
This chapter of the book “Operating Systems: an Advanced Course” was originally
prepared off-line. The authors’ version has been reconstructed from a paper copy by
scanning, OCR, and manual touch-up. © 1978 Springer-Verlag.

CHAPTER 1

INTRODUCTION

R. Bayer, R.M. Graham, J.H. Saltzer, G. Seegmüller

This book contains the lecture notes of an Advanced Course on
Operating Systems held at the Technical University Munich in
1977 and 1978. The material of the course was discussed and
organized during a preparatory seminar attended by all lecturers
in early 1977.

An attempt was made to agree upon a uniform approach to the
field of Operating Systems. The course differs from the usual
approaches in its emphasis and selection of topics. We presume
that the reader has had the experience of a more traditional
operating systems course and that he has worked with some real
operating systems also. The set of topics of this course is not
the traditional set. It is strongly influenced by two
considerations. The first observation is the beginning of a
dramatic change in tradeoffs in view of decreasing hardware
costs. The second one has to do with recently emerging new
results in computer science which reflect a better understanding
of several areas closely related to operating systems. So we are
not going to present much on programs, processes, scheduling,
resource control blocks, building of file systems and
performance modelling. Rather an attempt will be made at a more
intensive treatment of areas like protection, correctness,
reliability, networks and decentralization.

What is an operating system? Although there are many terms used
for the versions of existing operating systems, and no
universally accepted definition, there is certainly agreement
that operating systems are essential parts of at least the
following three conceptual kinds of computing systems.

Programming systems consisting of

 editors, compilers, debuggers,
 the operating system,
 the hardware.

Data base systems consisting of

 data base managers,
 the operating system,
 the hardware.

Application systems consisting of

 application programs,
 the operating system,
 the hardware.

There is also agreement on those aspects that are at the heart
of operating systems. In fact, the terms nucleus or kernel are
often used for the most essential functions of an operating
system. Much of the research and development in operating
systems has focused on resource management and the user's
interface to this management. Our view of operating systems and
the focus of this course is resource management in a very wide
sense and the attendant user interface. We shall concentrate on
the semantics of this interface, on internal system structure
and, to some extent, on hardware architecture.

It is interesting and instructive to look briefly at the history
of modern computer systems. In the beginning, computers were
small, simple, and free standing. Each individual could use the
machine on a one-to-one basis. Generally, there has been an
evolution from this state to the current large, complex,
multiprogramming, multiprocessor, central systems with virtual
memory and many ancillary devices and subsystems. The major
trends have been: from one user to many users of the same
system; from isolated users to cooperating users; from
sequential batch to multiprogramming, to time sharing; and, in
both hardware and software, an increase in the degree of
concurrency. Most importantly, we see a trend toward increased
concern with the management of non-physical resources.

The first computer users always had the entire computer all to
themselves for some interval of time. A user always had all the
resources. Any resource management facilities provided by an

operating (or programming) system were entirely for the user's
convenience. As the user community grew it was necessary to
insure efficient, equitable distribution of the system's
physical resources among all the contenders. It has become clear
that any kind of sharing, even sharing between the operating
system and a single user, requires resource management for the
shared resources.

Even in a sequential batch system, a user had to be prevented
from monopolizing the computer. Thus, system management of the
central processor was required, at least to the extent of
limiting the execution time of user programs. Memory was another
resource that was managed quite early. The operating system
itself required some primary memory. The programs and data of
other users in the batch had to be protected from destruction by
the user program currently executing. This was especially true
as soon as direct access secondary memory was available in
sufficient quantity to make permanent data storage feasible.
Hence, system management of I/0 devices and secondary memory
were required.

As the hardware became more complex, the management of these
physical resources became more comprehensive and complex.
Multiprogramming and time sharing had a substantial impact on
resource management. Management of the processor evolved from
simply enforcing the maximum execution time for a user's program
to multiplexing the central processor(s) among a number of
different user programs. Primary memory management evolved from
a simple division between the system and a single user to
virtual memories, which facilitate simultaneous sharing of
primary memory among many users and the treatment of secondary
memory as a direct extension of primary memory.

It is a principle of science that as complexity increases, the
need for abstractions to deal with this complexity also
increases. The evolution of operating systems is no exception.
Early abstractions were files and processes. In each instance
the abstraction takes the form of some non-physical resource and
benefits both the user and the system. The abstraction of a file
gives the user a unit of information that is extremely useful in
organizing his data. Complex movement and manipulation of large
amounts of data can be expressed very simply by the user in a
device/location independent way.
At the same time, because of the abstract nature of files,
system management of these resources translates easily into the
management of physical secondary storage and I/O devices. In

addition, since the user does not specify details, the system
has much greater latitude in physical memory management and more
potential for efficient utilization of it.

In like manner, the abstraction of a process permits more
efficient systems management of the central processor(s) as well
as indirectly contributing to the ease of management of all
other resources. The user also benefits from the process
abstraction. With it he can establish sets of cooperating
concurrent processes which not only take maximum advantage of
the system's parallelism, but often result in clearer
formulation of the problem to be solved. The notion of an
abstract machine which is available to each user encompasses the
essence of this direction of abstraction.

What is the current state of affairs? In a recent workshop the
lecturers of this course concluded that the classic problems of
physical resource management and concurrency management are well
understood, at least to the extent that their implementation is
routine and minor enough that operating systems that are
satisfactory to the market place are being built. We have chosen
to omit from this course any consideration of these problems.
Acceptable solutions are widely known. In fact, all of the
recent textbooks on operating systems contain extensive
discussions of these problems and their solutions. Rather we
tried to focus on problems that were less well understood in the
past - that are on or near the frontier of the field and that
showed significant progress within the last few years. For
example, none of the textbooks has an adequate discussion of
protection, yet this is one of the most important problems in
the design of new operating systems.

Abstractions are based on models. We recognize that models are
not only needed to cope with complexity, but ultimately they are
needed to verify or validate the correctness and other desired
properties of a specific system design. Models for the
underlying hardware are the foundation upon which more abstract,
general models are built, since they give us insight into the
fundamental mechanisms for the final interpretation of a program
that is required to produce actual results. In addition, through
them we can glimpse a future kind of architecture with many
parallel activities, highly distributed.

The object model is the basis for the abstract resource, an
object. This very general model is applicable to both software
and hardware. It has benefitted from more recent developments in

the study of programming languages. This benefit is not
incidental. There, the need for careful specification of
interfaces with total protection of their implementation has led
to the introduction of abstract data types. Objects in operating
systems correspond to data types as they appear in some more
recent programming languages. The object model seems, in some
sense, to capture fundamental properties that pervade all
aspects of modern operating systems : protection, naming,
binding, data, procedures, and physical devices. A model of this
nature seems to be necessary in order to realistically consider
the validation of important properties of an operating system,
such as correctness and reliability.

There are a substantial number of major problems that affect the
entire fiber of the more advanced operating systems. Most of
these problems appear in the newer system organizations, such
as, data base operating systems, distributed systems, and
networks of computers. In these new settings the problems tend
to be an order of magnitude more difficult. Naming and binding
are fundamental. Resources cannot be managed without the use of
names. The value of symbolic names was recognized long ago.
Symbolic names need to be bound to specific objects. The
complexity of this problem, when conjoined with protection and
multiple computers networked together, is staggering.
Protection, difficult enough in multiuser, timesharing systems,
is far more complex when the access controls must extend
throughout a network with a distributed data base. An important
property of networks and distributed systems is that distinct
components
are often under different administrative controls, thereby
adding new problems
of coordination, protection, naming, and reliability.

The importance and need for correctness and reliability of
operating systems has always been recognized. However, sensitive
applications are currently being implemented within unreliable
systems. Correctness and reliability issues are not unique to
operating systems, but they are much more significant in this
context. An undiscovered, minor bug in the system or a breach of
the protection mechanism can result in great financial loss or
even the loss of human lives.

What about the future? New hardware developments always
influence the organization and function of new operating
systems. Advances in communications technology have made
networks of computers possible. New production and

miniaturization techniques make it possible to mass produce
cheap processors. Distributed systems and highly parallel
machines are inevitable. What are the advantages and
disadvantages of such systems? What is the appropriate user
interface? Current models are inadequate to deal with questions
of correctness and reliability- nor are they of much help in
guiding the designer to a simple and efficient implementation.
Many of the readers will be deeply involved in these problems.
In the lectures that follow, we hope that we will be able to
help the reader prepare to cope with these problems.

