
There is a comment up here that the system provides PL/I support, and there 

is a library issue right below that, of supervisory entries and environment 

interfaces. Most gi bli$§€ things combine together, I think, in the following 

way~ The issue here is that there are PL/I features which many systems have, 

but the thing that makes it worth putting up cnthe slide is that in the case 

of Multics the PL/I features couple into the environment. It isn't just a 

situation where there's this language feature called internal static which is 

nice and it allows you to do certain kinds of things, in Multics it actually 

couples into the environment, it means that you are able to harness some 

feature of the system in an important way_ The best examples of these probably 

are ~K slightlyctechnical, if your familiar with PL/I you'll probably recognize 

them, there are features such as pointers, and base variables, which in the case 

of our implementation, couple into the virtual memory, that is the way that 

one accesses the virtual memory_ A pointer is a pOinter into the virtual memory 

and that is the end of it. It means that from PL/I then, one can use these 

features we were talking about before. Another example is that external 

variables in PL/I, variables which have the class external, map into the objects 

which are in the file system. They map into XkHmxK*XKEE~~xa the directly addressed 

main storage of the environment around the program. In other words, files are 

the external variables of PL/I programs, and that again simplifies things. 

Another example is that PL/I conditions, map into the ------- structure that the 

system provides. That is a fairly standard intent, alahough some implementations 

I don't believe fully carry through on that idea. The point is that if you wish 

you can view it as a PL/I machine as I pointed out before, Multics can be viewed 

for several different levels. The significance of being abme to view it as a 

PL/I machine is that one can stay in one language for everything. That is, you 

can construct a fairly sophisticated subsystem or you can start with a small 



problem, which ever happens to be appropriate, and grow until you have a 

sophisticated subsystem. You don't have to leave the language to be able 

to get to the supervisor or to be able to exercise some of the more interesting 

features of the system. This, of course, simplifies maintenance of 

the Syste~if one is using it for operational environmentJand it also means 

that a system programmer or a subsystem programmer who has taken the risk 

of building a system in PL/I can expect a reasonable amount of operational 

effectiveness when using PL/I. It isn't a matter of in order to wedge this 

language into the system we had to invent funny things, instead its much more a 

matter of the language harnesses the system and vice versa. So one can expect 

a reasonable amount of operational efflectiveness from it. I guess, just 

to make sure we don't forget the idea, I've slipped administrative controls in 

at the bottom of the slide. The idea here is simply there are things 

such as accounting, access control, performance moftitoring and usage reportS 

which are considered part and parcel of the system, they were put in from the 

very bottom of the system, significance here is that operational control of 

subsystem users is part of the plan, it's not an add on idea. That, of course, 
-C~-J 

will come out much more clearly in two of the t~ that are coming out later, 

tomorrow probably, Bob Rolla and Tom VanVleck will p%'] bly.obe talking about 
~~A' 

two things which really do go into that some~~i&t's look a little more carefully 

at the topics numbered 2 and 3 with flavors of 1. This business of virtual 

memory. I'd li~ to see if we could perhaps get to the point where its clear 

what some of the ideas that, some of the motivations that went into this thing 

are. One normally is dealing, this is kind of a simplified version of the 

picture we saw a few miRXK minutes ago, the point being one has an actual 

hardware configuration, and if one is writing programs for a system that looks 

like that, generally he knows that there are two processors, you know that there 

are three memory boxes, you know that there is some collection of drum and bit. 



1 

and that's the reason for drawing the picture in this way. The point is that 

what you'd like to do is get away from the point where your looking at the 

real hardware, you'd like to be able to look at some pseudo .. hardware from the 

point of view of the user or the subsystem writer. For that reason, frequently 

people talk about the idea of building a virtual maHchine for the user. Here
J 

simply by using a variety of techniques, moving p~es of memory in and out, 

relocation, time slicing the processor and what not, the idea is that for each 

different user of the system, whether he be a user sitting at a console, or 

. b f h d d for h h' ff . I . I a JO or t e car rea er, eac user t ere ~s e ect~ve y a v~rtua computer 

inside the system. Almost any time-sharing system can be viewed in this way, 

as a collection of virtual machines, each virtual processor has its own virtual 

memory, one of the important issues that begins to come out is that its without 

too much trouble possible to make the birtual memory have a flexible size and 

that's the reason for this mysterious comment about flexible sizes hidKing in here. 

M h th . th t h . dd . notion h t I' b h ore t an at, not~ce a t ere ~s an a ress~ng HRtXEK t a ve roug tout, 

because we're going to have to come back to that. When a program, which is running 

in a virtual processor, wishes to get something from the memory it uses some kind 

of an instruction such as GET, and it gives an address, typically one actually 

writes those addresses as names, or actually writes in PL/I and PL/I constructs 

the addresses, but the key is that this is an index in one of the virtual memorjes 

and there is no real complaint about the fact that this virtual CPU has an 
~tLli;vJ 

address of the same number here because of the fact that ~ distinct. xHxiHEX 

In fact it says that there's no sharing of virtual mRma~x memory, and that's the 

place of departure, I think, that's the first point of departure we're interested 

in. Because the stldard time-sharing system doesn't really offer, necessarily 

without a lot of thought, any ability for people to share information. Well, let's 

see if we can get to the next step then. This is a kind of half way step so I've 

numbered the slides in a sort of half way way. The point is that this isn't really 

the way its done, but it's a convenient quest to see what's going on. First of 



all, the idea here is simply that, "Gee if you think about it, why not allow 

each of the virtual processes to look at each of the virtual memories", and 

you say to yourself that's straightforward if we had some ability for the 

processor to say not only which word it wants, but which one of the virtual 

memories the word is located in. So I begin talking about the idea of 

segments here because at exactly this point we introduce the notion that{~/ 

separate little pieces of memory, these p~ces of memory are figments of 

the imagination, if you think about it for a moment, because the real memory 

isn't constructed like that, but as far as this CPU is concerned they're ft~ 
~ 

real. That's what he addresses, and in fact ~ may construct special hard-

ware for the central processor and one constructs what is not exactly a 

two address computer, its a one address computer but each of the addresses 

has two components. And in general, there's a notion that programs know what 

segments they are dealing with, that's a number which is known to the programmer 

in the same way that this address is known to the program. Those two kinds of 

ideas begin to have segmented addresses, that's another way of putting it. 

What are the immediate results of this kind of view of the situation, if you 

can figure out how to implement it, I'll come back to that, if you no longer have 

to have one virtual memory per user, you can have one or more, and that's an 

immediate relaxation, ~ the situation which begins to simplify things, once 

you organize this way, now we can take advantage of the flexible length, and 

I've tried to indicate that by the way I've drawn these differently in size, 

the flexible length is very nice, because now I can put, for example, large 

arrays in these things and if this processor needs two of them he can line two 

of them next to each other and one can be longer than the other or it can grow. 

This one can grow without worrying whether or not this one is in the way. And 

of course there is something behind the scene making all that work, we'll come 

back to that. There is another funny implication here, that is, if I take the 

example of the Multics system today, if I were to go up and look at the system 



~ one or more~user has been the way it's operating right now I would find ~ II 

hit pretty hard, in fact there might as well be 10,000 segments in the system 

today. Another observation is that~here are ~6 users on the system at one 

instance, that would imply 10,000 of these, 40 of these, and 400,000 little 

criss cross lines. That adds some flutter to the diagram and as you well might 
~~0£)Q£B 

expect ±E alse SBYS8S a corresponding flutter in the implementation. As a 

result, as we will see in a moment, what we actually do, ~~i has essentially 

~ot of issues to sort out in order to make that work properly, and what we do 

first of all is only install those lines which are of interest in any given 

program. That's an obvious simplification, more than that, in order to find 

out what's of interest to the program, those lines are installed dynamically, 

and there have been some references to dymamic linking which may come up again 

that's basically what one is talking about, the idea of dynamically growing 

the address space of this processor to include the things which it actually 

wants to use rather than include all the things in the system. Well that 

brings us then to what's basically the next example, the next step along the 

line. First of all, in order to make the implementation work out, a variety 

of things have to beKR done, and one of this variety of things is, remember 

that number i 400,000 little criss cross lines, begins to get to be a nuisance, 

and one of the ways to begin to make that sort out smoothly, is to invent a 

map. A map between the segment numbers used by the processor~ and the real 

addresses in memory. This allows one not only to implement those 400,000 

criss cross lines very smoothlYJbut it allows different CPU's to use' segment 
Sc.+ 

numbets from a compact ~, :Eft which turns out, ultimately, to be a uerynecessary 

for effectiveness. We haven't figured out how to allow the CPU's to RXXBKxxHe 

use segment numbers from a non-compact set yet, there are some proposed implementation~ 

but so far, our implementation requires that we try to use a dense set of segment 

numbers, and therefore, if a segment such as S2 is going to be shared by two 

different CPU's, Ek and those two 6PU's are both using segment numbers from a 



dense set, there is some problem, of overlapping segment numbers and the 

address map KiRK~ allows the CPUfs to use different segment numbers for the 

same segment. That's perhaps getting a little bit deep without having all 

of the machinery behind it, there are a couple of papers that have been published, 

one :bit parfiet!ler, entitled the "Multics Virtual Memory", which goes into 

some depth as to what is actually going on in that mapping mechanism there. 

The point mere is that the maps are introduced to provide an eEonomicai: imple-

mentation and another nice thing is that they just ~pen to 'i:iod:ice x XII HEK, very 

nicely as you thiOUtR go II e map, an opportunity to install access control. That 

is, to control the arrangements, so that segment 2 may be readable by this 

XXXERHi vittual CPU and readable ~ and writeable by that one. That's an 

important ability, to control the situation with some precision. Well let's 

put the segmented memory away for just a moment, and look at one more idea. 

Frequently, I think this is probably, as in slide number 1, there was a slide 

a little while ago which said, virtual machines, and it showed half a dozen 

or three or four completely independent virtual machines, that's a traditional 

way viewine 
~IIXRE of XXHK XH a time sharing system. In another observation, this is a 

traditional way of viewing a file system, there is some directory, stored in 

the directory, the directories contains names of files, the files are variable 

length, they have symbolic names of various kinds. The directories might be 

arranged in a hierarchy, in fact in Multics they are. But that isn't important 

to our picture. The thing that is important, is that the way you look at this 
6..--

file syste~, is that the user program calls ~ supervisor program which has the 

name file system, and upon calling the file system, it issues something Kk*~x*a 

such as read and it gives an address of an area and the file system copies infor-

mation from the appropriate file,XKEkxKaxxKK«~ if it says read from E, xHHH this 

is file E. It copies this information into the dat,area and that is essentially 
c.l"hI trM e,.l-'c. & ' 

the kind of cgmm8Bt that goes on. A certain kind of ability to share informatio~ 



\\ 

is freqUe~ handled by putting link~m~~gthe aiIii~ij;Sthat is this directory ~ 
contain; ~ name of a file over there although you have to be a little careful 

that you don't get confused and allow the physical address of file C to appear 

two different places, or if you do let it appear two different pIeces, you KKK 

be~in to " 
ge~ Lnto problems by makLng sure that when you move the file everyone gets told 

about it. That therefore turns out to make links a non-trivial thing to imple-

ment, but it is a key way to get started in the sharing business. I bring that 

one up because the actual Multics file system in virtual memory are the merger 

of that slide and the previous slide, in this form. What we have done here, 

is that we have backed off just a little bit and said, '~ell look, we have this 

abilit~to address a very large address space, once we have decided that you can 
with 

look at things ~. segments, and two component addresses, why not pretend that 

the contents of ~ director~re actually in the address spaces of the central 

processor. You don't have to just pretend this, you can actually implement it 

so that the processor thinks thatJand that is the key issue. In other words, 

the two slides are merely merged and this is the view that the subsystem writer 

has,as his program runs, his program has direct address to all the things that 

are currently attached, it doesn't have access to some things over here, which 

are still in the directory but it can map them in. In other words we can place 

another line across here dynamically. Of course, if you think about it a little 

bit, you'll notice that one thing didn't merge very well in our picture, I'm 

using names for our segments here and in the earlier picture wex were using 

b d h 1 d d 1 dd "scheme h" h"" h num ers, an t at ea s to an ua a ressLng EKKm, t at LS, everyt Lng Ln t e 

system is known by two names. That is, the symbolic name of the segment and 

the numerical name that the processor uses for it. Here is a place where there 

is a good opportunity for future XKXKKKX research to understand how to xKxi 

reduce to a single naming scheme tha~~usable everywhere and still maintain KXKE ~ 

economical implementation on this size. On the other hand, the fact that we hav~ 

two names, means then that there do have to be maps, there are indeed maps begind 



the scene which allow the user to either~ by a call to the supervisor once or 

perhaps behind his back when he tries to touch a piece of information which he 

which 
has never touched before ax cause segments xa liave names to start with in the 

d . b maoped...t.. h dd . b ~rectory system to e ma~K~ ~nto tea ress space us~ng segment num ers. 

Well the implication of that begins to show up~ I'll show you a sample program. 

Here is a PL/I program~ if you are a PL/I buff you probably already recognize 

that it's in an old version of the PL/I syntax rather than the current version~ 

because there are a couple of missing «KEkxx declarations which didn't use to 

be required but now are. If your not a PL/I buff~ if fact if you've never seen 

PL/I before you may still be able to decode what's going on. This is a procedure 

which,by my claim~ is written to reach out into the environment to a segment named 

c~ which a piece of the permanent storage of the system~ a segment maybe~ I 

Ereated it yesterday and I put some things in it. It reaches out~ segment C~ 

considers that segment to be something which contains a thousand numbers and 

adds up those thousand numbers and returns them. That's all it does~ the point 

is that there is no I/O in this program. There is no storage management in this 

program. The program is dealing with online storage~ and yet it is doing so 

in PL/I. Let's see what's going on here. The key is that the variable C is 

declared to be external/and that is a tip off to the PL/I compiler that this 

variable is not one that is is supposed to make a storage for in this program 

it's one that will be discovered dynamically in the environment at the time 

the program is executed. So if we decide to run the program, we compile ii~ 

the PL/I compiler leaves behind a program which has in it,at this point~ and it 

tends to add from a location wliich hasn't yet actually been specified yet, but 

soon is filled in, and this has to do with the dynamic connection of those 

400,000 lines, we begin to actually execute the program~ we come into here~ the 

first time we hit this~ we will trigger an interrupt or a fault and go off to a 

little program which will .li~~pervisor to map segment C into an address space) 



we will be able to fill in that instruction that was set up to do the add, 

and now this thing will run like the wind in t~t sense. That is, it will run 

at full speed, an ordinary addition loop, exactly as you expected, behind the 

X«kHH scenei the actual information belonging, representing those 1000 integers 

will be paged in dynamically, that is probably in this case one page of infor-

mation will be snapped into memory and will remain there as long as this loop 

is running and when the loop is finished and returned that page will iix drift 

out sometime later under control of the paging algorithms. This is kind of a 

very simple example, its intended to exhibit what the key issue is in the 

smallest form I've been able see how, it becomes much more significant if you 

begin writing a program which does something more sophisticated, instead of this 

it is trying to invert a matrix. ~ere are lots of programs around to invert 

matrices, in fact, there are two 1i:inds of programs to invert matrices, there . i .. 

are those that invert matrices that fit in core memory, and there are programs~ 
that don't fit in core memory, and the differences between thoseJ~grams may 

be a factor of two or maybe three in size and the difference is in input/output 

statements, moving things in and out of core memory. In the case of Multics 

one can write a matrix inversion program that will work over a wide range of 

sizes. In fact if it will fit in memory, that's great, it will run x very fast. 

if it doesn't fit in memory that's too bad, your going to have to be slowed down 

.';i!~ invert 
while things move, but that's an inevidable consequence lor n'#gW 8 to ER1llOlXE 

a large matrix. The programmer instead of doing explicit movement of information 

d firsthof all.. . h . d dl h instea can consentrate,on 1S mafr1x 1nverS10n tec n1que, an secon y e can 
~ 

concentrate, if it bedomes an issue, on the question of what is the order ~ which 

he is exploring his matrix, because now hhe key issue turns out to be, how many 

different thin2s t . 
K~XXKSHKX am r ry1ng to touch in a short time. Rather than, do I have this 

piece here right now. And the issue of how many different things I'm touching 

seems to be a more fundamental issue for the programmer to be grappling with KRB 



in terms of algorithm and technique, than the mere question of which piece 

is here right now. There are several other ideas, I think that at this point 

I'll stop pushing ~the virtual memory notion and mention a variety of 

other ideas that we have that may help fill out the picture. The point here 

being that I can talk about segments and the way that they are implemented all 

not 
day. It's obvious though, %kKxx how they are used. How did we intend it to 

~ 
be sorted out. What's the real meaning of this~mplementation. First of all 

there are catalogues, the catalogues or directories or how ever you prefer 

to talk about them, are in a hierarchy. And this means that some simple organ-

ization problems have already been solved. In fact is doesn't really solve 

and very sophisticated organizing progiems, but it does mean that the casual 

programmer who's got a couple of dozen files can keep them organized by the 

various thing he is working on. In fact even a medium sized project, or a 

fairly large project, such as the developement of Multics itself, which XH 

represents a Z0Sg thousand some source modules, can be handled by placing 

h d 1 . k· d f b . f h· h· h· and ~ t ese mo u es Ln a Ln 0 a su sect Lon 0 t LS Lerarc y XHXEHmRXEBxXXBAXKK 

organized in such a way that people can find there way around without having 

to go ask questions,xXkkBK8 without having to wonder if something is in a 

given place at a given time. To give a feel for how all these pieces are fit 

together, we assign one process for each user. I suddenly begin using the 

technical term process here, and it's probably appropriate to define it, because 

earlier you'll hear it again later, the virtual CPU that we saw on the ~XKXXBKK page 

plus its address ~ is the close1st I can come to the definition of a process. 

Its the thing inside the machine which is the users agent, the thing which is 

actually making progress and ~i~xwork. We create one of these per user 

normally, and by user that's a person at a typewriter console, or a person who 

has perhaps ~ubmitted a card deck and wishes to have it run later. In fact, 

in principal there can be more than one proces~ per user. The machinery is 
~ 

all there, the system uses that machinery to create it~get the users them-

selves going, we have not opened the gates to a lot of users to do 



/' 
j!J 

r:,,/n,/Z1..­
multiprocess computation simply because we don't feel we've got all the ~ 

fa'ces tuned quite right, and we'd rather not get people too deeply into that 

without understanding italittle bit better. The idea of how many segmen~are 

you talking about when you say segmenti do you mean that my address space is 

divided up into three piece~ or what? The idea here is we are geared up 

present so that the number~ on the order of 1000, which is possible, and let's 

indicate what's going on here, I say that the present design would allow a 

process to go to 1000 segments" and we've had a few situations in which xx 
that p~ocessesi 
KEXHKX~ is possible, in which K~KKXKKgmKHXK have grown to that number@ 

of different segments in their address space at once. Typically, the numbers 

around 150. One would expect typically to find 150 segments in any given 

process. Another key issue, having to do with those criss cross lines, how 

much sharing are you talking about, typically of those 150 which you find in 

<~ an 
a process, 120 of those might be shared ~, and that's ~mportant observation. 

That means that sharing is being used in the system in an important way. Now 

of course that isn't because ~BKX users have gotten so friendly that they're 

sharing all of their programs, what's really ~ppened, is that the supervisor 

falls out. In other words, if you start out with the ~iew your trying t~ 

implement shared procedures, all of a sudden you realize that the supervisor 

consists of nothing but one great big collection of JPe procedures which are 

being shared by all the users, and that's what a majority of those 120 shared 

segments are. They are PK __ iK pieces of the supervisor which appear in every 

address space. That is, every user has them. But again you have an interesting 

point of view that because it's organized that way its now possible, for testing 

purposes, for one user to have a slightly different piece. One of the pieces 

of the supervisor can be different for one user, if you want to do that, and that 

way, it turns out to be a key way of making changes to the system and testing 

and adding improvements to the system. Another observation which is perhaps 

closely related down at the bottom here, is that segments are used for everything. 



Everything which is stored in the system is in a segment. Procedures, and _~ 

data are stored in segments, the supervisor is stored in segments, in fact,~ 

itself, uses the virtual memory. When the system is first bootstrapped, the 

system contains, as Corbato was mentioning a few minutes ago something on the 

order of a million words of codei and the amount of that code which is written 

in the raw absolute hardware mode of the computer is about 100 instructions
J 

and those 100 instructions appear at the very front end of the bootload tape. 

When one pushes a button those map in and the first thing those 100 instructions 

so is to build a ~xRi primitive virtual memory environmentnwhich to begin HEiRS 

reading the remainder of the supervisor into, and the supervisor from then on 

ie using . Db~uslv 
~~5tKB HKXHg th~ vLrtual memory, although some of the features aren't there, 

dynamic paging isn't working at it, you only have 100 p4 •• g~:a2~~ instructions in 

memory, but segments are, that is the supervisor is a collection of segments 

and that feature is working immediately. This means that the supervisor itself 

can be written inPL/I, all the way back to except for those first 100 instructions, 

which is a very nice feature. So segments store everything, and I think that's 

It's interesting bo observe that there are a variety of problems, a whole bunch 

of sifferent things that you run into, ~HX in an operating system which turn out 

to be satisfied by this one mechanism and that's one of the important ideas that 

we have tried to propagate everywhere throughout the system. Economy of mechanism, 

if we can find a way of making one mechanism solve three problems we will do so 

and see if we can't find, looking HX to see what's common about those problems 

and see if we can't find a way of making this thing~~ry smoothly. It's 

probably worth the mention of some of the machinery that's behind this~eChniqUeS 
that are used. I'd love to go into detail about each of these, each one of those 

topics probably requires a full hour. In fact, the first two together one could 

easily spend a day on, going into length to explain how it is that one harnesses 

those two ideas without getting snowed under with the detail~ and keeping a system 

that runs fairly smoothly. But that does seem to work giving that one gets geared up 



properly, they are a fairly sophisticated paging algorithms. I mention here 

demand paging, in fact we have now recently gone one step further and we are 

playing around with and actually have managed to get some additional perfor-

mance out of pre-paging. I mean by that some predictive guessing as to which 

pages will be necessary based on previous running history of the program. 

The a1gor.th~to try to do this are fairly complex, they have a - we have it 

fairly highly instrul~mented, and we keep score on how we 11 it's doing, nXB: 

the idea here is that if you can predict which pages are of interest you can 

bring them in at a time when your not doing anything else. You can overlap 

that completely with other things, it's very easy - the extent to which you can 

predict what's going to happen, you can take advantage of that fact, it's very 

similar to that stock market. On the other hand, to the extent that you make 

predictions and you foul up is also very similar to the stock market. The 

questions is whether it overall pays off. &RXEKK We find that if we bring 

in 100 pages by prediction, we usually find later that 60 to 70 percent of them 

got used and it turns out that the net result is a slight gain, t2&i some BEX of 

an improvement. That's really going off into a much 1JlAI a ed deeper talk than 

sDmething is intended I, that's really the subject of a technical conference where XHXKXKXKXHXB:KB~EE 

to be much more technical. It might be useful to mention a couple of numbers 

to see what's going on. When we have EaRRRkH forty users on the system, we're 

moving 50 to a hundred pages per second, back and forth out of our memory. That 

of course is a very hard number to interpret all by itself, it's an absolute 

number just sort of sitting there, but it gives you a feel, a little bit, for the 

kind of traffic that is going on, it means that every 1m to 20 milleseconds some 

piece of software is pushing some piece of data around and it %8 gives you a little 

b . f . d f h k' d f h db' . . . d h svs tern. ~t 0 an ~ ea 0 t e ~n 0 ea way etween ~nterest~ng events ~ns~ e t e KREX%BR. 



The multiprogramming of course couples very tightly with the demand paging 

because, while we're waiting for a page we try to run another program and that 

leads to, as you might guess, no end it of complications. The length of time 

it will be before that page comes in, I mentioned down here that there's a 

high performance drum, in the time that you demand a page ~HHxxiXixax until 

it shows up, is sometimes 10 milleseconds. It averages about 15 or 16. That 

means if your going to decide to switch to another process, you'd darn well 

better have them there, you better be prepared to switch to them in a great 

big hurry, and expect to get something out of those 10 or 15 milleseconds, 

which isn't very much. On the other hand, that's the thing that gives us, 

that's the difference, I think, if we turn it of, that's the difference between 

running 25 users and 40 users, that's a very Significant piece of machinery. 

The multiprogramming is done in a variable oasis, that is we dynamically vary 

the number of tasks, which the multiprogramming algorithm is concerned with, 
o t 

the numbers that we observe,typically xx runs from ~ two to eight people 

simultaneously, in core memory, and that number ax changes about once a second. 

that is, about once a second is the headway which the multiprogramming system 

decides that we've got too many or we've got too few, or one of these guys 

just left, I'm trying to give a kind of a feel for the overall x view of 

what's going on inside the system here. Time axiBEx allotment is an old 

trick, we have a-scheduling algorithm, which is really not too different from 

the scheduling algorithm devised for the CTSS system, (it certainly is) the view 

«REX that the user has sf the scheduling algorithm is about the same, the view 

that the system has is somewhat more sophisticated because it turns out it 

interacts with multiprogramming and demand paging very hard, but the idea here 

is that we limit the length of time a process can run to one 'or two seconds 

the first time we run it, we run it at high priority, but only for a couple 

f d f h f h see Of o secon s, to see i we can get im out 0 t e K~a way, to KE~ 1 get a fast 

response to a guy that's got a small thing to do, such as a simple request to 



change one line in a program. The idea is that overall this gives when the load 

is full, the system is fully loaded this scheme means that if your trying to 

~ do something small you get responses rft the order of 5 to 8 seconds of waiting. 

If the system is lightly loaded response is about as fast as the typewriter 
. t 

will turn around. Of course, Lt~at response time;is the thing that determines 

whether or not the system is fully loaded. That is, we record a number on the 

system, that number really is the number of users beyond which the KHmHKXXBX 

HKRXK response gets miserable. XXXI The time allotment is the technique, which 

is hiding underneath that scheme. The high performance drum I already mentioned 

under mUltiprOgrammin~ and demand paging, the only observation to make there 

is that it's built around a hardware queueing facility which minimizes the amount 

of work the software has to do and it's very important because it gets hit so 

often, the software is coming in very~lng for things on that drum, and 

it's important that it not have a lot of work to do in order to tell the drum 

what to do. This is ~x sometimes called a sorting drum, or a multi-queue 

drum. Things like this have been described in literature in a variety of 

places, there aren't too many places where one of these things is hooked into 

purpose 
the general service system however. Finally, in order to make that vitual 

memory work, we had to modify that processor fairly hard. We had to actually 

go inside and make the processor use two component addresses, everywhere, for 

the instructionl counter, for the registe~ for the addresses and instructions, 

and so on, and this implies a fair collection of machinery inside the processor 

to make it go. But again it's one of the supporting techniques which help 

make the whole thing fit together. In summary then, the Multics environment, 

I'd say, providera pase for the ~~l*ii~ construction and operation, I think 

the easiest thing for me to do is repeat a couple of ideas I mentioned earlier. 

It does this by providing already solved machinery to handle configuration dependents, 

overlapped 10, memory and storage management, address allocation and in particular, 

sharing of information,sad By removing this list of problems, the problems that 



the subsystem writer expected to solve, means that he can pay attention to his 

own problem, the problem of making his own system bette~~man engineer.fi 

etc. At this point, I think that we have about 15 or 20 minutes available for 

questions and we may be able to pick up questions that were left over from 

the morming discussion also. 

Jean If the subsystem is lighter, 

The question is do you dare to let loose a virtual memory with a large m~" 

address ppace, and a powerful sustem begind it to support it, if the neeve 

is likely to 
programmer amHX nOL completely understand the implications of this. 

Answer: The answer is 'yes'. You have to worry about this. You definitely 

have to worry about this. It's a tradeoff problem. As is well known there 

are two kinds of people who, I should say there are two technologies of sorting, 

if we use the example you provided. There is a technology of things that fit, 

and a technology of things that don't fit. People who talk about sorting things 

that don't fit talk about multi ----- tape mergers, and H~B~. people who talk 

about things that do fit, talk about algorithmic searches and this sort of thing, 

and hash codes, etc. The key question here is whether the payoff from one of 

the key questions, there are several, one is whether the payoff from not having 

to worry about two technologies, ~hich certainly has some effect, that means that 

you can stop talking about two different things, and get these two people talking 

to each other, and in between problems no longer lead to terrible troubles as 

they slowly grow. There is a payoff from that, you have to be very careful as 

to whether or not that is overweighted by the potential costs of some inefficiency 

I think even more important than that is that there seem to be some fairly 

straightforward tools you can provide the programmer with to allow him to under-

stand what he's doing, for example, one of the things we did on Multics as an 

extension of CTSS, CTSS whenever you typed a command, the system typed back 



to you the amount of computer time it used. On multics we type back at you 

not only th~ amount of computer time it used, we add the number of pages we 

moved as a result. What that means, the programmer, every time he runs his 

program, he sees that number right in front of him and when he makes a ch~nge, 

he sees the effect of that change printed out on his console. Not just on 

his EBHKBXH response time, if its his response time he's not sure why he 

did it wrong. But if it comes out in that number he knows what he's done 

wrong and it means that, we have found that it allows the user to understand 

that he's made the mistake, the next thing is the tool to allow him find it. 

As a byproduct of our predictive paging scheme, it happens that we keep on 

a per user basis, a little ring buffer of the last 200 pAges he moved, and it 

turns out to be very straightforward to allow him to print that H~ out any 

time he likes. So we provide another tool, whenever he feels he's in trouble, 

he can print out that list, he looks at this number and it says that simple 

thing that you did caused us to move 85 pages. This guy says I didn't call 

for 85 pages I don't think, he CAn type the page trace command with the number 

85 A&xi~ixAiiu~~8tit will list what the last 85 things KH brought in were and 

look through that and say Gee I didn't realize that I was ~oing it so badly. 

and that pair of tools has been used throughout the system itself, and we see 

the customers of the system also using that tool. I think that ultimately that 

kind of thing is the answer. The real answer, I hope, u~timately, is the kind 

of thinking which one does in the direction of what is the u.ge of things I'm 

trying to touch all at once. That's a fundamental idea,w~~i~ somehow seems like 

one of the crucial inputs to the question of what am I doing with the computer. 

The idea of what is the list of things I'm touching right now seems to be a 

much more useful thing for people to be thinking about than which ov~rlay do I 

currently have scheduled to come in next. In other words it allows one to con­

sentrate on the essence of the problem and I think that is important. 



The problem of course doesn't go away_ 

muestion: It seems to me that you can feel some of the arguments that are mRde 

as to whether the totally separate the worrying about storage, etc. from the 

title of the prosram, in essence what you are saying is if I now become 

enforce my program into a mode where it operates efficiently 

on my storage, then I'll run much faster, I don't necessarily have to do thRt 

at a expense of time, but i~n't that really 

<'-'" 
.~~~ 

Answer We're setting up a straw man here. And XR then trying to shoot it do~~, 

I claim. There have been people who claim that paging is going to somehow going 

to milk blood out of a turnip and that isn't the idea. Because there isn't any 

blood there, if you are using the system to its hilt, there nothing you can do 

about that. If it's an inherent property of the program, that it needs a mil1i~ 

words of memory, it's not going to run well with less than that, and the 

X~XHXXB~mxBK questmon is, what is the technique that I used to make it run well. 

Now, in other words, what I'm trying to say is that every program, if its a big 

one, has a performance problem. The thing which has been removed from the progrRm-

mers immediate set of worries is, what is the list of addresses I'm dealing with, 

do I have to reuse these addresses and in what way do I reuse them, And now that 

I've reused it I have to be careful that I've told everyone who knew the old 

addresses about the new one. That kind of consideration is gone The kind of 

consideration for scheduling the I/O makes sure that that overlay arrives here 

just in time when I need it. That kind of consideration is gone, what is left, 

is as I mentioned, what I consider to be the essence of the problem, what is 

always going to be tnre, the issue of what is my program really doing, what are 

the different things it is really touching in order to solve its pattern, and is 

there another algorithm, that perhaps, in a more sophisticated way touches fewer 

things at the same time and therefore, in other words it seems to me it concentrates 

on "f' issue~ XH a more sLgnL Lcant Ka~XXKK If that problem doesn't go away, and I'm not sure, 

perhaps the thing to do is to go back to the original statement of freeing the 



programmer for worries of storage allocation and qualify that to indicate what 

aspects of the storage allocation we're trying to free him from. 

Question: are you saying that the compiler should or should not have to 

worry about aberflow of pages 

Answer: In general he shouldn't. 

Question: He shouldn't even provide facilities for what happens to his tables 

of a reasonable size overflow ----------
Answer: It's a hard question. The issue is what should he do overall to make 

his compiler run well. Whatever environment he's dealing with. The answer 

is that we don't really understand too much yet, about the meaning of using a 

very large number of addresses and in completely uncontrolled way. So I'm not 

quite sure what the correct answer is HX to tell your compiler writer. In 

general, I would like to tell him, don't worry about reusing addresses, we'll 

move things around for you, worry about how many things you try to use at onee. 

That's the closest we've come yet, it's not a doctrine in any sense, but it does 

help sort out things. Let me give you an example, I think it's an important 

example. We have a PL/I compiler today which is not our first PL/I compiler, 

our first PL/I compiler produced very poor code, for many of the various 

kinds of constructions of interest. We ve put together a project which was going 

to develop a new compiler. Fine, they say down, they worked our they're new 

compiler, they decided they wanted to write it in PL/I, because it was the obvious 

tool, and allowed them everything they wanted to do. So they began to write it 

in PL/I, KR« it was very quickly evident that XkK~K they're new compiler, if 

translated,by the old compiler, was not going to fit into memory. In fact, 

it didn't fit ia memory by a long, long way. It was just huge. On the other 

hand, in a typical programming project, what that meant, what it could have 

meant, was that they had to stop work, and couldn't begin any debugging, really 

until they had figured how to carve it down and make it fit. Instead what they 

were able to do was to go ax right on ahead and write this compiler which was 

not going to fit, they ran it, they compiled it with the old compiler, it didn't fit, 



fit, it ran verY,very slowly XHX because of the fact that it paged so hard, but 

once it was working well enough to translate programs, they had it translate 

itself, and all of a sudden it fit. And the point is, that six months KaxxxKx~ 

or a year of development time were cut out of that project because they didn't 

have to worry about the overlay. Now that's the kind of issue that I'm trying 

to get at. 

Question: 
utilization . Measure of memory thLS number of pages tryLng to access at once 

which people trade off against what's the tradeoff ------- tradeoff XKXX 

relationship between programs 

Answer: We haven't discovered that relationship by any means. KH I think we 

have an environment now, which one can explore that relationship in a very 

interesting way. Suppose I program it this way, suppose I program it that way, 

compare the two, then sit back and think. What was the abstract different 

between these and then sit xHix back and think 

Change tape 

your still doing it by yourself. 

Question: couldn't catch any of the question. Only the words 

some pomparisons. 

Answer: That's awfully hard to do. I only know of two other time sharing 

systems that try to provide the virtual memory interface to input/output which 

allows one to directly talk to his environment this way, these two systems are 

the TSS360 and the 5020 time sharing system of Hitachi. and compared with 

those two systems the objectives are similar, very similar. The implications 

are quite different, the effectiveness of the Hitachi system is quite xlimited 

because they have been forced to work in a very small core memory environment 

although it does seem to work. The effectiveness of TSS are fairly reasonable, 

so in that sense those two are the systems which are most iBM comparable, one 

can go to a variety of other kinds of systems such as the Dartmouth time sharing 

system, the SPS 940 system, COL360, several others which provide, I would say 



that Multics provides many of the same features that they do, but I will say 

none of them provide the xxx range of features that we're talking about here. 

I'm not sure if that's responsive to your question or not. 


