
The Use of the Domain Name System for Dynamic

References in an Online Library

by

Ali Alavi

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the Requirements for the

Degrees of

Bachelor of Science in Computer Science and Engineering and
Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

Copyright Ali Alavi 1994. All Rights Reserved.

The author hereby grants M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part, and to

grant others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

May 16, 1994

C ertified by,,........
Jeror~e-n1. Saltzer
Thesis Supervisor

A ccepted by
F. R. Morgenthaler

Chairman, Departme Committee on Graduate Theses

'L

4,

,

The Use of the Domain Name System for Dynamic
References in an Online Library

by

Ali Alavi

Submitted to the Department of Electrical Engineering and
Computer Science

May 16, 1994

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Persistent, dynamic references (or links) to remote documents are an essential part of an
online library. This thesis examines two distributed database systems, X.500 and the
Domain Name System (DNS), upon which to build dynamic references. DNS was chosen
and was used to design a model and build a sample dynamic reference system. This sys-
tem seems to exhibit the scalability, robustness, usability, and efficiency necessary for
building global distributed online libraries.

Thesis Supervisor: Jerome H. Saltzer
Title: Professor, Department of Electrical Engineering and Computer Science

List of Figures

Figure 2.1: Hierarchy in the Domain Name System 13

Figure 2.2: Recursive queries.. 14

Figure 3.1: A Sample URN 27

Figure 3.2: A sam ple U RL 28

Figure 3.3: The model of our system .. 30

Table of Contents

1 Introduction..6
1.1 Motivation for the Library 2000 project .. 6
1.2 Motivation for my work... 7
1.3 Proposed Solution ... 10

2 B ackground .. 11
2.1 The Domain Name System ... 11
2.2 X .500 .. 17
2.3 Design Goals .. 20
2.4 DNS Chosen 23

3 System Design 25
3.1 T he M odel 25
3.2 What do we put in DNS? ... 26
3.3 The Uniform Resource Locator ... 27
3.4 How do we use DNS? .. 29

4 System Implementation ... 31
4.1 Modification to the Reading Room catalog ... 31
4.2 Generation of URN-URL mappings .. 34
4.3 how do we add mappings to DNS?... 36

5 A nalysis 39
5.1 D N S fill 39
5.2 DNS lookup 41
5.3 B IN D 4 1

6 Conclusion and Future Directions .. 43
6.1 C onclusion 43
6.2 Future Research 44

A Reading Room Catalog Interface .. 45
A.1 The Search Interface 45
A.2 The Search Results .. 46

B ibliography 47

4

Acknowledgements

I would like to thank:

Jerry Saltzer, my thesis advisor, who gave me feedback in sickness and in health, and

without whose guidance I would not have been able to finish.

Mitchell Charity, Mr. All-around Guru, who helped generate many

thesis. He deserves a lot of credit for this thesis.

Susan, Trevor, Jeff, Nicole, Sahana, Damon, Jahanvi, Ish, Melissa,

who helped me stay sane by helping me procrastinate.

of the ideas in this

Yuk, and Upendra,

and of course, mom and dad for footing most of the tremendous bill!

This work was supported in part by the Corporation for National Research Initiatives,

using funds from the Advanced Research Projects Agency of the United States

Department of Defense under CNRI's grant MDA972-92-J1029.

Chapter 1

Introduction

1.1 Motivation for the Library 2000 project

With the advance of technology, computing resources are becoming more and more

affordable everyday. Magnetic storage devices such as hard disks are becoming very

cheap and reliable. CPU speeds are increasing even faster than the speed at which their

prices decrease. High network bandwidths are becoming more commonplace. High reso-

lution displays are becoming reliable as well as affordable. As these trends continue, it

will soon be economically feasible to place entire libraries online, accessible from work-

stations located anywhere. A more complete discussion of these trends can be found in a

paper by Saltzer [5].

In one component of the Library 2000 project at the MIT Laboratory for Computer

Science, five universities (Cornell, CMU, Berkeley, Stanford, and MIT) are currently

exploring the issues involved with placing such a large volume of data online in a reliable,

accessible manner. The issues range from proper replication and redundancy to scan and

display issues, from copyrights to search and lookup technologies. I have chosen to

explore a small subset of these issues, dynamic references, which will become evident in

the following section.

1.2 Motivation for my work

Imagine that you are sitting at your computer. You have spent the past hour searching

various databases with several combinations of key words. Finally, you find a reference

that looks promising. As you read the plain text abstract, you realize that this journal

article is exactly what you have been looking for. You happily use your mouse to click on

a button instructing the computer to fetch the article. Your anticipation mounts as the

pointer turns into a wristwatch icon. In a few moments the pointer returns to normal.

Suddenly, instead of your article, a window pops up saying "error: cannot find article."

You swear under your breath wishing the computer had a neck you could strangle...

1.2.1 Static links are easy, but fragile

Unfortunately, the above scenario is all too common. Today, there are a variety of

hypertext languages and applications which allow one to create links in and among

documents. Perhaps one of the most popular of such programs is NCSA's Mosaic, a World

Wide Web client that allows users to create documents with links to others around the

world. The links are very similar in nature to the references we would need in an online

library. In an online library, we would have sets of information, such as cards in an

electronic card catalog or citations at the end of a journal article, which refer to a

document. The "reference" is the part, or subset, of that information containing all that is

necessary for locating the document1 . In Mosaic, link specifies the mechanism for locating

the document.

Despite their similarities, however, there is one major difference. Currently, links in

Mosaic are static. When the document is created, a part of it is linked to a specific URL

(Uniform Resource Locator) which points to a very specific filename in a specific format

through a specific protocol on a specific server on the internet. If any of those specifics

changes even slightly, the link stops working, and once again we get the urge to strangle

the computer. Such urges are tolerable when we are only playing games with Mosaic, but

they are unbearable when trying to do real research in real time at a library.

1.2.2 Changes will be necessary and will happen often

Why do any of the specifics need to change and just how much of a problem is it?

Today, technology is evolving quite rapidly. The file format and protocol, both of which

may have been designed to last many years, may be swapped for newer ones. Even though

we do not expect this to happen very often, we must be prepared to adapt to such changes.

On the other hand, the computer and physical storage media will become obsolete and

need to be replaced or updated every two to four years. Also, the maintainers of

documents are likely to change themselves as the demand for such services grows, and

new companies appear and disappear. Once again, we must be prepared to handle such

changes.

1. The concept of a "reference" is explained further in section 3.1.

Therefore, it is likely that all references will need to be updated at least every five

years. As the number of online documents--in addition to other digital objects--increases

exponentially, so will the number of changes which must be propagated.

1.2.3 Propagation is not easy

How would we actually go about propagating these updates? In order to actually

update a reference, document maintainers need to actually keep track of all the references

to their documents and have a method for updating them. This adds quite a bit of

administrative overhead. A simple way to implement this would be to require libraries to

register with document maintainers and provide an email address for changes. The

document maintainers would then maintain a list of subscribers on a per document basis,

and automatically generate email when references change. Once a library receives such a

message, its staff can update the reference in their local system. Since different libraries

use different methods of maintaining references, automating this process will require a

substantial amount of work at most libraries. Also, the administrative overhead at the

document server side could be quite large.

1.2.4 The scale is too big to propagate changes

Even if a reference could be updated efficiently without significant overhead, the

number of updates required is prohibitively large. "The ArticleFirst online database

consists of nearly two million bibliographic records representing virtually every item [in

the past five years] from the table of contents of over 8,500 journal titles."' Using these

figures, we can approximate MIT's collection of 21,000 journals at about 1.15 million

references per year. If we need to update 30 years worth of MIT's journals in five years,

1. From information on FirstSearch.

that averages to an update every five seconds. It is easy to see that updating all the

references to all the online documents in the world would be impractical if not impossible.

1.3 Proposed Solution

Since propagation of updates is impractical, we propose a different approach. Instead of

propagating changes to all references to a document, we will make the references dynamic

such that they can find the current location of the document at lookup time. This will be

accomplished by querying a global database of references for the current location of the

file. Using this approach, we need only to update the database once and all references

automatically change. In exploring this approach, I examined two distributed database

systems, DNS and X.500, to see if either would be suitable for building our system upon.

DNS proved to closely match our design requirements. Therefore, I used DNS to

implement dynamic references to scanned Computer Science Technical Reports.

The remainder of this work is divided into five chapters. Chapter two describes the two

systems, DNS and X.500, which were investigated as possible foundations for our system.

It also examines the design criteria as well as the reasons why DNS was chosen. Chapter

three describes the model for our dynamic references as well as the design of the

semantics of the system. Chapter four describes our implementation. Chapter five

analyzes our use of DNS. And finally, chapter six concludes and lays the foundation for

future work.

Chapter 2

Background

This chapter describes the two systems, DNS and X.500, which I have explored in search

of a suitable foundation upon which to build our dynamic references. Then it describes our

design goals which led to choosing DNS.

2.1 The Domain Name System

The Domain Name System, or DNS, is a distributed database used by almost all machines

on the Internet to map machine names to IP addresses (among other things). In other

words, DNS allows users to use a human-friendly name to refer to a certain machine. This

machine could be moved to a different IP address, but as long as the entries in the

machine's local name server were updated, no other propagation of the change would be

necessary. Everybody would still be able to use the same human-friendly name to contact

the same machine, even though the address had changed. In other words, DNS localizes

the scope of control to segments of the database, while allowing access to the entire

database.

2.1.1 The purpose of DNS

In order to better understand DNS, it is important to know why it was created. Back in

the 1970s, the ARPANET (the precursor to today's Internet) was a small community of a

few dozen hosts. There was no DNS, so a single file, widely known as HOSTS, was used

as a host table. Whenever a machine was added, everybody's HOSTS file had to be

updated. It was maintained by SRI's Network Information Center and distributed by a

single host. Network administrators would typically email updates to the NIC and would

periodically ftp an updated HOSTS file.

As the population of the network grew, so did the problems with HOSTS. The first

problem was that the network traffic and processor load on the SRI-NIC host grew to

unmanageable proportions. The second problem was that since it was one flat file, name

collisions became a problem as people added more and more hosts to the network. And

finally, there was a consistency problem. By the time an updated version of HOSTS

propagated to the ends of the network, a newer version was already on the SRI-NIC host.

The basic problem was that the HOSTS scheme did not scale well. That is why DNS

was developed. It is distributed in order to relieve the network and processor loads. It is

hierarchical to solve the name collision problem. It is locally administered and managed to

solve the consistency problem. Let's discuss these features, one at a time.

2.1.2 How DNS works

The key to DNS is its hierarchy. The Domain Name System is structured in the form of

a tree, similar to the Unix filesystem. Each node of the tree represents a partition of the

entire database, or a domain. Each domain can be further partitioned into subdomains (like

directories and subdirectories). In DNS, each domain can be administered by a different

organization, and within each domain, subdomains can--but do not need to--be delegated

to other organizations (see figure 2.1).

4619

sta

mini

mint. st

mint.lcs.mit.edu

managed by the Laboratory for
Computer Science at M.I.T.

Figure 2.1: Hierarchy in the Domain Name System1

For example, the Internet's Network Information Center runs the edu (education)

domain, but delegates mit. edu to M.I.T. Then M.I.T. delegates athena. mit. edu

1. Adapted from figures 1.3 and 2.5 of Albitz and Liu [4].

and ics.mit.edu to different organizations within M.I.T. Therefore, when

mint. Ics. mit. edu is replaced by a new machine and given a new IP address, only

the cs .mit . edu server needs to be updated by its administrator.

This hierarchy solves not only the network and processor load problem with updates,

but it also solves the name collision problem. Administrators for each subdomain need

only prevent name collisions in their own subdomains, and the hierarchy ensures

uniqueness. Therefore, many machines can be named mint, but mint. Ics .mit . edu

is different from mint . stanf ord. edu (see figure 2.1).

query for address of
mlnt.lcs.mit.edu

referral to edu
name servers

query for address of
mintlcs.mit.edu ••u

referralto mit.du
name servers

queryfor address of
mint.cs.miLedu

.e .duname servoers
queryfor address ofmint. .mited

mintics.mitLedu

Figure 2.2: Recursive queries 1

Possible inconsistencies are eliminated by referring all queries for a given DNS name

to the same server.2 In other words, regardless of which part of the world queries are

1. This figure was adapted from figure 2.10 of Albitz and Liu [4].
2. Except in caches. But this is an implementation issue which is discussed later.

initiated from, the responses will always be consistent. When a user makes a query to

DNS, a resolver (the DNS clients) will query the local name server which in turn

recursively queries name servers in the hierarchy in order, beginning in principle at the

root 1 (see figure 2.2).

For example (see figure 2.2), when trying to find mint. Ics.mit. edu, the local

name server queries the root server (denoted by " ") first (1). The root server returns the

address of the edu server. The local name server then queries the edu server and gets

back the address of the mit . edu server (2). The local name server then queries the

mi t . edu server and gets the address of the Ics .mi t .edu server (3). Finally, when the

local name server queries the Ics.mit.edu server, it receives the address of

mint. 1cs.mit. edu (4), which it then returns to the resolver. Using this method, at

any given time, all resolvers in the network receive a consistent result, because they all get

their information from the same server (in this case, from Ics .mit . edu).

2.1.3 DNS reliability and performance

In addition to this basic model, two additional features make DNS more robust and

efficient. In the model described so far, if a certain name server dies, then no one from the

outside world can access any hosts in the server's domain nor any of the subdomains

under that server. In other words, if any of the nodes in the tree fail, so will the entire

subtree under them. To remedy this problem, DNS uses replication. Each name server has

at least one replica. Therefore, if one server goes down, there is at least one other that

would still be operational. This replication also helps spread the load on a given server.

There are, for example, seven replicas of the root server.

1. Most implementations use caching and hints to avoid a complete hierarchical search on every
lookup, but the basic concept remains the same.

The main method DNS uses to improve performance, however, is caching. Each server

has a cache to store the values it receives from other servers. For example, when looking

up mint.lcs.mit.edu, the server caches the addresses of edu, mit.edu,

Ics .mit .edu, and mint. Ics .mit .edu. Thereafter, if we query the DNS server for

rr3 . Ics .mit .edu, the server already has the address of Ics .mit .edu and asks that

server for the address of rr3. And even more importantly, if we need to access mint

again, the local server has the address cached, obviating the need to make four separate

server queries.

2.1.4 Limitations

As always, there some limitations are introduced when going from theory to

implementation. One limitation of DNS is that it only allows a very limited set of record

types. Since it was designed to allow host lookups and email routing, DNS is a rather

minimal system. It supports less than a dozen (varies from one implementation and

version to another) record types, and the generic TXT record was only added in the past 5

years. Also, DNS is simply a key-value mapping; it has no real search capabilities.

The other reality check occurs when DNS uses caches to increase efficiency. If a

cached item changes at a remote location, the local machine will continue to use the

cached data. Therefore, we can have inconsistent views of the database. Rather than trying

to propagate changes to caches, each DNS server also suggests a timeout value for its data

on a record by record basis. Therefore, if another host is caching this server's data, the

data will expire after the timeout. Of course, setting the timeout too low would defeat the

purpose of having a cache. Therefore, we have a performance-consistency tradeoff that all

maintainers of subdomains must calibrate to their own specific needs.

This discussion of DNS was purposefully kept short. For a more comprehensive and

detailed discussion of DNS see Albitz and Liu [4].

2.2 X.5001

X.500 is a CCITT protocol designed for building a distributed, global directory. As such,

it has some similarities, as well as some major differences, with DNS. Like DNS, X.500 is

distributed and locally maintained. Unlike DNS, X.500 has powerful searching

capabilities built-in. To better understand X.500, once again, we must examine why it was

created in the first place.

2.2.1 Motivation for X.500

With the acceleration of industrial, scientific, and technological development, it has

become increasingly likely that two or more geographically distant people could be

working on the same problem. The growth of communication technologies has alleviated

the problem of being able to collaborate over great distances, provided that the parties

involved already know how to reach one another. Hence the development of directory

services. There are various models of directory services, which we will now discuss to

show some of their deficiencies and some solutions provided by the X.500 standard.

The first model is, of course, is the local telephone company's directory services. They

maintain a database of people with phone service with their names, phone numbers, and

addresses. Though invaluable, it has some limitations. For example, you can only find

someone's number if you know their name and city. If there is more than one John Smith

in the same part of a city, there is no further information upon which to select the correct

number. Also, the phone book can be up to one year out of date. And finally, you have to

1. Much of the material in this section was derived from RFC's 1279 [3], 1308 [7], and 1309 [8].

call Directory Assistance in a given area code to get information for that area; you cannot

call a single number consistently.

There are also a variety of directory services available on the internet. First, there is

the finger protocol, which has been implemented for UNIX systems and a handful of other

machines. This protocol allows you to "finger" a specific person or username at a specific

host running the finger protocol. This returns a certain set of information which usually

includes the user's name and phone number, in addition to other information the user

wants to broadcast. Once again, there are some limitations. First, you must already know

on which machine to finger the person. Second, finger is disabled on some systems for

security purposes. Third, people not running UNIX (a majority of computer users) will

most likely not be listed. And, finally, there are no search capabilities. There is, for

example, no way to search stanford.edu for all people working on X.500 (even if the

people provided this information).

The next directory service is the whois utility. Whois is available on a variety of

systems and works by querying a large central database. It has all the problems of a large,

centralized database. Just like HOSTS, the one-machine bottleneck is a problem as is the

updating of information (changes need to be emailed to a "hostmaster" and manually

reentered into the database).

Finally, DNS is also a flavor of directory services. Built mainly for fast host name to IP

address mapping, it therefore has very limited search capabilities. Though effective for the

purpose it was designed for, its lack of search capabilities prevents DNS from becoming a

rich Directory Service.

2.2.2 Features

X.500 was designed to address some of these problems. These capabilities include:

* Decentralized Maintenance: Each site running X.500 is only responsible for its local

part of the database; therefore, updates are fast and collisions are avoided.

* Powerful Searching Capabilities: X.500 allows users to construct arbitrarily com-

plex queries.

* Single Global Namespace: Similar to DNS, but the X.500 namespace is more flexi-

ble and expandable.

* Standards-Based Directory: Since X.500 is a well-defined standard, other applica-

tions (such as email and specialized directory tools) can have access to the entire

planet's worth of information, regardless of specific location.

* Security Issues: X.500 defines both Simple Authentication (using passwords) and

Strong Authentication (using cryptographic keys) for accessing data. It also supports

Access Control Lists on a per-attribute basis.

* Replication: X.500 has partial specifications for replication of data, with a simple

implementation currently in place.

2.2.3 limitations and problems

X.500 is not a very tight standard. On the contrary, it is trying to define a standard that

would be enough things to enough people so that most people around the world will use it

to build directory services. Although this standard is useful, it also makes the structure

somewhat amorphous. For good directory services, this flexibility to shape information

into any form is important, if not essential. However, this flexibility also causes a decrease

in performance. The complex search functions give us access to information that we never

would have been able to find before; but if we are looking for the same simple piece of

information, the process can be significantly slower.

2.3 Design Goals

Now that we have described the two candidate systems, we must define the decision

criteria. In order to do this, we must examine the design goals of our dynamic reference

system.

2.3.1 References must be persistent and dynamic

The basic goal of this project is to design an architecture for references which would,

at the time of invocation, dynamically find the object to which they refer at lookup time.

Such a reference would theoretically never be out of date and would stay valid as long as

the object to which it refers remains valid.

Such persistence of references is a significant concern in building online libraries.

Libraries have large collections of materials, often from many different geographical

locations. In an online library, such materials would remain in their faraway locations.

When users want to look up specific documents, they would be able to simply ask for

them, and the software will fetch the image of the documents by following the references

held at the local library. If these references were to fail often, the library would become

almost useless.

With the passage of time, these documents will be moved onto newer storage devices,

new locations, and even acquire new names, thereby requiring updates for their

references. As the number of online documents and online libraries grows, it becomes

increasingly important for the references to be dynamic.

2.3.2 Scalability

In designing this system, we need it to be more than just dynamic references. It must

also be inherently scalable. With the exponential proliferation of online documents, if our

system were not scalable, it would soon go the way of HOSTS.

The first part affected by scaling is the update process. It would certainly be very

inefficient, and soon completely impractical, to update all the references to a given

document in many libraries all over the world when a change occurs. Therefore, we need a

localized system which allows updates to be done locally, while affecting all of the

references to that specific document. Such a system would not be restricted by scale

because it would keep the scope of updates at a constant, manageable scale.

Such a system would also alleviate propagation delay and reference inconsistency

problems. As we saw in the case of the HOSTS file, as the size of a system grows, the

propagation of changes slows to the point that different parts of the system will present

inconsistent views. If we could eliminate the need for the physical propagation of changes,

we would also eliminate these inconsistencies.

2.3.3 Usability

In addition to being scalable, this system must also be usable. Without this attribute,

building the system would be pointless. For it to be useful, people must use it. People will

not want to use it if it is too much of a hassle to set up and use. We do not want to try to

convince users to change everything just so that they can have dynamic references.

Therefore, it would be highly desirable to make maximum use of what is currently widely

installed, thereby minimizing additions.

Not only should the setup be minimal, it is also important for the system to be easy to

use. There are three sets of users of our system. First, we have the library patron who

simply wants to find a document quickly. It goes without saying that these users should not

need any special knowledge to follow references to a document. The point of putting a

library online is to make it easier to find documents, not to find a new way to make it

difficult.

The second set of users is the maintainers of the documents who need to actually make

the updates. These updates must be easy to perform. The user should not be forced to

check with several other "authorities" to make an update. Also, it should not take an

inordinate amount of time. In other words, it should not be harder nor more time-

consuming than it is in a nondigital library.

The ease of use for these two sets of users is only partially dependent on the

underlying system. The greater part is actually dependent on the third set of users, the

programmers of the library search and update systems. If the dynamic reference system is

well-designed semantically, the programmers should be able to implement their library in

such a way as to make it relatively easy for the first two sets of users to use. However, it

may not be an easy task for them. Therefore, a goal of our system is to be based on

something that programmers already know or use, thereby minimizing the time and

anguish in learning new systems.

2.3.4 Reliability

Another important design goal is reliability. We would not be successful in convincing

users to adopt a system that works only part of the time. Therefore, robustness of our

implementation is a crucial design consideration.

In a system built from scratch, it is easier to guarantee robustness--at least we would

not be able to blame anyone but ourselves. However, we would like to not reinvent the

wheel but build upon a system already implemented. If feasible, this would allow us to

concentrate more on the higher level design issues and less on the lower level

implementation details. Unfortunately, it also means that if the system we were basing

ours upon is not robust, our system would also be prone to failure. Therefore, we must

choose a system which has a robust implementation.

2.3.5 Speed

Finally, our system needs to be fast. We have already discussed the speed and

efficiency of updates, but there is still another concern we have not addressed: the speed

and efficiency of use. When a library patron performs a search, it should not take hours for

the result of the search to appear--at least we do not want it to be our fault. We would,

therefore, like the reference lookup speed to be as fast as possible. Since we are building

our system on top of an already existing one, we need to choose an underlying system

which is fast. Speed often comes from minimizing overhead. Therefore, we would like

both our system and the system we build upon to require minimal overhead.

2.4 DNS Chosen

Given those design goals, we chose the Domain Name System as the underlying

architecture for our dynamic references. This decision was based on several factors. Both

DNS and X.500 had the hierarchical, distributed, and localized nature necessary for the

implementation of our references. However, two main factors made DNS the correct base

for our architecture.

First, semantically, DNS is much simpler than X.500. Since it is more flexible and

powerful, X.500 also becomes more complex and slow. X.500 has flexible search

capabilities which, while great for directory services, are not necessary for our system. We

wanted our system to be as small and fast as possible. Therefore, we chose to include only

the essential functionality, allowing others to build their individual complex capabilities

on top of our system. In this way, we are allowing other designers maximum flexibility

and efficiency.

The main reason for the decision, however, was that DNS is already widely used and

installed all over the world. This is important for several reasons: first, we were not forced

to implement a name server and try to make it robust. Other people are already actively

working on that task. Second, we did not have to distribute it and convince people to use

it--DNS is already on most of the machines on the Internet. Finally, we did not have to

provide the necessary infrastructure to make our system work. The NIC is taking care of

the root servers, and the rest of the world is taking care of their local domains. In other

words, everything else we need is already in place.

This practical ubiquity, in addition to seeming to possess the necessary features, made

the Domain Name System the obvious choice. The next chapter describes the model for

our system and how DNS fits into that model.

Chapter 3

System Design

In this Chapter, I will describe the model we used for our system and examine the design

of our system based on this model.

3.1 The Model

We walk into a library, walk up to the card catalog, look under subject, author, or title, and

with some luck, find something that looks promising. Then we write down the Dewey

Decimal number we find on the card, and go to the stacks to find the book. In most

libraries nowadays, this card catalog has been computerized. Now, instead of walking up

to a card catalog, we walk up to an ASCII terminal and search the online catalog much

faster and more reliably than its paper ancestor. In many places, the online catalog

contains references to several libraries' holdings and will even tell us if a certain book is

checked out. Today, that is where the role of the computer ends. In the Library 2000

project we are expanding the role of the computer into document recovery as well. We

would like the reference, or electronic "card", to also indicate whether we can access the

document online, and if so, provide a means of fetching and displaying it.

What exactly do we mean by a reference? In general, a reference is anything that refers

to something. In this thesis, we are interested in references which refer to documents.

Examples of such references in a library consist of the cards in the card catalog and the

bibliography, citations, and references in books and journals. For our model, we have

simplified the notion of reference materials to the collection of information in the

electronic card which refers to a document. We assume that any other form of reference

material can be used to find the corresponding electronic card. In this project we are

interested in the part of the electronic card which links us to the actual document. This link

is called the "reference." This reference provides all the information necessary for us to

access the actual document.

3.2 What do we put in DNS?

Once we decided to use DNS to implement our model, we needed to figure out how. In

other words, what exactly do we store in the distributed database? Every item in DNS is a

mapping between a name and a value, therefore, we needed to design those two parts.

3.2.1 The Uniform Resource Name

First, we designed the name. This is the unique name of a given document and is

referred to as the Uniform Resource Name, or URN, of the document. Using this unique

URN, we can find the document it maps to. We must guarantee uniqueness of these names

so that there is an exactly one-to-one mapping of names to values (i.e. each URN must

map to exactly one document). In order to do so, we take advantage of the hierarchical

nature of DNS. Due to this hierarchy, we only need to guarantee uniqueness at the leaf

nodes of a given branch (see figure 2.1). Also, since we can arbitrarily subdivide branches,

we can always keep the leaf nodes of a given branch at a reasonable number, thereby

making it easier to guarantee uniqueness.

So what does a URN look like? In our system it is composed of two parts: the

document maintainer's name and the document name unique to that specific document

maintainer. Suppose that Computer Science Technical Report number TR-93-123 is

maintained at the MIT online library, which is itself part of the "library" domain in the

United States. The the name could be:

123.93 .TR.CS. 1ibrary.mit.us
I I I I

local unique name maintainer's name

Figure 3.1: A Sample URN

Even though in figure 3.1 both parts look the same, making the URN look like one,

long, uniform DNS name, it does not need to be that way. In fact, we chose a two part

name so that document maintainers can have the flexibility of naming their documents in

any way they please (as long as it is a valid DNS name), without being restricted to a

specific naming convention which will be necessary for the names of the maintainers. For

more information on URN's see Weider and Deutsch [6], and for more information on

general naming issues, see Yeo, Ananda, and Koh [9].

3.3 The Uniform Resource Locator

The second part is the value associated with the URN. The first question is, what does this

value contain? Since we are using DNS to map names of documents to the online version

of the document itself, we needed the value to actually point to the document. This yields

two more questions: What do we mean by "point to" and what do we mean by

"document"?

We are using DNS not only to find a document, but also to tell us how to "get" it. It is

not strictly necessary for the DNS value to include more than just where a document is

located. However, since other people have already devised a widely used method of

specifying both the where and the how, we chose to use it. This descriptor is called the

Uniform Resource Locator, or URL, and is used in the rapidly expanding World Wide

Web. URL's specify what protocol to use, in addition to where to get the file (see figure

3.2). For a more comprehensive discussion of URL's, see Berners-Lee [1].

http: //www .mit. edu: 8 0 01/dilbert. html

how where

Figure 3.2: A sample URL

The second question is not as easy to answer. What do we mean by an online

document? What specific set of bytes should our URL point to? This may be a relatively

easy question if the document is relatively small and stored as a single text file. However,

when a document is stored in image form, it may be composed of hundreds of images in

different resolutions and formats, yielding many Megabytes. In this case, it is not very

clear what the URL should point to. Since this is a difficult question, we created the

abstract notion of a Document Descriptor which contains information about the pieces of

the document. An example of a minimal Document Descriptor would be an interface with

a list of all the pages of the documents, each with a link to the actual image. A more fully

developed Document Descriptor would probably contain some of the document's

bibliographic information, as well as the image formats in which the document is

available, among other things. The implementation of the Document Descriptor has been

left for future theses.

3.4 How do we use DNS?

Once we know what mappings to keep in DNS, the question becomes how to use DNS.

Who fills the database? How does a typical user find a document?

3.4.1 Filling DNS

The first step is to enter the URN to URL mappings into DNS. One seemingly

reasonable way to accomplish this is to require the organizations that maintain online

documents to also maintain DNS subdomains with the mappings to the documents which

they maintain. Of course, this responsibility could also be passed onto third parties. The

only important part is for the maintainers of documents to be able to easily update the

DNS mappings of their documents when the information in the URL portion changes or a

new mapping needs to be added.

3.4.2 Using DNS

What does the client program do? The purpose of the client program is to allow users

to find the document(s) they want. We assume that it already has the capability of

searching databases (local or remote) of bibliographies to find the appropriate reference.

Currently these references contain information such as the title, author, and date of

publication as well as many others. For documents available online, these references

should also contain enough information for the client program to be able to generate the

corresponding URN. The easiest way to do this would be explicitly to place the URN in

the reference, thereby allowing the client program to simply copy it. It might also be

possible to materialize the URN from the information found in separate fields of the

reference, using an appropriate transformation. The client program can then use the URN

to query DNS for the URL. Once it has the URL, it can pass it to a document display

program which will provide the interface for the user to view the document. (see figure

3.3) Therefore, DNS is only used for the URN->URL mapping and not searching for,

actually fetching, or displaying the document.

user

Figure 3.3: The model of our system

The following chapter describes our implementation based on this model.

Chapter 4

System Implementation

The design of the semantics is only the first step to building a system. Implementation

details often cause changes or refinements of the semantics. Also, in this case, the

semantics define a system much larger than can be currently built. Hence, we chose to

implement a small sample online library providing access to Computer Science Technical

Reports. It is our hope that lessons learned from this experiment can be applied to building

a much larger global library system.

4.1 Modification to the Reading Room catalog

My system was based on an experimental catalog interface built on top of Mosaic, by

Mitchell Charity. His interface allows the user to specify a search string for which to

search the database. The result of the search is a list of the bibliographic records in the

catalog matching the search string. I took this system and added DNS capabilities. Now,

once the search engine finds the references the user was searching for, it provides a means

of reaching the documents, if they are online (see Appendix A). I will now discuss my

additions and the issues involved.

4.1.1 How do we know if a document is online?

Ideally, everything is online once it is published, so that if you have a reference to it,

you know it is online. However, it is not certain if that will ever be the case. Therefore, we

need a method of checking to see if a given document is actually online. Or do we? We

could simply assume everything is online and if our document is not online, the lookup

fails and we get an error message, indicating that it is not online. This could be a valid

implementation if we can guarantee that such failures would be rare.

However, as we are only beginning to maintain documents online, the rare case is

when a document is online. Therefore, as we would like to minimize failures, it would be

wise to check to see if the references we present to the user are actually online. The

question then becomes where do we check?

One method would be to keep that information in the Bibliographic records that the

search engine checks. This approach would make it very easy to check to see if a given

document is online. Unfortunately, this is not a viable solution. Actually, it is not a

solution at all, because it causes problems in another part of the system. How does the

Bibliographic record get updated? How would those updates get propagated? We would

need a whole separate DNS-like database for that! Unfortunately any update system for

the bibliographic records would either be redundant or not as current as the DNS database.

A better solution would be to simply query the DNS database for the given documents

and if a URN->URL mapping exists, then we know that the document is probably online.

We say "probably" because it is possible for the DNS to be slightly out of date or the

document server may be down. In order to reduce this possibility for error even further,

the search program could also try to fetch the actual document to see if it is in fact

accessible. On the semantic side, we cannot check for all errors. Even if we check the

Document Descriptor, the pages of the document may be corrupted or not available, or the

Document Descriptor itself could contain erroneous information. On the implementation

and practical side, it would needlessly slow down the system. Therefore, we have left this

potential refinement for future research.

Therefore, in our system, we guarantee only with high probability, that if a document

appears to be online, one can reach the Document Descriptor.

4.1.2 How does the user actually fetch the document?

Once users are presented with the results of the search, they should be able to have a

way of reaching the actual documents. We have implemented this as a HTML link in

Mosaic: when users see the word "(Online)" after a reference, they can click on it to go to

the Document Descriptor via the URL returned from DNS (see Appendix A).

It is important to note here is that this link is generated automatically. When the user

requests a search, the search program returns a list of matching records. For each record, it

uses the data in the record to generate the corresponding URN. Then it queries DNS with

the URN, and if there is a positive response (i.e. a URL), the search program generates an

HTML link to the Document Descriptor (see Appendix A).

Currently, the Document Descriptor is nothing more than the interface provided by a

server developed at Cornell. From this interface, we can read the abstract, bibliographic

record, and usually, the actual images of the pages of the document. Though useful, this

interface is not what we mean by a Document Descriptor. We would like it to be a file

containing all the pertinent information about the file (i.e. formats, filenames, length, etc.),

without any interface. Users should not be restricted to use any specific interface to access

a document. Rather, they should be allowed to build any interface which would be most

useful for their particular purpose, and simply use the Document Descriptor as a resource

for attributes of the document. This will become increasingly important with the evolution

of technology and proliferation of online documents and their applications. However,

since the work on a true Document Descriptor is not yet complete, and as there are no

other usable interfaces for viewing documents, we chose to make use of Cornell's server

as a means of viewing the documents.

4.2 Generation of URN-URL mappings

In order for users to be able to use the DNS database to lookup URL's, the mappings must

be somehow inserted into the DNS. Ideally, we would like each document maintainer to

also maintain a DNS subdomain with mappings for the documents it maintains. However,

once again, as we are setting up the only system using DNS, we need to find another way.

4.2.1 How do we fill the DNS?

There are a few different models we need to consider here. If we had no catalog and no

images to start with, we could simply generate the catalog (with built-in URN's) as we

scanned in documents, one reference at a time. If we had either the catalog or the

documents alone, we would only need to update one as we created the other.

In our case, however, there are already several hundred Technical Reports scanned by

the five Universities. Therefore, we need to do a retrospective conversion of a pre-existing

catalog to pre-existing images. This brings up two new issues. First, how do we know

what others have placed online, and how do we generate the URN->URL mappings?

The first problem is easy to fix. The other sites are using Cornell's document server,

and it provides a list of all the documents it maintains. Therefore, it is easy to grab these

lists and parse them for the requisite information. However, they contain neither the URN

nor the URL. The lists contain only the actual file id, which is part of the URL. From this

information we need to generate both the URN and URL. Luckily, the URL is

standardized and we have established a routine method of generating URN's, which

makes their generation straightforward.

There are a few standardized schemes which make this automatic generation possible.

First, there is a standardized format for specifying bibliographic records for Computer

Science Technical Reports. This scheme provides a standard method for numbering and

naming these documents which includes the issuing organization's standard abbreviated

name. The naming scheme for the actual files on the servers is also standardized to closely

resemble the names in the bibliographic records.

Therefore, the only piece of information necessary is the location of the server. Once

we know the server's address, we query it for its holdings. Then we generate a list of

URL's by piecing together the server's address and the file ids it returned, using the

server's standard file naming scheme. We then generate a corresponding set of URN's by

converting the file ids to match the ids in the bibliographic records, making use of the

standardization in both ids. Using this scheme, when the user's search program needs to

generate a URN to query DNS with, all it needs is the id field in the bibliographic records

which matched the search criteria. Therefore, both the filling and searching processes have

been made easy through the use of standardization.

4.2.2 If we generate both the URN and URL, then why do we need DNS?

Under the current implementation, we are basically using DNS only to check to see if

a document is online. We also precompute the URN and URL and put them into the DNS,

but we could do it just as easily at search time. If nothing ever changed, there would be

very little need for DNS. Unfortunately, this scheme does not scale either in size or time.

Only two weeks after the first successful implementation of this system, Cornell made a

slight change to their naming scheme, making our generated URL's incorrect. Also, as

online documents proliferate, it will become increasingly difficult, if not impossible, to

agree to a standard method of generating URL's. It will also become increasingly

impractical to update software to keep in pace with newer URL generation standards.

Therefore, we propose that for real systems, the maintainers of document servers also

maintain a DNS subdomain for their documents. It does not seem like it would be too

difficult to automate this process, therefore, we do not expect this to create too many extra

headaches for the maintainers. Also, this approach gives the maintainers more flexibility

while reducing potential errors caused in our automatic generation of the URN->URL

mappings. In other words, if the document maintainers generate their own DNS mappings,

there is less chance of an error in the mapping.

4.3 how do we add mappings to DNS?

The data for a DNS nameserver is maintained in a single flat text file which is read at

named 1 startup time. The only way to update the information maintained by the

nameserver is to update the text file and send a signal to named. Very few tools exist for

reliably updating the name server data. As a matter of fact, often name server

administrators have problems which arise out of the complexity and difficulty of setting

1. named (name daemon) is the executable DNS name server program.

up and maintaining nameservers.

Ideally, we would want to have tools that would allow us to easily add new mappings

to DNS, checking for errors and duplicates, modify old mappings, and delete obsolete

ones. Such tools would be necessary for widespread use of our system. Unfortunately,

building robust tools is not easy. There are issues of authentication, contention, and

efficiency to be considered. We leave these issues for future research.

In order to prove the feasibility of our design, however, we have chosen an

oversimplified method. Every night, the dns_fill program queries the document

servers for a list of their current contents. It then uses this information to generate the

URN->URL mappings and writes them to a text file in the right format. It then replaces

the DNS data file with this new file, and sends a signal to named, causing it to reread the

data file. Therefore, every night, the entire DNS database is created anew.

Of course, this is not very efficient, but since we currently only have about 1600

entries, it takes less than a minute. Even with ten times as many entries, it would take no

longer than 10 minutes to gather the data and mere seconds to update named. Even if at

some scale it became too slow, we could simply add a subdomain and another server to

balance the load.

Instead of recreating the database every night, we could do incremental changes. We

could keep a copy of the old contents of each server and compare them with the new, and

generate a change list instead of the entire database. Unfortunately, once we move from

bulk processing to incremental updates, updates become a complicated process. In

addition to authenticating, we need to be able to handle several simultaneous users. We

would also need to limit how often we update named in relation to the size and load of the

server. We could also check for errors in the servers' output. For example, if the list from a

server contains significantly fewer documents from one night to the next, there is a high

probability that there was a problem somewhere. There are many ways to deal with these

issues and we leave them for future research.

The following chapter analyzes the performance and feasibility of our system.

Chapter 5

Analysis

Now we need to analyze our system to see if it met our expectations, where it failed, and

where it could be improved

5.1 DNS fill

In order to supply DNS with the URN->URL mappings, our system queries the few

document servers for a listing of their documents and generates the mappings. There are

several problems with this method. First, even though the documents are still available

online, the servers are not always operational. If the server fails to return a list of its

holdings, large portions of the database will be missing. One method of preventing these

gaps would be to make the query process separate from the fill process. The query process

could then query the servers and retry a few times if it gets no response, keeping the last

valid response from each server until it receives a new valid response. If the server is

really down, the query process can return the old list. This approach is generally valid

since the server list is usually not much different from one day to the next.

Second, servers change addresses (i.e. move) which once again makes portions of the

database invalid. Even in the short timespan of this thesis, one of the four servers changed

its address. This problem fundamentally should be attacked by using DNS, since it is once

again a name mapping problem. One suggestion is to have CNRI keep track of the

document servers at a central server. This would add the control and stability necessary for

a real system.

The main problem, however, is that this scheme does not lend itself well to larger

scales. As the number of servers grows, the query process will need to be continually

updated. Even if the current method of generating mappings for CSTRs is adopted

globally, as the number of different kinds of online documents grows, it will become

increasingly difficult, if not impossible, to generate URN->URL mappings automatically.

The main reason we have been able to do this so far has been due to the standards in place.

As different kinds of digital objects are placed online, new organizational and naming

standards become necessary for the new types of URN's and URL'sURN's. Creating these

standards requires time, and updating all DNS filling systems takes even longer.

Besides, the generation of these mappings defeats the purpose of using DNS in the first

place. We are using DNS because we cannot always simply generate URN->URL

mappings! Therefore, we hope that now that the feasibility of using DNS has been

established, document maintainers will maintain their own DNS subdomains.

5.2 DNS lookup

When users do a search, they are presented with a list, complete with pointers to the

documents, if they are online. We found this part to work rather effectively. Even though

the DNS lookup made the search slower, the total time to search and make DNS requests

was quite small (about 50 milliseconds per request). Of course, the name server was on the

local machine which made it faster. Regardless of what system we use, network latency

will be a problem when dealing with remote servers (about 100 milliseconds per request to

California and 4 seconds per request to Australia). Once we factor out the network, we see

that it is pretty fast. Also, network latency can be masked by prefetching, caching, and

incremental fetching which continues to query DNS in the background while showing the

user the results so far.

The real problem however, was with our replacement for document descriptors.

Currently, the URL simply points to the server interface for a given document. This forces

the users to learn and rely on other people's interfaces. Even though these interfaces were

supposedly all the same, they were different versions and certain parts were missing from

certain documents, making the interface inconsistent. It would be better for the user to be

able to use a single interface to access everybody's documents. Therefore, the Document

Descriptor must be completely separate from the interface.

5.3 BIND

We based our entire system on the BIND 4.9.2 implementation of DNS. DNS uses typed

records, and we chose the TXT record type. It seemed to work very well. We did learn,

however, that TXT records were not implemented before version 4.8.3 of BIND.

Although a significant portion of machines are still running old versions, we believe that

as hardware and software gets upgraded, this problem will disappear. However, since one

of our design goals was not to force people to upgrade their system, we could easily use

the older plain-text record which was implemented in 19861.

There seem to be no problems inherent in our usage of TXT records as compared to

other kinds of DNS records. There also do not seem to be any problems with the semantics

of how DNS is meant to work. Therefore, even if there are inefficiencies in BIND2 which

we have not come across or did not deem significant, since there are people actively

working on future versions, we believe that such problems will be fixed with time.

Also, we have heard rumors of potential scaling problems with BIND. However, we

were not able to find any evidence of any such problems at this scale, and it is not apparent

where any such problems will arise in using a database that is, say, ten times larger. Actual

trials at larger scales would be required to say anything more about still larger databases.

The following chapter concludes and lays the foundation for future research in this

area.

1. This record was used to implement Hesiod at MIT Project Athena.
2. BIND, as most systems, can be more efficient. For an example, see Danzig, Obraczka, and
Kumar [2].

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

Our implementation of dynamic references based on the Domain Name System seems to

work and shows the feasibility of such a system. Unfortunately, some potential problems

may not surface until a full-scale implementation is attempted. However, this research

indicates that there do not seem to be any fundamental problems with using DNS. We are

confident that any potential problems would be implementation issues which can easily be

remedied with newer versions of software. Therefore, DNS is a viable, efficient, and

feasible system upon which to build dynamic references, and our implementation is an

example of how this may be accomplished.

6.2 Future Research

Our research also uncovered areas that could be improved through future work. The most

obvious area seems to be in the filling strategy for DNS. Our current method needs to be

changed such that it becomes more scalable. One approach is to make the filling

incremental. In such a system, authentication, contention, and efficiency issues must be

addressed.

Also, the validity of the DNS data will need to be checked or guaranteed in some

manner as this system is scaled. Currently, although we do not guarantee a zero percent

failure rate, the URN->URL mappings in DNS are never checked for validity. This issue

generalizes to the issue of decreasing the probability of failure. Much room remains for

future research on this issue.

And finally, as our system grows, network latencies will become significant. More

intelligent latency-aware search engines need to be created to mask the inevitable latency

of such a large distributed system.

Appendix A

Reading Room Catalog Interface

A.1 The Search Interface
This is the interface the user uses to specify a search. In this case, the user was searching

for all references containing "distributed," "Cornell," and "93."

A.2 The Search Results
This is part of the result to the previous search. Note that the word "Online" appears after

only the references that are available online.

References

[1] Berners-Lee, T., "Uniform Resource Locators (URL)," Internet Engineering Task
Force Draft, October 1993.

[2] Danzig, P. B., Obraczka, K., and Kumar, A., "An Analysis of Wide-Area Name Server
Traffic," Proceedings of the ACM SIGCOMM '92 Conference, October, 1992, pages
281-292.

[3] Hardcastle-Kille, S., "X.500 and Domains," Internet Request For Comment 1279,
University College London, November 1991.

[4] Albitz, P., Liu, C., DNS and BIND. O'Reilly & Associates, Inc., Sebastopol, CA,
1992.

[5] Saltzer, J. H., "Technology, Networks, and the Library of the Year 2000," in Future
Tendencies in Computer Science, Control, and Applied Mathematics, Lecture Notes
in Computer Science 653, edited by A. Bensoussan and J.-P. Verjus, Springer-Verlag,
New York, 1992, pp. 51-67. (Proceedings of the International Conference on the
Occasion of the 25th Anniversary of Institut National de Recherche en Informatique
et Automatique (INRIA,) Paris, France, December 8-11, 1992.)

[6] Weider, C., and Deutsch, P., "Uniform Resource Names," Internet Engineering Task
Force Draft, October 1993.

[7] Weider, C., and J. Reynolds, "Executive Introduction to Directory Services Using the
X.500 Protocol," FYI 13, Internet Request For Comment 1308, ANS, ISI, March
1992.

[8] Weider, C., Reynolds, J., and S. Heker, "Technical Overview of Directory Services
Using the X.500 Protocol," FYI 14, Internet Request For Comment 1309, ANS, ISI,
JvNC, March 1992.

[9] Yeo, A. K., Ananda, A. L., Koh, E. K., "A Taxonomy of issues in Name Systems
Design and Implementation," Operating Systems Review, July 1993, pages 4-18.

