
PROJECT MAC Jan~ary 28, 1974

Computer Systems Research Division Request for Comments No. 46

SOME MULTICS SECURITY HOLES WHICH WERE CLOSED BY 6180 HARDWARE

by J. H. Saltzer, Phillippe Janson, and Douglas Hunt

This note is the second of a series* which describes design and imple

mentation errors in Multics which affect its ability to protect information and

provide service. The purpose of the series is to try to discuss what incorrectly

laid groundwork permitted each trouble to creep in.

It is interesting (and comforting) to note that no security problem yet

discovered has required any change in the original overall design of Multics;

the problems have universally been at the level of detailed design errors or

implementation slipups; the repairs have been conceptually simple readjustments

to bring the design or implementation back to the originally intended one.

A fairly large number of security problems were fixed automatically by

conversion from the Honeywell 645 to the Honeywell 6180, which has built-in

argument validation hardware. As will be seen, replacement of a complex soft

ware package with a relatively simple hardware mechanism was remarkably effec

tive, suggesting that it was a move in the right direction.

Unvalidated Gates

In the 645, the following gates to ring zero had no validation of

arguments at all:

absentee test (all entries)
hphcs_ (all entries)
phcs_ (all entries)
phnxhcs_ (all entries)
admin_gate_$guaranteed_eligibility_off
admin_gate_$guaranteed_eligibility_on

Argument validation consists of checking each argument to a gate entry to be

sure it refers to an address to which the caller is permitted access. For ex

ample, if the ring zero program intends to write into the argument (e.g., an out

put value) then the caller of the entry should specify an address in which he is

permitted to write. Failure to perform argument validation would mean that the

caller could specify an address somewhere inside ring zero; if he did, the ring

zero program could be used for unauthorized patching of the supervisor. It is

slightly harder but still possible to exploit a gate which only reads its arguments.

* Previously issued memo in the series: RFC-5.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per
mission, and it should not be referenced in other publications.

-2-

The unvalidated gates had one thing in common: they were all con

trolled by access control lists which limit their use to supposedly respon

sible individuals. This control was probably the chief rationalization for

not putting in the extra effort required to specify the argument validation.

On the 6180, all arguments are automatically validated by hardware

checks on the ring of origin of every argument. This approach eliminates

both the extra (and sometimes neglected) effort needed to specify validation,

and also any possibility of errors in that specification.

Incorrectly validated arguments

In the following entries, some argument was validated with more

leniency than appropriate, permitting the user, typically, to cause the super

visor to write into an area in which the user has no access.

hcs $get seg count
hcs-$get-entry name - - -hcs $get dbrs - -hcs $assign channel
hcs:$check_device
hcs $get search rule
hcs:$get:count_linkage
hcs_$ipc_init
hcs_$list_dir
hcs_$make_ptr
hcs $list dir acl
hcs-$set dtd
hcs-$status
imp-dim gate $imp read order
imp-dim-gate-$imp-writ; order
netp_$ncp_priv_status -
netp_$ncp_priv_order
net $ncp status
net=$ncp:order
hcs_$acl_list

last argument unvalidated.
argument validated for wrong type.
argument validated for wrong usage.
1st argument validated for wrong usage.
2nd argument validated for wrong usage.
argument validated for wrong usage.
2nd argument validated for wrong usage.
argument valudated for wrong usage.
2nd argument validated for wrong usage.
1st argument validated for wrong usage.
3rd argument val dated for wrong usage.
3rd argument validated for wrong usage.
entire argument spec is wrong.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage.
3rd argument validated for wrong usage.
3rd argument validate~ for wrong usage.
5th argument validated for wrong usage.

This list represents the accumulation of errors over several years of

specifying argument vAlidation for about 150 user-callable gates. When an

argument is validated for ,,~.,.rong usage" it typically means that the gate

specification says that the gate only reads the argument, when the gate

actually writes into it. Thus, the validator checks only to make sure that

the user can read data at the specified address. If the user provides a

pointer, say, to some location in the "sys_info" segment, in which he has

read-only permission, the gate, which can write into "sys_info" by virtue of

its ring-zero location, would then overwrite some item there.

-3-

Again, the value of the automatic hardware argument validation feature of

the 6180 is clear: the opportunity for an incorrect software-declared speci

fi1cation is completely eliminated.

Unvalidatable arguments

In the following entries, some entry could ~ be checked by the

automatic validator, since the correct method of validation depends on the

value of some other argument.

hcs_$acl_list

hcs_$ex_acl_list

hcs_ $ex_ac'l_delete

hcs_$initiate_seg_count

hcs_$list_dir_acl

hcs $replace sall
hcs=$replace=dall

3rd argument used as both input and
output.
3rd argument used as both input and
output.
3rd argument meaning depends on
4th argument.
6th argument meaning depends on another
argument.
4,5th arguments meaning depend on the
value of 3rd argument.
3rd argument unvalidatable.
3rd argument unvalidatable.

The problem in each case here was deeper than in the previous one: the

particular choice of arguments lead to impossiblity of validation, and

therefore to no validation at all. For example, suppose that the third

argument is an input argument for some values of the first argument, but is an
I

output value for others. Then a protection specification which says that

the third argument ~ be writable would cause some correct programs, which
I

intentionally provided a read-only third argument, to be declared illegal.

If, when these entries were first introduced, their documentation had speci

fi~d that the argument in question must be writable whether or not it is

actually written into by the supervisor, then the trouble could have been

avoided (at the cost of an additional obscurity in the user interface).

Un~ortunately, an after-the-fact change to require writeability might cause

soke correct user programs to stop working, so compatibility prevents

correction.

Again, the automatic argument validation hardware of the 6180 provides

a solution. Since every reference to an argument is separately checked, only

if the argument is actually used as an output argument will it be checked for

writeability.

-4-

EPL argument validation trap

The argument validator did not completely check out some of the more

complex specifiers of arguments provided by EPL (the first Multics PL/I

compiler) programs. Thus, a user could construct an argument descriptor

which indicated that an EPL specifier was in use, and thereby induce the

argument validator to allow the call to go unchecked. This problem was

basically one of historical compatibility: the EPL specifier format and

organization was designed before the implications of argument vai~datLon

had been considered. When it became clear that certain argument types were

hopelessly complex to validate, an attempt was made to prohibit (by edict)

the use of those types of arguments in supervisor entries. After the later

PL/I compiler eliminated the need for a restriction, some gates were installed

which utilized the forbidden argument types. The argument validator, unfor

tunately, provided a default of "acceptable" for EPL arguments of unvalidatable

type, so it turned out that one could call the new entries with programs

written in EPL, which was still an available compiler. The alternatives of

changing the default to "unacceptable" would have effectively denied access

to the new gates for those users not yet ready to rely upon a new unseasoned,

PL/I compiler. Thus, through a series of design slipups, errors in judge

ment, and bad practices, this protection bypass got into the system.

The 6180 argument validation hardware again automatically performs

the appropriate access checking at argument usage time, independent of the

format of the structure passed as ari argument.

ECT terminate bug

The design of the Inter Process Communication (IPC) event channel

table (ECT) had the following flaw: when the user-ring IPC created an ECT,

it then called a ring-zero entry to inform the ring-zero part of IPC of the

location of the ECT. The pointer in question was stored by the ring-zero part

of IPC in a ring-zero data base, for future use in passing IPC messages back

to the user. The user could now terminate the segment containing the ECT,

and initiate some other segment (to which he had only read access in the user

ring) with the same segment number as the former ECT. Then, the ring zero

part of the IPC, using its stored pointer, would write the user's messages in

a place the user had no business writing into.

I
i
I
I

I -s-
1

I With the 6180 hardware, the pointer passed by the user to the ring-

z~ro part of the IPC facility, and stored there, contains the ring number of

t~e user's ring. Thus all reference made by ring-zero IPC using that

p9inter will be validated as though they came from the user ring. If a seg

ment for which the user did not have write access is substituted, the attempt

o1 the ring-zero procedure to write in it will fail.
,,

E~~loitation of ~-ring master-mode procedures

i The 645 processor had a "master-mode" property, which bypassed all
I

pr,otection checks; certain procedures such as the fault interceptor and

s~~naller had to operate in master-mode, yet in the ring of the user causing

tlfault or receiving the signal. To prevent exploitation, the hardware

P~: itted calls to a master-mode procedure only to an entry point at location

zero in the segment; the procedure was expected to very carefully examine the

circumstances of its entry to insure that it was not being exploited.

Upon review of the standard entry sequence code actually being used,

it! was discovered that the design did not prevent exploitation at all. Three

distinct problems were found, each of which could be exploited in several
II ,,

w~rs. First, the entry sequence was designed on the assumption that index

register one had been set to indicate which of several actual entry points

to the segment was desired.
I
I'

The entry sequence correctly assumed that the

c~ller might place an out-of-bounds value in index register one, so it

checked to make sure that the value was within reasonable limits. Unfortu-,,

na~ely, if the value was out of bounds, it called out to the system trouble-
1,

hap.dling procedure, which proceeded to "crash" the system. Thus, any user
'

could cause a crash by transferring to location zero of the signaller, with an

appropriate value in index register one. The second problem is that the call

tal the system trouble handler was done by an indirect transfer out through

the linkage section of the master-mode procedure -- but this call occurred

before verification that the linkage pointer had been set to the currect

value. Thus, the user could plant a special value in the linkage pointer,

transfer to location zero of the signaller, and cause the master-mode proce

dure to transfer anywhere he wished -- including into the middle of another

master-mode procedure. Again, by preparing registers in advance, and choosing

-6-

carefully the code sequence to transfer into, one could develop an exploi

tation. Finally, the third problem is that safe-storing of the processor

registers was done assuming that the register value in the stack base regis

ter did not need to be checked, since it was locked. Unfortunately, a 1971

modification to the system resulted in the stack base register being unlocked,

so the user could, by loading the stack base register and transferring to a

legal entry point of the signaller, cause it to safe-store the processor

register almost anywhere.

Although the concept of securing a master-mode procedure still seems

viable, the implementation is apparently very fussy. By checking the Multics

System Programmers' Manual it can be established that the first two problems

have existed at least since 1967, and probably earlier. It was precisely be

cause of uneasiness about the securing of master-mode segments that the 6180

was designed without a master-mode, an:d with consistent and builtin hardware

call and fault facilities.

Execute instruction ~ special protection checks

On the 645 processor, the. checking of permission was special cased

when an "execute" instruction was encountered, since the time of decoding

of the instruction to be executed is delayed to a ti.me when most instructions

are in the midst of execution.

Apparently as a result of a field change, one of the special cased

checks was accidentally disabled if the execute instruction was located

in an odd location and it addressed an offset of zero in another segment.

In this situation, write permisl1on was not checked, so one could write

into a read-only segment.

Here we have an example of the danger of special cases -- they tend

to cover rare occurrences, which means that routine operation does not

exercise them. It also pvi~ts out the recertification problem: even if a

design is originally sound, every later modification should be accompanied

with a recertification.

