqUeSt S t i 11

active
11 111 b = service

terminated */

status = substr (ev_ind(2), 2, 18); /* get status
· information set by

responder */

If the Wait Coordinator test_event option is used and
indicates that no event indicator has been found, no status
information has been set and the request is either waiting
or being serviced. If the Wait Coordinator is used to
retrieve an event indicator in which the end-of-service
fla~ is set, the final status set by the responder is
ava1lable.

A request that has not been previously seen by the current
responder is retrieved each time mrntJget_request is called.
MRM uses ipgecntJset_event to signal the requester each
time the responder calls mrntJput_status designating a
particular request and its new status. If mr~put_status
finds the end-of-service flag (eos) set, final status
is output and the request is deleted from the MRT.

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BT.2.02 PAGE 9

Media Request Table Format

I* media request table *I
del 1 mrt based {p),

I* miscellaneous *I
2 1 oc k b i t (3 6) • I* interlock word *I
2 rsp_gid char (50), I* responder process group id *I
2 rsp_pid bit (36), I* responder process id *I
2 rsp_evc bit {70). I* responder event channel name *I
2 alloc fixed bin (18), I* index of hilhest slot

allocated *
2 first_empty fixed bin (18), I* index of first empty

slot *I
2 first_new fixed bin (18), I* index of oldest

unserviced request *I
2 last_new fixed bin {18), I* index of newest unserviced

request *I
1')": slot structure ')':1

2 slot (5000).,

3 rqstr_pid bit (36),

3 rqstr_evc bit (70),

3 rqst_op char (32),

3 medium_type char (32),

3 medium_name char (32),

3 device_type char (32),

3 device_name char (32),

3 slot_state char (4),

3 next_slot fixed bin (18);

I* requester process id *I
I* requester event channel

name *I
I* requested operation *I
I* e.g. mag tape, paper,

etc. *I
I* tape name, paper size,

etc. *I
I* e.~. mag tape drive,

pr1nter, etc. *I
I* tape drive name, printer

name, etc. *I
I * 11 VOid11 II ne\I'J 1 11 aCtV11 Or I I I

••null" *I
I* next slot index *I

