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Abstract 

Online identification of sinusoidal components is an impor- 
tant problem that occurs in active noise control, vibration 
suppression, on line health monitoring, and radar, sonar, 
and seismic applications. We adopt a new approach to this 
identification problem which consists of the utilization of 
the underlying nonlinearlity and an algorithm that is based 
on the nonlinear parameterization. The algorithm is shown 
to result in global convergence in the presence of two un- 
known frequencies. Extensions to n unknown frequencies 
for n > 2 that have unknown amplitudes are also dis- 
cussed. 

in radar, sonar, and seismic applications [5]. In this paper, 
we take a first step towards such sinusoidal identification by 
making direct use of the structure of the sinusoidal func- 
tion in (1), rather than transform (1) into a dynamic system 
where ~i are transformed into linear parameters of  a differ- 
ential equation as in [6, 5]. 

The rest of the paper is organized as follows. In Section 2, a 
new identification algorithm for the case when y (u) consists 
of two unknown frequencies is proposed. In Section 3, we 
give several useful Lemmas. In Section 4, we prove the 
global convergence of the algorithm proposed in Section 2. 

1 Introduction 

This paper focuses on the problem of online identifying 
of sinusoidal components, namely the amplitude and fre- 
quency, of  a signal that is a combination of  many sinusoids. 
Specifically, given a signal y(u) defined as 

N 

y(~)  = ~ a~ cos (~ ,~ )  (1) 
i= l  

where N is the number of  sinusoidal components, u is the 
known input variable, ai and wi are the amplitude and fre- 
quency of the i th component respectively, the goal is to 
design a globally stable online identification algorithm to 
identify all a~'s and wi's. Online identification of sinusoidal 
components plays a significant role in many engineering ap- 
plications. An example is active noise and vibration con- 
trol. For any machine with rotating components, the result- 
ing noises or vibrations are often modeled as periodic sig- 
nal. Examples of this class of applications include noises in 
turboprop aircraft [1], in helicopters [2], in HVAC systems 
[3]. Health monitoring is another application of sinusoidal 
identification in which the interest involves online monitor- 
ing the performance of a complex system such as the Space 
Shuttle Main Engines by continuously detecting structural 
degradations that potentially lead the catastrophic failures 
[4]. Furthermore, sinusoidal identification is also essential 
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2 Statement of the Problem 

This section considers the sinusoidal identification problem 
with y having the form 

y(t) = g(w, u(t)) = cos(wlu(t)) + eos(w2u(t)) (2) 

where wl and w2 are the unknown frequencies to be identi- 
fied, and w = [wl, 0.)2] T. y(t) and u(t) are assumed to be 
measured at each instant t. 
The following assumptions are made regarding (2): (i) u 
switches between ul  and u2; (ii) ~ > wx > w2 > w, and 
w , ~  are known. It follows that for u l  < 7r/(2~), cos(wu) 
is concave on [w, 5]. 

The following identification algorithm is proposed to iden- 
tify w as ~ = [~i, ~2] T: 

~( t )  g ( ~ , u ( t ) )  2 A = = ~ = 1  c o s ( ~ u ( t ) )  
(3) 

~ = -~v~ ,~9 ,  9 = ~ - Y- 

Defining L = { (wl, w2), (w2, wl ) }, the goal is to establish 
the convergence of  ~ to L. 

3 Preliminaries 

The following definitions are useful for proving the main 
theorem. We define 

~ 2 = { Q  I wmin_<wi<_wmax, i = 1 , 2 } .  
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and 

f (~ ,u )  = g ( ~ , u ) - g ( w , u ) .  

Without loss of generality, we shall assume that ~ • 12. Let 
Mi  and M2 represent the curves ~ = 0 when u = Ul and 
u = u2, respectively, in the ~ space. That is, 

M~ = {~ ] f ( ~ , u ~ )  = 0} 
M2 = {~ I f ( ~ , u 2 )  = 0} (4) 

and are illustrated in Figure 1. 
The following properties of  M~ and M2 can be derived: 
Lemma 3.1 M1 and M2 are monotonically decreasing con- 
cave functions. 

Lemma 3.2 M1 ~ M2 = L. 

4.1 Proof  of  Step 1 
Proof." We will now establish step 1 by contradiction. As- 
sume that both (la) and (lb) do not hold, that is, suppose 
for any ~(t)  • fl~ and t _> to, &(t) does not converge to L 
as t --+ o~. 
Define sets Tul and Tu~ such that 

Tu, = {t I u ( t )  = u~, t _> to} 
Tu~ = {t [ u ( t )=u2 ,  t > t 0 }  (9) 

From the definition of V m and Vu2 and from (3), it follows 
that 

{ -VzV, n(~(t)) V t  • T m 
~(t) = -VzVu~ (o~(t)) V t • T ~  (10) 

Proofs of Lemmas can be found in [7]. The time derivative of Vul (~(t))  and Vu~ (o~(t)) can be cal- 
culated as: 

4 Convergence Results 

We now state the main result of  the paper. In what follows, 
we define 

E = {~ I w • 12 and ~1 ---- ~2} .  (5) 

Theorem 1 Under assumptions (i )-(ii ), the above proposed 
identification algorithm is stable and 
(a) if~(to) • E, then~(t) • E Vt > to 
(b) i f~( to )  • f~ \ E, then ~(t) ~ L as t ~ ~ .  

Proof. 
(a) If  ~(t)  • E ,  V ~  cos(~lU) = V ~  cos(~2u), which 
implies that ~1 (t) = ~2 (t) Vt > to. 

17u,(~(t)) = (V~Wu~(~))~(t) (11) 
r~.~(~(t)) = (vzv.~(~))~( t )  

Suppose t • Tua, then from (10) and (11), we have 

Vu, (~(t))  = (VzVu ~(~(t))) T .  ( -V~Vu,  (~(t))) .  (12) 

It should be noted that since Vm (~(t))  is negative, from the 
definition of f~ ,  it follows that 

v~v.~(~) # o. (13) 

From (12) and (13), it follows that 

l/'m(o~(t)) < 0. V t  • Tu~ andS( t )  • ~h. (14) 

(b) We define two scalar functions Vu, and Vu2 as 

1 2 1 2 
Vul(~) = ~ ( / ( ~ , U l )  , Vu2(w) = ~ ( f ( ~ , u 2 )  • 

Let 
F(~)  = ( -VzVu,(~))T(-vzzVu2(~)) ,  (6) 

where V~Vu{ (~) denote the gradient of Vu{ with respect to 
~, and is given for i  = 1,2 by 

- V ~ Z , , ( ~ )  = - f ( ~ ,  u~)V~g(~, u~) (7) 

We divide 12 into two regions: 

fh  = { ~  I ~ •  f~, f ( ~ ) > 0 }  
~2 = {~ I ~ • f~, F(~)  < 0}. (8) 

We prove Theorem 1 using the following three steps. 
Step h For any to, i f~( to )  • ~1, then, either 

(la) 3 finite value t, such that ~(to + t~ ~ fh ,  or 

(lb) ~( t )  converges to L as t ---+ o¢. 

Step 2: For any to, i f~( to)  • 122, then ~( t )  • 122 Vt >_ to. 
Step 3: For any to, if ~( t )  • 122\E, then ~(t)  converges to 
L as t ~ oo. • 

Suppose t E Tu2 and ~( t )  E 121, then from (10) and (11), 
we have 

f%(~(t)) = (V~V.,~(t)) T- (-V~V,~(~(t))) (15) 

From the definition of f h  and (15), we can conclude that 

Vul (~(t))  < 0 V t E T~, 2 and ~(t)  E 121- (16) 

Therefore, from (14) and (16) we conclude that 

f~., (~(t)) < 0 v ~(t) • f~l and t _> to. 

It can be proved in a similar manner that 

Vu2 (~(t))  < 0 V ~( t )  • 121 and t > to. 

Since we have assumed that (la) and (lb) do not hold, it 
follows that indeed ~( t )  • fll  for all t > to. Therefore 
Vt > to, l/'m (~(t))  < 0, and hence Vul (~( t))  monoton- 
ically decreases. Since Vu~ (~(t))  is continuous and has a 
lower bound (of zero), it reaches a limit point. The same is 
true for Vu2 (o~(t)) as well. Suppose 

a~ = {~ I ,~m ~(t) = ~z} ,  
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it follows that (i) limt~oo ~(t)  = ~1, 
(ii)limt-~oo Vu, (~(t))  = Vu, (wl) and (iii) 
limt~o~ ~ru, (~(t)) = 0 for i = 1 , 2 .  It also follows that 

lim Vu~(wt) = 0 ::::::::¢.-V~Vu,(~) = 0 i =  1,2. t---r oo 
(17) 

We note that 

sin(~u) > 0 ~ • f~, f o r / =  1,2, (18) 

and therefore the elements of ~7~g(~, u) are negative. 
Hence, (17) and (18) imply that 

f (~t ,  ui) = 0, V ~ • f l t  i = 1 , 2 .  (19) 

From (19) and the definition of Mt and M2 in (4), it follows 
that 

~l C M m N Mu2 (20) 

From (20) and lemma 3.2, it follows that w~ C L. We have 
shown that i fQ(t)  • 121, Q(t) ~ L as t --~ co. This contra- 
dicts our earlier assumption that (la) and (lb) in step 1 do 
not hold. Therefore Step 1 is proved. 

4.2 Proof  of Step 2 
Before processing to the proof, we include the following 
definitions. 

n~ = {# I ~ • f l ,  F ( ~ )  = 0} 
~& = {# I # • f l ,  F(~)  < 0} (21) 

where F (~ )  is defined in (6). 
The following properties of fl~ and fl~ follow directly from 
the above definitions: 

(1) ~2 = fl~ U ~i 

(2) f~b = M i U M 2 .  

For any tl  such that ~ ( t t )  • f~ ,  since F ( ~ )  is a continuous 
function of ~, only two possibilities arise. 

(a) ~( t )  e ~ ,  Vt > tt ;  or 

(b) ~(t2) e fl~ for a finite t2 > tl 

&2 Sd = { A,B,C, and D } 

,.... v "'"'"'"'"'"'"'"''" 

, M 

& 

Figure 1 :M1 and Ms curves, A,B,C and D Regions. 

4.3 Proof  of Step 3 
We begin with Q(t0) such that Q(to) e f12 \ E.  The goal is 
to show that Q(t) --+ L as t ~ co. The following lemmas 
are useful in the proof of Step 3. 
Lemma 4.3.1 f~2 \ E = A U B U C U D where 

A = {Q I ff(~,~,) -< 0, f ( ~ , ~ )  > 0, ~= > ~ }  
B = {Q I f(~,u,)  > 0, f(Q, u2) < 0,Q2 > wt} 

D -- {~ I f(~,Ul) > o,f(w, u2) .< o,w2 <w l }  
(22) 

are shown in figure 2. 
Proof of Lemma 4.3.1 From (6) and (7), it follows that 

F(~) _< 0 ~ f(~, u~)f(~, u:) _< 0 

Therefore, we can write Ft2 as 

n2 = {w I f ( ~ , u t )  _> 0 a n d f ( ~ , u 2 )  _< 0} 
U{ w [ f(w, Ul) _< 0 and f ( ~ ,  u2) >_ 0}. 

(23) 
For (23) and (5), it can be seen that 

If (a) holds, proof of step 2 is complete. If (b) holds, it 
implies that ~(t2) E fig. Without loss of generality, we 
assume that ~(t2) E M1. We note that 

Vu, (~(t2)) = 0, ifo~(t2) e M1. 

and 

f"Ul (~(t))  < 0, i f~ ( t )  E f~l andVt >_ t2. 

£2\E = A U B U c U D  

1.emma 4.3.2 I f ( i )  0 < w 2  < w t , ( i i )  O < u2 < ut and 
(ii) WlUt _< ~, then Q(wt,oaz,ut, u2) > 0 where 

Q = sin(wzul) sin(wtu2) - sin(co2uz) sin(wlut) .  

Therefore ~( t )  cannot enter f~l starting from any w(t2) E 
M1. It can be proved in a similar manner that ~( t )  cannot 
enter ~-~1 starting from any ~(t2) E M2. That is, i f~( t2)  E 
fib2, then ~(t)  must enter f~  or stay in f~  for all t _> t2. 
This proves Step 2. 

We now prove Step 3 in three substeps. 
Substep 1: For any ~(t0), if u(t) = ui, Vt > to, then the 
set of all limit points ~l in fh belong to Mi, for i = 1, 2. 
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Proof of Substep 1: If  ~(t0) • f~2, we note that if u(t) = 
Ui, Vt > t O, then 

lim ( r  (~(t)) = (VzzV, . ( ~ ( t ) ) T ( - V ~ V u , ( ~ ( t ) ) .  
t - + o o  

Therefore V(ui(~(t))  monotonically decreases. As in step 
1, we can show that 

lim V~,(~(t)) = V~,(~t)and lim l~'~,,(o~(t)) = 0. 
t----~ o o  t---t .oo 

It follows that 
Vu,(wt) = 0. (24) 

From (24) and (12), it follows 

v ~ v . , ( ~ )  = 0 (25) 

Because the elements of V~g(Q, u) are negative, it follows 
from (25) that 

f ( ~ l , U i )  = 0. 

This proves that wt • M~. 
Substep 2: I f~( to )  • A, then o~(t) converges to (w2,w~) as 
t --r cxz. 
Proof of Substep 2 If  wt = l i m t ~  ~(t),  then Substep 1 
implies that wt • M2 for any ~(t0) • f~2 and in particular, 
for any ~(to) • A N M ~  i fu( t )  = u2 V t  > to. Let Ni(t)  
denote the solution of  ~( t )  in (3) if u(t) = uj V t > to, 
with &(t0) • A A M i ,  i = 1 ,2 , j  = 2,1. 
Define the sets L~ and L2 as 

L~(v) = {f~ I © = N~(t), v = ~ ( t 0 ) • A N M 1 } ,  
L2(v) = {£~ I 0 = N2(t), v = ~ ( t 0 ) • A N M 2 } .  

(26) 
The following sublemmas summarize properties of L~ and 
L2. 
Sublemma 1 If v~ ¢ v2, then Li(v~) M Li(v2) = 0 for 
i = 1,2. 
Proof of Sublemma 1: We will establish this by contradic- 
tion. Let i = 1. If v3 • L~(vl) M L~(v2), it means that 
the curves Ll(Vt) and Lx(v2) either (1)interrsect at v3, or 
(2)they approach the same limit point v3. If case (1) holds, 
it implies that there exists a t • TuB with ~(t)  = v3 such 
that the velocity field has two distinct values determined by 
L~(Vl) and Ll(V2) respectively. This contradicts the fact 
that ~,(t) is unique at each t • T ~ .  Using a similar argu- 
ment, we can establish a contradiction for case (2) as well. 
We prove Lx(vl) n L~(v2) = ~ if vt  ¢ v2. The proof for 
i = 2 follows similarly. 
Sublemma 2 Vv • (A N M1), Ll(V) • A 
Proof of Sublemma 2: If  v • Mx N E,  from (a) of Theorem 
1, we note that L1 (v) = E n f~2 with the limit point being 
(M2 N E).  
Now that we know L~((w:~,w~)) = (w2,w~), From Sub- 
lemma 1, it means Vv • ( A n  Mi), Lx (v) • A. * 
For any & • A, we can find v • (A N M1) which satisfy 

• Lx (v). We define 

v = Gi (~) ,  i f ~ • L l ( v )  

2238 

where v E A n M1. Similarly, we define 

v = G2(w), i f ~  E L2(v) 

where v E A n M2. 
For any ~ E Mi, we define Di(w) as the distance between 
(w2, wx) and ~ along the curve Mi, i = 1, 2. 
We define two scalar functions W1 and W2 of ~ E A as 

Wi(~) = Di(Gi(~))  
Wz(w) = D2(G2 (~)) (27) 

We now evaluate the orientation of the trajectories with re- 
spect to a specific w(t) E A. 
Suppose that at t = to, ~(to) E A with vo = Gl(~(to)). If  
u(t) = u2 for all t >_ to, then 

Wl(~(t) )  = w ~ ( ~ ( t o ) )  

which implies that 

¢¢1(~(t)) = 0, 

if u(t) = u2 Vt > to. That is 

!/171 (~) = 0, if t E Tu2 

We also note that the vector field ~(t)  is along the curve 
Li(Gi(~))  if t • Tu2 which simply follows from the defi- 
nition of (26). This direction is given by 

f ( ~ , u 2 ) [ - u 2  sin(uYlu2) - u 2  sin(o32u2)] T (28) 

From (28), we can compute that the unit vector normal to 
L1 (Gl(~(t))  at ~ in a direction towards (w2, wl) is given 
by 

el(k)  = a[u2 sin(w2u2) -- U2 sin(~lU2)] T 

where a is a positive scalar such that Ilel(~)II = 1. 
If  on the other hand t • Tul, it follows from (10) that the 
vector field is along the direction 

~(t) = f ( ~ , u l ) [ - u l  sin(o31ul) - ux sin(~2Ul)] T 

We denote DLi(~)  as the inner product of e l (k)  and 
~(t)  at t • Tu~. If  DLl(~( t ) )  = 0, ~(t)  will stay 
in Li(Gi(~(t)))  which implies that l.~rl(~(t)) = 0. If  
DLl(~(t))  > 0, then ~(t)  will leave Lx(Gl(~(t))).  Since 
the unit vector is pointed towards (w2, ovx),W1 (~(t~)) < 
Wl(~( t ) )  for any t ~ > t. In summary, 

= 0  i f t • T u 2  
lJdx (~(t)) = 0  i f O L l = O a n d t • T u ~  (29) 

< 0  i fDLx  > O a n d t • T u ~  

In a similar manner, the inner product DL2 can be defined 
for t • T~,~ and it can be shown that 

= 0 if t E T~, 1 
t~'2(~(t)) = 0 if DL2 = 0 and t E Tu2 (30) 

< 0  i f D L 2 > 0 a n d t E T u  2 



(29) and (30) suffice to prove substep 2 as shown below: 
By definition of  A, it follows that 

~2 > ~1, f(~,tL1) ~ O, f(~,'U2) ~ O, (31) 

Since u~ > u2, the conditions of Lemma 4.3.2 are satisfied 
for wl = w2 and w2 = wt, it follows that 

Q(w2,Wl,Ul, U2) > 0 V~ e A. (32) 

It can be shown that 

D L1 (~) = --aulu2 f (~, ul)Q(~2,0~1, Ul, u2), 

and hence 

and hence 

DL~ > 0 V~ E A i = 1,2. 

0,12 

0.1 

O.OB 

0.06 

0.04 

0"01 

0 0.02 0.04 0.06 0.08 O.t 0.12 

Figure 2: Time evolution of ~2 vs. ~1 with initial conditions 
1,2,3,4, and5. wl = .02, w2 = .1, ul = 25, tt2 = 5. 

¢ v , ( ~ ( t ) )  _< 0, v ~ ( t )  e A i = 1, 2. 

Hence Wi(~)  does not increase, since Wi(~) is con- 
tinuous and has a lower bound of zero, it follows that 
limt~oo ~(t)  = wt, limt~c~ Wi(~(t))  = Wi(wA), and 
limt~oo Wi(~(t)) = 0. From (29) and (30) it also follows 
that 

DLi(~t)  = O, i = 1 , 2 .  

Because we know that a,b, ui,u2 are all positive and from 
equations (31) and (32), it follows that 

Y ( ~ l , u l )  = Y ( ~ 2 , u 2 )  = 0 

at w = wt which in turn implies, from Theorem 3.2, that 

o~lEL.  

Because wl E A, it follows that V~(to) E A, ~(t)  converges 
to (w2, wl) as t --e oo, proves Substep 2. * 
Substep 3: (i) V~(to) E B, ~(t)  converges to (w2,wl) as 
t --+ oo; 
(ii) V~(to) E C U D ,  ~9(t) converges to (wl,w2) as t --e 
OO. 
The proof of Substep 3 follows in a similar manner of  Sub- 
step 2. 
In summary, if og(t0) E f~2 \ E, then ~(t)  converges to L as 
t --~ oe, which proves Theorem 1 • 
Numerical results from simulating the above algorithm are 
plotted in Figure 2 for four trajectories (1,2,4,5) with dif- 
ferent initial conditions. Each trajectory, independent on its 
initial condition, converges to the true solution. 
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The same approach as above can be used for the system 
in (1) when ai and wi are unknown for i = 1, 2 [7]. The 
number of  values between which u switches increases with 
the number of unknowns. Extensions to the case when i > 2 
are currently under investigation. 
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