RINGS,

ETHERNETS,

AND

BROADBAND

THE UNDERPINNINGS OF LOCAL NETWORKS

J. H. SALTZER

MIT

LABORATORY
FOR COMPUTER
SCIENCE

WHAT MAKES A LOCAL NET DIFFERENT?

SECONDARY DIFFERENCES

- HIGH BANDWIDTH
- LOW COST
- SHORT DISTANCE

PRIMARY DIFFERENCE

NO COMMON CARRIER INVOLVED

WHAT MAKES A LOCAL NET DIFFERENT?

SECONDARY DIFFERENCES — HIGH BANDWIDTH: LOW COST SHORT DISTANCE PRIMARY DIFFERENCE NO COMMON CARRIER INVOLVED. DRAMATIC CHANGE: IN **ECONOMICS** CHANGES TECHNICAL APPROACH

ECONOMICS

EXAMPLE — 30 COMPUTERS,

1 KM MAX. SEPARATION

WIRE, 2.5KM a \$2/M 5000 MODEMS, 30 a \$300 9000 \$14000

\$500 / NODE (PURCHASE)
OR \$20 / MONTH (RENTAL)

TELEPHONE COMPANY, FOR \$29/MONTH

10 KB/SEC MODEMS
CENTRAL SWITCH
15 CONNECTIONS @ 10 KB/S
= 150 KB/SEC AGGREGATE

RATIOS

PEAK DATA RATE
$$\frac{10 \text{ MBIT/SEC}}{10 \text{ KBIT/SEC}} = x1000$$

AGGREGATE DATA RATE $\frac{10 \text{ MBIT/SEC}}{150 \text{ KBIT/SEC}} = x 66$

WHY?

30 - 40 YEAR AMORTIZATION

AVERAGE ECONOMIC AGE = 15 - 20 YEARS

PLANT IS PRICED @ 1961 - 66 PRICES

1963: IBM 7094 - \$2.5 x 10^6

1981: IBM DISPLAYWRITER — \$7.5 x 10³

x 300

IMPACT

DESIGN DIFFERENCES

LOCAL SIMPLICITY

LONG-HAUL — EFFICIENCY

- PEAK RATE SUPPORTS SOME APPLICATIONS
 - MOVE FILE TO PRINTER .
 - MOVE DATA FROM REPOSITORY TO PROCESSING CENTER
 - SEND MESSAGE

WHERE AVAILABLE -- 2 PLACES

- ON-SITE, IN-PLANT (COMMON OWNER)
- COMMUNITY 2-WAY CABLE T.V.

NETWORK TECHNOLOGY SELECTION CRITERIA

- MOST EFFICIENT USE OF MEDIUM
- FEWEST DROPPED BITS

NETWORK TECHNOLOGY SELECTION CRITERIA

NOT SO
IMPORTANT —
LOCALLY,
LOW NOISE AND
HIGH BANDWIDTH
ARE CHEAP

- HIGH AVAILABILITY
- EASY INSTALLATION
 AND RECONFIGURATION
- EASY REPAIR
- LOW HARDWARE COMPLEXITY
- LOW COST PER STATION

THESE ARE

WHAT

COUNT !

HOW THEY WORK

METHOD

- 1) WAIT FOR QUIET LINE
- 2) SEND PACKET a 10 MBIT/SEC
- 3) LISTEN WHILE TALKING, IF INTERFERENCE, STOP-WAIT-RETRY

"CARRIER SENSE MULTI-ACCESS, WITH COLLISION DETECT"

CSMA/CD

OR, SIMPLY, ACCESS DETERMINED BY CONTENTION

HOW THEY WORK

- DIGITAL REPEATERS
- -- CIRCULAR CONFIGURATION
- CIRCULATING TOKEN

SPECIAL BIT PATTERN

METHOD

- 1) WAIT TILL TOKEN COMES BY, TAKE IT
- 2) OPEN RING, SEND MESSAGE
- 3) SEND NEW TOKEN
- 4) TAKE OWN MESSAGE OFF, CLOSE RING

ACCESS CONTROL BY TOKEN-PASSING

HOW THEY WORK

ACCESS: CSMA/CD, JUST LIKE ETHERNET

■2.5 KM MAX •

PRIMARY ADVANTAGES

ETHERNET		
		ONLY ONE WIRE TO INSTALL
RING		SIMPLE POINT-TO-POINT
BROADBAND		PIGGY-BACK ON CATV-

NO WIRES TO INSTALL

PRIMARY ADVANTAGES

ETHERNET

---- ONLY ONE WIRE

TO INSTALL

XEROX

DEC

INTEL

3COM, ETC.

RING

SIMPLE POINT-TO-POINT

SIGNALLING

IBM .

APOLLO

PRIME

ETC.

BROADBAND

____ PIGGY-BACK ON CATV-NO WIRES TO INSTALL

M/A COM SYTEK

ALL HAVE

- 1) BANDWIDTH BEYOND NEED
- ADEQUATE RELIABILITY
- 3) SIMPLE HARDWARE
- 4) ENTHUSIASTIC ADHERENTS-

ETHERNET: CONTENTION =

"NON-DETERMINISTIC" =

BAD

RING:

REPEATER RELIABILITY IS LOW

BROADBAND: CATV DISTANCES TOO GREAT FOR CSMA/CD

ETHERNET: CONTENTION =
"NON-DETERMINISTIC" =
BAD
CAN SYSTEMATICALLY CONTROL DELAY
RING: REPEATER RELIABILITY IS LOW
—— EXPERIENCE → DIGITAL LOGIC RELIABLE ENOUGH
RELAY CUTOUT IS ADEQUATE RESPONSE
BROADBAND: CATV DISTANCES TOO GREAT FOR CSMA/CD
—— 6 MHZ CHANNEL 2 MBIT/SEC DATA RATE JUST FITS
to the city of the part of the called

WHAT ARE THE IMPORTANT DIFFERENCES?

ENGINEERING	EASE			
	POINT-TO-POINT VS. BROADCAST			
_	GROUNDING/ISOLATION -EMC			
· —	PROTOCOL SIMPLICITY			
OPERATIONS				
· —	TROUBLE ISOLATION			
	REPAIR			
	INSTALLATION EASE			
	RELIABILITY			
SCALE MAXIMUM				
	DISTANCE VS. SPEED TRADEOFF WITH CONTENTION			
FUTURE USE OF OPTICS				
	BROADCAST OPTICS ENERGETICS			
	SPEED			

WHAT ARE THE <u>IMPORTANT</u> DIFFERENCES?

		FAVORS			
ENGINEERING EASE		₩.			
POINT-TO-POINT VS. BROADCAST		RING			
GROUNDING/ISOLATION -EMC		RING			
PROTOCOL SIMPLICITY	ETHER,	CATV			
OPERATIONS					
TROUBLE ISOLATION	·	RING			
REPAIR		RING			
INSTALLATION EASE	ETHER,	CATV			
RELIABILITY		ETHER			
SCALE MAXIMUM					
DISTANCE VS. SPEED TRADEOFF WITH CONTENTION		RING			
FUTURE USE OF OPTICS					
BROADCAST OPTICS ENERGETICS		RING			
SPEED		RING			

CONCLUSIONS

- 1 RING PROBABLY HAS SLIGHT TECHNICAL EDGE
- 2 THE REAL APPLICATION FOR ETHERNET CSMA/CD IS ON COMMUNITY CABLE!
- TECHNICAL DIFFERENCES OVERWHELMED
 BY MARKETING. CHOOSE BY
 AVAILABILITY -- THEY ALL WORK!