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Overview

A property of a computer system that determines its ease of use and its

range of applicability is the way it creates and manages the objects of

computation. An important aspect of object management is the scheme by which a

system names objects. Names for objects are required so that programs can

refer to the objects, so that objects can be shared, and so that objects can

be located at some future time. This chapter introduces several rather general

concepts surrounding names, and then explores in depth their applicability to

two naming structures commonly encountered inside computer systems: addressing

architectures and file systems. It examines naming functions that are usually

implemented (or desired) in these two areas, and some of the design tradeoffs

encountered in a variety of contemporary computer systems. It ends with a

brief discussion of some current research topics in the area of naming.

Glossary

bind - to choose a specific lower-level implementation for a
particular higher-level semantic construct. In the
case of names, binding is choosing a mapping from a
name to a particular object, usually identified by a
lower-level name.

catalog - an object consisting of a table of bindings between
symbolic names and objects. A catalog is an example
of a context (q.v.).

closure - abstractly, the mechanism that connects an object
that refers to other objects by name with the context
in which those names are bound.

component - an object that is contained by another object.

context - a particular set of bindings of names to objects: a
name is always interpreted relative to some context.

indirect entry - in a naming network, an entry in a catalog that binds
a name, instead of to an object, to the path name of
some catalog entry elsewhere in the naming network.

library - a shared catalog (or set of catalogs) that contains
objects such as programs and data to which several
users refer. A computer system usually has a system
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library, which contains commonly used programs.

limited context - a context in which only a few names can be expressed,
and therefore names must be reused.

modular sharing - sharing of an object without the need to know of the
implementation of the shared object. From the point
of view of naming, modular sharing is sharing without
need to know of the names used by the shared object.

name - in practice, a character- or bit-string identifier
that is used to refer to an object on which
computation is performed. Abstractly, an element of a
context.

naming
hierarchy

- a naming network (q.v.) that is constrained to a
tree-structured form.

naming
network

- a catalog system in which a catalog may contain the
name of any object, including another catalog. An
object is located by a multi-component path name
(q.v.) relative to some working catalog (q.v.).

object - a software (or hardware) structure that is considered
to be worthy of a distinct name.

path name - a multiple component name of an object in a naming
network. Successive components of the path name are
used to select entries in successive catalogs. The
entry selected is taken as the catalog for use with
the next component of the path name. For a given
starting catalog, a given path name selects at most
one object from the hierarchy.

reference name - the name used by one object (e.g., a program) to
refer to another object.

resolve - to locate an object in a particular context, given
its name.

root - the starting catalog of a naming hierarchy.

search - abstractly, to examine several contexts looking for
one that can successfully resolve a name. In
practice, the systematic examination of several
catalogs of a naming network, looking for an entry
that matches a reference name presented by some
program. The catalogs examined might typically
include a working catalog, a few other explicitly
named catalogs. and a system library catalog.

shared object - 1) a single object that is a component of more than
one other object. 2) an object that may be used by
two or more different, parallel activities at the
same time.

synonym - one of the multiple names for a single object
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permitted by some catalog implementations.

tree name - a multiple component name of an object in a naming
hierarchy. The first component name is used to select
an entry from a root catalog, which selected entry is
used as the next catalog. Successive components of
the tree name are used for selection in successively
selected catalogs. A given tree name selects at most
one object from the hierarchy.

unique
identifier

- a name, associated with an object at its creation,
that differs from the corresponding name of every
other object that has ever been created by this
system.

unlimited
context

- a context in which names never have to be reused.

user-dependent
binding

- binding of names in a shared object to different
components depending on the identity of the user of
the shared object.

working
catalog

- in a naming network, a catalog relative to which a
particular path name is expressed.

A.  Introduction

1.  Names in  computer  systems

Names are used in computer systems in many different ways. One of these

ways is naming of the individual variables of a program, together with rules

of scope and lifetime that apply to names used within a collection of programs

that are constructed as a single unit. Another way names are used is in

database management systems, which provide retrieval of answers to

sophisticated queries for information permanently filed by name and by other

attributes. These two areas are sufficiently specialized that they have labels

of their own: the first is generally studied under the label "semantics of

programming languages" and the second is studied under the label "database

management".

Yet another use of names, somewhat less systematically studied, is the

collection together of independently constructed programs and data structures

to form subsystems, inclusion of one subsystem as a component of another, and
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use of individual programs, data structures, and other subsystems from public

and semi-public libraries. Such activity is an important aspect of any

programming project that builds on previous work or requires more than one

programmer. In this activity, a systematic method of naming objects so that

they may contain references to one another is essential. Programs must be able

to call on other programs and utilize data objects by name, and data objects

may need to contain cross references to other data objects or programs. If

true modularity is to be achieved it is essential that it be possible to refer

to another object knowing only its interface characteristics (for example, in

the case of a procedure object, its name and the types of the arguments it

expects) and without needing to know details of its internal implementation,

such as to which other objects it refers. In particular, use of an object

should not mean that the user of that object is thereafter constrained in the

choice of names for other, unrelated objects. Although this goal seems

obvious, it is surprisingly difficult to attain, and requires a systematic

approach to naming.

Unfortunately, the need for systematic approaches to object naming has

only recently been appreciated, since the arrival on the scene of systems with

extensive user-contributed libraries and the potential ability easily to "plug

together" programs and data structures of distinct origin * . As a result, the

mechanisms available for study are fairly ad hoc "first cuts" at providing the

necessary function, and a systematic semantics has not yet been developed †. In

                        

*  Examples include the Compatible Time-Sharing System (CTSS) constructed at
M.I.T. for the IBM 7090 computer, the Cambridge University System, the
Honeywell Information Systems Inc. Multics, IBM's TSS/360, the TENEX system
developed at Bolt, Beranek and Newman for the Digital Equipment PDP-1O
computer, the M.I.T. Lincoln Laboratory's APEX system for the TX-2 computer,
the University of California (at Berkeley) CAL system for the Control Data
64OO, and the Carnegie-Mellon EYORA system for a multiprocessor Digital
Equipment Company PDP-11, among others.

† Early workers in this area included A. Holt, who was among the first to
articulate the need for imposing structure on memory systems [Holt, 1961] and
J. Iliffe, who proposed using indirect addressing (through "codewords") as a
way of precisely controlling bindings [Iliffe and Jodeit, 1962]. J. Dennis
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this chapter we identify those concepts and principles that appear useful in

organizing a naming strategy, and illustrate with case studies of contemporary

system naming schemes.

2.  A model  for  the  use  of  names

We shall approach names and binding from an object-oriented point of

view: the computer system is seen as the manager of a variety of objects on

which computation occurs. An active entity that we shall call a program

interpreter *  performs the computation on these objects. Objects may be simply

arrays of bits, commonly known as segments, or they may be more highly

structured, for example containing other objects as components. There are two

ways to arrange for one object to contain another as a component: a copy of

the component object can be created and included in the containing object

(containment by value) or a name for the component object may be included in

the containing object (containment by name).

In containment by value, an object would be required to physically

enclose copies of every object that it contains. This scheme is inadequate

because it does not permit two objects to share a component object whose value

changes. Consider, for example, an object that is a procedure that calculates

the current Dow-Jones stock price average. Assume that this procedure uses as

a component some data base of current stock prices. Assume also that there is

another procedure object that makes changes to this data base to keep it

current. Both procedure objects must contain the data base object. With

                                                                               

identified the interactions among modularity, sharing, and naming in his
arguments for segmented memory systems [Dennis, 1965]. A. Fraser explored the
relation between naming in languages and naming in systems [Fraser, 1971].

*  In various systems, the terms "execution point", "processor", "process",
"virtual processor", "task", and "activity", have been used for this active
entity. For the present discussion we shall adopt the single term "program
interpreter" for its mnemonic value, and assume that there are potentially
many active sites of computation (and thus many active program interpreters)
at the same time, as in typical time-sharing and multiprocessing systems.
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containment by value, each procedure object must include a copy of the data

base. Then, however, changes made by one procedure to its copy will not affect

the other copy, and the second procedure can never see the changes.

A fundamental purpose for a name, then, is to accomplish sharing , and

the second scheme is to include a name for a component object in a containing

object. When names are used, some way is then needed to associate the names

with particular objects. As we shall see, it is common for several names to be

associated with the same object, and for one name to be associated with

different objects for different purposes. In examining these various

possibilities, we shall discover that they all fit into one abstract pattern.

This abstract pattern for containment by naming is as follows: a context is a

partial mapping from some names into some objects of the system * . To employ a

component object, a name is chosen for the object, a context that maps that

name into that component object is identified or created, the name is included

in the containing object, and the context is associated with the containing

object. At some later time, when the containing object is the target of some

computation, the program interpreter performing the computation may need to

refer to the component object. It accomplishes this reference by looking up

the name in the associated context. Arranging that a context shall map a name

into an object is called binding that name to that object in that context.

Using a context to locate an object from a name is called resolving that name

in that context. Figure 1 illustrates this pattern.

                        

*  In the study of programming language semantics, the terms universe of
discourse, context , and environment  are used for a concept closely related to
the one we label context. Usually, the programming language concept is a
mapping with the possibility of duplicate names, a stack or tree structure,
ant a set of rules for searching for the correct mapping within the
environment, Our concept of context is simpler, being restricted to an
unstructured mapping without duplicates. The names we deal with in this
chapter correspond to free variables  of programming language semantics, and we
shall examine a variety of techniques for binding those free variables.
Curiously, we use a simpler concept because in systems we shall encounter a
less systematic world of naming then in programming languages.
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Figure 1 -- Pattern for use of names. The containing object includes
a use of the name "xyz". The containing object is somehow
associated with a context. The context contains a mapping
between the name "xyz" and enough information to get to the
contained object. Because the contained object has not been
copied into the containing object, it is possible for some
third object also to contain this object; thus sharing can
occur.

In examining figure 1, two further issues are apparent: 1) the context

must include, either by value or by name, the contained object; 2) the

containing object must be associated with a context. Figure 2 illustrates the

handling of both these issues in the familiar example of a location-addressed

memory system in a simple computer that has no sophisticated addressing

machinery at all. Electrical wiring in effect places a copy of the contained

object in its context and also places a copy of the context in the containing

object. (In both cases, the "copy" is the only copy, the original.)
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Figure 2 -- Instruction retrieval as an example of naming. In this
simple computer the processor program counter names the
next instruction to be interpreted. The processor is
associated with a context, the memory addressing hardware,
by means of an electrical cable. The context maps the name
"9742" into the physical location in memory of some
particular word of information, again using electrical
cable to form the association. (Note that, except in the
simplest microprocessors, one does not usually encounter a
processor that actually uses such a primitive scheme.)

The alternative approach for handling the connection between the context

and the contained object is for the context to refer to the contained object

with another name, a lower-level one. This lower level name must then be

resolved in yet another context. Figure 3 provides an example in which an

interpreter's internal symbol table is the first, higher-level context, and

the location-addressed memory of figure 2 provides the lower-level context. A

more elaborate example could be constructed, with several levels of names and

contexts, but the number of contexts must be finite: there must always be some

context that contains its objects by value (as did the location-addressed

hardware memory) rather than naming them in still another context. Further,

since a goal of introducing names was sharing, and thus avoiding multiple

copies of objects, each object ultimately must be contained by value in one

and only one context.
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Figure 3 -- A two-level naming example. An interpreter executes a
program containing the names "a" and "b". The interpreter
resolves these names using the context represented by a
symbol table that maps the names "a" and "b" into lower
level names, which are addresses in the memory. These lower
level names might be-resolved as in figure 2 .

Returning to figure 1, it is also necessary for a containing object to

be associated with its context. If the context happens to be implemented as an

object in its own right (a common strategy) this association may be provided

by creating a new object that contains (using either lower-level names or

copies, as appropriate) both the original containing object and the

appropriate context as components. A mechanism that exists for the purpose of

associating some name-containing with its context is known as closure, and an

object that performs this function is a closure object . In many cases, the

closure is implicitly supplied by the program interpreter rather than being

implemented as an explicit object. For example, in figure 3, the interpreter

automatically uses the program's symbol table (which might be a data object

contained in the interpreter itself) as a context. For another example, in

many systems the user's catalog is an automatically provided context for file

names. Yet another example is the context associated with each virtual

processor in a system for resolving the addresses of words in memory; this

context is called the virtual processor's address space, and in a paged system

is represented by a page map. The concept of a closure is fundamental to

naming, but explicit closure objects will not appear to be of much interest
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until we consider the problem of changing contexts when calling from one

procedure to another.

3.  Problems in  the  use  of  names

This simple model for the use of names seems straightforward in that it

allows objects to be shared. However, there are several more objectives

usually wanted in a naming system: modularity of sharing, multiple contexts,

and user-dependent bindings. Failure to meet one or more of these objectives

shows up as an awkward problem. These troubles may arise from deliberate

design compromises or from unintentional design omissions.

One common problem arises if the wrong implicit  context  is supplied by

the program interpreter. This problem can occur if the interpreter is dealing

with several objects and  does not fully implement closures. Such an

interpreter may not keep distinct the several contexts, or may choose among

available contexts on some basis other than the object that contained the

name. For example, file names in many systems are resolved relative to a

"current working catalog"; yet often the working catalog is a static concept,

unrelated to the identity of the object making the reference.

Names permit sharing, but not always in the most desirable way. If use

of a shared object requires that the user know about the names of the objects

that the shared object uses (for example, by avoiding use of those names) we

have not accomplished the goal of modularity. We shall use the term modular

sharing to describe the (desirable) situation in which a shared object can be

used without any knowledge whatsoever of the names of the objects it uses.

Lack of modular sharing can show up as a problem of name conflict . in

which for some reason it seems necessary to bind the same name to two or more

objects in one context. This situation often occurs when putting together two

independently conceived sets of programs in a system that does not provide

modular sharing. Name conflict is a serious problem since it requires changing

some of the uses of the conflicting names. Making such changes can be awkward
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or difficult, since the authors of the original programs are not necessarily

available to locate, understand, and change the uses of the conflicting names.

Sharing should also be controllable, in the following apparently curious

way: different users of an object (that is, users with distinct,

simultaneously active program interpreters) should be able to provide private

user-dependent  bindings  for some of its components. However, one user's

private bindings should not affect other users of the shared object. The most

common example of a user-dependent binding is the association between

arguments to a function and its formal parameters, but in modular systems

other examples abound also. When a single subprogram is used in different

applications, it may be appropriate for that subprogram to have a different

context for each application. The different contexts would be used to resolve

the same set of names, but some of those names might resolve to different

objects. There are three common situations in which the users of an object

might need different contexts for different applications:

1.  When the object is a procedure, and its operation requires memory

private to its user. The storage place for the private memory can be

conveniently handled by creating a private context for this combination

of user and program and arranging that this private context be used

whenever the program serves this user. In the private context, the

program's name for the memory area is bound to a storage object that is

private to the user. A concrete example might be the storage area used

as a buffer by a shared interactive text editor in a word processing

system.

2.  When a programmer makes a change to one part of a large subsystem. and

wants to run it together with the unchanged parts of the subsystem. For

example, suppose a statistics subsystem is available that uses as a

component a library math routine. One user of the statistics subsystem

has a trouble, which he traces to inaccuracy in the math routine. He

develops a specialized version of the math routine that is sufficiently
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accurate for his use, and wants to have it used whenever he invokes the

statistics subsystem. Copying the entire subsystem is one way to

proceed, but that approach does not take advantage of sharing, and in

cases where writeable data is involved may produce the wrong result. An

alternative is to identify those contexts that refer to the modified

part, and create special versions that refer to the new part instead of

the original.

3.  Two multimodule subsystems (for example a theatre ticket and an airline

reservation system) might differ in only one or two modules (for example

the overbooking policy algorithm). Yet it may be desirable to maintain

only one copy of the common modules. To handle those cases where a

common module refers to a non-common module by name, user-dependent

bindings are required.

In each of these situations some provision must be made for a name-using

object to be associated with different contexts at different times, depending

on the identity of the user. This provision is usually made by allowing the

establishment of several closures, each of which associates the name-using

object with a different context, and providing some scheme to make sure that

the name interpreter knows which closure to use for each different user.

Yet another problem in using names is unstable bindings ; that is,

bindings that change unpredictably between definition and use. For example,

file system catalogs often serve as contexts, and usually those catalogs

permit names to be deleted or changed. Employing one object in another by

using a name and a changeable context can make it impossible to ensure that

when the time comes to use that name and context the desired object will be

obtained.

Sometimes, these naming troubles arise because a system uses a single

compromise mechanism to accomplish naming and also some other objective such

as economy, resource management, or protection. A common example is a

limitation on the number of names that can be resolved by a single context.



J. H. Saltzer, “Naming and Binding of Objects”, LNCS 60, 1978, pp. 99-208. 14

Thus, the limited size of the "address space" of a location-addressed memory

system often restricts which subprograms can be employed together in forming a

program, producing non-modular sharing, name conflicts, or sometimes both. For

example, some operating systems allow several users to share a text editor or

compiler by assigning those programs fixed locations, the same in every user's

address space. In such a system if a single user wants to construct a

subsystem that uses both the editor and the compiler as components, they must

have been assigned different fixed locations. If more than a handful of shared

programs are required, name conflict will occur, and restrictions must be

placed on which sets of programs any one user can invoke as part of a single

subsystem. What is going wrong is simply that with a limited number of names

available, one cannot make the universally usable name assignment needed to

accomplish modular sharing.

4.  Some examples  of  existing  naming  systems

Most existing systems exhibit one or more of the problems of the

previous section. Two types of naming systems are commonly encountered systems

growing out of a programming language, and operating systems with their own,

language-independent naming systems.

FORTRAN language systems are typical of the first type [IBM, 1961]. For

purpose of discussion here, separately translated subprograms play the part of

objects * . Each subprogram is given a name by its programmer, and may contain

the names of other subprograms that it calls. When a set of subprograms is put

together (an activity known as "loading"), a single, universal context is

created associating each subprogram with its name. Uses of names by the

subprograms of the set, for example where one subprogram calls another by

name, are then resolved in this universal context. The creator of the set must

                        

*  The names of individual FORTRAN variables and arrays are handled by the
compiler using another, distinct naming system.



J. H. Saltzer, “Naming and Binding of Objects”, LNCS 60, 1978, pp. 99-208. 15

be careful that all of the objects named in an included object are also

included in the set. The set of loaded subprograms, linked together, is called

a "program".

Because a universal context is used for all subprograms loaded together,

two subprograms having the same name are incompatible. The common

manifestation of this incompatibility is name conflicts discovered when two

collections of subprograms, independently conceived and created, are brought

together to be part of a single program.

Loading subprograms involves making copies of them. As discussed in the

previous section, this copying precludes sharing of modifiable data among

distinct programs. Some systems provide for successive programs to utilize

data from previous programs by leaving the data in some fixed part of memory.

Such successive programs then need to agree on the names for (positions of)

the common data.

Loading a set of subprograms does not create another subprogram.

Instead, the resulting program is of a different form, not acceptable input to

a further loading operation, and not nameable. This change of form during

loading constrains the use of modularity, since a previously loaded program

cannot be named, and thus cannot be contained in another program being created

by the loader.

In contrast with FORTRAN, APL language systems give each programmer a

single context for resolving both APL function names and also all the

individual variable names used in all the APL functions [Falkoff and Iverson,

1968]. This single context is called the programmer's "workspace". APL

functions are loaded into the workspace when they are created, or when they

are copied from the workspace of another programmer.

Problems similar to those of FOKTRAN arise in APL: name conflicts lead

to incompatibility, and in the case of APL, name conflicts extend to the level

of individual variables. The programmer must explicitly supply all contained
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objects. Copying objects from other workspaces precludes employing shared

writeable objects.

In an attempt to reduce the frequency of name conflicts, APL provides

some relief from the single context constraint by allowing functions to

declare private variables and placing these variables in a name-binding stack.

thus creating a structured naming environment. Stacking has the effect that

the names in a workspace may be dynamically re-bound, leading to unreliable

name resolutions. When a function is entered, the names of any variables or

other functions defined in that function are temporarily (for the life of that

function invocation) added to the workspace stack, and if they conflict with

names already defined they temporarily override all earlier mappings of those

names. If the function then invokes a second function that uses one of the

remapped names, the second function will use the first function's local data.

The exact behavior of a function may therefore depend upon what local data has

been created by the invoking function, or its invoker, and so forth. This

strategy, named "call-chain name resolution," is a good example of sharing

(any one function may be used, by name. by many other functions) but without

modularity in the use of names.

Consider the problem faced by a team of three programmers creating a set

of three APL functions. One programmer develops function A, which invokes both

B and C. The second programmer independently writes function B, which itself

invokes C. The third programmer writes function C. The second programmer finds

that a safe choice of names for private temporary variables of B is impossible

without knowing what variable names the other two programmers are using for

communication. If the programmer of B names a variable "X" and declares it

local to B, that use of the name "X" may disrupt communication between

procedures A and C in the following scenario: suppose the other programmers

happened to use the name "X" for communication. B's variable "X" lies along

the call chain to C on some--but not all--invocations of C. Each programmer
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must know the list of all names used for intermodule communication by the

others, in violation of the definition of modular sharing.

LISP systems have extremely flexible naming facilities, but the way they

are conventionally used is very similar to APL systems [Moses, 1970]. Each

user has a single context for use by all LISP functions. Functions of other

users must be copied into the context of an employing function. Call-chain

name resolution is used.

LISP is usually implemented with an internal cell-naming mechanism that

eliminates naming problems within the scope of a single user's set of

functions. The atoms, functions, and data of a single user are all represented

as objects with unique cell names. When an object is created, it is bound to

this cell name in a single context private to the user. (The implementation of

this mechanism varies among LISP systems. It usually is built on operating

system main-memory addressing mechanisms and a garbage collector or

compactor.) These cell names usually cannot be re-bound, although they are a

scarce resource and may be reallocated if they become unbound. Cell names are

used by LISP objects to achieve reliable references to other LISP objects.

LISP permits modular sharing, through explicit creation of closure

objects, comprising a function and the current call-chain context. When such a

function is invoked, the LISP interpreter resolves names appearing in the

function by using its associated context. The objects and data with bindings

in the context contained in the closure are named with internal names.

Internal names are also used by the closure to name the function and the

context.

In many LISP systems the size of the name space of internal names is

small enough that it can be exhausted relatively quickly by even the objects

of a single application program. Thus potential sets of closures can be

incompatible because they would together exhaust the internal name space.

As far as name conflicts are concerned, however, two closures are always

compatible. Closures avoid dynamic call-chain name resolution. So within the
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confines of a single user's functions and data, LISP permits modular sharing

through exclusive, careful use of closures * .

Most language systems, including those just discussed, have been

designed to aid the single programmer in creating programs in isolation. It is

only secondarily that they have been concerned with interactions among

programmers in the creation of programs. A common form of response to this

latter concern is to create a "library system". For example, the FORTRAN

Monitor System for the IBM 709 provided an implicit universal context in the

form of a library, which was a collection of subprograms with published names

[IBM,1961]. If, after loading a set of programs, the loader discovered that

one or more names was unresolvable in the context so far developed, it

searched the library for subprograms with the missing names, and added them to

the set being loaded. These library subprograms might themselves refer to

other library subprograms by name, inducing a further library search. This

system exhibited two kinds of problems. First, if a user forgot to include a

subprogram, the automatic library search might discover a library subprogram

that accidentally had the same name and include it, typically with disastrous

results. Second, if a FORTRAN subprogram intentionally called a library

subprogram, it was in principle necessary to review the lists of all

subprograms that that library subprogram called, all the subprograms they

called, and so on, to be sure that conflicts with names of the user's other

subprograms did not occur. (Both of these problems were usually kept under

control by publishing the list of names of all subprograms in the libraries,

and warning users not to choose names in that list for their own subprograms.)

A more elaborate form of response to the need for interaction among

programmers is to develop a "file system" that can be used to create catalogs

                        

*  This particular discipline is not a common one among LISP programmers,
however. Closures are typically used only in cases where a function is to be
passed or returned as an argument, and call-chain name resolution would likely
lead to a mistake when that function is later used.



J. H. Saltzer, “Naming and Binding of Objects”, LNCS 60, 1978, pp. 99-208. 19

of permanent name-object bindings. Names used in objects are resolved

automatically using as a context one of the catalogs of the file system. The

names used to indicate files are consequently called "file names".

However, because all programmers use the same file system, conflict over

the use of file names can occur. Therefore it is common to partition the space

of file-names, giving part to each programmer. This partition is sometimes

accomplished by assigning unique names to programmers and requiring that the

first part of each file name be the name of the programmer choosing that file

name.

On the other hand, so that programs can be of use to more than one

programmer, file names appearing within a program and indicating objects that

are closely related may be allowed to omit the programmer's name. This

omission requires an additional sophistication of the name resolution

mechanisms of the file system, which in turn must be used with care. For

example, if an abbreviated name is passed as a parameter to a program created

by another programmer, the name resolution mechanisms of the file system may

incorrectly extend it when generating the full name of the desired object.

Mistakes in extending abbreviated names are a common source of troubles in

achieving reliable naming schemes.

As a programmer uses names in his partition of the file names, he may

eventually find that he has already used all the mnemonically satisfying

names. This leads to a desire for further subdivision and structuring of the

space of file names, supported by additional conventions to name the

partitions * . Permitting more sophisticated abbreviations then leads to more

sophisticated mechanisms for extending those abbreviations into full file

names This in turn leads to even more difficulty in guaranteeing reliable

naming.

                        

*  For example, Multics provided a tree-structured file naming system
[Bensoussan, 1972].
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Many systems permit re-binding of a name in the file system. However,

one result of employing the objects of others is that the creator of an object

may have no idea of whether or not that object is still named by other objects

in the system Systems that do not police re-binding are common; in such

systems, relying on file names can lead to errors.

The preceding review makes it sound as though systems of the kinds

mentioned have severe problems. In actual fact, there exist such systems that

serve sizable communities and receive extensive daily use One reason is that

communities tend to adopt protocols and conventions for system usage that help

programmers to avoid trouble. A second reason is that much of the use of file

systems is interactive use by humans, in which case ambiguity can often be

quickly resolved by asking a question.

In the remainder of this chapter, we shall examine the issues

surrounding naming in more detail, and look at some strategies that provide

some hope of supporting modular sharing, at least so far as name-binding is

concerned.

5.  The need  for  names  with  different  properties

A single object may have many kinds of names, appearing in different

contexts, and more than one of some kinds This multiple naming effect arises

from two sets of functional requirements:

1)  Human versus computational use:

a)  Names intended for use by human beings (such as file names) should be

(within limits) arbitrary-length character strings. They must be

mnemonically useful, and therefore they are usually chosen by a human,

rather than by the computer system. Ambiguity in resolving human-

oriented names is often acceptable, since in interactive systems, the

person using the name can be queried to resolve ambiguities.

b)  Names intended for computational use (such as the internal

representation of pointer variables) need not have mnemonic value, but
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must be unambiguously resolvable. They are usually chosen by the

system according to some algorithm that helps avoid ambiguity. In

addition, when speed and space are considered, design optimization

leads to a need for names that are fixed length. fairly short, strings

of bits (for example, memory addresses).

2)  Local versus universal names:

a)  In a system with multiple users, every object must have a distinct

unique identity. To go with this unique identity, there is often some

form of universal name, resolvable in some universal context.

b)  Any individual user or program needs to be able to refer to objects

of current interest with names that may have been chosen in advance

without knowledge of the universal names. Modifying (and recompiling)

the program to use the universal name for the object is sometimes an

acceptable alternative, but it may also be awkward or impossible. In

addition, for convenience, it is frequently useful to be able to

assign temporary, shorthand names to objects whose universal names

are unwieldy. Local names must, of course, be resolved in an

appropriate local context.

Considering both of these sets of requirements at once leads to four

combinations, most of which are useful. Further, since an object may be

referred to by many other objects, it may have several different local names.

As one might expect, most systems do not provide for four styles of names for

every object. Instead, compromise forms are pressed into service for several

functions. These compromises are often the root cause of the naming troubles

mentioned in the previous section.

A further complication, especially in names intended for human

consumption, is that one may need to have synonyms. A synonym is defined as

two names in a single context that are bound to the same object or lower level
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name* . For example, two universal names of a new PL/I compiler might be

"library.languages.pl1" and "library.languages.new-pl1", with the intent being

that if a call to either of those names occurs, the same program is to be

used. Synonyms are often useful when two previously distinct contexts are

combined for some reason.

Finally, a distinction must be made between two kinds of naming

contexts: unlimited, and limited. In an unlimited naming context, every name

assigned can be different from every other name that has ever been or ever

will be assigned in that context. Character string names are usually from

unlimited naming contexts, as are unique identifiers, by definition. In a

limited context the names themselves are a scarce resource that must be

allocated and, most importantly, must be reused. Addresses in a location

addressed physical memory system, processor register numbers, and indexes of

entries in a fixed size table are examples of names from a limited context.

One usually speaks of creating or destroying  an object that is named in

an unlimited context, while speaking of allocating or deallocating  an object

that is named in a limited context * . Names for a limited context are usually

chosen from a compact set of integers, and this compactness property can be

exploited to provide a rapid, hardware-assisted implementation of name

resolution, using the names as indexes into an array.

Because of the simplicity of implementation of limited contexts, the

innermost layers of most systems use them in preference to unlimited contexts.

Those inner layers can then be designed to implement sufficient function, such

as a very large virtual memory, that some intermediate layer can implement an

unlimited context for use of outer layers and user applications.

                        

*  Note that when a higher-level name is bound, through a context, to a lower-
level name, the higher and lower level names are not considered synonyms.
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6.  Plan of  study

Up to this point, we have seen a general pattern for the use of names, a

series of examples of systems with various kinds of troubles in their naming

strategies, and a variety of other considerations surrounding the use of names

in computer systems. In the remainder of this chapter, we shall develop step-

by-step two related, comprehensive naming systems, one for use by programs in

referring to the objects they compute with (an addressing architecture ,) and

one for use by humans interactively directing the course of the programs they

operate (a file system ). We shall explore the way in which these two model

naming systems interact, and some implementation considerations that typically

affect naming systems in practice. Finally, we shall briefly describe some

research problems regarding naming in distributed computer systems.

B.  An architecture for addressing shared objects

An addressing architecture is an example of a naming system using

computation-interpretable names, in which the program interpreter is usually a

hardware processor. Although we shall see points of contact between these

machine-oriented names ant the corresponding human-oriented character string

names, those contacts are incidental to the primary purpose of the addressing

architecture, which is to allow flexible name resolution at high speed.

Typically, the interpretation of a single machine instruction will require one

name resolution to identify which instruction should be performed and one or

more name resolutions to identify the operands of the instruction, so the

addressing architecture must resolve names as rapidly as the hardware

processor interprets instructions in order not to become a severe bottleneck.

                                                                               

*  Both the name for the object and resources for its representation may be
allocated (or deallocated) at the same time, but these two allocation (or
deallocation) operations should be kept conceptually distinct.
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Figure 2 illustrated an ordinary location-addressed memory system.

Sharing is superficially straightforward in a location-addressed memory

system: an object is named by its location, and that name can be embedded in

any number of other objects. However, using physical locations as names

guarantees that the context is limited. If there exist more objects than will

fit in memory at once, names must be reused, and reuse of names can lead to

name conflict. Further, since selective substitution requires multiple

contexts, the single context of a location-addressed memory system appears

inherently inadequate. To solve these problems, we must develop a more

hospitable (and unfortunately more elaborate) addressing architecture.

The first step in this development is to interpose an object map between

the processor and the location-addressed memory system, as in figure 4,

producing a structured memory  system . Physical addresses of the location-

addressed memory system appear only in the object map, and the processor must

use logical names--object numbers--to refer to stored objects. The object map

acts as an automatically supplied context for resolving object numbers

provided by the processor; it resolves these object numbers into addresses in

the location-addressed memory to which it is directly attached. We assume that

this one object map provides a universal context for all programs, all users,

and all real or virtual processors of the system, and that the range of values

is large enough to provide an unlimited context; the object numbers are thus

unique identifiers. To simplify future figures, we redraw figure 4 as in

figure 5, with the unique identifiers directly labeling the objects to which

they are bound. We can now notice that the procedure has embedded within

itself the name of its data object; the context in which this name is

interpreted is the same universal context in which the processor's instruction

address is interpreted, namely the object map of the structured memory system.

We shall occasionally describe this name embedded in the procedure as an

outward reference, to distinguish it from references by the procedure to

itself.
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Figure 4 -- The structured memory system. The processor is executing
instruction 9 of procedure object 3, located at address
1501 in the memory. That instruction refers to location 141
of data object 975, located at address 19861 in the memory.
The columns of the object map relate the object number to
the physical address. In a practical implementation, one
might add more columns to the object map to hold further
information about the object. For example, for a segment
object, one might store the length of the segment, and
include checking hardware to insure that all data offsets
are of values within the length of the segment.
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Figure 5 -- The structured memory system of figure 4 with the object
map assumed and therefore not shown. Note that the
procedure object contains the name of the data object, 975.
To emphasize the existence of the context that the now-
hidden object map implements, all object numbers in this
and the following figures are italicized (underlined).

Since the structured memory system provides an unlimited context, the

procedure can contain the name of the data object without knowing in advance

anything about the names of objects contained in the data. Further, if the

location-addressed memory system is small, one set of programs and data can be

placed in it at one time, and another set later, with some objects in common

but without worry about name conflict. We have provided for modular sharing,

though with a minor constraint. The procedure cannot choose its own name for

the data object, it must instead use the unique identifier for the data object

previously assigned by the system. Table I will be used as a way of recording

our progress toward a more flexible addressing architecture. Its first two
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columns indicate the effect of adding an object map that allows unique

identifiers as object names * . Its later columns and lower rows are the

subjects of the next few sections.

                        

*  Although unique-identifier object maps have been proposed [Radin and
Schneider, 1976; Redell, 1974] there seem to be formidable problems in
implementing unlimited contexts in hardware (a very large map may be needed,
thereby producing interactions with multilevel memory management) and most
real object addressing systems provide limited contexts that are just large
enough to allow short-lived computations to act as though the context were
unlimited. Multics [Bensoussan et al., 1972] was a typical example.
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1.  User-dependent bindings  and  multiple  naming  contexts

As our system stands, every object that uses names is required to use

this single universal context. Although this shared context would appear

superficially to be an ideal support for sharing of objects, it goes too far;
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it is difficult to avoid sharing. For example, suppose that the data object of

figure 5 should be private to the user of the program, and there are two users

of the same program. One approach would be to make a copy of the procedure,

which copy would then have a different object number, and modify the place in

the copy where it refers to the data object, putting there the object number

of a second data object. From the point of view of modularity, this last step

seems particularly disturbing since it requires modifying a program in order

to use it. What is needed is a user-dependent binding between the name used by

the program and the private object.

Improvement on this scheme requires that we somehow provide a naming

context for the procedure that can be different for different users. An

obvious approach is to give each user a separate processor, and then to make

the context depend on which processor is in use * . This approach leads to

figure 6, in which two processors are shown, and to provide a per-user context

each processor has been outfitted with an array of pointer registers, each of

which can hold one object number. The name-interpreting mechanics of the

processor must be more elaborate now, since interpretation of a name will

involve going through two layers of contexts.

                        

*  In the usual case that there are not enough real hardware processors to go
around, one would implement virtual processors in their place. This discussion
will continue to use the term "processor" for the program interpreter, since
from the point of view of naming, it is of no concern whether a processor is
virtual or real.
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Figure 6 -- Addition of pointer registers to the processor, to
permit a single procedure to have a processor-dependent
naming context.

This more elaborate name interpretation goes as follows: the pointer

registers are numbered, and the processor interprets an operand reference,

which used to be an object number, as a register number instead. The register

number names a register, whose contents are taken by the processor to be an

object number in the context of the structured memory system.

Thus, in figure 6, the current instruction now reads "load (2,141)" with

the intent that the name "2" be resolved in the context of the processor

registers. If processor A resolves "2", it finds object number 975, which is

the name of the desired object in the context of the structured memory system.

Thus when processor A interprets the operand reference of the instruction

(3,9) it will obtain the 141 st  item of object 975 . Similarly, when processor B

interprets the same operand reference, it will obtain the 141st item of object

991.
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We have thus arranged that a procedure can be shared without the onerous

requirement that everything to which the procedure refers must also be shared-

we are permitting selective user-dependent bindings for objects contained by

procedure objects.

The binding of object numbers to particular objects was provided by the

structured memory system, which chose an object number for each newly created

object and returned that object number to the requester as an output value. We

have not yet described any systematic way of binding register numbers to

object numbers. Put more bluntly, how did register two get loaded with the

appropriate object number, different in the two processors? Suppose the

procedure were created by a compiler. The choice that register name "2" should

be used would have been made by the compiler so in accordance with the

standard pattern for using names, the compiler should also provide for

bindings of that name to the correct object In this case, it might do so as in

figure 7, by producing as output not only the procedure object containing the

"load" instruction, but also the necessary context binding information. If the

procedure uses several pointer registers, the context binding information

should describe how to set up each of the needed registers. As shown, the

context binding information is a high level language description of the

context needed by the procedure; this high level description must be reduced

to a machine understandable version of the context for the program to run. The

combination of the program and its context binding information is properly

viewed as a prototype of a closure * .

The same technique can be used by the compiler to arrange for the

procedure to access a shared data object, too. Suppose, for example, the

                        

*  In the terms of programming language semantics, the compiler is a function
that produces as its output value another function: this output function
contains free variables planted in it by the compiler and that should be bound
in a way specified by the compiler. Thus the compiler should return not a
function, but a closure that provides for binding of the free variables of the
enclosed function.
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compiler determines from declarations of the program that variable b is to be

private (that is, per-processor) while variable b is to be shared by all users

of this procedure. In that case it might create, at compilation time, an

object to hold variable a (say in location 5 of that object) and include its

object number with the context binding information as in figure 8 . The result

would be the pattern of reference shown in figure 9.

Translation from the high level context description of figure 8 to the

register context of figure 9 is accomplished by a program known here as a

context initializer *  and most such programs permit a wider variety of object

interlinking possibilities than illustrated in figure 8. Before getting into

that subject, we should first consider three elaborations on the naming

conventions already described.

                        

*  Various other names for this program are loader, linker , link -editor , or
binder.



J. H. Saltzer, “Naming and Binding of Objects”, LNCS 60, 1978, pp. 99-208. 33

Figure 7 -- When a per-processor addressing context is used, one of
the outputs of the compiler is information about the
bindings needed to create that context, In this example,
the empty data object should have had some values placed in
it (by earlier instructions in this program) before the
load instruction is encountered.
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Figure 8 -- Shared data objects can be handled by appropriate
entries in the context part of the compiler's output. This
output context produces the reference pattern of figure 9.
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Figure 9 - A shared procedure, using both per-processor private data
and shared data, with a context in the processor registers
and bindings supplied by the compiler of figure 8.

2.  Larger contexts  and  context  switching

In order to achieve user-dependent bindings, we have arranged that each

procedure has its own private context, so the first of these elaborations is

to arrange for switching from one context to another when calling from one

procedure to another. We encounter an interesting implementation dilemma: how

many pointer registers should be provided? If there are only a few, some

procedure will undoubtedly need to refer to more objects than there are

available pointer registers. (Recall that a limited context is a common naming

problem ) On the other hand, if there are a large number, context switching

will require reloading all of them, which could be time-consuming. This

dilemma can be resolved by moving the processor context into memory, in a data
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object, and leaving behind a single processor register, the current context

pointer, that points to this context object. Now, a single register swap will

suffice to change contexts, at the cost of making the name interpreter more

complex and, maybe, slower. Figure 1O illustrates this architecture, figure 11

shows the corresponding changes needed in the context-establishing information

that the compiler must supply, and Table I continues to chart our progress * .

With this addition to the addressing architecture, in preparation for context

switching, we should note that we have quietly introduced explicit closures.

The processor now contains a pair of pointers, to a procedure and to a context

for the procedure: this pair of pointers can be considered to be an object in

its own right, a closure. (In a moment we shall take the final step of placing

these explicit closures in memory.)

                        

*  For an example of this form of architecture, in Multics the linkage section
played the role of the context object a linker initialized it, and compilers
routinely produced prototype linkage sections as part of their output. One of
the processor base registers, known as the linkage pointer, played the part of
the current context pointer. [Daley and Dennis, 1968].
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Figure 10 -- By placing the per-processor context in a data object
in memory, and adding a current context pointer register to
the processor, the context is not limited to the number of
processor registers. Instead, all addresses are assumed to
be interpreted indirectly relative to the segment named by
the current context pointer. For example, the instruction
at location (3,9) in procedure p contains the address
(2,141). The name "2" is resolved by referring to the
second location of the object named by the current context
pointer. All of the context objects for a given procedure
have the same layout, as determined by the compiler, but
the bindings to other objects can differ. Note that the
combination of the current context pointer and the current
instruction pointer in any one processor represents an
object, the current closure.
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Figure 11 - Compiler output needed to initialize the context objects
of figure 1O. In addition to the instructions provided by
the compiler, one further step is needed: just before
calling procedure "p", the object number of its context
object for this processor must be loaded into the current
context pointer register.

The establishment of the context for resolving names of the procedure

spans three different times:

1)  compile time, when names within the context object are assigned, and

the compiler creates the context-establishing information with the

aid of declarations of the source program,
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2)  just before the program is first run, when the context initializer

creates and fills in the context object and creates any private data

objects,

3)  just before each execution of the program, when part of the calling

sequence loads the current context pointer register with a pointer

to the context object.

We have distinguished between the second and the third times in this sequence

on the chance that the program will be used more than once, without need for

reinitialization, by the same processor. In that case, on second and later

uses of the program, only the third step may be required.

The second elaboration of our per-procedure context scheme is to provide

for automatically changing the context when control of the processor passes

from one procedure to another. Suppose, for example, the procedure "p" calls

procedure "q". In that case, as control passes from "p" to "q" the current

context pointer of this processor should change from the processor’s context

object for "p" to the processor's context object for "q"; upon return of

control, the context pointer should change back. In terms of the naming model,

the meaning of a call is that the processor should switch its attention from

one closure to another.

Mechanically, we may accomplish these changes by adding one more per-

processor object: a closure table, which contains a mapping from procedure

object number to the private context object number for every procedure used by

this processor. At the same time, we replace the current context pointer with

a processor register that contains the object number of the closure table. The

name interpreting part of the processor must once again be made more complex.

To interpret a name, found as the operand part of an instruction, the

processor first uses the closure table pointer and the object number of the

next instruction register to look up in this processor's closure table the

object number of this procedure's context. It can then proceed as before to
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interpret the name in that context. Figure 12 illustrates this new closure

table pointer  register , and a typical object layout just before a call. The

call instruction, after resolving the name "4" in the current context to be

object number 98, inserts that number in the object number part of the

instruction location counter. From then on, the processor will automatically

use the context object for procedure "q" in resolving names. When procedure

"q" returns to "p", the context automatically is restored to that of "p" when

the object number part of the instruction location counter is reset to the

object number of "p" * . Table I again identifies the additional function

gained.

                        

*  We have not specified the way in which procedure "p" tells procedure "q"
where its arguments are located or where to return, because it would lead to a
distracting discussion of calling mechanisms. Both the return point and the
arguments should be viewed as temporary bindings to names already in some
naming context of "q", and some machinery is needed both to effect those
temporary bindings and to reverse them when "q" returns. For example, the
argument addresses and the return point might be pushed onto a stack by "p"
and popped off the stack by "q" when it returns. The top frame of the stack is
then properly viewed as a distinct naming context for "q". Automatic hardware
to perform all the functions of a procedure call is becoming commonplace, as
in Multics [Schroeder and Saltzer, 1974] and the Cambridge Capability System
[Needham, 1972]. Both of these systems had versions of the closure table in
some form.
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Figure 12 -- Context switching. Procedure "p" is just about to call
procedure "q", in both processors. The current context for
resolving names is located in two steps, starting with the
closure table pointer and the object number of the current
procedure. This pair (for processor 1, the pair is (413,3))
leads to a location containing the context for "p" (for
processor 1, p's context is object 807). Note that the call
instruction in procedure "p" refers to its target using a
name in the context for "p" exactly as was the case for
data references. The name source register enters the
picture when data objects refer to other data objects, as
described in the text.

The final elaboration, which is actually omitted in most real systems,

is to provide for the possibility that a shared data object should have a

user-dependent context. This possibility would be required if it is desired to

share some data object without sharing all of its component objects. Such

user-dependent binding of course requires that the data object have a per-
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processor context, just like a procedure object, and one's initial reaction is

that figure 12 seems to apply if we are careful to create a context for each

such data object and place a pointer to it in the appropriate closure table. A

problem arises, though, if we follow a reference by a procedure to a data

object and thence to a component named in that object, an operation that may

be called an indirect reference. Consider first the direct data reference that

occurs if the instruction

get (19,7)

is executed. The number "19" is a name in the current procedure's context

object, which selects a pointer to the data object, and the number "7" is an

offset within that object; the result would be to retrieve the 7th word and

perhaps put it in an arithmetic register. Now suppose the instruction

get (19,7)*

is executed, with the asterisk meaning to follow an indirect reference.

Presumably, location 7 of the data object contains, instead of an arithmetic

item, an outward reference (say (4,18)) that should be interpreted relative to

the per-processor context object associated with this data object by the

closure table. If we are not careful, the processor may get the wrong context,

for example, the context of the current procedure. To be careful, we can

explicitly put in the processor a name source  register  that the processor

always automatically loads with the object number of the object from which it

obtained the name it is currently resolving. To obtain the correct context,

the processor always uses the current value of the name source register as the

index into the closure table. Since it obtains most names from instructions of

the current procedure, the name source register will usually contain the

object number of the current procedure. However, whenever an indirect

reference chain is being followed, the name source register follows along,
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assuring that for each indirect reference evaluated, the correct context

object will be used * .

Another interesting problem arises when a program stores a name into an

object. The program must also ensure that the name is correctly bound in the

context where that object's names are resolved. Such an operation would occur

if dynamic rearrangement of the internal organization of a partially shared

structured object were required. Again, since most programming languages do

not permit partially shared structures, they also do not provide semantics for

rearranging such structures.

We should also note that when a procedure or data object refers to an

object by name, we have constructed a fairly elaborate mechanism to resolve

the name, to wit:

1)  The closure table pointer and the name source register are read to

form an address in the closure table.

2)  The closure table is read to retrieve the current context object

number.

3)  The current context object number and the originally presented name

of the object are used to form an address within the current context

object.

4)  The current context object is read to obtain the object number of

the desired object.

5)  The object number of the object is combined with the offset to form

an address for the data reference.

6)  The data is read or written.

                        

*  As mentioned, the elaboration of a pointer source register is rarely
required, because per-processor data contexts are rarely implemented in
practice. (One example of a pointer source register appeared in the Honeywell
68/8O protection ring hardware [Schroeder and Saltzer, 1974].) Most
programming languages have no provision at all for describing data objects
that have per-user private contexts. The TENEX copy-on-write feature can be
interpreted as an example of per-user data contexts [Murphy, 1972].
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Thus for each data access, three accesses to the structured memory subsystem

(steps 2, 4, and 6) are required. And we might expect that inside the

structured memory subsystem, a single access may require three accesses to the

location-addressed memory system, if both an object table and also block

allocation (paging) are used. Thus it appears that we could be requiring a

nine to one expansion of the rate of memory accesses over that required for a

single data reference. One solution to this problem lies in speed-up tricks of

various kinds, the simplest being addition to the front of the structured

memory system of a small but very fast buffer memory for frequently used data

items. Since the processor's name interpreter refers to the current context

object once for every instruction that has an operand reference, its object

number would almost certainly remain in even the smallest buffer memory. A

similar observation applies to frequently resolved names within the context.

Thus, although there are many memory references, most of them can be made to a

very fast memory.

A second approach is to reduce the number of object-to-object cross

references. Depending on the level of dynamics that a set of programs actually

uses, it may be feasible to prebind many references, and thereby avoid

exercising much of the addressing architecture. For example, in figure 12, a

"prebinder" may be able to take procedure p and procedure q, and construct

from them a single procedure object with a single, combined context, and with

the call from p to q replaced by an internal reference. In effect, the

prebinder replaces containment by name with containment by copy. This kind of

prebinding would be appropriate if p and q are always used together, and there

are no name conflicts in their outward references. Doing prebinding

irrevocably commits the connection between p and q; a user of the combined

procedure cannot substitute a different version of q. If an application is

sufficiently static in nature, and does not share writeable objects with other

applications, one could in principle prebind all of the objects of that

application into a single big object containing only self-references, and
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thereby completely avoid use of any special hardware architecture support at

all. Such a strategy might be valuable in converting a system from development

to production. The development system might over use a software interpreted

version of the addressing architecture. The extreme slowness of such software

interpretation would be less important during development, and prebinding

would eliminate the interpretation when the production system is generated.

3.  Binding on  demand  and  binding  from  higher-level  contexts

Figure 12 illustrates a static arrangement of contexts surrounding

procedures, but does not offer much insight into how such an arrangement might

come into existence. Since there are two levels of contexts, there are now two

levels of context initialization. The creation of a new virtual processor must

include the creation of a new, empty closure table and the placement of the

object number of that table in the closure table pointer of the new virtual

processor. The filling in of the closure table, and the creation and filling

in of individual contexts, may be done at the same time, by the creator of the

virtual processor. Alternatively the creator may supply only one entry in the

closure table, and one minimally completed context for the context initializer

procedure itself, and expect that procedure to fill in the remainder of its

own context and add more context objects to the closure table as those entries

are needed.

This latter procedure we shall term binding on  demand * , and it is

usually implemented by adding to the processor the ability to recognize empty

entries in a context or the closure table. When it detects an empty entry, the

processor temporarily suspends its normal sequence, saves its current state,

and switches control to an entry point of the context initializer program.

(The processor may have a special register that was previously set to contain

                        

*  The term dynamic linking was used in Multics, one of the few systems that
actually implemented this idea (Daley and Dennis, 1968].
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a pointer to the context initializer. Alternatively it may just transfer to a

standard address, in some standard context, with the assumption that that

address has been previously set to contain an instruction that transfers to

the context initializer.) The context initializer examines the saved processor

state, to interpret the current address reference so as to determine which

entry in which context is missing, and proceeds to initialize that entry.

Binding on demand is a useful feature in an on-line programming system,

in which a person at a terminal is interactively guiding the course of the

computation. In such a situation it is frequently the case that a single path

through a procedure, out of many possible paths, will be followed, and that

therefore many of the potential outward references of the procedure will not

actually be used. For example, programs designed for interactive use often

contain checks for typing errors or other human blunders, and when an error is

detected, invoke successively more elaborate recovery strategies, depending on

the error and the result of trying to repair it. On the other hand, if the

human user makes no error, the error recovery machinery will not be invoked,

and there is no need for its contexts to have been initialized. For another

example, consider the construction of a large program as a collection of

subprograms. It can be important for one programmer to begin trying out one or

a few of the subprograms before the other programmers have finished writing

their parts. Again, if the programmer can, by adjusting input values, guide

the computation through the program in such a way as to avoid paths that

contain calls to unwritten subprograms, it may be possible to check out much

of the logic of the program. Such partial checkout requires the ability to

initialize partially a context (leaving out entries for non-existent

subprograms) * .

                        

*  Binding on demand is an idea closely related to a programming language
technique named lazy evaluation , in which either binding or calculation or
both are systematically postponed until it is apparent that the result is
actually needed. [Henderson and Morris, 1976].
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A second idea related to context initialization stems from the

suggestion, made earlier, that a context initializer can perform more

elaborate operations than simply creating empty data objects or copying object

numbers determined at compile time. Returning to figure 11, the compiler

creates a prototype context object for use by the context initializer. If the

context initializer were prepared for it, this prototype could also contain an

entry of the form "look for an object named 'cosine' and put its object number

in this entry of the context". This idea requires that the name "cosine" be a

name in some naming context usable by the context initializer, and it is

really asking the context initializer to perform the final binding, by looking

up that name at run time, discovering the object number, and binding it in the

context being initialized. There are several situations in which it might be

advantageous £o do such binding from a higher-level context at context

initialization time rather than at compile time:

1)  The program is intended to run on several different computer systems

and those different systems may use different object numbers for

their copies of the contained objects.

2)  At the time the program is compiled, the contained object does not

yet exist, and no object number is available. However, a symbolic

name for it can be chosen. (This situation arises in the large-

system programming environment mentioned before. It also arises when

programs call one another recursively.)

3)  There may be several versions of the contained object, and the

programmer wants control at execution time of which version will be

used on a particular run of the program.

Bindings provided at compile time are created with the aid of declaration

statements appearing inside the program being compiled. As we shall see,

bindings created at run time must be created with the aid of declarations

external to, but associated with, the program. It is exactly because the
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declarations are external to the program that we obtain the flexibility

desired in the three situations described above.

Most computer operating systems provide some-form of highly structured,

higher-level, symbolic naming system for objects that allows the human

programmer or user of the system to group, list, and arrange the object with

which he works: source programs, compiled procedures, data files, messages,

and so on. This higher-level context, the file system, is designed primarily

for the convenience of people, rather than programs. Among typical features of

a file system designed for interactive use by humans are synonymous names,

abbreviations, the ability to rename objects, to rearrange them, and to

reorganize structures.

A program, in referring to computational objects, usually does so in an

addressing architecture like that developed up to this point, using names that

are intelligible to hardware, and explicitly attempting to avoid potential

troubles such as uncertain name resolutions, name conflict, and incorrect

expansion of abbreviations. Thus the machine-oriented program addressing

architecture is usually made as distinct and independent as possible from the

human-oriented file system. The program context initializer, however, acts as

a bridge between these two worlds, prepared to take symbolic names found in

the program execution environment, interpret them in the context of the file

system, and return to the program execution environment an object binding that

is to match the programmer's intent.

Development of the higher-level file system and that part of the program

context initializer that uses it is our next topic. First, however, it may be

helpful to review, in Table II, all of the examples of naming and name binding

that occur in our addressing architecture alone. This table emphasizes two

points. First, in even a simple naming system there are many examples of

naming and name binding. Second, in the course of implementation of

appropriate name-binding facilities for modular programming, there are many

places in which naming is itself used as an internal implementation technique.
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This internal use of naming and binding is conceptually distinct from the

external facility being implemented, but real implementations often blur the

distinction, as an implementation shortcut or out of confusion. These two

points should be pondered carefully, because in developing a higher-level

naming concept in the next sections, we will utilize the naming contexts of

the addressing architecture, create intermediate levels of contexts, and have

several opportunities to confuse the problem being solved (building up a

naming context) with the method of solution (using naming concepts).
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C.  Higher-Level Naming Contexts, or File Systems

1.  Direct-Access and  Copy  Organizations

Higher-level naming contexts, or file systems . are provided in computer

systems primarily for the convenience of the human users of the systems. In

on-line systems, a file system may assume a quite sophisticated form,

providing many features that are perceived to be useful to an interactive

user * .

The foremost property of a file system is that it accepts names that are

chosen and interpreted by human beings--ideally arbitrarily chosen, arbitrary

length strings of characters. The context used to resolve these user-chosen

names is called a catalog †, which in its simplest form is an object containing

pairs: a character string name and a unique identifier of the object to which

that character-string name is bound ‡. The unique identifier names the object

in the context of the underlying storage system. Normally, the name-resolution

mechanism of the file system is sufficiently cumbersome that it is not

economically feasible for a running program to use it for access to single

words. Therefore, some mechanism must be provided for making sure that most

references are to a high-speed addressing architecture. There are two

commonly-found ways of organizing a file system's relation to this addressing

architecture: the copy file system, and the direct -access  file system.

                        

*  A similar, but typically less-sophisticated file system is often used for
batch processing job control languages.

† In many systems, the term directory is used.

‡ In many systems, catalogs are also used as repositories for other things of
interest about an object, such as details of its physical representation,
measures of its activity, and information about who is authorized to use the
object. Such use of a catalog as a repository as well as a naming context
tends to confuse naming issues with other problems, so we shall assume for our
present discussion that the underlying storage system provides for the
repository function and that catalogs are exclusively naming contexts. In a
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In a copy file system, the catalog manager operates quite independently

of the addressing architecture. A program may call upon the catalog manager to

create an object with a given file system name. When the program wishes to

read or write data from or to the object, it again calls the catalog manager,

at a read or write entry point, giving the character-string name of the

object, and the address of a data buffer in the addressing architecture. The

catalog manager looks up the character-string name, finds the object

identifier, and then performs the read or write operation by copying the data

from its permanent storage area to the addressing architecture or back. Thus,

in a copy file system, use of an object by name is coupled with the kind of

data movement usually associated with multilevel memory management; usually

the file system uses secondary storage devices that have their own addressing

structure, but this addressing structure is hidden from the user of the file

system. Figure 13 illustrates a copy file system.

In a direct-access  file system, the catalog manager also creates a

higher-level naming context, but it uses the addressing architecture itself as

the mechanism for data access. Instead of performing copying read and write

operations for its caller, it provides an entry that we may name "get

identifier", which returns to its caller an object identifier, for a given

character-string name, suitable for use directly with the lower level

addressing architecture. Figure 14 shows a direct access file system.

                                                                               

later discussion of implementation considerations, some of the effects of
mixing these ideas will be examined.
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Figure 13 -- Organization of a simple copy file system, The user
calls on the catalog manager to create objects and record
character-string names for them. The identifiers (labelled
id) stored by the catalog manager are names in the context
of a secondary memory system, not directly accessible to
the user program. The user program, to manipulate an
object, must first copy part or all of it into the primary
memory system by giving a read request to the catalog
manager, and specifying the character-string name of an
object and the name of a suitable area in the primary
memory system.
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Figure 14 -- Organization of a simple direct-access file system. The
user calls on the catalog manager, as before, to create
objects and to record character-string names. However, the
entry "get identifier" returns the object number, or unique
identifier (labelled uid) by which an object is known in
the structured memory system. The objects themselves are
created and stored by the structured memory system, in
response to direct requests from the catalog manager. The
catalog manager may itself use the structured memory system
to store the catalog, but that use is both unimportant and
invisible to the user of the catalog so long as there is
only one catalog, since the user does not need to know the
name by which the catalog manager refers to the catalog. As
shown, there is nothing to prevent a user program from
additionally making direct create and delete calls on the
Structured Memory Subsystem, thus creating uncatalogued
objects, or destroying catalogued objects without the
knowledge of the catalog manager.

Which of these two kinds of designs is preferred depends on the

arrangement of the available addressing architecture. If a structured memory

system that provides multilevel management of all primary and secondary memory

is available, then names of the structured memory system may be embedded in

program contexts, and a direct-access file system seems preferable. If, on the

other hand, permanent storage of large volumes of data on secondary memory is

managed separately from the primary memory system used by programs, then the

object names stored in a catalog would refer to a context not available to a

program, and the copy form of file system design is appropriate * .

The distinction between these two kinds of file systems is an important

one, since programs must be written differently in the two kinds of design.

The direct-access file system is sometimes called a one-level  store  [Kilburn

1961], because a program can consider all other programs and data to be

nameable in a single context, rather than in two contexts with the necessity

for explicitly copying objects from one context (the permanent storage system)

                        

*  Most copy file systems obscure our precise distinction by providing a
temporary context consisting of currently active files. Upon some program's
declaring an interest in a certain file, the file system allocates a name for
the file in the temporary context, and hands that name back to the program for
use in future read/write calls. Despite the similarity in structure to the
"get identifier" call, such systems are not direct-access because it is still
necessary to explicitly copy things from the context of the file system to the
context of the addressing architecture in order to manipulate them.
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to another (the program execution environment) in order to manipulate them * .

Note that a direct-access file system can be used to simulate a copy file

system, by copying objects from one part of it to another. The reverse is

quite a bit harder to do, since a one-level store requires that the base level

system implement a single, universal naming context.

In either a direct-access or a copy file system that implements a single

catalog, the operation of a context initializer program (the program,

described in part B, that connects the higher level file system context to

lower level program execution contexts) is relatively straightforward.

Consider the direct-access case first. The context initializer starts with a

character-string name found in a prototype context. The context initializer

calls the "get identifier" entry of the direct-access file system, takes the

returned identifier as an object number, and inserts it in the program context

being initialized. In the case of a copy file system, the context initializer

goes through an extra step, known as loading the object. That is, it allocates

a space for the object in primary memory, and then it asks the copy file

system to read a copy of the referenced object into primary memory. Finally,

it places the primary memory address of the newly-copied object in the context

being initialized. To avoid copying a shared object (that is, one named by two

or more other objects) into primary memory twice, the context initializer must

also maintain a table of names of objects already loaded, a reference name

table. Before calling on the file system, the context initializer must first

look in the reference name table to see if the name refers to an object

already loaded. Because the higher-level file system requires copying of

objects in order to use them, the context initializer for the addressing

                        

*  Another name sometimes used for the direct access file system is the
"Virtual Access Method".
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architecture is forced to develop in the reference name table an image of

those parts of the higher-level file system that are currently in use * .

In examining the operation of the context initializer in the

environments of copy and direct-access file systems, we have identified the

most important operational distinctions between the two designs. For

simplicity in the succeeding discussion, we shall assume that a direct-access

file system is under discussion, and that the adaptation of the remarks to the

copy environment is self-evident.

2.  Multiple catalogs  and  naming  networks

The single-catalog system of figure 13 and 14 is useful primarily for

exposing the first layer of issues involved in developing a file system,

although such systems have been implemented for use in batch-processing, one-

user-at-a-time operating systems †. As soon as the goal of multiple use is

introduced, a more elaborate file system is needed. Since names for objects

are chosen by their human creators, to avoid conflict it is necessary, at a

minimum, to provide several catalogs, perhaps one per user ‡.

If there are several catalogs available, any of which could provide the

context for resolving names presented to the file system, some scheme is

needed for the file system name interpreter to choose the correct catalog.

Technically, some mechanism is needed to provide a closure. A scheme used in

                        

*  In practice, dealing with shared objects also involves several other
complicated issues, such as measuring activity for multilevel memory
management or accounting, and maintaining multiple copies for reliability;
such issues lead a good distance away from the study of name binding and will
not be pursued here.

† The FORTRAN Monitor System (FMS) for the IBM 709 computer is a typical
example of a batch processing system that had a single catalog, for a library
of public subroutines.

‡ Most of the first generation of time-sharing systems, such as CTSS, APEX,
the SDS-94O, TYMSHARE, DTSS, VM/37O-CMS, and GCOS III TSS provided one catalog
per user. OS/36O provided a single system-wide catalog with multicomponent
names that could be used to provide the same effect.
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many systems that provide one catalog per user is as follows: the state of a

user's virtual processor usually includes a register (unchangeable by the

user) that contains the user's name, for purposes of resource usage accounting

and access control * . The file system name interpreter simply adds another use

to this name: as a closure identifier. The name interpreter resolves all

object names presented to it by first obtaining the current user name from the

virtual processor name register, and looking that up in some catalog of

catalogs, called a master user  catalog . The user's name is therein bound to

that user’s personal catalog, which the interpreter then uses as the context

for resolving the originally presented object name. This scheme is simple, and

easy to understand, but it has an important defect: it does not permit the

possibility of sharing contexts between users. Even if one user knows another

user's name, and has permission to use the second user's file, the first user

cannot get his program to contain the correct file system name for the file in

the other user's catalog: the user's own catalog is automatically provided as

the implicit context for all names found in his programs. Reusing the account

or principal identifier as a closure identifier, while simple, is inflexible.

To understand the reason why shared contexts are of interest, we must

recall that the file system is a higher-level naming context provided for the

convenience of the human user rather than a facility of direct interest to the

user's programs. The commands typed by the user at the terminal to guide the

computation specify the names of programs and data that he wishes the

computation to deal with, and he expects these names to be resolved in the

context of the file system. The user would like to be able to express

conveniently a name for any object that is of interest to him. If he makes

frequent use of objects belonging to other users, then to minimize confusion

he should be able to use the same names for objects that their owners use.

                        

*  In discussions of information protection, this name is usually called a
principal identifier.
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These considerations suggest a need for a scheme that allows contexts to be

shared.

A simple scheme that supplies the minimum of function is to add a

second, user-settable register to the user's virtual processor, dedicated

exclusively to the function of closure identification. We shall name this new

register the working catalog  register; and have the file system resolve names

starting from that register rather than some register intended for a purpose

only accidentally connected with naming. The working catalog register would

normally contain a name that is bound, for example in a master user catalog,

to the user's personal catalog * . When the user wishes to use a name found in

some other catalog, he first arranges that the working catalog register be

reloaded with the name of the other catalog. This scheme has been widely used,

and is of considerable interest because it exposes several issues brought

about by the desire to share information:

1)  In some systems, protection of information from unauthorized use is

achieved primarily by preventing the user from naming things not

belonging to him. For example, before the working catalog register was

added, the file system name interpreter resolved all names relative to

the protected principal identifier register, thereby preventing a user

from naming objects belonging to others. With the addition of the

working catalog register, the user can suddenly name every object in the

file system. Protection must be re-supplied either by restricting the

range of names of catalogs that the user can place in the working

catalog register (for example, permitting the user to name either his

catalog or a public library catalog, but nothing else) or else by

                        

*  For implementation speed, the working catalog might actually be represented
by its object number rather than by a character-string name requiring
resolution every time a name is used.
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developing a protection system that is more independent of the naming

system--an access control list for each object, for example * .

2)  The change of context involved when the working catalog is changed is

complete--all names encountered in the program being executed, or the

context initializer program, will be resolved relative to the name of

the current working catalog. If program A contains a reference to object

B, and the context initializer is expected to dynamically resolve the

name "B" at the time it is first used, that resolution will depend on

the working catalog in force at the instant of the first reference to B.

Here we have a potential conflict between the intention of the

programmer in embedding the name "B" in the program and the intention of

the current user of the program, who may want to adjust the working

catalog to assure correct resolution of some other name to be typed at

the terminal as input to program A. Since there are two effectively

independent sources of names, perhaps there should be two working

catalogs, and an automatic way of choosing the correct working catalog

depending on the source of the name. Unfortunately, inside the computer

both kinds of names are presented to the file system by similar-

appearing sources--some program calls, giving the name as an argument.

(We are here encountering a problem described earlier, that the wrong

implicit context may be supplied by the name interpreter.)

3)  Having once changed the context in which names are resolved, the human

user (or the program writer) must constantly remember that a new context

is in force, or risk making mistakes. As an example of a complication

that can arise, many systems provide an attention feature that allows a

user, upon pressing some special key at his terminal, to interrupt the

                        

*  The lack of ability to name other users' objects was the primary file system
protection scheme of M.I.T.'s Compatible Time-Sharing System. The equivalent
of the working catalog register in that system was restricted to the users'
catalog, the library, or a catalog held in common among a designated group of
users [Crisman, 1965].
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current program and force control to some standard starting place. If

the working catalog register was changed by the current program (perhaps

in response to a user request to that program) then the "standard"

starting place may start with a "non-standard" naming context in force.

These last two issues suggest that an alternative, less drastic approach

to shared contexts is needed: some scheme that switches contexts for the

duration of only one name resolution.

One such scheme is to provide that each name that is not to be resolved

in the working catalog carry with it the name of the context in which it

should be resolved. This approach forces back onto the user the responsibility

to state explicitly, as part of each name, the name of the appropriate

context. We assume, as before, that catalogs are to have human-readable

character-string names, and therefore there must be some context in which

catalog names can be resolved. Figure 15 shows one such arrangement, called a

naming network , an arrangement characterized by catalogs appearing as named

objects in other catalogs. We have chosen the convention that to express the

name of an object that is not in the working catalog, one concatenates the

name of the containing catalog with the name of the object, inserting a period

between the two names. The absence of a period in a name can then be taken to

mean that the name is to be resolved in the working catalog. One would expect

names containing periods to come to programs as input arguments, originating

perhaps from the keyboard; they represent a way for the user to express intent

precisely in terms of the current naming structure, which can change from day

to day. On the other hand, one would permanently embed in a program only

single-component names, to avoid the need to revise programs every time

objects are rearranged in the catalog structure, We shall return to the topic

of binding names of the program to names of the catalog structure after first

exploring naming networks in some depth.
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Figure 15 -- A simple naming network. All single-component names
given to the file system are resolved in the context named
by the working catalog register. All two-component names
are resolved by resolving the first component in the
working catalog, which leads to another catalog in which
the second component may be resolved. As in earlier
figures, the arrows represent object addressing; the
(italicized) object numbers have been omitted to simplify
the figures. (The working catalog register refers to the
working catalog by object number in this example, although
it could also be implemented as a multicomponent path name
relative to some standard starting catalog known to the
file system).

A naming network generalizes in the obvious way if we admit names

consisting of any number of components--these names are called path names .

Thus, in figure 15, it might be that the object named "a.v" is yet another

catalog, and that it contains an object named "cosine"; the user could refer

to that object by providing the path name "a.v.cosine" * . Note also that the

                        

*  If it should turn out that object "a.v" is not a catalog, the user has made
a mistake; in a well-designed system the file-name interpreter should have
some provision for detecting this mistake. For example, in an object-oriented
system, each object contains as part of its representation the identification
of its type, and the underlying system would report an error to the file
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path names "v" and "a.v" refer to distinct objects--either may be referred to

despite the apparent name conflict.

A naming network admits any arbitrary arrangement of catalogs, including

what is sometimes called a recursive structure : in figure 16, catalog "a.v"

contains a name "c", bound to the identifier of the original working catalog.

The utility of a recursive catalog structure is not evident from our simple

example--it merely seems to provide curious features such as allowing the

object named "q" to be referred to also as "a.v.c.q" or "a.v.c.a.v.c.q". But

suppose that some other processor has its working catalog register set to the

catalog we have named "a.v". Then from the point of view of that processor,

objects in catalog "a.v" can be referred to with single component names, while

the object that the first processor knew as "q" could be obtained by the name

"c.q". By admitting a recursive catalog structure, every user can have a

working catalog that contains named bindings to any other user's catalog. Thus

the original goal, of providing shared contexts, has been met * .

                                                                               

system if it attempted to perform a catalog lookup on an object not of the
catalog type. If an object-oriented system is not used, perhaps the higher
level catalog would contain for each entry a flag that indicates whether or
not that entry describes another catalog.

*  Naming networks are not often encountered in operating systems. The CAL
time-sharing system [Lampson and Sturgis, 1976] and the CAP system [Needham
and Birrell, 1977] are two examples, In data base management systems, the
CODASYL standard data base system defined by their Data Base Task Group (DBTG)
called for a recursive naming network [CODASYL, 1971].
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Figure 16 -- A naming network with recursive structure. Object "v"
is also known by the name "a.v.c.v".

3.  The dynamics  of  naming  networks

If we were to implement the file systems of figures 13 or 14, with the

intent of having a naming network, we would probably discover an important

defect: although we could easily implement entries to "read", "write", or "get

identifier" that understood path names in an existing naming network, and we

could also implement an entry to create a new object or catalog, we could not

write a program that called those entries to create a naming network with

recursive structure--we would be limited to creating a simple tree structure.

Unless our applications were sufficiently static that we could insert in

advance all recursive cross-references among catalogs that might ever be
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needed, we should make provision for programs dynamically to add recursive

cross-references by calling the file system. These provisions must include:

1)  some way to add to a catalog an entry that represents a binding to a

previously existing object

2)  some way of naming previously existing objects, so that provision

one can be accomplished.

The first provision seems straightforward enough, but the second one implies a

fundamental limitation of some kind in the conception of naming networks, at

least so far as dynamically constructing them is concerned: one can

dynamically extend a naming network only by

1)  creating new objects, or

2)  adding "short-cut" bindings to objects that were already nameable by

some other name.

Thus, in figure 17, one could imagine a request to the file system like

"Add to my working catalog a cross-reference, named 'm', to the catalog

currently nameable as 'b.x.m'," or "Add to catalog 'b.x.m' a cross-reference,

named 'r', to catalog 'b'." These two requests would add the bindings

indicated in the figure with dashed lines, but neither request increases the

range of objects that can be named. Meanwhile, there is no way available to

express the concept "add a cross-reference named 'z' to catalog 'b', that

allows access to the catalog labelled 'unnameable' in figure 17 ." Note that

this catalog is unnameable only from the point of view of the working catalog

register; some other user might have a name for it. If no one had a binding

for it, it would be a "lost object", about which more will be said later.
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Figure 17 -- A naming network containing an unnameable catalog.

In practice, the problem of inaccessibility is not so serious as it

might initially seem: a modest discipline on creation of catalogs can control

the situation. A typical strategy for a time-sharing system might be as

follows * :

1)  When the time-sharing system is first brought into existence, create

a "root" catalog, and place in it two more newly created catalogs,

one for the library (named "library") and another for individual

users' home catalogs (named "users".)

                        

*  This is a version of the strategy used in the CAL time-sharing system.
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2)  For each user of the time-sharing system, create a home catalog,

arrange that whenever that user logs in, the working catalog

register be loaded by the login procedure to contain the path name

(relative to the "root" catalog) of that user's home catalog, and

place in the user's home catalog a (recursive) entry binding the

name "root" to the unique identifier of the root catalog.

Now, each user will find that he can refer to his own files by simply

giving their names, he can refer to library programs by preceding their names

with "root.library.", and he can refer to a file in the catalog of his friend

"Lenox" by preceding its name with "root.users.Lenox.". If he finds that he

makes frequent use of files belonging to Lenox, he can place in his own

catalog a new entry directly binding some appropriate name (say "Lenox") to

the identifier of Lenox's catalog. The only obvious effect of this extra

binding is that shorter names can now be used to refer to objects in Lenox's

catalog.

Notice that if a user accidentally destroys the cross-reference to the

catalog named "root", that user would find that he could name nothing but

things in his own catalog. The root catalog therefore plays an important part

in making a naming network useful in practice.

4.  Binding reference  names  to  path  names

It remains for us to pick up several loose ends and glue them together

to complete the picture of name binding operations that appear in a computer

system. However, before inventing any further mechanisms, let us first stop

and review the collection of machinery we have developed already, so as to

understand just what functions have been provided and what is missing.

We began by assuming as an underlying base a universal naming context in

which all objects have unique, system-wide identifiers. We then developed on

this base a systematic way of using hardware-oriented reference names and

contexts in which those names resolved to underlying universal names--an
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addressing architecture. The purpose of these reference names was to allow

programs to be constructed of distinct data and procedure objects that refer

to one another using hardware-interpretable names that are unambiguously

resolved in closely associated contexts. We also observed that these contexts

must be initialized, either as part of the construction of the program or e l

se dynamically as the program executes (in order to avoid modifying the

program when it is used in a different application). We briefly outlined the

place of the context initializer program as a bridge between the machine-

oriented naming world of the addressing architecture and a higher-level,

human-oriented file system naming world. The purpose of the context

initializer is to take symbolic names found in the prototype context segment

of a program, interpret those names in the higher-level context of the naming

network, and place in a context object accessible to the addressing

architecture an appropriate binding to a specific object.

Next, we developed the outline of a human-engineered file system--a

naming network--to be used as the context for people guiding computations.

During this development we observed that the dynamic initialization of the

lower-level reference name context, say of a procedure, sometimes can involve

resolution of symbolic names in the higher-level file system. A problem we

noticed, but never quite solved, was that these symbolic names are of two

origins: some are supplied by the writer of the procedure, and are intended to

be resolved according to that writer's goals, and some are supplied by the

user of the procedure, in the course of supplying instructions to the program

at execution time. These latter names are presumably intended by the user to

be resolved in the file system relative to the user's current working catalog.

Thus, for example, a user may have a working catalog containing a

memorandum needing revision, which the user has named "draft". The user

invokes an editing procedure, and asks that editor to modify the object he

knows by the name "draft" in the working catalog. But it is possible (even

likely) that the author of the editor program organized the editor to make a
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copy of the object being edited (so as not to harm the original if the user

changes his mind); perhaps that author chose the name "draft" for the object

meant to contain the copy. We have, in effect, two categories of outward

symbolic references from the program, the first category to be resolved

relative to the working catalog, and the second relative to some as yet

unidentified, place in the naming network. The name interpreter used for the

translation from file system names to unique identifiers is being called upon

to supply one of two different implicit contexts; we have so far provided only

one, the working catalog.

To inform the name interpreter which context to use is straightforward:

the semantics of use are different and apparent to the translator or

interpreter of the program. A name supplied by the author of the program

appears as a character string in the source program in some position where

reference to an object is appropriate, while a name supplied by the user

appears as a data character string in a position where the programmer has

indicated that it should be converted into a reference to an object * . Thus if

we simply arrange that explicitly programmed conversions from character string

to reference be done with the working directory as a context, while all other

names found in the source program be interpreted in some other (as yet

unspecified) context, we can distinguish the intents of the author and the

user of the program.

This approach leaves one final question: what is the appropriate other

context in which to resolve outward symbolic references provided by the author

of an object? We are here dealing with a situation similar to that posed by

some programming languages, in which a procedure is defined, and then passed

                        

*  It should be noted that few languages provide direct semantics for
conversion of character-string data into external object references. To fill
this gap in language semantics, many operating systems provide subroutines to
perform the conversion. Such a subroutine typically takes a character string
argument representing the name of some object, and returns a reference
(sometimes called a pointer or an address) to that object.



J. H. Saltzer, “Naming and Binding of Objects”, LNCS 60, 1978, pp. 99-208. 69

(or returned) as an argument to be invoked at a time when some context is in

effect that is different from the one in which the procedure was defined * . The

standard way to deal with the problem of resolving free variables found in

functional arguments is to create and pass not a procedure, but a closure,

consisting of the procedure and the context in which its names are to be

interpreted. In the case at hand, a name-containing object is being

interpreted, and we are trying to discover the closure that defines its

symbolic naming context.

A simple (though not quite adequate, as we shall see approach to

providing a closure is to require that each catalog that contains the object

also contain entries for every symbolic name used in that object. Then, we

design the context initializer so that whenever any object is discovered to

require a symbolic name to be resolved, the context initializer should resolve

that name by looking in the file system catalog in which it originally found

that object. The author (or user) of an object that uses symbolic names is

instructed that in order for the object to operate correctly, someone must

prepare its containing catalog by installing entries for every name used by

the object. These entries are the externally-provided declarations that

replace the internal-to-the-object declarations whose absence caused context

initialization to be needed in the first place.

Using the containing catalog as a context for resolving symbolic names

handles part of the problem, but it fails to provide modular sharing. Consider

the catalog of figure 5-18 named "root.users.Smith". Smith has in mind

declaring that the name "b" should be bound to a program written by Lenox,

which Smith can refer to as "root.users.Lenox.b". Unbeknownst to Smith, Lenox

                        

*  Accomplishing correct name resolution when a function containing references
to free variables is passed or returned as an argument is known, in the
programming language community, as the "FUNARG problem". In our case, a
compiler or assembler has returned as its output value a procedure that
contains free variables--unresolved outward symbolic references. Thus, we
should expect that solutions to the FUNARG program might provide a clue how to
proceed.
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organized "b" in several pieces, one of which is named "a". If Smith binds the

name "b" directly to Lenox's procedure, and the containing catalog is used as

a context, Lenox's procedure will get the wrong "a" whenever it is invoked by

Smith. What is really needed is an explicit closure, rather than an implicit

one, so we conclude that we should arrange things as in figure 19, with each

named procedure replaced by a closure object containing a pointer to the

procedure, and a pointer to the appropriate context. Now, there is no problem

about how to bind the name "b" in Smith's catalog: it can be bound to the

closure for procedure b, as shown. With this arrangement, when Smith's

procedure "a" calls on procedure "b" the name "b" will be resolved in Smith's

catalog, and it will cause initialization of a new (addressing architecture)

context for b that is based on the file system context of Lenox's catalog.

When procedure "b" calls for "a" it will get the "a" bound in Lenox's catalog,

as intended. Although we have described the problem in terms of procedures,

the same problem arises for any name using object, and the same solution,

binding to the object through a closure rather than directly, should be

applied. The goal of modular sharing, namely that correct use of an object

should not require knowing its internal naming structure, is then achieved.
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Figure 18 -- Sharing of a procedure in the naming network. If the
name "b" in Smith's catalog is bound to procedure "b" in
Lenox's catalog, the context initializer will make a
mistake when resolving procedure b's reference to "a".
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Figure 19 -- Addition of closures to allow sharing of procedures to
work correctly.

5.  Context initialization

The careful reader will note that we have not quite tied everything

together yet: we have not shown how the context initializer of the addressing

architecture makes systematic use of the file system closure mechanism. As a

final step we should look into how this bridge between the addressing

architecture and the file system might be organized. We approach this
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integration by considering one possible implementation of the context

initialization programs involved.

First, let us suppose there is a catalog management function named

"resolve", of two arguments, that looks up the symbolic name provided as its

first argument in the catalog that has the object number supplied as the

second argument. Thus to look up the name "xyz" in the catalog with object

number 415, one would write

xyznum = resolve ("xyz", 415);

and upon return from "resolve", xyznum would contain the object number of

"xyz". Actually, we must be a little careful here: xyznum would actually

contain the object number of the file system closure of object "xyz".

The next step is to recognize explicitly the operation of making an

object addressable by a running processor. This operation involves three

steps:

1)  creating and initializing an addressing architecture context for

this processor to use when interpreting names found in the object.

Let us suppose that the prototype context information is tucked away

somewhere inside the object itself, in a standard, easy-to-find

place.

2)  inserting in this processor's closure table the addressing closure

for this object; that is, the association between the object's

object number and the object’s just-created addressing context.

3)  obtaining from the file system closure for the object the actual

object number, for use by the processor in addressing the object.

Thus, we might imagine a context initialization program named "install" that

would take as an argument the object number of a file system closure, and

would go into the closure, find the object itself and perform those three

steps. Step one, creating and initializing an addressing architecture context,
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may require resolving symbolic names (assuming some names are to be bound in

advance of execution rather than on demand) so "install" will need to call on

"resolve", giving as the second argument the catalog found in the file system

closure for the object being installed. For each name so resolved, "install"

will also have to call itself recursively, so as to make that object

addressable, too. If binding on demand is involved, install should leave in

the addressing context a copy of the object number of the file system closure,

so that later demand binding faults can be correctly resolved. Figure 2O

illustrates a simplified sketch of the function "install".

Figure 20 -- Outline of the "install" function of the context
initializer.

We might expect that the initial call to "install" comes, say, from an

interactive program that has just read a line from the user's terminal, and

discovered that the line contains the name of some object on which computation
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should be performed. The program might call "resolve" to convert the symbolic

name to a closure object number, specifying as a context for this symbolic

name resolution the current working catalog, Then it would call "install",

possibly triggering a wave of recursive calls to "install", and it could then

manipulate the object as required. It is instructive to follow through this

sequence in detail for the file system catalog arrangement of figure 19,

assuming that the working catalog is "root.users.Smith", and that Smith has

typed a command that calls for execution of a program named "a". In following

the sequence, note that we have provided, in a single mechanism, independent

contexts for resolutions of symbolic names typed at the terminal and for

symbolic names provided by the programmer; and that even when different

programmers happen to use the same symbolic name for different objects, use of

both their programs as components of the same subsystem is still possible.

This completes our conceptual analysis of higher-level naming systems.

Table III summarizes the objectives that we have identified and also the file

system facilities that implement those objectives. It remains for us to look

at a variety of implementation strategies actually used in practice, most of

which consist of shortcuts that abridge one or more of the objectives of the

naming systems of figures 12 and 19.
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D.  Implementation considerations

Up to this point we have developed two models of name binding that

relentlessly pursue every implication and admit no compromise. The results are

naming structures more sophisticated than any encountered in practice,

although every portion of the structures described has appeared in some form

in some system. In this section we explore some pressures that lead to

compromise, and also investigate the effects of compromise to see which

simpler structures might be acceptable for certain situations.

1.  Lost objects

One potential trouble with naming networks is called the "lost object"

problem. When a user deletes a binding in a catalog, the question arises of

whether or not the file system should destroy the formerly referenced object

and release the resources being used for its representation. If there are

other catalogs containing bindings to the same object, then it should not be

destroyed, but there is no easy way to discover whether or not other bindings

exist. One approach is not to destroy the object, on the chance that there are

other bindings, and occasionally leave an orphan that has no catalog bindings.

If the system has a modest amount of storage it is then feasible to scan

periodically all catalogs to mark the still accessible objects, and then sweep

through storage looking for unmarked orphans, a technique known as "garbage

collection". A substantial literature exists on techniques for garbage

collection [Knuth, 1968], but these techniques tend not to be applicable to

the larger volume of storage usually encountered in a file system.

An alternative approach is the following: when an object is created, the

first binding of that object in some catalog receives a special mark

indicating that this catalog entry is the "distinguished" entry for that

object. If the user ever asks to delete the distinguished entry, the file
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system will also destroy the object * . This alternative approach burdens the

naming system with the responsibility of remembering, in addition to a name-

to-object binding, whether or not the entry is distinguished. This burden is

significant: the mechanisms of naming and those of storage allocation are

being tangled; the catalog has become the repository for an attribute of the

object that has nothing to do with its name. Even when "garbage collection" is

used there is a subtle entanglement of naming with storage allocation: that

strategy calls for destruction of objects whenever they become nameless.

Entanglement of mechanisms with different goals is not necessarily bad, but it

should always be recognized. As we shall see in the next section, it can

easily get out of hand.

Finally, a more drastic approach to avoiding lost objects is to

eliminate the multiple bindings completely: require that each object appear in

one and only one catalog. Then, when the binding is deleted, the object can be

destroyed without question. But this constraint has far-reaching consequences

for the naming goals. The naming network is restricted to a rooted tree,

called a naming hierarchy. Although any object in such a hierarchy can refer

symbolically to any other object, it can do so only by expressing a path name

starting either from its own tree position or from the root, and thereby

embedding the structure of the naming hierarchy in its cross references. User-

dependent bindings become impossible.

Also, the constraint is more drastic than necessary. One can allow non-

catalog objects to appear in as many catalogs as desired, and maintain with

the representation of each object a counter (the reference count ) of the

number of catalogs that contain bindings to the object. As bindings are

created or deleted, the counter can be updated, and if its value ever reaches

                        

*  This approach was used, for example, in the CAL time-sharing system [Lampson
and Sturgis, 1976].
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zero, it is time to destroy the object * . (This scheme would fail if applied to

the more general naming network. Consider what would happen in figure 16 if

the only binding to the structure shown were the pointer in the working

catalog register, and that binding were destroyed. Since all of the objects in

the figure have at least one binding from other objects in the figure, the

reference count would not go to zero, and the entire recursive structure would

become a lost object †.)

2.  Catalogs as  repositories

In many real systems, to minimize the number of parallel mechanisms and

to allow symbolic names to be used for control and in error messages, the

catalog is used as a repository for all kinds of other attributes of an object

besides control of its destruction * . These other attributes are typically

related to physical storage management, reliability, or security. Some

examples of attributes for which some repository is needed are:

a)  the amount of storage currently utilized by the object,

b)  the nature of the object's current physical representation,

c)  the date and time the object was last used or changed,

d)  the location of redundant copies of the object, for reliability,

                        

*  This strategy of reference counts to allow a file to appear in many catalogs
was used in the file system for the UNIX time-sharing system [Ritchie and
Thompson, 1974].

† The CAP system actually used this approach, on the basis that abandoned
recursive structures will occur infrequently, and that occasional reload of
the entire contents of the file system from backup copies will have the effect
of reclaiming the last storage. A mixed scheme has been suggested by R.
Needham, but never implemented. The idea would be to use both distinguished
entries and reference counts, and to refuse to delete a distinguished entry if
non-distinguished entries still existed, as indicated by a reference count
greater than one [Needham and Birrell, 1977].
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e)  a list of users allowed to use the object, and what modes of use they

are permitted.

f)  the responsible owner's name, to notify in case of trouble.

The most significant effect of this merging of considerations of naming with

considerations of physical storage management, reliability, and security is

this: to provide control there should be only one repository for the

attributes of any one object. Therefore, systems with this approach usually

begin with the rule that there can be no more than one catalog entry for any

one object. Thus the form of the naming network is restricted to that of a

rooted tree, or naming hierarchy, with the ills for naming mentioned in the

previous section. The use of the catalog as a general repository indeed

distorts the structure of the naming system. However, there are two

refinements that have been devised to restore some of the lost properties,

indirect catalog entries and search rules.

3.  Indirect catalog  entries

Some systems provide an ingenious approximation to a naming network

within the constraint that there be a single repository for each object. They

begin with a naming hierarchy, as described above, but they permit two kinds

of catalog entries. A direct entry  provides a binding of a name to an object

and its attributes, as usual. Exactly one direct entry appears for each

object. An indirect entry  provides a binding of a name to a path or tree name

of some object elsewhere in the catalog hierarchy. The meaning of such an

indirect entry is that if the user attempts to refer to an object with that

name, the references should be redirected to the object whose path name or

                                                                               

*  In fact, the UNIX time-sharing system appears to be the only widely-used
system that completely avoided the repository functions [Ritchie and Thompson,
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tree name appears in the indirect entry. There can be any number of indirect

entries that ultimately lead to the same object * . Indirect entries provide

most of the effect of a naming network: a single object may appear in any of

several contexts. Yet the systematic use of indirect entries can confine the

embedding of path names or tree names to catalogs. Further, a convention can

be made that all symbolic references made by an object are to be resolved in

the context consisting of the catalog in which that object’s direct entry

appears. In effect, this convention provides an automatic rule for associating

a procedure with its symbolic naming context, and eliminates the need for an

explicit closure to make the association †. Figure 21 illustrates the situation

of figure 19, except that a naming network allowing indirect entries is used ‡.

                                                                               

1974].

*  Most such systems permit the possibility that the target of the redirected
reference can redirect the reference to yet another catalog entry. In such
cases, protection must be provided to prevent the name interpreter from going
into a loop when a careless user leaves two indirect entries referring to each
other.

† It also means that any one procedure can be associated with one and only one
context, whereas with explicit closures, several closures could be provided
for a single procedure, each naming different contexts.

‡ The CTSS system was probably the first to provide indirect catalog entries,
doing so under the name "links". IBM’s TSS/360 and Honeywell s Multics also
were organized this way. The CAL time-sharing system allowed both indirect
entries ("soft links") and any number of direct entries ("hard links").
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Figure 21 -- Sharing of procedures in a naming hierarchy with
indirect catalog entries. The name «b» in Smith's catalog
is bound to the tree name of Lenox's procedure, rather than
its unique identifier. Since in a naming hierarchy the root
catalog is distinguished, Smith no longer needs a binding
for it; the name interpreter is assumed to know its unique
identifier.

4.  Search rules
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Yet another approach to operation within the constraint of one catalog

entry per object and a hierarchical naming tree is to condition the name

interpreter to look in several different catalogs when resolving a name. Thus,

for example, many systems arrange that names are looked up first in the user's

working catalog, and failing there, in some standard library catalog. Such a

simple system correctly handles a large percentage of the outward name

references of traditional programs, since many programs call on other programs

written by the same programmer or else universally available library programs.

The search rule scheme becomes more elaborate if other patterns of

sharing are desired. One approach allows the user to specify that the search

should proceed through any sequence of catalogs, including the working

catalog, the catalog containing the referencing object, and arbitrary catalogs

specified by path name. Further, a program may dynamically change the set of

search rules that are in effect. This set of functions is intended to provide

complete control over the bindings of outbound programs and data references,

and allow sharing of subsystems in arbitrary ways, but the control tends to be

clumsy. Unintended bindings are common, since a catalog belonging to another

subsystem may contain unexpected names in addition to the ones for which the

catalog was originally placed in the search path, yet every name of the

catalog is subjected to this search. Substitution of one object for another

can also be clumsy, since it typically requires that the search rules be

somehow adjusted immediately before the reference occurs, and returned to

their "normal" state before any other name reference occurs. To make this

substitution more reliable, an artificial reference is sometimes used, with no

purpose other than to force the search at e convenient time, locate the

substituted object, and get its bindings installed for later actual use * .

                        

*  The search rule strategy described here is essentially that used in Multics
[Organick, 1972].
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Table IV summarizes the effect of using catalogs as repositories,

indirect entries, and search rules on the various objectives that one might

require of a file system and the reference name resolution ability of the

context initializer for the addressing architecture.
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E.  Research directions

Name binding in computer systems, as should by now be apparent, is

relatively ad hoc and disorganized. Conceptual models capture only some parts

of what real system designers face. The simple model of names, contexts, and

closures can be used to describe and better understand many observed

properties and misbehaviors of practical systems, but one's intuition suggests

that there should be more of an organized approach to the subject. Since the

little bit of systemization so far accomplished grows out of studying

equivalent, but smaller scale, problems of the semantics of naming within

programming languages, one might hope that as that study progresses, further

insight on system naming problems will result.

Apart from developing high-level conceptual models of name binding in

file systems and addressing architectures, there are several relatively

interesting naming topics about which almost nothing systematic is known, and

the few case studies in existence are more intriguing for their irregularity,

inconsistency, and misbehavior than for guidance on naming structure. These

topics arise whenever distributed systems are encountered.

A system is distributed from the point of view of naming whenever two or

more parallel and independently operating naming systems are asked to

cooperate coherently with each other. For example, two or more separate

computers, each with its own addressing architecture and file system, are

linked by a communication network that allows messages to flow from any system

to any other. The unsolved questions that arise surround preparing the

addressing architectures and file systems so that:

1)  Within each system the goals of sharing named objects are met

essentially as in the models of this chapter.

2)  Object sharing can occur between systems, so that an object in one

system can have as constituents objects physically stored in other
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systems. Sharing between systems seems to involve maintaining

contexts that work with multiple, independent name generators.

3)  Objects can, if desired, be permanently moved from one system to

another without the need to modify cross references to and from that

object, especially cross references arising on systems not

participating in the move.

4)  Operations can proceed smoothly and gracefully even if some systems

are temporarily disabled or are operating in isolation. This goal

leads to consideration of keeping multiple copies of objects on

different systems, and produces some real questions about how to

name these multiple copies. It also means that name generation

within any one system must be carried out independently of name

generators on other systems, and it leads to problems of keeping

name generators coordinated.

These descriptions of goals barely scratch the surface of the issues

that must be explored, and until there are more examples of distributed

systems that attempt coherent approaches to naming, it will not be clear what

the next layer of questions is.

There are several activities underway that could shed some light on

these questions. At the University of California at Irvine, a system named

D.C.S. (for Distributed Computing System) has been designed and is the subject

of current experimentation [Farber, et al., 1973]. At Bolt, Beranek, and

Newman, a program named RSEXEC was developed that attempts to make all the

file systems of a network of TENEX computers look to the user as a single,

coherent file system [Thomas, 1973]. The Advanced Research Projects Agency of

the U. S. Department of Defense has developed a "virtual file system" that

operates on a variety of networked computers as part of a research program

known as the National Software Works [Carlson and Crocker, 1974].

The current direction of hardware technology, leading to much lower

costs for dedicated computers and networks to interconnect them, is making
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feasible a decentralization that has always been desired for administrative

convenience, and one should expect that the problems of inventing ways of

providing coherence across distinct computers that run independent naming

systems will rapidly increase in importance.
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Appendix A: Case Study of Naming in Multics

The Multics system implements a shared-object addressing architecture

and a variation of a direct-access file system. In doing so, this system

illustrates an interesting set of design choices and compromises. To a close

approximation, the designers of Multics had in mind achieving all of the

naming objectives discussed in this chapter, but they had to work within the

framework of modest extensions to an existing, fairly simple addressing

architecture, that of the General Electric 635 computer. In addition, Multics

was one of the first designs to be ventured in this area, and some of its

design decisions would undoubtedly be handled differently today. For clarity

in this case study, we shall examine only the user-visible naming facilities

of Multics. We shall ignore the closely-related, but user-invisible multilevel

memory management (paging) machinery, and also the closely-related information

protection facilities. The reader should, however, realize that these three

functions are actually implemented with integrated, overlapping mechanisms.

1.  The addressing  architecture  of  Multics

Multics implements a single, simple kind of object known as a segment. A

segment is an array of 36-bit words, containing any desired number of words

between zero and 262,144. An individual word within a segment is named by

specifying its displacement, or distance from word zero of the segment, as in

figure 22.) Although segments have unique identities, the addressing

architecture does not use unique identifiers to name segments * . Thus there is

no universal, underlying context for naming segments. Instead, Multics

implements a large number of small segment-naming contexts, known as address

                        

*  The Multics file system, described below, maintains a unique identifier for
each file, but that unique identifier cannot be used by the addressing
architecture.
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spaces. Typically, one address space is provided for each distinct active user

of Multics, and an address space has the lifetime of a user terminal session.

Figure 22 -- A Multics segment.

Figure 23 -- Pointer addressing in Multics. A pointer contains a
segment number (S#), which is a displacement in the
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descriptor segment that identifies the lower-level
(physical) address of the segment. The pointer also
contains a displacement that identifies a word within the
ultimately addressed segment. The pointer on the left
refers to a word in the segment labelled B, and that word
happens to contain a pointer to a word in the segment
labelled A.

The reason for such a choice is that each individual address space need

be no larger than the number of segments actually used in the lifetime of a

terminal session, and the names resolved by the address space can therefore be

a small, compact set of integers, known as segment numbers . Only a few address

bits are then needed to hold a segment number, and the context itself can be

implemented as a small array of entries using the segment number as an array

index: the context is called a descriptor segment , and a segment number is

simply a displacement within some descriptor segment. (See figure 23.)

Although the hardware architecture allows segment numbers up to 18 bits in

length, typical address spaces have only a few hundred segments, and the

software tables required to keep track of what those segment numbers mean have

size limits of only a few thousand entries.

The compromise involved is that segment numbers are meaningful only in

the context in which they were defined: if one user passes a segment number to

another user, there is no reason to expect that number to have the same

meaning in the other user's address space. Thus, segment numbers cannot be

used to implement complex, linked structures that are shared between different

users. On the other hand, sharing is still quite feasible since, as we saw in

section B.2, when user-dependent bindings are a goal, one takes care not to

embed object numbers in shared objects anyway. A second aspect of the

compromise is that there is no a priori relationship between segment

identities and segment numbers; when a job begins a new address space must be

created and the segments of interest must be mapped (Multics literature uses

the word initiated) into the new address space. Initiation represents a run-

time cost, and requires supporting tables to keep track of which segments have

been initiated.
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One segment may contain a reference to another in two ways in Multics.

The simplest way, but usable only in segments not shared with other address

spaces and having a lifetime no greater than the current address space, is by

means of a pointer which is just a segment number and displacement address

stored in a standard format. (See figure 23.) Because segment numbers have

different bindings in different address spaces, a more complex form of inter-

segment reference is required if the containing segment is to be shared. For

example, procedure segments need to refer to data segments and other procedure

segments, but procedures are commonly shared. This second form of reference is

by way of a per-procedure context, known in Multics as a linkage section . A

pointer register in the processors known as the linkage pointer , points to the

beginning of the linkage section, as shown in figure 24. An instruction that

refers to an object outside the procedure uses for its operand address an

indirect address, specifying some displacement relative to the linkage

pointer. The linkage section contains at that displacement an ordinary pointer

to the desired object.

If a second user shares the procedure segment, a second linkage section

is involved, as in figure 25. Note that there are two address spaces involved

in this figure, but that no pointers in either address space lead to the

other. The only segments shared between the two address spaces contain no

embedded pointers. In addition, all references to the shared segments are by

way of pointers in either the processor or linkage section private to an

address space, so a shared segment can have different segment numbers in the

two address spaces.
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Figure 24 -- Inter-segment references in Multics by procedure. The
operand address specifies indirect addressing via the Dth
word of the segment that is the current target of the
linkage pointer register. The linkage section is thus a
context for the current procedure. For simplicity, the
descriptor segment is not shown, but all four of the
pointer references of the figure, it should be remembered,
are interpreted using the descriptor segment as the
context.

Finally, for speed, each processor contains eight pointer registers

(actually, the linkage pointer is one of them) that a program may load with
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any desired pointer. Once such a register is loaded, that register can then be

used as an operand address, thus avoiding the use of the slower indirect

reference through memory.

When calling from one procedure to another, the value of the linkage

pointer must be changed to point to the linkage section of the new procedure.

This change is not accomplished by automatic hardware in Multics, but rather

by a conventional sequence of instructions in the called program. A per

address space table of closures, known as the linkage offset  table , contains

pointers to every linkage section, one for each procedure in the address

space. One of the processor pointer registers conventionally contains a

pointer that leads (after indirection through a stack segment, not of concern

to us here) to the base of the linkage offset table. The conventional sequence

upon entry to a procedure is then the following: sometime before the first

intersegment reference of the procedure is encountered, use this procedure's

segment number as a displacement in the linkage offset table to load the

linkage pointer register with a pointer to the linkage section of this

procedure. This operation is so similar to the corresponding operation of the

addressing architecture developed earlier that figure 12 can be used directly

to illustrate it, with a slightly different caption.
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Figure 25 -- Shared address spaces in Multics. Hidden in each
processor (and not shown in this figure) is a register (the
descriptor segment  base  register ) that contains the
physical address of a descriptor segment (also not shown).
The two processors above are using different descriptor
segments, and thus different address spaces. However, these
address spaces overlap in that a procedure segment and a
shared data segment appear in both. Note that the shared
segments can have different segment numbers in the two
address spaces, yet all intersegment references work
correctly. The notation (lp,D2)* means that the pointer
addressed by the pair (lp,D2) should be used as an indirect
address. This figure should be compared with figure 10,
which illustrates a similar configuration.
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2.  The Multics  file  system

For its file system, Multics implements a direct-access hierarchy of

named catalogs and files. The catalogs are known as directories, and for each

catalogued object contain not only any number of synonymous names, but also

are the repository for a physical storage map, a unique identifier, an access

control list, reliability control, and resource accounting information. A root

directory is "known to the system" and when a user program presents a tree

name the file system resolves it by starting in that root directory. Every

directory and file except the root is represented by exactly one direct entry,

known as a branch, in some directory, so a strict hierarchy results. This

strict hierarchy was chosen on the basis of simplicity--the lost object

problem need not be considered--and expediency--using the directory as a

repository seemed the quickest design to implement.

For flexibility, then, indirect directory entries are also provided,

called links. Any number of indirect entries can lead to the same directory or

file. A link is a directory entry that binds a directory entry name to an

associated tree name that leads from the root directory to the desired

object * . If the entry named by the link is another link, then that second link

is followed; a link depth counter limits such successive links to ten, so as

to catch links accidentally arranged in an infinite loop.

The file system maintains for each user a cell containing the absolute

path name of some directory, called the user's working directory. One can then

more briefly express the name of some objects by a relative path name that

starts from the working directory. Names typed at the terminal are usually

                        

*  A link may actually contain an absolute path  name ; that is, a name that
begins at the root and proceeds, possibly via other links, to lead to some
named object in the directory hierarchy. (The difference between an absolute
path name and a tree name is that a tree name may not involve links.) Allowing
links to contain absolute pathnames makes links to directories useful; however
the procedure that resolves tree names may become recursive.
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interpreted relative to the working directory, although the user can also type

in an absolute path name by using a distinctive syntax.

The pattern of use of the file system is as follows: suppose the user is

in interactive communication with an application program, such as an editor,

and he types to the editor the instruction to look at something in a file

named "a". The editor takes the relative path name "a", and first passes it to

a utility program that combines it with the name of the current working

directory and returns an absolute path name, suitable for presentation to the

file system. The editor then calls the initiate entry of the file system,

presenting the absolute path name. The file system resolves this name through

its directory hierarchy, following any links encountered along the way.

Assuming it finds a file by that name, this user has permission to use it, and

it has not previously been initiated, the file system then selects an unused

segment number in the current address space, fabricates a descriptor segment

entry, and returns the segment number to the editor. The file system also

makes an entry in a table for this address space, the Known Segment  Table ,

relating the unique identifier of the file, the chosen segment number and the

directory in which the file was found. If the file in question had previously

been initiated in this address space, its unique identifier would already be

in the known segment table, and the segment number found there would be

returned, rather than a new one. In either case, the editor program uses the

returned segment number and an appropriate displacement to fabricate a

pointer, and it then reads the contents of the file by direct reference to

memory. The file of the file system has been mapped into a segment of the

addressing architecture, and neither the file system nor the addressing

architecture make any interpretation of the contents--they are simply an array

of up to 262,144 36-bit words * . A file may be larger than 262,144 words, in

                        

*  Interpretations such as "indexed sequential" files are provided by
application level library programs that use the file system and addressing
architecture as tools.
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which case the addressing architecture provides a window into some portion of

the file, up to 262,144 words in size. The window can be moved by a call to

the address space manager * .

3.  Context initialization  in  Multics

The previous example of mapping of a file of the file system into a

segment of the addressing architecture started with an interactively supplied

file name. Initialization of procedure naming contexts also may involve a step

of mapping a file system file into a segment of the addressing architecture.

Consider a procedure named "a", which contains within it a call to

another procedure named "b" †. The compiler of "a" produces an object program

consisting of the instructions to carry out procedure "a" and a prototype of

the linkage section that will serve as that procedure's context during

execution. Contained in that prototype linkage section is a dummy pointer,

corresponding to the outbound reference to "b", and consisting of a flag

(which will cause the hardware addressing architecture to signal a fault) and

the character string "b" ‡. Suppose that the segment containing procedure "a"

and its linkage section have been previously mapped into the addressing

architecture, and procedure "a" attempts to call "b" for the first time. Upon

trying to interpret the dummy pointer, the addressing architecture will signal

the fault, passing control to the context initializer program, known in

                        

*  Files larger than 262,144 words and movable windows have not yet been
implemented as of Spring, 1978.

† Multics includes an entry-point naming scheme that allows one program to
call on a named entry point, say "c", of a named procedure, say "b". The
following discussion ignores that feature; strictly it describes what happens
if program "a" calls entry point "b" of procedure "b", which is the most
common case, and the default if only one name is supplied by the calling
program.

‡ Note that, because segment numbers for a given procedure are different in
different address spaces, the compiler cannot place an operational pointer in
the prototype linkage segment.
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Multics as the dynamic linker * . The dynamic linking program retrieves from the

dummy pointer the character string name "b", resolves it into a segment

number, replaces the dummy pointer with a real one containing the segment

number and displacement of the entry point, and restarts the interrupted

procedure "a". Since the dummy pointer has been replaced with a real one, the

procedure call will now work correctly. Further, if procedure "a" ever calls

procedure "b" again, that later call will be resolved at the speed of the

addressing architecture, rather than the speed of the dynamic linker. The

outbound reference from "a" to "b" has been bound, at the addressing

architecture level, for the lifetime of the address space.

The interesting aspect of the dynamic linking sequence is, of course,

how the dynamic linker resolves the name "b" into a segment number. As we

noted in the general discussion of context initialization, the goal is to

resolve the name "b" according to the intent of the subsystem writer who chose

to use "a", rather than the current interactive user, so the name resolution

takes this goal into account, though imperfectly. The first step is to look in

a table for this address space, called the reference name table, which the

dynamic linker maintains for this purpose. Each time it maps a procedure or

data object into the address space, the dynamic linker places the name of that

procedure and its segment number in the reference name table. Thus, the name

"a" is certain to be in the reference table, and if it has been previously

called from within the address space, so will the name "b". The primary

purpose of the reference name table is to avoid the expense of following a

path name through the file system directory hierarchy more than once per

procedure; often, procedures of a subsystem are used by more than one other

procedure of that subsystem. A related effect of the reference name table is

                        

*  As may be apparent by now, the word link is used in Multics for at least two
unrelated but similar concepts: indirect catalog entries and the pointers of
procedure contexts. Sentences containing the word "link" do not always come
supplied with closures, so confusion is common.
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to capture a single, address-space-wide binding for a name, so as to guarantee

that all callers for that name consistently get the same result, independent

of what we shall see is a potentially variable strategy used by the dynamic

linker for name binding. The difficulty with the reference name table is that

when two independently conceived subsystems are invoked in the same address

space, they share the single reference name table, and name conflict can

occur.

So much for the reference name table. What if the name "b" is not found

there, indicating that procedure "b" has never been mapped into this address

space? Actually, the check of the reference name table is properly viewed as

the first search rule of a multistep search for the procedure named "b". If

that rule fails, the search is carried on to the file system, using the

assumption that the procedure "b" is to be found in some file named "b" in the

directory hierarchy. As an approximation to the idea that the directory

containing a procedure can be used as a closure for that procedure's outbound

references, the next step of the search is to look for the name "b" in the

directory that the calling procedure, "a", came from. (Remember that the known

segment table contains for each segment, among other things, the directory

that the segment was found in. One reason was to allow this search rule to be

implemented easily.) The dynamic linker thus attempts to initiate a segment

named "b" from that same directory. If that attempt succeeds, it creates an

empty linkage section for "b" to use as its context, places a pointer to that

linkage section in the linkage offset table for this address space, installs

"b" in the reference name table, and then proceeds as if "b" had always been

in the reference name table. If it fails, it continues with the search. The

next step is to try the current working directory, and then to begin going

down a list of tree names of other directories, attempting to initiate the

file "b" in each of those directories in turn. These directories are usually

system and project libraries, though a user may place the tree name of any

directory in his search list. The user may also rearrange the search rules in
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any order, for example by placing the search of the reference name table last,

or even deleting it from the list. (Note that even if the reference name table

is not part of the search, it is used to prevent duplicate context

initialization.)

Probably the chief virtue of the search rule strategy of Multics is that

its imprecision in binding can be exploited to accomplish things for which

specific semantics would otherwise need to be provided. For example, the

proprietors of the system library can move a library program from, say, the

normal library to a library containing obsolete procedures. Users of that

program will discover the move through a failure report from the dynamic

linker, but they can recover simply by adding the obsolete library directory

to their search rules, without changing any programs or links. For a different

example, a procedure can be moved from a project library directory to the

system library directory; users of that procedure will continue to find it in

the normal course of a search without any change to their programs or

operation at all.

On the other hand, as was suggested earlier, in the general discussion

of adjustable search rules, they are a fairly clumsy and error-prone way to

accomplish user-dependent bindings. Probably the primary reason that search

rules have persisted in the Multics design, rather than being superceded or

augmented by addition of catalogued closure objects, is that most other

operating systems, both previous to and contemporary with Multics, have used

some form of search at least for system libraries, so this pattern of

operation is familiar to both system designers and users.

An interesting complication arises from the combination of design

compromises in the addressing architecture and file system of Multics. The

addressing architecture provides a very large address space, in which it is

feasible to map simultaneously several closely communicating but independently

conceived subsystems. On the other hand, the address space survives only for

the time of a user’s terminal session (or batch job) and therefore inter-
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procedure linkages cannot be bound in advance; they must be initialized

dynamically. But dynamic initialization involves a search, which can be

relatively expensive. As a result, two strategies have evolved for minimizing

the number of times the dynamic linker is actually invoked.

First, a utility routine, known as the binder, will take as input

several procedures, and combine them and their linkage sections into a single

procedure and linkage section, with all cross-references among the set

resolved into internal displacements rather than pointer references. This new

single procedure is written out into a single file, and when used is mapped

into a single segment of the addressing architecture. Using the binder

eliminates a large percentage of dynamic linking operations, but if one

library procedure is used in two different subsystems, to avoid dynamic

linking the shared procedure must be copied into both of them.

Second, the conventional way of using the Multics system is to leave all

procedure contexts, once initialized, in place for the duration of the

terminal session or batch job, so that if the procedure should be used again

as part of another command interaction or job step, it will not be necessary

to repeat initialization of its context. Thus the interprocedure links are

persistent.

Although at first glance this persistence seems to be exactly right,

actually it is desirable to be able to reverse or adjust these bindings

occasionally. For example, when a programmer is testing out a newly-written

set of procedures, and discovers an error, the usual approach is to correct

the symbolic version of the procedure, and then recompile it. Conventionally,

the compiler overwrites the old procedure with the new one, so the procedure's

segment number does not change, but occasionally the entry point of the

procedure moves to a new displacement, as a result of fixing the error.

When that happens, any old pointers to this procedure found in linkage

sections of other procedures become obsolete, and should be readjusted.

Multics does not attempt to maintain the tables and backpointers that would be
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required to automatically readjust interprocedure linkage pointers, so when

the displacement of an entry point changes the usual result is an attempt to

enter the procedure at the wrong displacement, followed by some rather

baffling failure of the application. The user can request a fresh address

space at any time, and that fixes the problem by initializing a fresh set of

contexts, all consistent with one another. Unfortunately, completely

initializing a fresh address space is a relatively expensive operation. In

addition, a beginning programmer typically encounters the first example of an

incorrect, persistent interprocedure link long before he is prepared to

understand the complex underpinnings that cause it; many programmers consider

the need to occasionally request a fresh address space to be a mystery as well

as a nuisance.
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