


Application of Minimal Perfect Hashing in

Main Memory Indexing

by

Yuk Ho

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the Requirements for the

Degrees of

Bachelor of Science in Computer Science and Engineering and
Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

Copyright Yuk Ho 1994. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part, and to

grant others the right to do so.

Author ......................................................................................................................
Department of Electrical Engineering and Computer Science

May 20, 1994

Certified by ..............................................................................................................
Jerome H. Saltzer
Thesis Supervisor

Accepted by .............................................................................................................
F. R. Morgenthaler

Chairman, Department Committee on Graduate Theses



Application of Minimal Perfect Hashing in
Main Memory Indexing

by

Yuk Ho

Submitted to the
Department of Electrical Engineering and Computer Science

May 20, 1992

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering and

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

With the rapid decrease in the cost of random access memory (RAM), it will soon become
economically feasible to place full-text indexes of a library in main memory. One essential
component of the indexing system is a hashing algorithm, which maps a keyword into the
memory address of the index information corresponding to that keyword. This thesis stud-
ies the application of the minimal perfect hashing algorithm in main memory indexing.
This algorithm is integrated into the index search engine of the Library 2000 system, a
digital on-line library system. The performance of this algorithm is compared with that of
the open-addressing hashing scheme. We find that although the minimal perfect hashing
algorithm needs fewer keyword comparisons per keyword search on average, its hashing
performance is slower than the open-addressing scheme.

Thesis Supervisor: Jerome H. Saltzer
Title: Professor, Department of Electrical Engineering and Computer Science



Table of Contents

 1 Introduction..................................................................................................................5
 1.1 Library 2000 Project Overview ..........................................................................5
 1.2 Main Memory Indexing ......................................................................................5
 1.3 Index Search Strategies.......................................................................................6
 1.4 Hashing Algorithms............................................................................................8
 1.5 Implementation Overview ..................................................................................9

 2 The Library 2000 Index Structure .............................................................................10
 2.1 The Wordset......................................................................................................10
 2.2 The Wordset Hash Table and the Wordstore....................................................11
 2.3 The Index Search Mechanism...........................................................................13

 3 The Open-addressing Hashing Algorithm .................................................................15
 3.1 Implementation .................................................................................................15
 3.2 The Loading Factor...........................................................................................17

 4 The Minimal Perfect Hashing Algorithm ..................................................................20
 4.1 Definition ..........................................................................................................20
 4.2 Implementation .................................................................................................21
 4.3 Time Bound on Hash Table Generation ...........................................................24

 5 Performance Evaluation.............................................................................................26
 5.1 The Performance Measurement Procedure.......................................................26
 5.2 Performance Comparison .................................................................................26
 5.3 Performance Analysis .......................................................................................27

 6 Performance Enhancement to the Minimal Perfect Hashing Algorithm ...................32
 6.1 A 2-graph Implementation................................................................................32
 6.2 Performance Comparison .................................................................................33
 6.3 Performance Analysis .......................................................................................35
 6.4 Memory Consumption Analysis .......................................................................36

 7 Conclusion .................................................................................................................38
 7.1 Minimal Perfect Hashing versus Open-addressing...........................................38
 7.2 Future Outlook..................................................................................................39

 Bibliography ..................................................................................................................41



List of Figures

Figure 2.1: Data Structure of the Library 2000 Index Search Engine. ...........................12
Figure 3.1: Average number of key comparisons vs. the loading factor. .......................19
Figure 4.1: Plot of hash function generation time vs. the number of keywords.............25
Figure 5.1: Plot of the total hashing time for different hashing algorithms....................28
Figure 6.1: Plot of the total hashing time for different hashing algorithms....................34



List of Tables

Table 3.1: Average number of key comparisons for different hash table sizes.................   18
Table 4.1: Hash function generation time for different keyword set sizes. .......................   24
Table 5.1: Hash performance data. ....................................................................................   27
Table 6.1: Hash performance data. ....................................................................................   34



Acknowledgements

I would like to thank:

Professor Jerome Saltzer, my thesis supervisor, for his guidance and support to my

research work.

Mitchell Charity, for teaching me everything I need to know about the Library 2000

system.

George Havas and Bohdan Majewski, for giving me access to the source code of their

minimal perfect hashing algorithm implementation.

My parents, for their continuous support during my study at M.I.T.

Albert, Ali, Bernard, Esther and Jerome, for helping me to procrastinate my thesis

work.

 This work was supported in part by the IBM Corporation, in part by the Digital

Equipment Corporation, and in part by the Corporation for National Research Initiatives,

using funds from the Advanced Research Projects Agency of the United States

Department of Defense under grant MDA972-92-J1029.



555

Chapter 1

Introduction

1.1 Library 2000 Project Overview
The research work on this thesis is a part of the Library 2000 project. As stated in the 1993

annual progress report of the project [2], “the basic hypothesis of the project is that the

technology of on-line storage, display, and communications will, by the year 2000, make

it economically possible to place the entire contents of a library on-line and accessible

from computer workstations located anywhere. The goal of the Library 2000 project is to

understand and try out the system engineering required to fabricate such a future library

system.”

 The vision of the project is that the future library system will allow users to browse

any book, paper, thesis, or technical report from a standard office desktop computer. While

reading a document, one can follow citations and references by point-and-click, and the

selected document will pop up immediately in an adjacent window [1].

1.2 Main Memory Indexing
One essential module of an on-line digital library system is the index search engine. With

an extremely large amount of information stored in the library system, it is very important

that we can access these information efficiently. The most commonly used form of infor-

mation retrieval is keyword search. With a given keyword, the index search engine will

find all the documents that contain the keyword by searching in a full-text index.

One approach of achieving efficient information retrieval in a library system is to store

the full-text index in main memory rather than in the disk. Random access memory

(RAM) offers a clear performance advantage: RAM access time is typically faster than

disk access time by five orders of magnitude. Looking ahead a few years, one can antici-



666

pate that with the rapid decrease in the cost of RAM, main memory indexing will soon

become an economically feasible solution even for indexes with a size of a few gigabytes.

Therefore the Library 2000 project is exploring the implications and mechanisms of using

indexes stored completely in RAM.

In the Library 2000 system, the index is generated from the bibliographic records of all

the documents in the library. It is stored in a database called the wordset. The wordset

resides in main memory when the search engine is in operation. The wordset contains an

array of word-location pairs. Each word-location pair consists of two parts: a keyword and

a set of locations corresponding to that keyword. Each location record identifies a docu-

ment and a place in the document in which the given word is located. The search engine’s

task is to find the set of word locations for a given keyword, or report that the keyword is

not in the wordset.

1.3 Index Search Strategies
In this section, we will discuss some common strategies used in doing keyword searches,

and compare their performances.

1.3.1 Binary Search
This algorithm uses an array of records, with each record having two fields: a pointer

to a keyword and a pointer to the keyword’s location set. It assumes that the key-location

pointer pairs in the array are sorted by the keywords.

When searching a keyword, we can check the midpoint of the array against the key-

word and eliminate half of the array from further consideration. Then we repeat this proce-

dure, halving the size of the remaining array each time [10]. This algorithm runs inO(lg n)

time.



777

1.3.2 B-tree
In a B-tree, each node containst key-location pointer pairs in sorted order. The node

also containst+1 pointer to its children. The keys in the node are used as dividing points

separating the range of keys handled by the node intot+1 sub-ranges, each handled by one

child of the node [10].

During a keyword search, we make a (t+1)-way branching decision at each node of the

B-tree. The time bound of this algorithm isO(lg n), but the base of the logarithm can be

many times larger. Therefore a B-tree saves a factor of lgt over binary search.

1.3.3 Hashing
A hashing algorithm maps a keyword directly into the memory address which contains

the word locations corresponding to that keyword. If we have a perfect hash function, then

each keyword search takes only one probe, and the search time bound isO(1).

If the hash function is not perfect, then keyword searches will have the extra overhead

of collision resolution. The number of probes needed for keyword searches using a linear-

probing open-addressing scheme is approximately: [11]

(1.1)

(1.2)

α is defined as the ratio , wheren is the number of keywords, andm is the number of

entries in the hash table. By applying Taylor series expansion to the above equations atα

= 0, we can get the first order approximation of the number of probes for smallα:

(1.3)

(1.4)

C'
1
2

1
1

1 α−
( )

2
+( ) (unsuccessful search)≈

C
1
2

1
1

1 α−
+( ) (successful search)≈

n
m

C' 1 α+≈ 1
n
m

(unsuccessful search)+=

C 1
α
2

+≈ 1
n

2m
(successful search)+=



888

Therefore the search time bound isO(n). But we can lower the constant factor of this

bound by increasingm. For very smallα, i.e., whenm » n, the number of probes needed

for keyword searches is close to 1. Therefore if we use a large enough hash table, this

hashing scheme can still outperform binary search and B-trees even though it has a worse

theoretical time bound.

From the above analysis, we can conclude that both perfect hashing and non-perfect

hashing can offer a performance advantage over binary search and B-trees.

1.4 Hashing Algorithms
The keyword searching process consists of two steps:

1. Hashing — Map a keyword into the memory address which contains the word loca-

tions corresponding to that keyword.

2. Retrieving — Read the word-locations from the wordset.

The Library 2000 search engine uses an open-addressing hashing algorithm. The hash

function of this algorithm may map two or more keywords into the same value, causing

the problem called collision. This algorithm uses a linear-probing collision resolution

scheme to ensure that each keyword is mapped to a unique memory address.

This thesis studies the application of another hashing algorithm — the minimal perfect

hashing algorithm — in the main memory index search engine. The minimal perfect hash-

ing algorithm uses a hash function that can map each keyword to a unique value. There-

fore it does not have any collision resolution overhead.

The minimal perfect hashing algorithm will first be integrated into the search engine,

replacing the open-addressing hashing module. Then the keyword search performance of

these two hashing algorithms will be measured and compared.



999

1.5 Implementation Overview
The Library 2000 search engine is implemented in the C language, compiled on IBM

RISC/6000 workstations. The minimal perfect hashing code is adapted from the C lan-

guage implementation by Bohdan S. Majewski [3,4].

Currently the search engine runs on two sets of full-text indexes: one for the Reading

Room of the MIT Laboratory for Computer Science and Artificial Intelligence Laboratory,

the other for the MIT Barton Library System. The LCS/AI Reading Room index consists

of 50,841 keywords, and the wordset size is 3.6 MB. The MIT Barton Library index con-

sists of 1,140,389 keywords, and the wordset size is 146.1 MB. Most of the performance

measurements of this thesis will be conducted on the MIT Barton Library index.



101010

Chapter 2

The Library 2000 Index Structure

2.1 The Wordset
The wordset is the database that stores the full-text index of the bibliographic records of

all the documents in the library. The wordset always resides in the main memory when the

search engine is in operation.

To generate the wordset, we first extract all the wordpairs from the bibliographic

records. A wordpair is a record that consists of two different fields: the keyword and the

location field. In the Library 2000 search engine implementation, the location field is fur-

ther divided into four sub-fields.

1. Record ID: The ID of the bibliographic record which contains the keyword.

2. Field ID: The field in which the keyword appears. The field can be title, author or

others.

3. Field count: This number distinguishes multiple occurrences of a field in a record.

First occurrence is 0, next is 1, etc.

4. Word position: Position of the keyword in the field. First word is 1, second is 2, etc.

In the next step, we first sort all the wordpairs by the keyword, and then by the record

id, field id, field count and word position. Then we collapse all the wordpairs of each key-

word into a single word-location pair. The word-location pair consists of a keyword, and a

set of location records corresponding to that keyword. Each word location record has four

fields: record id, field id, field count, and word position.

Now we can generate the wordset by dumping all the word-location pairs to a file.

Since the wordpairs have been sorted by the keyword, the word-location pairs in the word-



111111

set are also in sorted order. The total size of the set of location records varies for different

keywords.

In order to reduce the size of wordset, two compression schemes are used when gener-

ating the wordset. The set of location records corresponding to each keyword are encoded

in variable length integers. Delta encoding is applied to the record ids within each set of

location records.1 The indexing mechanism, together with the compression schemes,

reduce the 650 MB raw text source of the MIT Barton library catalog into a wordset index

of 146 MB.

2.2 The Wordset Hash Table and the Wordstore
The index search engine uses two auxiliary data structures to improve the efficiency of

information retrieval from the wordset: the wordset hash table and the wordstore.

Figure 2.1 on page 12 illustrates these two data structures and their roles in the index

search mechanism.

The wordstore is a contiguous piece of memory which contains all the keywords of the

wordset in sorted order. The keywords are separated from each other by null characters.

The wordset hash table is an array of fixed length records. Each record consists of four

fields:

1. Word pointer: This pointer points to the first character of a keyword in the word-

store. The pointer is used for doing word comparisons during keyword searches.

Word comparison is done by the C function “strcmp”. This function scans a word

from its first character, and it treats the null character as the end of the word. The

word pointer’s function will be described in detail in Chapter 3 and 4.

1.  These compression schemes were designed and implemented by Mitchell Charity.



121212

Figure 2.1: Data Structure of the Library 2000 Index Search Engine.

2. Occurrence count: The total number of occurrences of the keyword in all the biblio-

graphic records.

3. Offset: The memory address offset of the set of location records corresponding to

the keyword.

4. Length: The total number of bytes contained in the set of location records.

The order in which the records are stored in the hash table depends on the hash func-

tion. Consider a setW of m keywords, and a hash functionh that mapsW into some inter-

Occur.
Count Offset LengthKeyword

Pointer

Keyword
Word Location Records

Keyword

Word Location Records

Keyword (w)

Word Location Records

KeywordKeyword Keyword (w)

h(w)
w i

Hash Function

Keyword

i-th entry

Integer

Wordstore

Wordset Hash Table Wordset



131313

val of integersI , say [0,k-1], wherek ≥ m. The wordset hash table will havek entries. For

a particular keywordw, the record corresponding to that keyword will appear in the

[h(w)]th entry of the hash table. Ifk > m, then some entries in the wordset hash table will

be empty.

2.3 The Index Search Mechanism
When the index search engine starts up, it first loads the wordset into main memory. Then

it looks for the wordset hash table file and the wordstore file. If these files do exist, they

will be loaded into main memory.

However, if these two files do not exist, the search engine will generate them by scan-

ning through the word-location pairs in the wordset. For each word-location pair, it copies

the keyword into the wordstore. Then it passes the keyword to the hash function, which

returns an integer, sayi. A new hash table record is created and put into thei-th entry of

the wordset hash table. The keyword pointer field of the record is set to point to the key-

word in the wordstore. The occurrence count, offset and length fields are calculated from

the location records in the wordset.

On doing a keyword search, the search engine first calls the hash function to map the

keyword into an integeri. Then it fetches thei-th entry in the wordset hash table. The key-

word pointer in that entry, which points to a word in the wordstore, is passed to the string

comparison function. It compares the wordstore entry with the keyword being searched.

This is necessary for collision detection if the hash function is not perfect. Even when we

are using a perfect hash function, the string comparison is still needed, since it is possible

for a word which is not a member of the index keyword set to be mapped to a number cor-

responding to another word which is in the keyword set.



141414

Using the offset field of the hash table entry, we can calculate the memory address of

the location records corresponding to the keyword. The length field tells the search engine

the amount of data it should read from the wordset. The location records will then be

decompressed and returned to the user.

The wordset generation process and the index search engine was designed and imple-

mented by Mitchell Charity. Robert Miller built the part of the system which allowed shar-

ing of a single search engine process by multiple clients. Manish Muzumdar had also

contributed to the search engine implementation.



151515

Chapter 3

The Open-addressing Hashing Algorithm

3.1 Implementation
The current implementation of the Library 2000 search engine uses a hashing algorithm

called open-addressing. This algorithm was implemented by Mitchell Charity. Hashing a

keyword set usually involves two steps. The first step is to map the keyword to an integer

using a hash function. In some cases, the hash function may map two or more keys into the

same number. This calls for the need of the second step — collision resolution. Open

addressing is one of the common collision resolution schemes being employed. It uses an

offset rule to find empty cells within the hash table [5].

3.1.1 Hash Function
The hash function is a function that maps a keyword into a hash table index. The func-

tion does this in two steps. It first converts the alphanumeric keyword into an integer, and

then maps the integer into a hash table index. In converting an alphanumeric keyword into

integer, some folding scheme is needed to prevent numerical overflow. The Library 2000

search engine implementation uses the radixK folding scheme. This scheme converts the

keyword to a baseK number by treating each character in the key as a digit in a baseK

number, whereK is the total number of distinct characters. It then applies a modulo opera-

tion on this number with a large prime [5].

The character range of the keywords includes 26 alphabets, 10 digits, and the punctua-

tion “.”. Therefore the value ofK is chosen to be 37. The large prime used to reduce the

converted number is the hash table size. This scheme has the advantage that the converted

integer can be mapped into a hash table index automatically as a by-product of the modulo



161616

operation. Using a prime number as the hash table size also has an additional benefit that

will be addressed in the following section.

3.1.2 Collision Resolution
The hash function described above may map two keywords into the same hash table

index. Therefore we need some method for resolving collision. The Library 2000 search

engine uses the open-addressing scheme. This scheme searches through the table entries to

find an empty cell. The search pattern is specified by an offset rule that generates the

sequence of table locations to be searched [5].

The current implementation uses a simple linear offset search pattern to search for-

ward from the a collision point. Consider a keywordw and a hash functionh. The offset

rule is give by the formula

(3.1)

wherey is the probe number,n is the size of hash table, andhi(w) is the hash table

index of thei-th probe. This resolution scheme scans the hash table linearly until it finds

an empty space. The hash table sizen needs to be a prime number so that the offset will

cause every possible table position to be considered [5].

When the search engine builds the hash table, it first copies the keyword from the

word-location pair to the wordstore. Then it passes the keyword to the hash function,

which returns an integeri. It looks up thei-th entry in the hash table and examines the

value of the keyword pointer field of that entry. If the pointer is NULL, this means that the

hash table entry is empty. Then the search engine will set that pointer value to point to the

keyword in the wordset, and fill in the other fields of the hash table entry. On the other

hand, if the pointer is not NULL, it means that the entry is already occupied. Then we have

to examine the next entry in the probe sequence and see if it is empty. The search engine

will give up and return failure if it cannot find an empty slot after 20 trials. In this case, we

hi w( ) h w( ) y+( ) modn=



171717

need to increase the size of the hash table and then rebuild the hash table. This scheme

imposes 20 as an upper bound on the number of keyword comparisons needed for a key-

word search, hence guaranteeing anO(1) search time.

During a keyword search, the keyword is first passed to the hash function, which

returns an integeri. Then we get thei-th entry record of the hash table, and compare the

keyword with the word pointed to by the keyword pointer field of the record. If the word

pointer is NULL, the search engine will return that the keyword is not found. If the origi-

nal keyword matches with the one pointed to by the word pointer, then the search is suc-

cessful. Otherwise we go to the next entry in the probe sequence and do the keyword

comparison again. The word pointed to by the keyword pointer field is stored in the word-

store, which is already loaded into main memory. Thus the wordstore provides a very effi-

cient mechanism for keyword comparisons. The search engine will return that the

keyword is not found if it cannot find a matching hash table entry after 20 trials.

3.2 The Loading Factor
In this section, we study the effect of the loading factor of the hash table on the collision

resolution process. The loading factorα of a hash table is defined as

(3.2)

Recall that the hash function we use maps a keyword to a number by first converting

the word to a base 37 number, and then applying a modulo operation on the hash table

size. The smaller the hash table size, the larger will be the chance that two or more key-

words being mapped to the same number. Therefore we would expect collision rate to rise

with the increase in the loading factor.

We can measure the collision rate by finding the average number of keyword compari-

sons it takes to do a keyword search. The measurement is done in the following way. We

α Keyword Set Size
Hash Table Size

≡



181818

first build a hash table for all the keywords in the MIT Barton library index. Then we run a

test program that scans through the set of keywords and does a search on each of them.

After that, we can use the UNIX profiling tool “gprof” to get an execution profile of the

test program. The execution profile contains information such as the number of times a

function has been called, and the total CPU time consumed by a function. In particular, we

can find out the total number of string comparisons executed by the test program from the

profiling data. The average number of keyword comparisons per keyword search can be

calculated by dividing the total number of string comparisons by the total number of key-

words.

The following table summarizes the experimental results for hash tables with various

sizes.

Figure 3.1 on page 19 shows a plot of the average number of comparisons per key-

word search versus the loading factor. We can clearly observe the trend that the number of

collisions decreases as the hash table size increases. This illustrates an important charac-

teristic of open-addressing hashing — its flexibility in trade-off between time and space.

We can sacrifice keyword search performance to save memory consumption, or increase

the hash table size to improve the search performance.

Number of
hash table

entries

Number of
keywords

Total number
of keyword
comparisons

Loading
factor

Average number
of comparisons

per keyword search

3000017 1140389 1417158 0.38 1.24

4000037 1140389 1389255 0.29 1.22

5000011 1140389 1293801 0.23 1.13

6000011 1140389 1241504 0.19 1.09

7000003 1140389 1217349 0.16 1.07

Table 3.1: Average number of key comparisons for different hash table sizes.



191919

Figure 3.1: Average number of key comparisons vs. the loading factor.

0.15 0.20 0.25 0.30 0.35 0.40

Loading Factor

1.05

1.10

1.15

1.20

1.25
A

ve
ra

ge
 N

um
be

r 
of

 K
ey

w
or

d 
C

om
pa

ris
on

s



202020

Chapter 4

The Minimal Perfect Hashing Algorithm

4.1 Definition
Consider a setW of m keywords, and a setI  of k integers. A hash function is a functionh

that mapsW into I . For two distinct keywordsw1 andw2, if h(w1) = h(w2), thenw1 andw2

are called synonyms. The existence of synonyms causes the problem called collision. One

of the solutions to this problem is the open-addressing algorithm, which is described in

Chapter 3.

Another solution is to avoid the problem, by using a hash function that does not cause

collision. Such a function is called a perfect hash function. A perfect hash function is an

injection mapping fromW to I . This means that every member ofI  is a valueh(w) for at

most onew in W. If W andI  have the same number of elements, i.e.m = k, thenh is a one-

to-one mapping, or a bijection, fromW to I . Such a function is called a minimal perfect

hash function.

Using a minimal perfect hash function, each keyword search will take only one key

comparison. We first map the keyword to an integeri, and then compare the keyword with

the one pointed to by thei-th hash table entry. If the keywords match with each other, then

the search is successful, otherwise we can conclude that the keyword is not in the hash

table.

Another advantage of the minimal perfect hashing algorithm is its low memory con-

sumption. In Chapter 3, we have seen that in order to reduce the collision rate, the open-

addressing algorithm needs to use a hash table with size much larger the keyword set size.

But since the minimal perfect hash function is a bijective function, the hash table size will

be exactly equal to the keyword set size.



212121

However, the minimal perfect hashing algorithm also has one drawback. Every time

we add a new word to the keyword set, we need to regenerate the hash function. On the

other hand, if we use the open-addressing scheme, we can insert new keywords into the

hash table dynamically. Of course, if the loading factor of the hash table increases to such

a level that a keyword search needs more than 20 key comparisons, we have to increase

the hash table size and regenerate the hash table. But the open-addressing scheme does

offer more flexibility for incremental keyword set updates than the minimal perfect hash-

ing algorithm.

4.2 Implementation
The minimal perfect hashing algorithm studied in this thesis is developed by George

Havas, Bohdan S. Majewski, Nicholas C. Wormald and Zbigniew J. Czech [3]. Bohdan S.

Majewski has implemented this algorithm in the C language. Permission has been

obtained from him to use the source code in the Library 2000 project for research pur-

poses. This section will give an overview of this algorithm as described in [3,4].

A family of minimal perfect hashing algorithms based on randomr-graphs is pre-

sented in [3]. Anr-graph is a graphG = (V, E), where eache ∈ E is anr-subset ofV. This

means that each edge of the graph hasr vertices. Majewski’s C language code uses a 3-

graph implementation. The hash function is of the form

(4.1)

where⊕ is an exclusive or operation.

Generating the hash function involves two steps: mapping and assignment.

h w( ) g f1 w( )( ) g f2 w( )( ) g f3 w( )( )⊕⊕=



222222

4.2.1 Mapping
Consider a keyword setW with m keys. In the mapping step,W is mapped into a 3-

graph withm edges andn vertices. The value ofn depends onm, and the method to deter-

mine it will be explained later in this section.

The mapping has to satisfy one requirement: the edges of the 3-graph must be inde-

pendent. The edge independence criterion is defined in [3] as:

“Edges of anr-graphG = (V, E) are independent if and only

if repeated deletion of edges containing vertices of degree 1

results in a graph with no edges in it.”

For a 2-graph, that means that the graph has to acyclic.

The mapping is done in a probabilistic manner. We generate a mapping randomly, and

repeat that process until the edges of the graph are independent. For each keyword, we use

three functions (f1, f2, andf3) to map it into three vertices. Then these three vertices will

form an edge of the graph. Therefore the graphG = (V, E) is defined byV = {0, ... ,n-1},

E = {{ f1(w), f2(w), f3(w)} : w ∈ W}. The fi functions maps a keyword randomly into the

range [0,n-1]. It is defined as:

(4.2)

where |w| is the number of characters in the keywordw, andw[j] is its j-th character.Ti

is a two dimensional array of random integers, indexed by a character and the position of

the character in a keyword.

The value ofn determines the probability of generating an edge independent graph.

Theorem 4 in [3] states that

“For anyr-graph three exists a constant cinv depending only

fi w( ) Ti j w j[ ],( )
j 1=

w

∑ 
  modn=



232323

on r such that ifm ≤ cinv n the probability that a randomr-

graph has independent edges tends to 1 (asm goes to infin-

ity).”

For a 3-graph, the value of cinv is experimentally determined to be 1.23 [3].

4.2.2 Assignment
In the assignment step, we find a functiong that mapsV into the range [0, m-1]. The

functiong needs to satisfy the requirement that the functionh defined as

(4.3)

is a bijective mapping fromE to the range of integers [0,m-1]. This means that we

have to assign a value between 0 andm-1 for each of the vertices, so that when we apply

the exclusive or operation on the values of the three vertices of each edge, we will get a

unique number.

This assignment problem can be solved easily given that the graphG is edge indepen-

dent. The solution is outlined in [3] as follows: “Associate with each edge a unique num-

ber h(e) ∈ [0, m-1] in any order. Consider the edges in reverse order to the order of

deletion during a test of independence, and assign values to each as yet unassigned vertex

in that edge. As the definition implies, each edge (at the time it is considered) will have

one (or more) vertices unique to it, to which no value has yet been assigned. Let the set of

unassigned vertices for edgee be {v1, v2, ... , vj}. For edge e assign 0 tog(v1),

g(v2) ,...,g(vj-1).” Now we can find the value ofg(vj) by applying the exclusive or opera-

tion toh(e) and theg(v) values for all the vertices ofe exceptvj.

Recall that each edgee is mapped from a keywordw by the functionsf1, f2 and f3.

Therefore we can rewrite the minimal perfect hash function in the form

(4.4)

h e v1 v2 v3, ,{ } E∈=( ) g v1( ) g v2( ) g v3( )⊕ ⊕=

h w( ) g f1 w( )( ) g f2 w( )( ) g f3 w( )( )⊕⊕=



242424

4.3 Time Bound on Hash Table Generation
The expected time complexity of generating the minimal perfect hash function is proven

to beO(rm+n) in [3]. For the 3-graph implementation,r = 3 andn = 1.23m.Therefore the

time bound on hash function generation isO(m). In this section we will verify this result

experimentally.

The hash function generation code is run on an IBM RISC/6000 530H workstation,

running under the AIX 3.2 operating system. The program execution time is measured

using the UNIX profiling tool “gprof”. The following table lists the hash function genera-

tion time for keyword sets with various sizes. The time is obtained by averaging the results

of 20 test runs.

Figure 4.1 on page 25 shows a plot of hash function generation time versus the key-

word set size. We can observe that the generation time increases linearly with the increase

in number of keywords. This verifies the theoretical time bound.

Using this minimal perfect hashing algorithm, the hash function can be generated at a

speed fast enough for practical uses. For the MIT Barton Library catalog, which contains

Number of keywords
Hash function generation

time / seconds

5000 0.4

10000 0.8

50000 4.2

100000 8.4

250000 22.8

500000 46.6

750000 70.4

1000000 96.5

Table 4.1: Hash function generation time for different keyword set sizes.



252525

1,140,389 keywords, it only takes 112 seconds to generate the hash function. Moreover,

we only need to generate the hash function when we rebuild the index for the library cata-

log. The overhead cost of generating the hash function is insignificant when compared to

the wordset generation time.

Figure 4.1: Plot of hash function generation time vs. the number of keywords.

0x10
0

5x10
5

1x10
6

Number of Keywords

0

50

100

H
as

h 
F

un
ct

io
n 

G
en

er
at

io
n 

T
im

e 
/ S

ec
on

ds



262626

Chapter 5

Performance Evaluation

5.1 The Performance Measurement Procedure
In this chapter, we will compare and analyze the performance of the open-addressing

hashing algorithm and the minimal perfect hashing algorithm. The performance measure-

ment is done in the following manner. We first compile a search engine for each of the

hashing algorithms. Four versions of search engine are compiled for the open-addressing

hashing algorithm, and they differs with each other in the loading factor. The loading fac-

tors vary from 0.38 to 0.19. Another search engine is compiled using the 3-graph imple-

mentation of the minimal perfect hashing algorithm. Since the hash function is perfect, the

loading factor is 1 in this case.

In the next step, we run the search engines to search the 1,140,389 keywords of the

MIT Barton Library catalog one by one. Then we use the UNIX profiling tool “gprof” to

get an execution profile for each test run. From the execution profile, we can get informa-

tion on the total execution time, and the total number of keyword comparisons that have

been made.

The following measures are employed to ensure fairness in comparing the timing

results. All the hashing code is compiled with the “-O3” flag, which instructs the compiler

to use the highest level of code optimization. We also use the “-Q” flag to inline all the

functions in the hashing code. This eliminates function call overhead, which can vary sig-

nificantly among different hashing algorithms.

5.2 Performance Comparison
The following table summarizes the performance data for the open-addressing hashing

algorithm and the minimal perfect hashing algorithm. The programs are run on an IBM



272727

RISC/6000 530H workstation with 512 MB of main memory to ensure that there is no vir-

tual memory activity affecting the performance. The test program uses the system call

“getrusage” to monitor the number of page faults serviced that require disk I/O activity.

The number of page faults is verified to be 0 for all the test runs. The execution time is

obtained by averaging the result of 20 test runs.

Figure 5.1 on page 28 shows a bar chart of the total hashing time for the various hash-

ing algorithms.

5.3 Performance Analysis
From the experimental data, we can observe a surprising result: the performance of the

minimal perfect hashing algorithm is worse than the other four configurations of the open-

addressing hashing algorithm. Let us compare the minimal perfect hashing algorithm with

the slowest configuration of the open-addressing hashing scheme (the one with a loading

factor of 0.38). The open-addressing scheme makes 24% more keyword comparisons that

the minimal perfect hashing algorithm, but it is still 9% faster. This leads us to suspect that

the minimal perfect hashing function might be much more computationally expensive

than the hash function used the open-addressing scheme. To solve this mystery, we need to

Hashing
algorithm

Hash table
size

Loading
factor

Total number
of keyword
comparisons

Average
comparisons
per keyword

search

Total
time

consumed
 / seconds

open-adr 3000017 0.38 1417158 1.24 15.7

open-adr 4000037 0.29 1389255 1.22 15.2

open-adr 5000011 0.23 1293801 1.13 14.3

open-adr 6000011 0.19 1241504 1.09 13.8

min. perfect 1140389 1.00 1140389 1.00 17.2

Table 5.1: Hash performance data.



282828

take a closer look at the hash functions used by these hashing algorithms.

Figure 5.1: Plot of the total hashing time for different hashing algorithms.

First let us study the hash function used in the open-addressing scheme. The function

uses a radixK folding scheme to convert a keyword into a base 37 number, modulo the

hash table size. This function starts by setting the value of a running sumS to 1. Then

beginning from the first character of the keyword, it executes the following steps for each

character:

1. Convert the character into an integer in the range [0,36].

2. Multiply S by 37, then add the result from step 1.

op
en

-a
dr

 0
.3

80

op
en

-a
dr

 0
.2

85

op
en

-a
dr

 0
.2

28

op
en

-a
dr

 0
.1

90

m
in

. p
er

fe
ct

Hashing algorithm

0

10

20

T
ot

al
 h

as
hi

ng
 ti

m
e 

/ S
ec

on
ds



292929

3. Apply a modulo operation between the result in step 2 and the hash table size, and

store the result inS.

4. Terminate and returnS when we reach the end of the keyword.

This hash function is very simple. It consists of mostly computational operations with

very few memory accesses.

Now let us study the minimal perfect hashing function. Recall that the hash function is

of the form

(5.1)

f1, f2, andf3 are defined as:

(5.2)

Ti is a two dimensional array of random integers, indexed by a character and the posi-

tion of the character in a keyword. For a keyword set withm keywords,n = 1.23m.

The hash function maps the keyword into an integer in the range [0,m]. The function

first sets three running sumsS1, S2 andS3 to 0. Then for each character in the keyword, it

carries out the following steps:

1. Lookup the three random numbers corresponding to the character from tablesT1, T2

andT3 respectively.

2. Add the three numbers toS1, S2 andS3 respectively, and store the result modulon

into S1, S2 andS3.

When we have done this for all the characters in the keyword,S1, S2 andS3 will con-

tain the value off1(w), f2(w), andf3(w). Now we do three more table lookups to get the

values ofg(S1), g(S2) andg(S3) from theg-table. The value ofh(w) can be obtained by

applying the exclusive or operation on those three numbers.

h w( ) g f1 w( )( ) g f2 w( )( ) g f3 w( )( )⊕⊕=

fi w( ) Ti j w j[ ],( )
j 1=

w

∑ 
  modn=



303030

For each character in the keyword, the function executes three additions, three modulo

operations, and three memory accesses. The computational cost is very low. Now we have

to determine if the memory accesses are going to cause any cache misses. The IBM RISC/

6000 530H workstation uses a 64KB 4-way set associative data cache. A memory access

with cache hit takes 1 cycle, while each data cache miss costs a delay of approximately 8

clock cycles [8]. The total size of the random number tablesT1, T2 andT3 is 14.3KB.

Therefore these tables will fit into the data cache. The only memory access overhead

incurred is when we are accessing a table entry for the first time and thus causing a cache

miss. But since the test program hashes more than one million keywords in total, the cache

miss penalty would be insignificant compared to the total hash time.

Memory accesses are much more costly when we are looking up values from theg-

table. Theg-table containsn entries. For the MIT Barton library catalog,

(5.3)

Each table entry contains a 4-byte integer. Thus the total table size is about 5.6MB.

Therefore each table access almost guarantees a cache miss. But something worse might

happen. The memory access may even cause a TLB (Translation Lookaside Buffer) miss.

The TLB caches the translation of virtual page numbers into physical page numbers of the

recently accessed memory pages. The workstation uses a two-way set associative TLB

with 64 entries in each set [9]. Thus the TLB can cache the page number translations for

128 pages. At 4KB per page, that is equivalent to 512KB of data [8]. Thus when we are

doing random access over the 5.6MBg-table, it is highly likely for TLB misses to occur. A

TLB miss will incur a delay of at least 36 clock cycles [8]. Since we need to access theg-

table three times for each keyword, TLB misses could add a delay of 108 cycles in the

worst case.

n 1.23m 1.23 1140389× 1402679= = =



313131

From the above comparisons, we can conclude that minimal perfect hashing is slower

than open-addressing hashing due to memory access latencies. In the following chapter,

we will make some modifications to the minimal perfect hashing algorithm in order to

reduce the number of memory accesses needed to hash each keyword.



323232

Chapter 6

Performance Enhancement to the Minimal Perfect
Hashing Algorithm

6.1 A 2-graph Implementation
As we have seen in Chapter 4, the hashing performance of the 3-graph implementation is

worse than the open-addressing algorithm. The major culprit of the sluggish performance

is the memory access latencies involved in looking up values from theg-table. In this

chapter, we will modify the algorithm by changing the 3-graph implementation to a 2-

graph implementation. The goal of this modification is to reduce the number of memory

accesses needed by the hash function.

A 2-graph is a graph in which every edge consists of two vertices. A detailed descrip-

tion of the 2-graph implementation of the minimal perfect hashing algorithm can be found

in [4]. It is very similar to the 3-graph implementation. For a keyword setW with m key-

words, the function bijectively mapsW into the set of integers {0, ... ,m-1}. The hash

function is of the form

(6.1)

wheref1 andf2 are functions that map a keyword into an integer in the range [0,n].

The functions are defined as:

(6.2)

T1 andT2 are two dimensional arrays of random numbers indexed by a character and

the position of the character in a keyword.

Generating the hash function involves the mapping step and the assignment step.

These steps are exactly the same as those of the 3-graph implementation. Recall that the

h w( ) g f1 w( )( ) g f2 w( )( )⊕=

fi w( ) Ti j w j[ ],( )
j 1=

w

∑ 
  modn=



333333

mapping step is a probabilistic process. We map the keyword set into a 2-graph using the

random number tablesT1 andT2, and repeat that process until we get an acyclic graph.

The probability of getting an acyclic graph depends on the value ofn. Theorem 3 in [3]

states that

“Let G be a random graph withn vertices andm edges

obtained by choosingm random edges with repetitions.

Then if n = cm holds with c > 2 the probability thatG has

independent edges, forn → ∞, is

” (6.3)

The value of c is chosen to 3. For sufficiently large keyword sets, the probability value

is approximately 0.81. Therefore the expected number of iterations needed to generate an

acyclic graph is 1.24. The total time used by the mapping and assignment steps to generate

the hash function is bounded byO(m) [3]. Compared with the 3-graph implementation, the

hash function generation time of the 2-graph implementation is about 10% slower. For

example, with the keyword set of the MIT Barton Library catalog index, the 2-graph

implementation takes about 122 seconds to generate the hash function.

6.2 Performance Comparison
We use the 2-graph implementation of the minimal perfect hashing algorithm to hash the

1,140,389 keywords of the MIT Barton Library catalog index. Then we compare the tim-

ing results with the performance data enlisted in Chapter 5. The following table summa-

p e

1

c c 2−
c

=



343434

rizes the hash performance data. Figure 6.1 shows a bar chart plot of the data.

Figure 6.1: Plot of the total hashing time for different hashing algorithms.

Hashing Algorithm Loading Factor Time consumed / seconds

open-addressing 0.38 15.7

open-addressing 0.29 15.2

open-addressing 0.23 14.3

open-addressing 0.19 13.8

minimal perfect 3-graph 1.00 17.2

minimal perfect 2-graph 1.00 14.2

Table 6.1: Hash performance data.

op
en

-a
dr

 0
.3

80

op
en

-a
dr

 0
.2

85

op
en

-a
dr

 0
.2

28

op
en

-a
dr

 0
.1

90

m
in

. p
er

fe
ct

 3
-g

ra
ph

m
in

. p
er

fe
ct

 2
-g

ra
ph

Hashing Algorithm

0

10

20

T
ot

al
 h

as
hi

ng
 ti

m
e 

/ S
ec

on
ds



353535

6.3 Performance Analysis
From the hash performance data, we can observe that the 2-graph implementation of the

minimal perfect hashing algorithm does offer a significant performance improvement: it is

17% faster than the 3-graph implementation. The performance of the 2-graph implementa-

tion also exceeds that of the open-addressing hashing algorithm with loading factors of

0.38, 0.29 and 0.23. But it is still slower than the open-addressing scheme with a loading

factor of 0.19.

The performance improvement of the 2-graph implementation can be attributed to the

increase in speed of its hash function. The 2-graph hash function saves one addition and

one modulo operation per character, since for each keywordw it only needs to calculate

the values off1(w), andf2(w), while the 3-graph implementation has to calculate the val-

ues off1(w), f2(w), andf3(w). Moreover, for each character of the keyword, the hash func-

tion only needs to do two random number table lookups (fromT1 andT2), instead of three

table lookups in the case of the 3-graph implementation. However, since the random num-

ber tables can fit into the data cache in both cases, the reduction in memory access latency

will not be very significant.

On the other hand, we can get a large performance gain in theg-table lookups. For

each keyword, the 2-graph hash function only needs to read two values from theg-table,

while the 3-graph implementation requires three. As we have concluded in Chapter 5,

memory accesses to theg-table are very likely to cause TLB misses. Therefore by using

the 2-graph scheme, we manage to save one TLB miss on each keyword search.

However, the 2-graph minimal perfect hashing algorithm is still slower than the open-

addressing hashing scheme with a loading factor of 0.19. The collision rate of the open-

addressing scheme at such a loading factor is very low. The average number of keyword

comparisons needed for each keyword search is only 1.09 (see Table 5.1 on page 27).



363636

Therefore, although the keyword comparison overhead of the open-addressing scheme is

9% more than that of the minimal perfect hashing algorithm, it still outperforms the mini-

mal perfect hashing scheme. This lead us to conclude that the hash function used in the 2-

graph implementation is still slower than the hash function of the open-addressing

scheme. Changing from the 3-graph implementation to 2-graph does make some improve-

ment, but the improvement is not enough to make minimal perfect hashing outperform the

open-addressing scheme.

At higher loading factors such as 0.38, 0.29 and 0.23, the open-addressing algorithm is

slower than the minimal perfect hashing algorithm. But that is due to the high collision

rate at those loading factors. The performance advantage of the open-addressing scheme’s

hash function is not enough to compensate for the overhead of collision resolution. But

when we lower the loading factor down to 0.19, the open-addressing scheme will regain

its performance advantage. This illustrates another important advantage of the open-

addressing scheme: its flexibility in space-time trade-off. We can easily trade memory

space for speed by increasing the hash table size.

6.4 Memory Consumption Analysis
In this section, we will compare the amount of memory space needed by the hashing algo-

rithms. We will compare the memory consumption of the open-addressing scheme, with a

loading factor of 0.23, with that of the 2-graph minimal perfect hashing algorithm. We

choose these two candidates because they have about the same level of hashing perfor-

mance (see Table 6.1 on page 34).

For the open-addressing algorithm with a loading factor of 0.23, the wordset hash

table has 5,000,011 entries. Each entry of the wordset hash table has 4 fields, and each

field takes up 4 bytes. Hence the total size of the hash table is 78.1MB.



373737

For the minimal perfect hashing algorithm, we need to account for three data struc-

tures: the wordset hash table, theg-table, and the random number tablesT1 andT2. Since

the loading factor is 1 for perfect hashing, the hash table contains 1,140,389 entries, which

takes up 17.8 MB. The number of entries in theg-table is three times the number of key-

words, and each entry is a 4-byte integer. Thus theg-table consumes 13.4 MB. The total

size ofT1 andT2 is only 9.5 KB, which is negligible when compared to the size of the

other two tables. The total memory space consumption is 31.2 MB.

Therefore for the similar level of keyword search performance, the memory space

needed by the minimal perfect hashing algorithm is only 40% of that required by the open-

addressing scheme.

In the next chapter, we will summarize the observations we have made from the exper-

imental data, and draw some conclusions.



383838

Chapter 7

Conclusion

7.1 Minimal Perfect Hashing versus Open-addressing
In this section, we will compare the minimal perfect hashing algorithm with the open-

addressing scheme basing on the experimental data we have collected. Then we will draw

a conclusion on which algorithm is more suitable for main memory indexing.

The comparisons will be done in three categories: performance, simplicity and mem-

ory consumption.

7.1.1 Performance

In Chapter 6, we have seen that the hashing performance of the open-addressing

scheme using a loading factor of 0.23 is about the same as that of the 2-graph minimal per-

fect hashing algorithm. At any loading factor below about 0.2, the open-addressing

scheme will outperform minimal perfect hashing. Although open-addressing hashing

needs on average more than one keyword comparison per keyword search, while minimal

perfect hashing needs only one keyword comparison, open-addressing hashing is still

faster. This can be explained by the fact that the hash function used in the open-addressing

scheme is more efficient, and that speed more than outweighs the collision resolution

overhead of the scheme.

7.1.2 Simplicity

Open-addressing hashing is obviously the winner in this category. Its hash function

can be coded in a few lines. The linear offset collision resolution scheme is also simple

and easy to implement. Therefore it is a piece of software that is very easy to maintain.

On the other hand, the minimal perfect hashing scheme needs a very complicated

graph algorithm to generate the hash function. It is also more complex in terms of data



393939

structures. In addition to the wordset hash table, it also needs the random number tables

(T1 andT2) and theg-table. We need to dump these tables into a file after we have gener-

ated the hash function. That file has to be loaded into main memory when the search

engine is in operation.

7.1.3 Memory Consumption

For a comparable level of keyword search performance, the open-addressing scheme

uses 78.1 MB of memory, while the minimal perfect hashing algorithm uses 31.2 MB.

Thus the minimal perfect hashing algorithm saves memory consumption by 46.9 MB.

This is quite significant when we compare it to the wordset size, which is 146.1 MB.

However, such a reduction in memory consumption will become insignificant as the

library system scales up. The number of catalog entries in a library will grow at a much

faster rate than the size of the keyword set of the index. Therefore the size of the wordset

will increase much more rapidly than the number of keywords in the wordset. The size of

the wordset hash table will soon become insignificant comparing to the wordset size.

Combining the three factors enlisted above, we can reach the conclusion that the open-

addressing scheme is more suitable for main memory indexing application than the mini-

mal perfect hashing algorithm.

7.2 Future Outlook
Looking into the future, as technology advances and the size of library indexes scales up,

is it possible that the minimal perfect hashing algorithm might become more preferable?

The answer seems to be unlikely.

On one hand, CPU speed will increase at a faster rate than the memory access speed.

The minimal perfect hashing algorithm will outperform the open-addressing scheme only

if we can achieve single clock cycle memory access latency. But this is unlikely to happen

due to the increasing gap between the CPU clock cycle time and the memory access



404040

latency. One might wish that a larger on-chip cache may solve the problem. But recall that

even for the MIT Barton Library catalog index, the size of theg-table used by the minimal

perfect hashing algorithm is 13.4 MB. This number will become much larger when we try

to index the Library of Congress and when the size of the keyword set grows in the future.

Therefore is it unrealistic to hope that we can fit theg-table into the data cache.

On the other hand, main memory will become more and more affordable in the future.

This means that we will be able to further improve the performance of the open-address-

ing scheme by using a larger hash table size (hence a lower loading ratio). But the minimal

perfect hashing algorithm does not have this flexibility of space-time trade-off, and will

not be able to benefit from the lower main memory cost.

The minimal perfect hashing algorithm also has the disadvantage that every time we

add a new keyword into the keyword set, we need to regenerate the hash function. In the

current implementation, since we happen to rebuild our wordset from scratch on every cat-

alog update, the hash table regeneration overhead is insignificant. However, as the wordset

grows in size in the future, we might want to update the wordset incrementally. The open-

addressing algorithm will be able to take advantage of that scheme since it allows key-

words to be inserted dynamically into the hash table. Incremental additions do, of course,

increase the loading factor. Therefore eventually it will be necessary to rebuild the hash

table with a larger size to bring the loading factor back down. But the open-addressing still

offers more flexibility in keyword set updates than the minimal perfect hashing algorithm.



414141

References

[1]  Jerome H. Saltzer. Technology, Networks, and the Library of the Year 2000.Proceed-
ings of the International Conference on the Occasion of the 25th Anniversary of Insti-
tut National de Recherche en Informatique et Automatique, Paris, France, December,
1992, pages 51-67.

[2]  Library 2000.MIT Laboratory for Computer Science Progress Report, Vol. 30, July
1992 — June 1993, pages 147-158.

[3]  George Havas, Bohdan S. Majewski, Nicholas C. Wormald and Zbigniew J. Czech.
Graphs, Hypergraphs and Hashing.Proceedings of 19th International Workshop on
Graph-Theoretic Concepts in Computer Science, Utrecht, The Netherlands, June
1993.

[4]  Zbigniew J. Czech, George Havas and Bohdan S. Majewski. An optimal algorithm for
generating minimal perfect hash functions.Information Processing Letters, Vol. 43,
No. 5, October 1992, pages 257-264.

[5]  Ted G. Lewis and Curtis R. Cook. Hashing for Dynamic and Static Internal Tables.
Computer, Vol. 21, No.10. IEEE Computer Society, October 1988, pages 45-56.

[6]  Tobin J. Lehman and Michael J. Carey. A Study of Index Structures for Main Memory
Database Management Systems.Proceedings of the 12th International Conference on
Very Large Data Bases, Kyoto, August 1986, pages 294-303.

[7]  Anastasia Analyti and Sakti Pramanik. Fast Search in Main Memory Databases.Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
1992, pages 215-224.

[8]  IBM AIX Version 3.2 for RISC System/6000.Optimization and Tuning Guide for the
XL FORTRAN and XL C Compilers. First Edition, September 1992.

[9]  IBM RISC System/6000 POWERstation and POWERserver.Hardware Technical
Reference General Information. First Edition, 1990

[10] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest.Introduction to
Algorithms. MIT Press, McGraw-Hill, 1990.

[11] Donald E. Knuth.The Art of Computer Programming, Volume 3 / Sorting and Search-
ing. Addison-Wesley Publishing Company, 1973.


