
A Security Model for Authentication on

High-End Servers Using Digital Signatures

by

May K. Tse

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 11, 2000

Copyright 2000 May K. Tse. All rights reserved.

The author hereby grants M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

March 2000

Certified by
\ / .- romeH. Saltzer

Supervisor

Accepted by _
.. Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ENG
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

A Security Model for Authentication on High-End Servers Using Digital Signatures
by

May K. Tse

Submitted to the
Department of Electrical Engineering and Computer Science

May 11, 2000

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science

ABSTRACT

This thesis applies systematic security engineering techniques to solve a practical
business problem. In particular, this thesis will describe a security model that was
implemented from July 1999 to January 2000 at SGI (Silicon Graphics Computer
Systems), a company in Mountain View, CA that makes high-end servers and advanced
graphics products. This security model involved remote authentication on components of
the company's newest high-end servers. The motivation behind the security dealt with the
problem of software theft due to improper software licensing, which stemmed from the
unauthorized modification of system serial numbers. The authentication was put into
place to restrict the access of those who wished to change the system serial numbers on
the server components. The authentication was implemented using digital signatures
created with the El Gamal variant of the Diffie-Hellman algorithm, and a public/private
key pair system. The purely technical aspects were only half the problem, however; the
design of the system as a whole proved to be the bigger challenge. In the corporate world,
security is rarely the top priority in a company's agenda. Instead, ease of use for the
average user and a seamless integration into the existing corporate infrastructure often
take higher precedence than the level of security, making it difficult to design a security
system that can still be effective and not too crippled by design trade-offs.

Thesis Supervisor: Jerome H. Saltzer
Title: Professor Emeritus/Senior Lecturer, Department of Electrical Engineering and
Computer Science

2

TABLE OF CONTENTS

1.0 Introduction 5
1.1 Background 5
1.2 Problem Statement 6

2.0 Design Trade-offs 8
2.1 Security Versus Available Resources 9

2.1.1 Expiring Authenticator 9
2.1.2 Producing the Non-Static Authenticator 9
2.1.3 A Public Key System 10
2.1.4 Choosing Algorithms for Authentication 12
2.1.5 Limited Bit Size 13

2.2 Security Versus Ease of Use 14
2.2.1 Resurrecting Duckling 15
2.2.2 Test Mode 15

2.3 Security Versus Ease of Implementation and Integration 16
2.3.1 Easy for Manufacturers to Distribute 17
2.3.2 Easy to Maintain, Update, and Repair 18

2.3.2.1 Modularity in the Algorithm Choice 18
2.3.2.2 Maintenance of Keys 18

2.3.3 Easy for Field Personnel to Attain Authenticator 19
2.3.3.1 Accessing the Central Support Server 19
2.3.3.2 Determining the Time Window 20
2.3.3.3 Difficulty of Conforming with Export Laws 20

3.0 Lessons Learned 22
3.1 Implementation Details 22

3.1.1 Computing Environment 22
3.1.2 System Requirements 24
3.1.3 Protocol 25
3.1.4 Architecture of the System 27

3.1.4.1 Modules 27
3.1.4.2 Algorithm Details 30
3.1.4.3 Code 31

3.2 Design Changes and Surprises 33
3.2.1 Feedback from People Involved 34

3.3 Evaluation of Final Product 37
3.3.1 Security Checkpoints 37

3.4 Suggestions for Future Versions 39
3.4.1 Key Size and Algorithm 39
3.4.2 Better Schemes for Randomness 40
3.4.3 Arbitrary Precision Arithmetic Libraries 41
3.4.4 Proxies 42
3.4.5 Direct Authenticator from Web to the Brick 42
3.4.6 Clock Security 43

3

4.0 Concluding Remarks

5.0 Acknowledgments 46

6.0 Appendices 47

7.0 References 54

List of Figures
1.0 Explanation of Public Key Vs. Symmetric Key Systems 11
2.0 Graph of Key Bit Size Vs. MIPS Years 13
3.0 Sample Flow Diagram of Repair Cycle 16
4.0 Overview of Protocol for Attaining Authenticator 26
5.0 Modular Dependency Diagram 29
6.0 Explanation of El Gamal Algorithm 30
7.0 Code Abstractions 32
8.0 Security Checkpoints 38
9.0 Graph of Algorithm Type Vs. Key Size 40
10.0 Screen Shot of Websafe Login Menu 47
11.0 Screen Shot of Brick Input Menu 48
12.0 Screen Shot of Temporary Authenticator Display 49
13.0 Screen Shot of Invalid Login 50
14.0 Screen Shot of Group Management for Access Control Lists 51
15.0 Screen Shot of Group Permissions Management for Access Control Lists 52
16.0 Screen Shot of Key Generation Menu 53

List of Tables
1.0 Table of Public Key Algorithms 12

4

44

1.0 INTRODUCTION

This thesis describes an authentication system that was designed and implemented

for the newest high-end servers at SGI (Silicon Graphics Computer Systems, a

manufacturer of high-end servers and graphics products in Mountain View, CA). The

high-end servers were essentially supercomputers made up of several processors

connected together to perform extremely expensive computations (such as those related

to computer graphics). The system focused on authentication for system serial number

integrity.

1.1 Background

Nowadays, software theft is quite easy to do. There are not too many safeguards

against someone copying some files or passing around a disk with a special software

package on it. One way of protecting against this is to license each copy of the software

package. System serial numbers are used to enforce the licensing of certain software

packages. As software can often be readily reproduced and distributed, it is important to

guarantee that the system serial numbers themselves are not vulnerable to duplication or

modification; else, unlicensed software theft can run rampant. For high-end servers that

are composed of multiple components, large software packages will be licensed to a

specific system serial number for the entire server. Therefore, each server component

(called a "brick") will then bear the same system serial number to enforce licensing. This

system serial number will be the same no matter what type of component it is, whether it

is used for processing, routing, or as an input/output module.

5

1.2 Problem Statement

As further protection against changes to the system serial number, in some prior

designs of servers, the system serial number has been safeguarded as part of the hardware

on the EEPROM. An EEPROM is a writable memory element, but the only way to

change the data on it is to manipulate it through the hardware. Therefore, the EEPROM

could not be modified through the software in the field - to actually change the system

serial number on a particular brick, the part would need to be shipped back to the plant

for modification. However, in the upcoming new server design in question, the system

serial number will instead be devised as a member of the more easily rewritable NVRAM

data record. An NVRAM is also a writable memory element, but it differs from an

EEPROM in its method of changing the data on it - with an NVRAM, the data can be

changed through software, not hardware. Therefore, this allows the system serial number

to be changed through the software on-site, rather than at the plant. This allows for a

more efficient and less expensive means of replacing broken or malfunctioning bricks - a

spare brick can just be reconfigured on-site and swapped in rather than shipped back to

the plant first to have the system serial number changed.

This new flexibility comes at a price, however: it makes the system serial number

much more vulnerable to unauthorized modification because of the switch from hardware

to software, which could potentially lead to improper software licensing. Since the

system serial number can now be easily changed through the software, security becomes

an issue; safeguards must be created to protect access to the program that actually

modifies the system serial number. Extra precautions must be taken to ensure that this

access is granted if and only if certain conditions are met, including the obvious

6

constraint that the system serial number can only be modified by authorized company

personnel. Therefore, in order to meet this need, a security system for authentication is

desired to make sure the user is a member of the group of personnel authorized to make

modifications to the system serial number.

7

2.0 DESIGN TRADE-OFFS

In designing any system, there will be certain design trade-offs that will have to

be made between conflicting goals. It is therefore important to be explicit regarding

certain priorities. In this particular security system for authentication, there are some

special requirements to note:

" The authentication should be valid only within a predetermined time window.

* The brick at the customer site should have no secrets.

* The system must be easily exportable according to international export laws.

" The design should use as little of the limited NVRAM and EEPROM space on a brick

as possible.

" The level of security should be modest -- functional but not extreme. The threat

model here is from customers in the field thinking of improper software licensing if it

is easy to do - the threat model is not of seasoned hackers looking to break into the

system for the information it holds.

* The security system should not hinder the service personnel from conducting the

usual number of tests at the plant or repair site.

* The system should be able to handle a manufacturing capacity of approximately

25,000 bricks per year (generous estimate).

. The system should be able to last for the life of the machines, and should be easily

maintained and upgraded.

8

2.1 Security Versus Available Resources

When designing an actual system for the corporate world, sometimes it is not

possible to meet all of the best conditions as they would be recommended in theory.

Limited resources (such as a fixed budget) lead to certain design allowances and

"tweaks" to deal with this.

2.1.1 Expiring Authenticator

An expiring authenticator is necessary because a static authenticator (such as a

"root password") is easily leaked to unauthorized individuals who might need to use an

authenticator once, or who happen to get it from an unknowing service person. In

addition, a service person might also leave the company, taking the company's secret

static authenticators with him.

A non-static authenticator can be achieved in two ways: either have the changing

authenticator be produced externally to the system (via "safeword cards"), or to have the

authenticator be produced internally, and set it to expire within a predetermined time

window.

2.1.2 Producing the Non-Static Authenticator

One possible implementation of expiring authenticators would be to use

"safeword cards," which are small, credit cards outfitted with a microchip for continual

authenticator generation. The cards produce new authenticators at a constant rate, and a

program that is run on the computers would be synchronized to match and verify the

same changing authenticator.

9

The problem with this solution is that it is expensive. A card would have to be

purchased for every member of the company who is authorized to modify the system

serial numbers on the bricks. In addition, there is the added complexity of dealing with

the distribution of the cards to all these people, as well as the forced retrieval of these

cards if any personnel in possession of these cards leaves the company. This would be

hard to do in terms of scope and scalability; it would be difficult to deal with the sheer

number of cards to be distributed to the many field personnel in all parts of the world. In

addition, the size and varied locale of the personnel would also make it hard to track

every card in the system, so that it would be conceivable that a card could get into the

wrong hands or would not be returned if an employee left the company. Therefore, it is

recommended that the authenticator be produced internally in the system rather than rely

on safeword cards.

2.1.3 A Public Key System

To produce an expiring authenticator internally in the system, a cryptosystem

involving digital signatures is recommended. This cryptosystem can be designed in one

of two ways: through a symmetric or an asymmetric (public key) system. A symmetric

system works on the premise that the same key is used to both sign and verify a message,

whereas two separate keys are used for a public key system. The private key is kept

secret while the public key is widely distributed and publicly known [6]. The brick can

have no secrets because we can not guarantee the privacy of the brick, so if a symmetric

system were used, the key would be vulnerable to discovery, possibly leading to a

known-key attack. Therefore, a public key system is preferred.

10

Now, applying a public key cryptosystem to this particular problem means that

there will be a public key assigned to each brick. The public key can be hard-wired into

the brick's EEPROM so that it can not be modified. It is important to note that it is the

public key and not the private key that is kept on the brick, because the hard-wired

information on the brick can be visible to everyone. The corresponding private key will

be put on a server (along with all the other private keys) at the company's support center.

The private key will be used to sign messages that only the public key on the

corresponding brick can properly verify [8]. It is important to note that the company's

internal support center server has the capability to be more heavily guarded than any

brick that is in the field. This is appropriate, because breaking into the server would give

the hacker access to several private keys, whereas breaking into a single brick on-site in

the field would only give the hacker access to a single public key, which is useless

without the corresponding private key.

Public Key System versus Symmetric Key System

Symmetric Key System with One Key, K,

* To sign a message M: {M}K,

* To verify the signature: { {M}K,}K should recover the message M

Public Key System with a Public Key Kpb and a Private Key Kp,,

* To sign a message M: {M}KyrV

" To verify the signature: { {M}Kriv}Kpu should recover the message M

Figure 1.0: Explanation of signing and verifying a digital signature with a public key system versus a
symmetric key system.

11

2.1.4 Choosing Algorithms for Authentication

Getting more to the mechanics of the security model, authentication with a public

and private key system is based on an asymmetric algorithm. There were several

algorithms proposed for this authentication model. Some possible choices included the

Diffie-Hellman and RSA (Rivest-Shamir-Adleman) algorithms [5].

Algorithm Patent Number Date of Patent Expiration
Diffie-Hellman 4,200,770 4/29/97
Merkle-Hellman 4,218,582 8/19/97
Rivest-Shamir-Adelman (RSA) 4,405,829 9/20/00
Digital Signature Standard (DSA) 4,995,082 2/19/08
Table 1.0: Public key cryptography algorithms and their patent expiration dates. Data
source for table is from [3].

The algorithms were all appropriate for public key cryptosystems, although they

were each slightly different in nature. For example, the RSA algorithm relies on the

difficulty of factoring large numbers. Based on two large prime numbers, two keys are

then generated, a public key and a corresponding private key. The two keys can be used

interchangeably: either the public key can sign and the private key can verify, or vice-

versa [7].

The final algorithm chosen was the El Gamal variant of Diffie-Hellman. Unlike

the RSA algorithm which depended on the difficulty of factoring products of large

primes, the El Gamal algorithm relies on the difficulty of calculating discrete logarithms

in a finite field [7]. The El Gamal algorithm was eventually chosen over RSA because it

was the first to have its patent expire; RSA is not set to expire until September 2000 [3],

which would have been too late for both the design phase of this system, as well as the

actual implementation at SGI. The patent expiration was a deciding factor because

12

licensing issues would have added complexity and slowed down the development process

for this security system.

2.1.5 Limited Bit Size

There is only a limited amount of space available on the brick's EEPROM, which

is where the public key will be stored. The space on the BEPROM allocated for the

brick's public key is set at 512 bits. This limits the security of the system, as the more bits

Key bit size wa MIP years

1.E+11I

..... E+1O....r- f

1..... E.......

- 1E+10---------
.i...

1. E....

1 E+06..

1..... E4C.S......
400~~~~~~..... .0 0 0 0 00 10 10 1
.Key.b.t...

Fiur 2.0 Grp of ke bi siz vesu th nube of.. esiae MIP yer nede to crack.i
for n asmmetic ky aloritm Te lager he ky sie, te mre MPS.yars.t.wil.tae.t

crack. it Data------ sore-o-gahisfom-1

13

in the key, the more secure the system is. A key of 512 bits is considered pretty standard,

although commercial software is now moving towards 1024 bits per key. (A key size of

512 bits is estimated to take something on the order of 107 MIPS years to crack, whereas

a key size of 1024 bits is estimated to take something on the order of 1010 MIPS years to

crack [4]).

The 512 bit key size is enough to suit the purposes of this project, however. It is a

necessary trade-off because extra space on the brick's EEPROM is scarce, and allowing a

larger public key on the EEPROM would be sacrificing another necessary field of data on

the brick. In addition, it is also important to remember that the threat model here is not

the typical "hacker" who is extremely knowledgeable and skilled at breaking into

systems, but rather the owner of the system who might try to modify the system serial

number so that he does not have to pay another licensing fee for expensive software -- if

it is not too difficult to do so. Therefore, whether the public key is 512 bits or 1024 bits

does not matter so much, since the typical person as identified in our threat model would

not be able to understand how to crack a cryptosystem at any rate, regardless of the key

size.

2.2 Security Versus Ease of Use

In designing any system, the intended audience must be considered. This is

especially true for a security system, in which unexpected errors accidentally introduced

by authorized users can compromise the security of the system. Security systems need to

be designed to be easy to use and operate, as well as robust enough to tolerate errors from

the average user [2]. Thus a simple approach is often desired.

14

2.2.1 Resurrecting Duckling Model

This security model will be approached with a slant on the "resurrecting duckling

model" [1]. In the resurrecting duckling model, the first thing a duck sees becomes its

mother, in its mind. This is called imprinting. In a process similar to imprinting, the first

thing an item connects to will be identified as its owner. To change ownership, the item

would need to "commit suicide" and then subsequently be "resurrected" -- ready to

imprint -- when it is connected to a new owner for the first time. In this case, the system

serial number of the brick will be analogous to this model of ownership.

This model is an elegant solution to the current problem. For one thing, it makes

the process of brick replacement a very simple, seamless job on the part of the service

person. The service person first enters the authenticator together with a request to the

brick to set itself into an "imprintable state." Then, he merely needs to hook up the brick

to the server with the new system serial number, and it should self-set the new system

serial number by gleaning the information from its new connection. Besides its ease of

use and installation, imprinting can also help to prevent errors that come about when

incorrectly typing in the wrong system serial number.

2.2.2 Test Mode

A "test mode" for turning the security off is also important from a manufacturing

and repair site point of view. At a repair or manufacturing site, a brick can go through a

process in which it is connected to several test machines. When connected to these

15

machines for testing, it is a hindrance on the part of the personnel to be required to attain

an authenticator and remember it for each brick at each different test station. Therefore, it

would be more convenient and efficient if the brick could go into a test mode at the

beginning of the repair or manufacturing process, and then turn off the test mode at the

end of the cycle, when it is about to ship out to the customer. The test mode would allow

personnel to turn off the security on the brick so that it can be plugged and unplugged

from multiple test machines without wasting time or causing difficulties for the

personnel. This test mode helps to ensure that the process does not become too

complicated from extra steps at the repair or manufacturing site, and can be achieved

with a bit set in the hardware.

Insert new
step here?

Failed SmA Env. I arge, ystem Repaired
Board~ S e Tsi (3Mp ~ %TF beard

Repair

Figure 3.0: Sample flow diagram of the repair cycle. The proposed test mode would only add a
"turn on" and "turn off' step at the beginning and end of the cycle, rather than adding a "get
authenticator" step at the beginning of each block

2.3 Security Versus Ease of Implementation and Integration

Another aspect in designing a security system for a corporate audience is that

often times, the system can not be designed from scratch. This constrains the number of

possible solutions to the problem at hand. There will usually be some corporate

computing infrastructure already in place, so rather than scrap it and design a completely

new system, the final design has to deal with plugging up the security holes of the

existing system and building on top of it. The design of the system must take into account

16

certain factors like ease of integration that would not be a problem for a design built from

the ground up.

2.3.1 Easy for Manufacturers to Distribute

One thing to think about in regards to the integration of the system would be, is it

feasible from a manufacturing standpoint? In this case, the system should be able to

handle approximately 25,000 newly manufactured bricks a year. (This is a generous

estimate). The system should be easily maintained, available for upgrades, and durable

enough to last for the lifetime of the system.

The system must be simple for people in manufacturing to use. It must also be

fault tolerant and able to handle the maximum capacity of bricks per year. The proposed

solution to this would be to annually supply the manufacturer (Celestica, an electronics

manufacturing company headquartered in Toronto, Canada) with CD's containing blocks

of approximately 25,000 brick id (identification) numbers and corresponding pre-

generated public keys. This can be done in the same fashion as Ethernet addresses are

currently supplied to manufacturers today, as both deal with the placement of a unique

number on each server component. This solution reduces some complexity for the

manufacturer, because they do not need to worry about learning how to use the

algorithms to generate key pairs at the plant, nor do they need to deal with sending the

corresponding private keys to the support center -- which they would have been forced to

do had they generated the key pairs at the plant. (The key pairs will be generated at the

central server, and only the public key list will be sent out to the manufacturer). The

manufacturers will just get their blocks of public keys from the CD's shipped to them,

17

and they can then use this information in the same manner that they are already

accustomed to as with the Ethernet addresses.

2.3.2 Easy to Maintain, Update, and Repair

The system needs to be fairly robust, but on the chance that it breaks down, it

needs to be easy to repair, upgrade, and maintain. This objective is reached by making the

system modular in design. This allows certain aspects of the system to be changed

without affecting other things. Therefore, this helps with the fault tolerance of the system.

2.3.2.1 Modularity in the Algorithm Choice

The algorithm used for the current system is the El Gamal variant of the Diffie-

Hellman algorithm. However, if in the future, the algorithm needs to be changed (for

example, if a new one comes along that is better, or if the patent on something like RSA

expires) then the code is such that it is easily extensible to allow for a different algorithm

to be used to create any future keys at that point. This can be integrated into the system

by adding a field in the central server database that includes the algorithm used, or by

logging system serial number batches with specific algorithms.

2.3.2.2 Maintenance of Keys

The keys are unique from one another. One key pair's private key does not work

for another key pair's public key. Therefore, the key pairs do not affect each other. If the

key pair for a particular brick had to be changed for some reason, it would not affect the

other bricks. The system can generate a new key pair at any time. This pair would then

18

need to be updated in the support center. The most difficult part of this task would be re-

setting the public key on the brick, which would have to be done at a repair center or at

the plant since the public key is on the brick's non-rewritable EEPROM.

2.3.3 Easy for Field Personnel to Attain Authenticator

The security of the actual system should also be relatively good, but not so

impenetrable that it becomes a problem for service personnel to use. The trade-off for

ease of use might mean diminished security, but as long as it is still reasonably secure,

then it is better to try to tailor this model for the service personnel -- who are more

concerned for speed and efficiency rather than security. The system has to be easy for

personnel to attain an authenticator, otherwise they will ignore the system and try to keep

the field system perpetually in "test mode."

2.3.3.1 Accessing the Central Support Server

It is this usability factor that also dictates that the system should have capabilities

for telephone access as well as through the Web, in case service personnel are working

out in the field and do not have Web access readily available. Access through the Web is

built on top of the company's existing Websafe password mechanism for authenticating

company personnel online. This provides the users with a familiar interface that does not

add extra complexity to the picture because they already use the Websafe system and

have existing accounts and passwords for it. For those without Web access, they can

instead call the support center to get the authenticator from an operator logged onto the

system.

19

2.3.3.2 Determining the Time Window

The time window for the authenticator expiration has been set at 10 hours. This

time window was chosen for a few reasons. Although security would dictate that it

should expire within as short a time period as possible (such as within only one hour, for

example), the perspective of the service personnel who would be using the authenticators

had to be considered. Some of them would not have Web access while at the customer

site; they would just attain the authenticators in the morning before they arrived at the

customer site. Therefore, although the actual usage time of the authenticator would not be

very time-consuming in terms of the time it would take to actually input it into the brick,

the authenticator can not expire immediately if it will take the service person

considerable time before he actually handles the brick. Therefore, the time window of 10

hours was chosen to cover the duration of an average workday, plus some travel time to

the customer site. Thus the time window is set such that a service person would need to

get a new authenticator every day, but not several times per day.

2.3.4 Difficulty of Conforming with Export Laws

Although the U.S. is getting more lenient in their export law policy, any system

that has any involvement with encryption algorithms is subject to possible problems with

export or import control departments from various countries, an important thing to note

since SGI has sites around the world. There are a few things that can be done to lessen

the chance of this, however. The most important thing is to emphasize that this is strictly

an authentication system for verifying a valid system serial number modification request,

20

rather than an encryption system used for private data transmissions; confidentiality and

privacy are not issues here.

It is also important to note the difference in terminology between "encryption"

and "decryption" and "signing" and "verifying." Encryption and decryption can deal with

data transmission sent in an encrypted form, whereas signing and verifying deal strictly

with authentication, to ensure the message authenticity. This is important in terms of the

export policy; it is easier to export something that is merely an authentication tool than

something that is used for encryption purposes.

21

3.0 LESSONS LEARNED

The researching of existing systems and the designing of the specifications for

this security system were half of the solution. The other half hinged on the actual

implementation of the system. This involved coding the different modules, working with

the users and future managers of the system to ensure that it would work properly within

the confines of the infrastructure, and reworking any elements that proved problematic. In

short, after working out the entire system design in theory, certain lessons were to be

learned from actually trying to implement this design in practice.

3.1 Implementation Details

This system was originally implemented as a small beta test program at SGI. The

system was first sketched out in pseudocode, then implemented as a set of programs

running on different modules. The different modules were used together to model the

interactions of the different components of the system.

It should be noted that the first test run of the system did not actually involve

bricks themselves because it was not possible to individually manufacture the bricks with

individual "test" system serial numbers and public keys. Rather, the bricks were

simulated by a separate shell on the computer that was running the verification code that

would eventually reside on the bricks.

3.1.1 Computing Environment

The system was developed on the Microsoft Windows NT 4.0 operating system.

The system was developed in NT rather than IRIX, which is SGI's "flavor" of the UNIX

22

operating system; this was because the system was developed on a Dell Latitude CPi

laptop computer running NT, similar to those that SGI personnel would operate in the

field. As described in more detail later, the final design for the system involves using the

Web, but when the problem first arose, different types of solutions were explored,

including non-Web-based models which might run locally on the SGI service person's

machine itself Therefore, it was for matters of uniformity in platform and computers that

the development was done on this particular type of computer and its associated

operating system.

The programs were developed using the Microsoft Visual C++ Professional

package for NT. However, the code itself was actually written in the more efficient C

programming language, which is standard in most of SGI's software applications. The

reasons for using this particular package, rather than using some open source C compiler

were twofold: partly because of the particular operating system of NT instead of UNIX,

and partly because of the corporate environment. Since this system would actually be

implemented in the company's infrastructure, it was advised to go with a supported

package like Visual C++ rather than some unsupported open source freeware compiler.

This fact, coupled with the fact that the actual ordering and shipping of the software

package considerably slowed the initial development of the project, illustrate the

difference between developing something in a corporate environment versus a purely

academic one. A large corporate environment with "red tape" is rarely as efficient during

the software development process as an academic environment is during the exact same

process.

23

3.1.2 System Requirements

This system will not add too many new elements, as it is designed to take

advantage of the existing infrastructure instead. There will be an authenticator generator

on the support center server, which is where the service person will log in to obtain the

signed authenticator. The company already has such a support center with a high

availability server, so this is just a case of adding more responsibilities, rather than adding

an entirely new department. Also, as mentioned before, no new Web authentication is

necessary; the existing Websafe method can be used in conjunction with this system. On

the brick, there will be a microcontroller and some new information. The microcontroller

will verify the authenticator to allow access to modify the system serial number. The new

information on the brick will be limited to the public key in the EEPROM. As described

in more detail later, the brick also stores the brick id number in the EEPROM and the

system serial number on the NVRAM, but this information would have been stored on

the brick regardless of the authentication system, so the only new addition is the public

key.

There is nothing secret in the message, so it is not necessary that the transmission

system provide privacy, nor do we require privacy of the information on the brick itself

What is required is that the integrity of the modification request be assured, which is

indeed provided via the digital signature. The message returned from the server is useless

to anyone else because it is signed with the brick's private key - only the corresponding

public key can verify this, and only for a short time within the predetermined time

window. The most important thing to protect is the database of private keys located at the

24

support center server, and this should already be protected because of the other

information on the server.

3.1.3 Protocol

Outside of the initial setting of the system serial number in the manufacturing

plant or at a repair site, the only other times the system serial number would need to be

reset would be in the field when a certified service person must swap in a brick to replace

a broken brick on another system. The protocol necessary to gain access to do this

modification is as follows:

1. The service person will log into the server at the support center where all the private

keys are located. The login menu will only allow those service personnel on the

access control list with the proper company network usernames and Websafe

passwords to log into the system. This is the first checkpoint.

2. Once logged in, the service person sends a system serial number modification request

to the server at the support center. The request will contain the brick id number. There

will then be a check to ensure that the user is authorized to work on the brick with

that particular brick id number, based on the access control lists built into the system.

3. The server at the support center will search an extensive database for the

corresponding private key given a particular brick id number. The request will be

logged and then a GMT (Greenwich Mean Time) time-stamp, signed with the brick's

private key will be sent back; this will be the authenticator that is displayed to the

25

OVERVIEW OF PROTOCOL
BRICK

e Get brick id number
from EEPROM

* Enter temporary
authenticator

" The brick will get its
public key and use
the key and the pre-
set algorithm to
verify the
authenticity of the
signature

e If the signature is
valid, the brick will
then check the
freshness of the time-
stamp

e If the message is
within the alloted
time window, then
the brick will go into
"imprintable state"
and allows the user
to change the system
serial number

request for
brick id

brick id number

e7
uthenjca t or

start WEB INTERFACE

Enter company
username and
Websafe password
into input fields on

username,
password

ebsafe valid?

brick ld numb r

Uthen tica t or

Figure 4.0: Overview of the protocolfor attaining an authenticator.

SERVER BACK-END

- Invoke company's
Websafe password check
- Return valid or invalid
result of check

* Check for user's group
status; then check for
group's authorization for
the given brick Id number
: If user passes access
control list check, then
search database for brick
Id number; when brick id
number is found, get the
associated private key
a Get the current time,
and create a time-stamp
message signed with the
private key; this will be
the authenticator

service person. Note that the brick's private key itself is not sent back. (The

authenticator will be in the form of numbers instead of letters. This is because the

system will be used internationally, and foreign users will be more familiar with

26

W en site

If valid Websafe
password, prompt user for
brick Id number

a Enter brick id number
into Web site input field

- If access is granted for
this brick, the temporary
authenticator will be
displayed on the Web site

numbers than with letters, thus cutting down on errors in remembering and properly

entering in the authenticator.)

4. The service person will input the authenticator to the brick in question. The brick will

then use its public key to verify the signature. Once that is verified, the local time on

the brick will be converted to GMT, and then this will be compared with the signed

time-stamp message. If it is correctly authenticated, and the brick time is within the

time window of 10 hours from the time-stamp (indicating that it has not yet expired),

then the brick will allow access to the superuser menu on the brick which commences

"imprintable state." In the future, other options might also be added to the superuser

menu.

3.1.4 Architecture of the System

The system has thus far been described only in terms of how it will function and

interact with the user. Although it is important to be explicit early on regarding these

particular design goals, in designing a system it is also imperative to be explicit about

how it will be composed, and to describe how each component will actually work in

practice alongside the other components. The architecture of the system should be clear,

modularized, and easily extensible. These concrete details are necessary for the final

specification of the system before it is put into the implementation stage.

3.1.4.1 Modules

This system is comprised of several components. First, there is the protected

central company server. This server is the central authority responsible for many things.

27

First, it will house the key generation program. Its operators will be in charge of

generating batches of key pairs every year, and of updating the internal database of new

brick id numbers with the new private keys, while also distributing the new public keys to

the manufacturers of the hardware. This server will also run the back-end for the

authentication Web site. Server operators will also be responsible for updating access

control lists for certain bricks. The server will use its database of brick id numbers and

private keys to generate time-stamps with digital signatures for authentication. Of course,

it should be noted that when the system is deployed on a large-scale internationally, this

"central" support server will actually be composed of several corporate high-availability

servers in different geographic regions, rather than only just one.

A second component of this security system is the Web interface. This will also

be the Web interface that a phone operator will use to access system serial number

authenticators at company call sites, if a service person does not have access to the Web

in the field. The Web interface will be the interface between the authentication requests

and the subsequent temporary authenticators for SGI personnel in the field who are

repairing or swapping bricks. The Web interface will incorporate the company's pre-

existing Websafe online employee identification system, before the employee is allowed

to enter any requests for specific brick authenticators. The Web interface will also

connect to the program running on the back-end of the support center server, and this is

the interface that will display the temporary authenticator to be used within the time

window by the employee for a particular brick.

The final component can not be overlooked; it is the brick itself. The brick houses

the system serial number, brick id number, and public key. It also will contain microcode

28

MODULAR DEPENDENCY DIAGRAM

BACK-END SERVER

I
BRICK

Brick ID Number

---- ePublic Key

System Serial Number

i-

Public Key List for Brick
Manufacturers

WEB INTERFACE

Peri Code
Connecting to

Back End

HTML code for
User Interface

Figure 5.0: Modular dependency diagramfor this authentication system.

29

Digital Signature Algorithm
Private Key List

Websafe and Access Control List Key Generation Code

Signature Verification Code

r

that uses the public key to verify the authenticator, as well as the local clock. Lastly, it

will have a small "resurrecting duckling" program running on it that will cause the brick

to go into "imprintable state" once the authenticator has been approved.

3.1.4.2 Algorithm Details

As stated earlier, the algorithm used for the authentication is a widely-known

variant of the Diffie-Hellman public key algorithm known as El Gamal. The algorithm is

dependent on the difficulty of calculating discrete logarithms. The algorithm can be used

Figure 6.0: Explanation of signing, verifying, and generation of keys with the El Gamal algorithm
Source for the algorithm from [5].

30

Key generation
* Generate a large random prime p and a generator a of the
multiplicative group Z*,
* Select a random integer a, such that 1 a p - 2
" Compute y = a modp
" A's public key is (p, a, y); A's private key is a.

Signing
o Select a random secret integer k, such that 1 k p -

and gcd(k, p - 1) = 1

" Compute r = ak mod p
" Compute k- 1 mod (p - 1)
* Compute s = k' {h (m) - ar} mod (p - 1)
" A's signature for the message m is (r,s)

Verification
* Receive message m signed with (r, s)
* Obtain A' s public key (p, a, y)
* Verify that 1 r p - 1
* Compute v1 = y'rr mod p
* Compute h(m)
* Compute v2 = ah mod p
* Verify that v =r2

2,I

for message encryption and decryption, but since authentication is the purpose here and

not message confidentiality, the algorithm will only be used for digital signature

generation and verification. The message, which will be a simple time-stamp, can be sent

"in the clear." If the time-stamp is altered while in transmission, the digital signature -

which is calculated with the time-stamp message - will not work.

3.1.4.3 Code

For proprietary reasons, the code is not included, but it is described in detail here.

The code is split up into six "black box" abstractions. First, there are three pieces of code

for the El Gamal algorithm. These include the key generation code, the code for the

creation of the digital signature, and the code for the signature verification on the brick.

The key generation code utilizes a random number generator to create unique, non-

deterministic key pairs. The verification code then takes the existing public key that is

present on the brick, and uses it to verify the digital signature added to a message, using

the published mathematical algorithm steps outlined above. The code for the digital

signature creation utilizes a list search mechanism to identify the private key associated

with the input brick id number. Once the private key has been found, the code then

retrieves a time-stamp to create a digital signature, again using the published algorithms

above. Following this, there is also code to allow the brick to enter "state 0." It also has to

query its new neighbors to glean its new system serial number.

In addition, there are two more pieces of code that make up the access control lists

module; one is for adding new users to specific authorization groups, and the other is for

adding group permissions for specific individual bricks or blocks of bricks. These two

31

Code Abstractions

Server Back-End

0

0

Input: number of new keys to be generated;
Use random number generator to seed new keys;
Use El Gamal key generation algorithm to create new keys;
Output: list of new keys;

Access Control

* Input: username, group number, brick ID number;
* Check Websafe username and password;
* Search for group associated with username;
* Search for brick ID number range associated with group;
* Check for input brick ID number in this range;
* Output: authorization status -- ok to create authenticator;

Digital Signature Generation

e Input: username, brick ID number;
* Search for brick ID number in internal database;
* Get private key associated with brick ID number;
e Get current time for time-stamp message;
* Use El Gamal signature algorithm to sign message with private key;
* Log current time, brick ID number, and username;
* Output: time-stamp message signed with private key (authenticator);

Web Interface

Perl Code to Connect Back-End to the Web

* Input: username, Websafe password, brick ID number;
* Invoke back-end server functions with the above arguments;
e Get server response;
* Output: authenticator;

Brick

Digital Signature Verification

* Input: authenticator;
e Get public key from EEPROM;
* Use El Gamal verification algorithm with public key to verify authenticator;
* Get current time and check freshness of time-stamp message;
e Output: verification status of signature;

Access to Change System Serial Number

" Input: state change command;
* Change to imprintable state;
* Output: ready to receive new system serial number;

Figure 7.0: Code abstractions for the different modules of the system.

32

Key Generation

sets of code probably will not be utilized very often in the early stages of the deployment

of the system. In the beginning, it might not be essential to assign group permissions to

certain types of bricks, so initially, the group permission check will probably be a

transparent, unnoticed security check in the system that grants permission to all users

with the standard company Websafe access. However, if needs change in the future, then

these authorization groups can be used to allow access to certain restricted bricks or other

commands. The idea behind this was that it would be hard to build access control lists

into the system at a later stage when something like this is needed; it is easier and much

simpler to just build it into the infrastructure now so that this system is modular and

easily extensible.

Lastly, there is the HTML and Perl code for the Web page interface. This code

simply acts as a simple and easily accessible way for SGI employees in the field to be

able to connect to the support center server in a secure remote fashion. The code basically

takes in the inputs for the Websafe company identification system. Then, it invokes the

access control list code to check the employee's group status and group authorization for

the brick in which authentication has been requested. If this check is also passed, the

back-end digital signature code will then be called upon to generate a temporary

authenticator. The Web site will then output this authenticator to the user for entering into

the brick.

3.2 Design Changes and Surprises

When designing a system, it is virtually impossible to get everything completely

correct the first time around. Almost always, there will be latent factors that become

33

manifested in the actual implementation, although they were originally unforeseen when

the system was first being designed. It is therefore valuable to allow time for

troubleshooting and slight revisions of the original design during the testing phase of a

system design cycle.

3.2.1 Feedback from People Involved

The system received feedback from all sorts of personnel who would be affected

by the new design. The system serial number was a relatively small component of the

overall design of the new high-end server, but even such a small item as this had a huge

"ripple effect," since the new server was so complex and far-reaching. There was

feedback from both those who would be implementing the new design to those who

would be using the new design in every day practice.

First, the manufacturers were agreeable with the change and the protocol for its

implementation on their end. They were complacent as long as the responsibility of the

key generation would be up to the company and not up to them. This was a modular issue

to them; to the manufacturers, it was just another component that required a unique

identifier supplied to them by the company, such as Ethernet addresses. Therefore, they

had no major gripes about it.

The firmware engineers in charge of the system controller had other issues that

concerned them. They were interested in how much space the public key would take on

the brick, because the brick's non-rewritable EEPROM had limited space. Initially, the

space allotted for the public key was much less, about 128 bits. When some concern was

expressed to them regarding the low security of this, they rewrote the EEPROM

34

specifications to allow for up to 512 bits for the public key, a much greater improvement.

The firmware engineers were also in charge of the system controller microcode, and they

were generally happy with the brevity of the verification code earmarked for this, since

that would have to be added to the brick's limited space too.

The support center representatives were the most vocal in their concerns over the

new system. First of all, the support center consisted of three different groups: field

personnel, brick repair site technicians, and the actual support center operators. The field

personnel had a lot of concerns over the ease of use for the system, and suggested some

ways to make the system less confusing for personnel in the field. They were also

concerned about the privacy of their Websafe passwords if they were unable to access the

Web on-site and were forced to talk to a call center operator instead.

The repair site technicians had other problems with the design. Their main

complaint was that they did not like the idea of having to obtain and enter in the

authenticator for each brick that was being repaired at their center, for each time the brick

was connected to one of many test systems. It would simply be too cumbersome and time-

consuming for the repair personnel to have to add more steps to the repair and test

process. These steps would be particularly extraneous because this authentication system

was not prompted by a need to protect the bricks from the repair center personnel at their

own private repair sites; there would be no threat of software theft at this repair location,

and thus the security on the bricks at this point would be superfluous. Therefore, this

feedback prompted the "test mode" addition to the design, in which the check for a

system serial number different from the one on a brick's NVRAM would be disabled.

35

This way, the brick would still be able to function properly while being connected to

another component with a different system serial number.

Lastly, the support center operators had their own worries about the new system.

This new system added complexity for them because it increased the number of things

they had to update and maintain as part of the support center. However, other than

scrapping the entire system - which was not an option - this was an inevitable aftereffect.

Once this was made clear, the support center operators focused on details to minimize

their responsibilities and time constraints involving this system. This meant that certain

considerations had to be made to ensure that the system would be easy to update; this was

accomplished by the modular design of the system. The system was also designed to be

self-service; anyone could log into the Web site and obtain an authenticator without a

middleman. The only exception to this would be in the case that a field employee did not

have Web access, in which case the call center could be utilized. Moreover, no call center

operator would have to be specially trained to operate the authenticator generation

program; the Web site itself has a familiar interface and a simple, clear, and explicit

input/output mechanism (Appendix A shows screen shots of the Web site user interface

for the login process, as well as for key generation and for group management of the

access control lists).

Surprisingly, all of the concerns that were expressed dealt with non-security

issues. Although there were some requests to lessen the security efforts for purposes of

ease of use, no one requested even greater security measures than what was already

proposed here.

36

3.3 Evaluation of Final Product

After some scrutiny and testing, the final product was handed off to the next level

in the production cycle. The final product described here is a culmination of much input

from the personnel involved. Nevertheless, despite any allowances and changes made for

the convenience of the personnel, it can not be forgotten that the reason the system exists

in the first place is for security purposes. Therefore, it is necessary to evaluate the final

product in terms of its actual security.

3.3.1 Security Checkpoints

There are basically three distinct security checkpoints in this system. The first is

the login menu on the server side. The identity of the service person is authenticated via

their normal company Websafe password. This first checkpoint makes use of a pre-

existing system that is already in place for company employees who login to internal

Web sites with restricted access. The risks involved are the same as with any other

Websafe Web site, and are therefore acceptable for this system.

The second checkpoint involves the access control list for each specific brick.

This allows for certain users to have more power than others, and to limit the authority of

users who should only have access to a select group of bricks. Only those on the access

control list for a particular brick are authorized to access the system and generate the

signed message for that particular brick. This is a necessary step for the future if newer

versions of this system will require different access control lists not only for different

bricks, but for different functions as well.

37

The last, most involved checkpoint is with regard to the access of the system

serial number modification on a particular brick, or more specifically, the actual signing

and verifying involved to set a brick to "imprintable state." The user is authenticated if he

passes the first checkpoint login menu and successfully logs into the system on the

company server, thus meaning he is one of the certified service personnel. At this point,

the service person will then be authorized in the ACL to obtain an expiring authenticator

for a particular brick. The process of signing a "go to imprintable state" message with an

asymmetric algorithm is handled by the support center server. The digital signature from

the support center tells the brick that the request to change the system serial number is an

authentic one.

Figure 8.0: Security checkpoints for this system.

In designing a security system, the overall security of the system is limited by the

weakest of its components. Therefore, Websafe passwords should be kept confidential.

38

Websafe Checkpoint

Access Control List Checkpoint

Digital Signature Checkpoint

Superuser Menu to Set to State 0

The access control lists should be protected from tampering. In addition, the database of

private keys that lies on the support center server should also be properly safeguarded. A

break in the security of a system needs only be at one small point, even if the rest of the

system is secure, so care must be taken at the weakest links. In this case, that would

probably be the last check, not because it would be easy to crack the algorithm, but

because it is the most complex step, and the added complexity introduces more

possibilities for attack. Thus, the security of the system falls mostly on ensuring that this

step is properly executed.

3.4 Suggestions for Future Versions

In the future versions of this authentication system, there are a few changes which

can be implemented to make the system more robust and multipurpose. For instance,

more options can be added to the superuser menu that is accessed once a user is

authenticated. This means that if there are other restricted commands that need to be

added to the system, instead of adding new security protocols to the system, the new

options can just be added to the superuser menu, and accessed in the same way that has

already been established by this system for the "imprintable state."

3.4.1 Key Size and Algorithm

The size of the public keys are limited because they reside on a brick's EEPROM,

but larger keys might be possible in the future, which would make the system more

difficult to crack. In addition, the quality of the algorithm is also limited if the systems

are used abroad, as there are the aforementioned export regulations. At this point it does

39

indeed seem that this system will be used in servers both abroad as well as domestically.

However, this might end up not being a very important concern, as the U.S. government

is supposedly relaxing its export policy. So, if the time came that export regulations in all

relevant countries were significantly reduced, or if patents on certain algorithms expired,

then the system's modular design will be able to support the change to new algorithm

implementations. Even if the key size limit was not changed, implementation of different

types of algorithms might allow for a more efficient use of the space, since asymmetric

algorithms require the largest keys [4].

Key Sizes Needed for Different Algorithms

1000 - elel
..

le- %.... . .'elee-ele"'e" ".1 %1-11-leelle- e-...........................
.......................... X le.

. - -- eee -a e X
.......... %"lleelleelleel. -:-ee "le'lle'll"exle-lo-e- ** ': ... ---ee -eeelee e............. %leelle. le I-elle--elle. -:% %

900- lee.-
I'llee::- ell lell le -

-le. ell, XXI "I""I"'I",ell-1.11-1 ee: 0 Key Size for a Security Margin
.... . JOA9

.. -eeeeee s............. %.-............... of 7.13 MIPS Years
.......... e-.................................

800 e.
%
%

%

I. le e
......

leelleellee le I -'N"lleelleelleel
........... -e -e....

700
e

le. e -ell %%-eeI Xee.'ee Xee. xe. .11-leelleel.......................
%

600
eX:...

le-elle-lexel- ... e..

-
...................

.......

......... %lee. ... ele
......................50 0

ex-lex-elle'.el- e
..............

.....
...

e -ee- eeeee
e. .1. %

400 - ----------- llee- eel:.elee.el ------- 1-.. %% eeeee:-:%.*.':*-em *.' leelleelle'l, -,x:.. -:-eleell-eel

%-ee
l".

-- eee i i,:.eeeleeee 1*% ::. ... -e....' : --ell -li.e.%-.5. 'elele-e- X I" lxe.-e,%..- .eeeeeee --ze-leelex
300 X ... e- e. %1 "..'el..

... le% I'lleele................................. % , x x xX -eeeee.,..
.......... 11 elle,

%lex... -e: e: --eeexX X.%...eeee:_ee*:-.*e.: e- - -e
200- - eeeleele eel., eel -elle.welle. -leelleell. -:ee le e-...... ... :-..- ,% e" ..

":' : x-le elle e ee
% -:,eleelee. -e. -e.- - I .:eeeX* I. ee.-XXI e -.-eee

100- e. M = - ell-IX.-.e. ... ele, X:............ ell e...l'.. - .1------------ - - .: :.:.: : : " X.el % "Nee,
0 -

Symmetric Classical Asymmetric Subgroup Discrete Logarithm Elliptic Curve

Types of Algorlthnis

Figure 9. 0 Graph of algorithm type versus key size, for an estimated "cracking time" of 7.13 x

109 MIPS years. Data sourcefor graph isfrom [4.

3.4.2 Better Schemes for Randomness

Another point still under contention is the problem of making the keys random,

but easy enough to manufacture on a large scale. Randomness is important because it

40

means that the keys can be created in a non-deterministic manner that is difficult to

reproduce or reverse-engineer. Currently, the keys are created using the library

random () function, seeded with a combination of the current time as well as the batch

number of the key series.

In addition, another problem that has arisen is that if there are different

manufacturing sites, how does one determine if a public key has not been repeated

between the various sites? How would random, non-repeating keys be generated on a

large scale between different international manufacturing sites? The answer to this is that

this really isn't a significant problem, the likelihood of repetition would be so small, that

even if the two keys were exactly identical, the two systems with the identical keys would

probably not be located at the same site. More importantly, just because it is known that

there is a key that is sometimes reused, this does not make it easier for an attacker to

figure out which key it is, or what its corresponding private key is; this does not make the

system open for a known-key attack.

3.4.3 Arbitrary Precision Arithmetic Libraries

Another issue which is particularly problematic is the implementation of the

algorithm for large numbers. This is because mathematical operations must be performed

on numbers which exceed the usual 32 or 64 bits. To deal with this, arbitrary precision

arithmetic libraries must be used.

In the initial implementation of the security model, artificially small numbers

were used to deal with the fact that licenses for the arbitrary precision mathematics

libraries were not yet obtained. Rather than create new arbitrary precision mathematics

41

libraries and introduce the possibility of more errors into the system, it made more sense

to just use existing libraries for the system. However, the licenses for the libraries could

not be obtained in time for the purposes of the original prototype development cycle, and

will be added in a later cycle.

3.4.4 Proxies

The authentication of personnel calling into the support center rather than logging

into the Web site has posed the aforementioned problem of the security of Websafe

passwords. Since some service people are uncomfortable with the idea of telling their

Websafe password to a support center operator, the issue of proxies arises. One quick

way of resolving this might be to have those service people set up a "phone-safe"

password ahead of time to deal with this, but this issue probably needs to be explored

more closely to deal with the cases where a phone-safe password was not pre-determined.

In addition, this proxy usage could be reflected in the log, so that both the operator and

the field personnel are recorded as having obtained authorization to modify the system

serial number.

3.4.5 Direct Authentication from Web to the Brick

As already stated, the ease of use for the actual every day users of the system is an

important factor to consider. One suggestion for making the system even more easy to

use for SGI field personnel would be to eliminate the step of entering the authenticator

into the brick -- that is, to go from the Web page displaying the authenticator straight to

the verification input field for the brick without having to write it down and manually

42

enter it. This might be accomplished a few ways. First of all, it is relatively easy to just

make the system allow for the cutting and pasting of the authenticator from one field to

the next. However, the brick itself might not have Web access. In this case, it might be

more difficult to come up with a way for the Web interface (with the authenticator) to

connect to the brick interface. Any modifications for this might first involve a check for

the type of connection between the interfaces, and then some sort of "push" technology,

depending on the constraints of the connection. Ultimately, though, this might not be

possible if the brick and system with Web access are completely separated (due to

firewalls, connection ports, etc.).

3.4.6 Clock Security

One specific area of concern is the security of the clocks that will be running on

the bricks and the servers. The time window on the authenticators will not matter if the

time on the clocks can be easily changed. If that were possible, then all a hacker would

need to do would be to turn back the clock a few hours and continue using the otherwise

expired authenticator, essentially making it a static authenticator. A few suggestions to

fix this would be to make the time unchangeable on the bricks, or to limit the allowed

time change to a very small amount, such as an hour or less. Another suggestion would

be to have all the clocks synchronized to GMT, or to each other (although these are two

features that are currently unimplemented). Lastly, one other idea would be to just require

authorization; the service person tells the central system what time to use.

43

4.0 CONCLUDING REMARKS

The move from hardware interlocks to software interlocks is a wise choice both

economically as well as for efficiency, but it is one that must be properly safeguarded and

protected. The need for system serial number integrity is necessary for software licensing,

and ultimately, it is important for the prevention of software theft. However, the problem

is not a trivial one to solve.

The idea of a one-time use expiring authenticator in conjunction with digital

signatures created by a public key cryptosystem seems to be a good fix for the problem at

hand. It is fairly safe, yet not so stringent that it will tax the existing system

infrastructure, and it will be a fairly simple system to use, operate, and maintain. The

proposed security system will do away with the idea of static authenticators, but it will

not make the generation of a new batch of authenticators a great chore for the service

person.

The proposed plan also nicely makes use of the resurrecting duckling model. The

brick will be owned at different points in time by different individuals. The different

levels of permissions and the system of temporary ownership are both ideal for this type

of situation, since the spare bricks can be swapped between different systems as needed.

The imprinting feature will also allow for a more seamless approach to system serial

number modification, and will reduce errors from typos and unlicensed serial number

theft.

Lastly, the test mode will also make the system easy to implement in

manufacturing and repair sites where our threat model is absent, and the Web interface

makes the system easy for field personnel to use.

44

The system is currently being implemented in the newest breed of high-end

servers coming out of SGI. Besides some initial concerns as mentioned early, there have

yet to be any more major problems with the system design of the authentication system at

the company; everything seems to be going well without fail.

45

5.0 ACKNOWLEDGMENTS

There are some people whose guidance, support, encouragement and inspiration

helped to make this thesis a reality. First and foremost, I have to thank my thesis

supervisor, Jerome H. Saltzer, who managed to impart good advice and guidance, no

matter if he was miles away in Idaho or in the same 6.033 classroom!

Next I would like to thank Marty Deneroff and all the people involved in VI-A at

SGI. As my manager as well as the VI-A company representative for SGI, Marty was the

one who helped me find a thesis topic, and he provided the resources to accomplish this

momentous task.

On a more personal note, I'd also like to thank those who encouraged me and kept

my spirits up throughout the long process. I have to thank my parents, Bill and Lily Tse,

for providing inspiration and always believing in me, as well as my sister, April Tse, for

her support and "sympathy pains" as she struggled through the Masters thesis process at

the same time alongside me. I also have to thank Jeremy Lin and Joyce Lee for providing

some perspective and useful advice as past MEngers, and I'm especially grateful for their

efforts to ensure that my life in CA did not consist entirely of my research at SGI! Lastly,

I'd just like to thank all my friends, both in CA and at MIT, who patiently listened to me

vent about my thesis and who encouraged me to keep going - there definitely is a light at

the end of the tunnel!

46

............ ---------------------

... P i
.......... X.... ..- ---i -i. - -..- -*- - iii:i:' -:.. " - X,: X*: :,-

......
K......... 3 40.11%,....

§ 'M
..................................

110,11,11 4.010MM,
...........

U-SeMOM:
... I M ------------------------------

Websaf e Pas s.. Drd,
------------------ ---

....... --------
.......................

..........
...

Figure 10.0: Screen shot of Websafe login menu.

Appendix A: Screen shots of Web site user interface

OnKne Authentication.
110iongIng -System Serial Numbers on Bricks

47

6.0 APPENDICES

Online Authentication System:
Changing System Serial Numbers on Bricks

Mease eater Brick D Number

iure 11.0: Screen shot oJ brick input menu.

48

TEMPORARY ACCESS CODE

Your temporary authenticator is:

7351227-109098

Pkase note tha th s pas word wi ewin 10 hours

49

Figure 12.0: Screen shot of temporary authenticator display.

............... islhiin i

i4Am~ a~flt r~stt............m.t

Online Authentication System:
Changing System Serial Numbers on Bricks

EFOPR. You aeed to provide a valid BrickID Number Please try again.

Please enter Brick ID Number:

--- -------- ----------- ---------

50

.. ee. e.
................ x N

1- -ei-e.
.................
...............

.

Figure 13. 0: Screen shot of invalid login.

- ---------

. . ..- W .- - . .- .-- ""

aw ip0.

IJtemJ~swbal C~o; Stnia gg_____
~ 4................

Users Ust

flece eera username and the corresponding group satus.

!!sern90

GrIu #FE

51

Figure 14.0: Screen shot of group management for access control lists.

$main32%ilillEGEEG........... .id~ omaezwwi~aoza~a-a+:~zzzzwzzaetwee ee a m

,Group Permissions list

Pkeas updace group penmissions lst by enterug the group#, foUowed by the range (first and &rn brick) of the

b&ock of bricks tkc the group is Mahorized for Plece note that if ordy oe brick is in the racge, you can leave
7.ast bric k blank

Group#

First brickin range to e authorized

Last brick in range to be authorized

-..+

[s

Figure 15.0: Screen shot of group permissions management for access control lists.

52

Key Generation System

Please enter number of new keys to be-generated:

-0/1 *M-E-

............................... 0 '..........................

Figure 16.0: Screen shot of key generation nwnu.

53

7.0 REFERENCES

[1] Anderson, Ross J. and Frank Stajano. "The Resurrecting Duckling." in Christianson,

B. et al., editors. Security Protocols: 7th International Workshop Proceedings published

as Lecture Notes in Computer Science 1796, Springer-Verlag, 2000.

[2] Anderson, Ross J. "Why Cryptosystems Fail." Communications of the ACM 37, 11:

November 1994, pages 32-40.

[3] Garfinkel, Simson. PGP: Pretty GoodPrivacy. O'Reilly & Associates, Inc.: 1995.

[4] Lenstra, Arjen and Eric Verheul. "Selecting Cryptographic Key Sizes." Public Key

Cryptography Conference: 2000.

[5] Menezes, Alfred J., et. al. Handbook ofApplied Cryptography. CRC Press: 1997.

[6] Pfleeger, Charles P. Security in Computing. Prentice-Hall: 1989.

[7] Schneier, Bruce. Applied Cryptography. John Wiley & Sons, Inc.: 1996.

[8] Stallings, William. Cryptography and Network Security. Prentice-Hall: 1999.

54

