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One of the main obstacles to the implementation of adaptive controllers for safety critical 
applications is the absence of analytically justified Verification and Validation (V&V) 
techniques for such systems.  This paper seeks to provide the beginnings of a theoretically 
motivated V&V technique for adaptive controllers in the context of controlling uncertain 
flight vehicle dynamics.  A set of tools for characterizing the transient properties of direct 
adaptive systems is developed using a combination of Lyapunov theory, asymptotic analysis, 
and linear systems theory. A Lyapunov approach is used to prove stability and global 
properties.  Asymptotic analysis allows for the behavior of the nonlinear adaptive system to 
be practically characterized by a Reduced Linear Asymptotic System (RLAS).  Techniques 
used in linear systems theory then can be applied straightforwardly to the RLAS.  The tools 
are demonstrated on a simulation of the short period mode in aircraft dynamics and on a 
full nonlinear six degree of freedom aircraft simulation. 

I. Introduction 

T HE application of adaptive control to aircraft promises benefits in safety and robustness and is considered to be 
one of the main enabling technologies for Unmanned Air Vehicles (UAV's). Early attempts at adaptive flight 

control used controllers with unproven stability properties, sometimes with disastrous consequences; for example 
the fatal crash of the NASA X-15 in November, 1967. As a result, much of the theoretical work up to the present 
time has been rightly focused on stability of adaptive architectures. Currently, there exists an assortment of stable 
adaptive control strategies, as well as techniques for preserving stability in the presence of unknown, bounded 
disturbances.1,2 In addition, recent military interest in UAV’s has caused a surge of adaptive flight control research.  
UAV’s provide an exciting test ground for experimental control techniques. It is reasonable to expect that the 
viability of adaptive flight control systems must be proven in unmanned vehicles prior to their implementation in 
manned aircraft, where safety is a much more critical consideration. For this reason, the development of stable and 
robust adaptive flight control systems for UAV’s is a crucial gateway to the broader acceptance of adaptive control 
strategies for other safety critical applications. 

Three common adaptive architectures have been investigated in conjunction with aircraft control. Perhaps the 
most promising architecture is direct adaptive control, in which control parameters are adapted based on some 
performance error. Direct adaptive strategies were explored in Refs. 3-6. Another common adaptive control 
architecture, indirect adaptive control, uses a controller derived from a plant model, while the model is continuously 
updated using system identification techniques. A notable application of an indirect adaptive flight controller is 
treated in Ref. 7 using a multiple model approach. Finally, neural network based flight controllers have also been a 
popular topic of research.8,9 Such controllers use one or more networks of basis functions, which are adapted online 
using learning algorithms. Each of these control techniques has been investigated in myriad embodiments and 
variations.  In addition, methods such as Training Signal Hedging (TSH) have been developed to overcome the real-
world problem of saturating actuators.10-12 In Ref. 13, TSH was used to develop a direct-adaptive controller for 
simultaneous control allocation and reconfiguration. 
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Based on this substantial body of research, it can be argued that the study of adaptive flight control systems has 
reached sufficient maturity to warrant research into more practical problems of integrating adaptive controllers with 
aircraft systems. Currently, the chief practical obstacle to transitioning adaptive flight controllers into aerospace 
applications is an inability to analytically assert that the closed-loop system will have adequate stability / robustness 
margins, acceptable transient behavior, and will provide the necessary disturbance rejection properties. This is not a 
trivial task because the dynamics of an adaptive system in closed loop are nonlinear. For example, there is currently 
no simple analytical technique to determine whether or not a control signal produced by a given adaptive controller 
will exceed the bandwidth of control actuators.  Similarly, there is no simple technique to determine whether or not 
the response of a given adaptive control system will produce frequencies that may interact with, for instance, 
unmodelled structural modes. Such concerns can be grouped under the umbrella of Verification and Validation 
(V&V) and are obviously of paramount importance in application to aircraft and other safety critical systems. 
However these concerns have received curiously little attention in the adaptive control literature. Researchers have 
generally relied on extensive simulation and trial and error to produce adaptive control systems with suitable 
transient properties.   

The V&V techniques that are currently in use for modern aircraft systems14-17 are unsuitable for adaptive flight 
control systems because they rest on the assumption that the control system is linear (at least locally). The need for 
completely new V&V techniques is expanded on in Refs. 18 and 19, and some necessary features of a successful 
V&V procedure are laid out in Ref. 20. Some specific techniques have been proposed for neural network based 
controllers. For example, the method in Ref. 21 relies on bounding neural network outputs using Lipschitz 
conditions imposed on the chosen set of basis functions, and a second method employs Support Vector Machines 
(SVM) to determine if a neural network will produce an output that is out of specification.22 These methods are 
specific to neural network based adaptive control systems, and it is difficult to envision their use in an industry 
setting due to their complicated and theoretical nature. 

The contribution of this paper is to introduce a set of tools based on Lyapunov theory, asymptotic analysis, and 
linear systems theory for analyzing the transient behavior and disturbance rejection properties of adaptive systems. 
At the same time, the tools provide practical guidelines for tuning adaptive controllers to satisfy predetermined 
performance criteria. The focus of this paper is limited to the simplest embodiment of a direct adaptive controller: 
Model Reference Adaptive Control (MRAC) using state feedback for a single input plant.  In section II, the problem 
is introduced and its scope is discussed. In section III, the analysis tools are derived and their relevance to the 
problem is proven. Section IV applies the tools to the design and analysis of an adaptive flight controller for a linear 
short period dynamics of a fixed-wing aircraft with various uncertainties. Finally, in section V, the tools are applied 
to a full, nonlinear, six degree of freedom (6-DoF) aircraft simulation, and their viability is demonstrated as a 
practical V&V procedure for safety critical adaptive systems. Conclusions and directions for future research are 
given in section VI. 

II. Problem Statement 

A. Model Development 
The problem under consideration is the control of an uncertain, states accessible, nonlinear plant of the form 

 , ),( UXfX p=

where , and U . For the purposes of control, the nonlinear plant is approximated by a schedule of 
Linear Time-Invariant (LTI) systems of the form 

nX ℜ∈ ℜ∈

 padpp dbxAx ++= δ , (1) 

 where 0XXx −= , and Uad 0U−=δ , 

and where, , , and d  are unknown. Xnn
pA ×ℜ∈ n

pb ℜ∈ n
p ℜ∈ 0 is a desired equilibrium state and U0 is an 

unknown constant “trim” input that maintains the plant at X0 in the absence of the disturbance dp. Specifically, X0 
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and U0 satisfy the relation b .  It is desired that the plant follow a known reference model, which itself 
is nonlinear and of the form 

00 XAU pp −=

ℜ∈

m

0U mm −=

ℜ∈dθ

QPAm −=+

*T
xp Ab =θ

 , ),( mmmm UXfX =

where , and U  is a bounded input from a pilot or a guidance/navigation system.  Moreover, the 
reference model is also expressed as a schedule of known LTI systems with a known interpolation algorithm.  Each 
LTI reference model can be written as: 

n
mX ℜ∈ m

 cmmmm bxAx δ+= , (2) 

 where 0XXx m −= , and mc U 0m=δ , U−

It is assumed that Am is Hurwitz, X0 is the same equilibrium state used in Eq. (1), and Um0 is the necessary trim input 
for the reference model, so that b . 0XAm

 In this work, each LTI plant-reference model pair (Eqs. (1) and (2)) will be treated separately, as is common in 
flight dynamics.  It is assumed that the above scheduled representation of a nonlinear system is adequate for the 
problem at hand and questions pertaining to inaccuracies of this representation will not be considered in this paper.  
The representation described above is typical of flight vehicle dynamics. Note that Eq. (1) may include physical 
dynamics as well as feedback dynamics imposed by the presence of a nominal controller, and the state x may include 
controller states, such as integrators, as well as other physical parameters. 

B. Direct Adaptive Controller 
 We would like to design a control input δad(x,xm,δc) such that 

 0)(lim =−
∞→ mt

xx . (3) 

Let the input, δad, be given by the control law 

 , (4) ωθδ T
ad =

 where [ ]ω = , and T
cx 1δ [ ]TT

dx θθθθ δ= , (5) 

and , n
x ℜ∈θ ℜ∈δθ , and  are control gains.  The control gains are adjusted according to the adaptation law 

 , (6) PebT
mωθ Γ−=

where e = x - xm is the system tracking error, P is the unique symmetric positive definite solution of the algebraic 
Lyapunov equation , with Q > 0. Also, in (6), Γ > 0 is a positive definite symmetric matrix of 

adaptation rates.  Assuming that there exist ideal gains , , and  such that 
PAT

m
*
xθ 0* >δθ

*
dθ

   and b  (7) ,pm A− ,*
mp bb =δθ ,* ddp −=θ

the controller in Eq. (4) with the control law in Eq. (6) can be shown to achieve tracking as specified in Eq. (3).  
Equations (7) are known as the model matching conditions.  The control gains can then be redefined in terms of the 
ideal gains and gain errors as 
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 ,~ *
xxx θθθ −=  ,~ *

δδδ θθθ −=  and ,~ *
ddd θθθ −=  (8) 

Substituting Eqns. (1), (2), (4), (6), (7), and (8), and recalling that e = x - xm gives 

 , (9) 











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



Γ−
=


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



θω

ωλ
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δ ~
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~
e

Pb
bAe

T
m

T
mm

where, 
*

1

δ
δ θ
λ =  , and [ T

d
T

x θθθθ δ ]~~~~
= . Equation (9) represents the error dynamics of the closed loop adaptive 

system. Notice that the error dynamics are nonlinear and time varying due to the presence of the linear regressor 
vector  ω. The problem considered in this paper is how to design adaptation gains Γ and Q in Eq. (9) to produce an 
adaptive response for a given specification, and, once designed, how to verify that the response is indeed within the 
given specification. 

III. Adaptive Control Design/Analysis Tools 

A. Tool Development 
The tools are developed in two theorems which are then proven. The first theorem states the well known 

properties of MRAC systems based on Lyapunov analysis. The second theorem introduces the Linear Asymptotic 
System (LAS), which emerges from an asymptotic analysis of Eq. (9). The LAS is then simplified to give the 
Reduced Linear Asymptotic System (RLAS). 
 
Theorem 1 
 The error dynamics in Eq. (9) have the following properties: 

i) The plant state x is bounded. 
ii) The controller gains θ are bounded 

iii) . 0lim =
∞→

e
t

 
Proof of Theorem 1 
 Consider the Lyapunov function candidate θλθ δ

~~ 1−Γ+= TT PeeV . Taking time derivatives along the system 
trajectories gives V . This implies that V is bounded, and hence e and 0≤−= QeeT θ~  are bounded. Since Am is stable 
and δc is bounded, xm is bounded. This, in turn, implies that x and θ are bounded and i) and ii) are proved. Now, x 
bounded and δc bounded imply that ω is bounded; and Am stable, e bounded, and θ~  bounded imply that e  is 
bounded. This implies that V  is bounded. Therefore, by Barbalat’s lemma, lim , which directly implies iii). 0=

∞→
V

t

□ 
 
Definition 1 
 A dynamics, z = , is said to converge to another dynamics, )( 11 zf )( 22 zgz =  if, given anε ,  T such that ∃ ∀  
initial condition  and , )( 01 tz )( 02 tz

 ε≤− )()( 21 tztz   Ttt +≥∀ 0 . 

Theorem 2 
 For a constant input, δc, the error dynamics in Eq. (9) converge to the dynamics  

 , (10) 

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a e
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where  is a known constant, and 2+ℜ∈ n
cmω ℜ∈δλ  and  are unknown bounded constants. n

cx ℜ∈θ
 
Proof of Theorem 2 
 The linear regressor, ω, can be written  

 me ωωω += ,   

 where [ ]TT
e 00=ω  and e cmx 1δ=mω . [ ]TT

With δc constant and Am stable, ωm converges exponentially to a constant ωmc, where 

 , and .  [ ]Tcc
T
mcm x 1δω = cmmcm bAx δ1−−=

Therefore the error dynamics in (9) converge exponentially to a new error dynamics which can be expressed as 
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bAe

ω
θωλ

θω
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δδ

~
~

0~ , (11) 

where . Notice that Eq. (11) is time-invariant and nonlinear.  It has been shown that[ TT
tt

T
e e 00=ω ] 23 for a 

constant input, δc, the parameter error tθ
~  converges to an unknown constant vector . Using 

this fact and Theorem 1, the dynamics in (11) can be expanded in a Taylor series about the equilibrium point 
 and 

[ ]Tcdcc
T
xc θθθθ δ=

0=te ct θθ =
~  to give 

 
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Pb
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θ
θ

θω
ωλθλ

θ
δδ , (12) 

where f and g contain only second order terms.  Using Definition 1, Theorem 2 follows directly. 
□ 

 
 The properties of chief interest for V&V are the asymptotic state error dynamics, ea, and the input dynamics, δad.  
Define the asymptotic input error dynamics to be 

 ac
T
ma θωδ ~~

= .  (13) 

Substituting (13) into (10) and simplifying gives 

 , (14) 
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
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where γ is defined to be the known scalar . Equation (14) is denoted as the Reduced Linear Asymptotic 
System (RLAS). Notice that the LAS (Eq. (10)) has 2n+2 eigenvalues, n+1 of which are stable and the remaining 
n+1 are identically zero. The RLAS has n+1 stable eigenvalues, which are equal to the n+1 stable eigenvalues of the 
LAS. The RLAS is a simple, linear, compact approximation to the dynamics of the closed loop adaptive system and 
is the main tool used in this paper to predict the oscillatory behavior of the adaptive system for design or verification 
purposes.   

cmc
T
m ωω Γ
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B. RLAS Design Procedure 
The optimal selection of Γ and Q in Eq. (9) for a given set of performance metrics is the eventual goal of our 

research. The RLAS is useful toward this end because Γ and Q can be designed for the RLAS using linear design 
techniques to meet the given performance metrics. The same Γ and Q can then be applied to the adaptive system, 
which is proven to converge to the RLAS, and therefore, will satisfy the performance metrics as well, after the 
transient delay. In this paper we take a first step toward this goal and find Γ and Q by a combination of analysis and 
numerical simulations. 

In order to find the optimal Γ and Q, the unknown quantities λδ and θxc in Eq. (14) must be estimated. λδ, the 
control effectiveness uncertainty, was chosen as an example of an extraordinary failure, though in practice, expected 
bounds on λδ would have to be determined based on the specifics of the aircraft and the mission. The asymptotic 
gain error, θxc, was estimated in an iterative process in the following way. The unknown value θxc was set to zero in 
the RLAS (Eq. (14)) and suitable values of Γ and Q were determined using the root locus method. The trajectory of 
the adaptive dynamics (Eq. (9)) was then found through numerical simulation using these values of Γ and Q, and a 
new value of θxc was determined. This process was repeated until a value of θxc was converged upon. In practice, 
only one or two iterations were required since it was found that the RLAS dynamics were typically not sensitive to 
variations in θxc. This observation can be verified with a root locus of the RLAS with respect to each of the elements 
of θxc. Currently we are investigating methods for analytically estimating θxc, or bounding its effect on the RLAS, to 
avoid this iterative procedure. 

We now discuss how Γ and Q are determined for a given value of θxc. It is known in a qualitative sense that 
increasing Γ and Q will cause more vigorous oscillation and less overshoot in an adaptive system. The proposed 
RLAS design approach allows these intuitions to be formalized. In the RLAS the pilot/navigation system input, δc, 
and the adaptive gain Γ appear as a single scalar, γ. A root locus of Eq. (14) with respect to γ can be used to verify 
the intuition that increasing Γ increases response frequency. Likewise, the RLAS gives the additional insight that the 
response frequency is roughly proportional to the square of the input signal δc. Thus if one wishes to limit the 
frequency of the adaptive response, one must have some control, or at least some known bounds, on the input signal. 
The effects of the elements of the vector b  can be determined similarly, noting that increasing these elements 
leads to a more oscillatory response. Therefore, γ and b  can be designed for the RLAS using the common arsenal 
of linear design techniques, such as the root locus method, Bode plots, or Nyquist plots. These can then be used to 
back calculate Γ and Q straightforwardly, taking care that both P and Q in the linear Lyapunov equation are positive 
definite. For the studies in this paper Γ and Q were determined using the root-locus method to obtain suitable 
eigenvalues for the RLAS. In particular, these values were chosen so that the oscillatory mode of the RLAS 
corresponded to a given design specification, while all 1

PT
m

PT
m

st order modes were sufficiently fast not to inhibit response 
time. 

C. Design Verification 
 The RLAS can further be used to verify the adaptive design by comparing its trajectory to that of the adaptive 

system. For this procedure, we explicitly simulate the response of the RLAS and the adaptive system under some 
known failure (or uncertainty) to ascertain how close their responses are and how quickly they converge. The RLAS 
was formulated as previously (Eq. (14)) using the same values of λδ and θxc. To give a meaningful comparison with 
the trajectory of the adaptive system, the RLAS trajectory must be added to the reference model trajectory to obtain 
a corresponding linear “state” trajectory. For this purpose, an appropriate set of initial conditions ea(t0) and )(~

0taδ  
for the RLAS must be calculated from the corresponding conditions of the adaptive system at t0. The initial error, 
ea(t0) is easily found from the initial states of the adaptive system and reference model as ea(t0) = x(t0) - xm(t0), while 
the initial input error )(~

0taδ  is found from ))(()(~ *
00 θθωδ −= tt cma . Comparison of the trajectories can then be used 

to infer whether the adaptive system satisfies the design criteria. In the following sections we will apply such a 
design/verification methodology to design an adaptive controller with suitable transient properties for a linear model 
of the aircraft short period mode and for a full nonlinear 6-DOF aircraft model. 

IV. Application to Aircraft Short Period Dynamics 
In this section, the usefulness of the RLAS approach is demonstrated using linear uncertain short period aircraft 

dynamics with a state feedback nominal controller. The adaptive controller is applied to the closed loop nominal 
system in an architecture that will be referred to as adaptive augmentation. The design and verification capabilities 
of the RLAS are then demonstrated in a simulation environment.  
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A. Model and Nominal Controller Development 
From Ref. (24), short period dynamics of a fixed-wing aircraft with zero bank angle can be expressed as: 

 . (15) )(
0

trm
qq

q d
MqMM

LL
q

+







+















 −−
=








δλ

α
λλ

α

δ
δ

αα

α

In Eq. (15), α is the aircraft angle of attack (AOA), q is the body pitch rate. The scalars λδ > 0, λα, and λq, represent 
uncertainties in the parameter values, and dtrm denotes an unknown trim input component. In addition, it is assumed 
that the aircraft state vector, x = [α q]T, is available on-line for control purposes. The rest of the parameters represent 
the so-called aircraft stability and control derivatives. The values of the stability and control derivatives used in this 
example are  

 , , 6582.0=αL 9705.0−=qL 3105.3−=αM , 4741.1−=qM , and . 6764.3−=δM

They were found from a linearization of a nonlinear aircraft model, (see section V for details). The dynamics in Eq. 
(15) can be expressed compactly as 

 )( trmdbAxx ++= δλδ . (16) 

Likewise, let the dynamics without uncertainty (i.e., Eq. (15) where λα = λq = λδ = 1, and dtrm = 0), be denoted 

 δspspspsp bxAx += . (17) 

A nominal controller is designed assuming no uncertainty as in Eq. (17) and applied to the uncertain dynamics in 
Eq. (15).  The Linear Quadratic (LQ) optimal control design technique25 is straightforwardly applied to the 
dynamics in Eq. (17). A state-feedback controller architecture is used for the nominal controller so that 

 , (18) c
T
xnom kxk δδ δ+=

where kx = [kα kq]T. The feedback gain, kx, is found by minimizing the cost function 

 ∫
∞

+=
0

)((
2
1 xdtRkkQxJ x

T
xJ

T , (19) 

subject to the dynamics in Eq. (17). A suitable closed loop response is found with QJ = diag([2 1]) and R = 1 to give 
the feedback gains k . The feed forward gain, k[ T

x 7434.02816.0 −−=

αδ g/1=
] δ, is designed to produce angle of attack 

following so that k , where [ ] [ ] spxspsp
T bkbA 1−+−=qggα

 is the steady state gain of Eq. (17) with the 
feedback component kx.  Then the closed loop dynamics of Eq. (17) with control law (18) can be written 

 cmmmm bxAx δ+= , (20) 

where Am = (Asp + bspkx) and bm = bspkδ.  Defining the input to the actual dynamics (Eq. (16)) to be δ = δnom + δad, the 
actual closed dynamics becomes: 

 ( ) )( trmadcx dbbkxbkAx ++++= δλδλλ δδδδ , (21) 

B. Adaptive Augmentation and RLAS 
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Assume that we desire for the uncertain closed loop system (Eq. 21)) to follow the closed loop system without 
uncertainty (Eq. (20)).  We can use Eq. (20) as a reference model for an adaptive controller designed as in Eqs. (4) 
and (6). The combined nominal and adaptive architecture is referred to as an adaptive augmented controller. Using 
Eqs. (4)-(6), and (15)-(21), the error dynamics can be represented as 

 , (22) 




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where *~ θθθ −= , and , and where [ ]Ttrmq
***** θθθθθ δα= ( ) ( )

δδ

δδααα
α λ

λλθ
M

MkM −+−
=

11* ,  

( ) ( )
δ

δθ
M

q =
*

δλ
λ

M
kM qqq +−1 δλ−1 , 

δ

δδ
δ λ

λθ )1(* −
=

k , and θ . A block diagram of the adaptive augmented 

system is shown in Fig. 1.  

trmtrm d−=*
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Figure 1. A block diagram showing the augmented adaptive system for the short 
period dynamics with multiple parameter uncertainties is shown. 
 
 be seen directly from Eqs. (14) and (22) to be 
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ign/Verification Procedure 
 procedure described in section IIIB was carried out using the error dynamics in Eq. (24) and the 
3). The RLAS was tuned to produce a response within the military specification for the short period 

y and damping ratio (MIL-F-8785C).26 This specification requires that, for Category A flight phase 
d maneuvering) and Level 1 flying qualities (qualities adequate for the flight phase) the allowable 
ping ratio, ζ, and natural frequency, ωn, are 

35.135.0 ≤≤ ζ  and sradsrad n /39.8/653.0 ≤≤ ω  (24) 

cedure resulted in  Γ = diag([100 100 100 1]) and Q = diag([2 1]) which give the damping ratio ζ = 
ral frequency ωn = 4.95rad/s, and the 1st order time constant τ = 3.57s.  
ilure was simulated by setting, the uncertainties to be λα = -1, λq = .9, λδ = .7, and dtrm = .1. In Figs. 2a 
nses to a random amplitude square wave input of the adaptive system and the nominal system are 

 failure.  It can be seen that the nominal system becomes unstable whereas the adaptive system is 
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stable and tracks the reference model asymptotically.  The response of the adaptive system clearly provides suitable 
flying qualities using the RLAS design methodology. 

  
 The verification of the design was carried out according to the procedure in section IIIC. In Figs. 3a-b, and Figs. 
3c-d, the trajectories of α and q are shown for t = 0s to t = 5s, and for t = 80s to t = 85s respectively, for both the 
adaptive system and the RLAS for the failure described previously. These figures show that the adaptive system 
converges to the RLAS and hence meets the specification (Eq. (24)). Even during initial transients (Figs. 3a and b) 
the oscillatory characteristics of the adaptive system are well approximated by the RLAS. 

 

 
2a. 

 
2b. 

 
Figure 2. The α and q trajectories of the adaptive augmented system are shown with 
uncertainties λα = -1, λq = .9, λδ = .7, and dtrm = .1. The RLAS was used to design a suitable 
adaptive response to a random amplitude square-wave input. The trajectories of the 
reference model and the nominal system are shown for comparison. Note that the nominal 
system is unstable. 
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   3a.      

           3c.      
 
Figure 3. Close-ups of the α and q trajectories f
(Figs. 3a and 3b), and t = 80s to t = 85s (Figs
tracks the RLAS closely. The RLAS was design
ωn ≈ 5, and one 1st order mode with τ ≈ 3.6s for 
specifications. 
 

V. Application to Nonlinear, Six Degr
A more realistic application is considered in this sectio

applied to a full-nonlinear 6-DoF aircraft simulation.  An L
control the short period motion of the aircraft using the uncer
adaptive loop is closed around the closed loop nominal sys
described in the previous section. Simulation results are
usefulness of the RLAS.  

A. Model and Nominal Controller Development 
 A nonlinear 6-DoF simulation of a large transport air
simulation practices.24 The aircraft was trimmed with wi
dynamics were decoupled. The controllers (both the LQ no
were designed using the short period approximation as a pl
Care was taken to ensure that the short period approximation
aircraft was linearized to produce the longitudinal dynami
derive the second order short period model of Eq. (17) from
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          3b. 

           3d. 

rom Fig. 2 are shown here from t = 0s to t = 5s 
. 3c and 3d). The nonlinear adaptive system

ed to have one oscillatory mode with ζ ≈ .5 and 
a response well within military flying qualities 
 

ee of Freedom Aircraft Dynamics 
n, in which the design and verification techniques are 
Q nominal controller with integral action is designed to 
tain, linear short period approximation in Eq. (17).  The 
tem to produce the adaptive augmented architecture as 
 presented to verify the design and demonstrate the 

craft was implemented according to accepted aircraft 
ngs level to ensure that the longitudinal and lateral 
minal controller and the outer loop adaptive controller) 
ant model to represent the nonlinear aircraft dynamics. 
 was valid over the trajectory of interest. The nonlinear 
cs. Then the short period approximation was used to 
 the fourth order longitudinal model. The short period 
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dynamics in Eq. (17) serve as the plant model for the LQ nominal controller and the adaptive controller to be used 
with the full nonlinear aircraft. 

The LQ control design technique25 is straightforwardly applied using a proportional-integral controller 
architecture to give zero steady state error to a step input command. The uncertain dynamics in (15) are expanded to 
include an integrator to give 

 , (25) ctrm
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where eI is the state of an AOA integrator and . Equation (25) can be rewritten in the compact form ad
T

x xk δδ +=

cmtrm bdbAxx δδλδ +++= )( , and without uncertainty the dynamics are denoted 
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or, compactly, cmmm bxAx δ+= . The feedback gain, kx, is found as before by minimizing the cost function in Eq. 
(19) subject to the dynamics in Eq. (25) with no parameter uncertainty. A suitable closed loop response was found 
with Q = diag([1 1 10]) and R = 1 to give the feedback gains kx = [1.2996 0.5305 3.1623]T. The controller described 
above was applied to the nonlinear aircraft. Figures 4a and b show the response of the closed loop nominal system 
without uncertainty (dashed line) to an elevator doublet. 

B. Adaptive Augmentation and RLAS 
The system in Eq. (25) is augmented with adaptation as in Eqs. (4) and (6), using the state error vector e = [(α – 

αm)  (q – qm)  (eI – eIm)]T.  The resulting error dynamics can be expressed 
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where ω and  are as defined previously in Eq. (5). As before, the reference model is chosen to be the closed-loop 
dynamics without uncertainty as in Eq. (26). The RLAS of the closed loop aircraft with optimal PI controller and 
adaptive augmentation can be seen directly from Eqs. (14) and (27) to be  
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where , and cmc
T
m ωωγ Γ= cmω  and 

cxθ  are as defined previously. 

C. RLAS Design/Verification Procedure 
As before, the design task was to provide adaptive augmentation while still meeting the military specification for 

short period frequency and damping (Eq. (24)). The design procedure described in section IIIB was employed. It 
was found that for Γ = 100*diag([1 1 1 1 .0035]) and Q = diag([10 .5 .5]) the RLAS had a second order mode with 
damping ratio ζ = 0.492, and natural frequency ωn = 1.48rad/s, and 1st order modes with time constants τ1 = 0.294s 
and τ2 = 124.8s. The second 1st order mode, although it is slow, has no noticeable adverse effects on the RLAS 
response. 
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 A moderate failure and a severe failure were simulated with the nominal and adaptive controllers to compare 
their performance (see Figs. 4a-d). The moderate failure, parameterized by λα = λq = 1, λδ = .5, dtrm = 0.1563, and the 
severe failure, parameterized by λα = -0.226, λq = -0.470, λδ = 0.5, dtrm = 0.2623, were introduced at t = 7s. It was 
observed that the performance of the adaptive system (solid line) was similar to that of the nominal LQ controller 
(dotted line) for the moderate failure, but for the severe failure, the adaptive augmented system maintained stability 
and tracking while the system without adaptation diverged.  This shows that the adaptive controller clearly 
outperforms the nominal controller. 

 
 
a
t
c
f
o
m
d
b

 

 
e
o

 
s  
 

  
       4a.                4b. 

        4c.                4d. 
Figure 4. The response of the LQ controller (nom) and the adaptive augmented controller (ad) to two
levator doublets are shown for a moderate failure (Figs. 4a and b) and a severe failure (Figs. 4c and d)
ccurring at t = 7s. The failures are parameterized by λα = λq = 1, λδ = .5, dtrm = 0.1563 and λα = -0.226, λq = -

0.470, λδ = 0.5, dtrm = 0.2623 respectively. For the moderate failure, the responses of the two systems are
imilar, whereas for the severe failure, the system with the LQ controller becomes unstable while the

adaptive augmented system maintains stability and tracking. 
The severe failure in Fig. 4 was explored more carefully for the purposes of verification. Figure 5 shows the α 
nd q response of the adaptive system to a random amplitude square-wave input for the severe failure. After a 
ransients of about five seconds, adequate model following is achieved for α. For q, the unmodeled phugoid mode 
an be clearly observed in the q trajectory of the nonlinear aircraft. The phugoid mode for this aircraft has a 
requency of ωn = 0.122rad/s corresponding to a cycle time of 51.5s, which agrees closely with the low frequency 
scillations observed in Fig. 5b. The model mismatch due to the phugoid mode could be easily eliminated by using a 
ore sophisticated longitudinal reference model, namely one including phugoid dynamics. This exercise 

emonstrates that even with the crudest of plant models an adaptive controller with adequate transient properties can 
e realized using the RLAS. 
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 The verification procedure described in section IIIC was carried out for the severe failure. Figures 6a and b show 
in detail the first five seconds of the response in comparison to the RLAS. During the transient period, although the 
RLAS does not track the nonlinear system closely, its frequency of oscillation provides a good representation of the 
oscillations of the nonlinear aircraft. As the adaptive system evolves, the RLAS provides a more accurate 
representation of its trajectory (see Figs. 6c and d). Again, the offset of the nonlinear system in Fig. 6d is attributed 
to the unmodelled phugoid mode. It is clear that the RLAS tracks the adaptive system relatively closely even for the 
nonlinear aircraft model. 

 

5a. 

5b. 
Figure 5. The α and q trajectories of the adaptive augmented system are shown with 
uncertainties parameterized by λα = -0.226, λq = -0.470, λδ = 0.5, and dtrm = 0.2623. The low
frequency oscillations in the q trajectory are from the unmodelled phugoid mode of the 
nonlinear aircraft. The RLAS was used to design a suitable adaptive response to a random 
amplitude square-wave input. The trajectories of the reference model and the nominal system 
are shown for comparison. Note that the nominal system is unstable.  
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It should be stressed, as well, that the closed loop trajectory is that of a full nonlinear aircraft model with an LQ 
controller and an adaptive controller. Thus the system is highly nonlinear, yet its qualities of oscillation can be 
inferred from the simple linear RLAS to a practically useful degree. Figure 6 verifies that the adaptive system 
response is within the military flying qualities specification (Eq. (24)) as expected from the RLAS design procedure. 

 

 
            6a.             6b. 

  
        6c.               6d. 
Figure 6. The α and q trajectories from Fig. 5 are shown here in detail from t = 0s to t = 5s
(Figs. 6a and b), and from t = 80s to t = 85s (Figs. 6c and d). The RLAS (dash-dot) gives a 
good indication of the adaptive response frequency (solid) initially, and tracks the adaptive α
response well after  initial transients. The offset in the q trajectory is from the unmodelled 
phugoid mode. The RLAS was designed to have a response well within military flying 
qualities specifications.  
 

VI. Summary 
In this paper we have sought to introduce a new tool for designing and verifying the oscillatory properties of 

adaptive systems. The RLAS was formulated to provide a compact linear approximation to nonlinear adaptive 
systems. General design and verification techniques using the RLAS were then described. An adaptive augmented 
system was design using the RLAS techniques for a linear model of short period dynamics. The adaptive system was 
verified to have properties that meet military specifications. The same design techniques were then applied to a 
nonlinear 6-DOF aircraft simulation. Again, it was demonstrated that an adaptive controller can be tuned to meet 
military specifications using the RLAS.  

 Although not explicitly perused here, the RLAS can also be used as a tool to explore the effects of failures on 
the adaptive system dynamics. Uncertainties in the adaptive dynamics translate directly to uncertainties in the 
RLAS. The effect of these uncertainties on the RLAS can be straightforwardly investigated using the common linear 
systems techniques, such as the root locus method, Bode plots, or Nyquist plots. Again, relying on the asymptotic 
convergence of the RLAS to the adaptive system, we can infer the effects of failures on the adaptive system 
response. The procedure described in this paper can be simply modified for this purpose. 

Several avenues of research remain ongoing. An analytically justified means of estimating the asymptotic gain 
error θxc is currently being investigated. Also, multi-input embodiments of the RLAS should be explored in 
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conjunction with multivariable design techniques. One potentially interesting extension of the RLAS design 
methodology is to use an optimal technique to select adaptive parameters Γ and Q, thereby fusing the benefits of 
optimal and adaptive control. Modifying current control design techniques to suit adaptive controllers will likely aid 
the transition of adaptive control technologies into aircraft and other safety critical applications. 
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