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Abstract

This paper presents analysis of the effect of actuation on combustion dynamics. Two dif-

ferent categories of actuators are examined: flow sources, e.g., acoustic speakers, and heat

sources, e.g., fuel injectors. These sources are modeled in the conservation equations and a

finite dimensional model is obtained. Two methods of analysis are used to gain insight into the

physics of actuation, and its stabilizing/destabilizing effect on the combustor through feedback

control. The first is the energy method which is used here in a novel way to explain work ex-

change between the different dynamic components of the system: the acoustics, the flame, and

the actuator. Energy analysis is also used to quantify the “useful” and “wasted” work generated

by actuators. The second method of analysis is the dynamic method in which the combustor is

represented as an oscillator. This method is used as a basis of any optimal control design.
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Nomenclature

A combustor cross-sectional area xa actuator location

c speed of sound xf flame location

D combustor diameter xi distance between injector and flame front

dp diameter of holes in a perforated disk xs sensor location

E acoustic energy flux zc phase-lead controller zero

I current input � decay rate

k wave number �r ratio of speaker membrane surface area to A

kc phase-lead controller gain  specific heat ratio

kd stiffness of a diaphragm �hr enthalpy of reaction

kl speaker gain �L difference over L

kp proportional controller gain �� difference over time, �

L combustor length � damping ratio

M Mach number �(t) modal amplitude

md diaphragm mass � effect of velocity ahead and behind

n̂ unit normal vector to the control volume the flame on its dynamics

nf number of holes in a perforated disk � density

p pressure �i convective time lag

pc phase-lead controller pole � rate of energy dissipation

Su burning velocity � equivalence ratio

t time  (x) modal amplitude

u velocity ! mode frequency

vc flow source velocity !l speaker natural frequency

W work (�)0 perturbed quantity

x distance (�) mean quantity

1 Introduction

Combustion instability has been a major obstacle in designing and operating low-emission, lean

premixed combustors, and high-powered, near stoichiometric combustors. Active control has

shown promising results in abating the instability. Designing actuators depends on a clear in-
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sight into the dynamics of the system, while optimizing its operation relies on the availability of

accurate models of the dynamics as well as for how an actuator may impact it under a range of

conditions.

The problem is critical in combustion instability since: (1) It is important to minimize the input

energy through the actuator while recognizing certain practical limitations on its design such as its

bandwidth and the power it delivers [1]; (2) while it is desirable to achieve the minimum possible

settling time, this should be done without imposing unreasonable requirements on the actuator; (3)

extra constraints on the design are usually encountered in practice, such as the allowable locations

of the sensor and actuator, which may hinder achieving theoretically optimal conditions; and (4)

since models are difficult to construct and validate, certain robustness is needed in the control

design. Clearly, the role of an actuator and how it interacts with the system dynamics must be

understood before these goals can be accomplished.

Models of combustion instability have been suggested [1]-[4]. However, effort to model the

impact of the actuator on the system dynamics has been limited. In most cases, a simple relation is

assumed to exist between the action of an actuator and the system response. For instance, when a

speaker is employed, it is often assumed that its primary function is to introduce a pressure signal

which counters the existing unstable pressure field (anti-sound). However, the subtle interactions

between the actuator signal and the flame will be shown here to lead to different results depending

on the structure of the control algorithm and its implementation into the system design, i.e. the

locations of sensors and actuators, etc. We will also study the impact of an oscillating fuel stream.

In Section 2, thermoacoustic instability is reviewed using the traditional energy point of view,

then alternatively, we show that adopting a system dynamics view can lead to significant insight

into the features of an actuator. In Section 3, we present a finite dimensional instability model

with different input actions from two different actuator categories, namely, (1) flow sources (e.g.,

speakers), and (2) heat sources (e.g., fuel injectors). The analysis of the impact of the former is

performed in Section 4, while for the latter in Section 5 using a proportional and a phase-lead

controller. In both sections, a dynamic analysis as well as an energy analysis are performed. We

summarize in Section 6.
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Figure 1: One dimensional reacting fluid flow with flame at x = xf

2 Energy vs. Dynamics Analysis

In this section, we present two different but compatible approaches; namely the energy and dy-

namic analyses, for examining combustion instability in an organ-pipe combustor, which typically

models situations of combustion in gas turbines and after-burners in applications. According to the

first law of Thermodynamics, we start by carrying out an energy balance of the combustor. We note

that the acoustic field (hosted by the combustor tube) is the primary energy storage mechanism in

the combustor. Increasing or decreasing the stored (or internal) energy of this field can be achieved

by transferring work or heat to the field. Since, in our case, the flame is considered a localized heat

source, only a small control volume in the acoustic field is heated, the small volume expands and

in turn exerts work on the field.

The acoustic energy density, e0, in a one-dimensional acoustic field can be derived from the

linearized conservation equations as (see [5], for more details)

e0 =
�u02

2
+

p02

2�c2
; (1)

where �, u, and p are the density, velocity, and pressure in the field, respectively, (:)0 and (:) are

the perturbed and mean values of the parameters, respectively, and c is the mean speed of sound.

The first term in the RHS is the acoustic kinetic energy and the second is the potential or elastic

acoustic energy. It is clear that any system that would sustain waves (also, as in many vibration

processes) should have these two components of stored energy, and the periodic conversion from

one form to the other sustains the oscillatory behavior.

The momentum and energy conservation equations for small perturbations in a combustor tube

hosting a localized heat-release zone, as seen in Fig. 1, for zero mean velocity, u, and for no spatial
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gradients in the mean density, �, pressure, p, can be written as

�
@u0

@t
+
@p0

@x
= 0; (2)

@p0

@t
+ p

du0

dx
= ( � 1)q0: (3)

By performing the operation u0�(Eq. (2))+ p0

p
�(Eq. (3)), and using Eq. (1), we get

@e0

@t
+ u0

@p0

@x
+ p0

@u0

@x
=
 � 1

�c2
p0q0: (4)

Integrating Eq. (4) spatially, over the length of the combustor, L, we get

@

@t

Z L

0
e0Adx =

 � 1

�c2

Z L

0
p0q0dx��L(E

0A)� �; (5)

where E0 = p0u0, is the acoustic energy flux, � is the rate of energy dissipation. x, t are the

distance and time, respectively, �L signifies the difference over L, and A is cross-section area of

the combustor. Equation (5) represents the Rayleigh criterion [6] which, for conditions satisfied by

systems analyzed in this work, expresses the energy transfers in a continuous combustion system.

The conclusion drawn from this condition is that a combustion system may become unstable when

(1) 6 (p0 � q0) � 90Æ, i.e., when the magnitude of the first term in the RHS reaches high enough

levels to overcome the dissipation and (2) when the energy flux terms (which are typically small

in this class of combustors) add to the stored energy in the combustor at a rate faster than the

dissipation.

In the case of a concentrated heat release zone, one may consider the boundaries between this

zone and the acoustic field as virtual pistons which oscillate in phase with the oscillation of the

heat deposition rate into the gas trapped between them. The work done by the oscillating pistons

will add energy to the acoustic field. Viewed as such, the first term on the RHS of Eq. (5) can be

written as a (pdV ) work exchange between the small volume, V ,within which heat is deposited and

the acoustic field. The mass in this control volume undergoes a change in density which follows

the heat release rate and leads to the expansion/contraction of the volume, against the fluctuating

pressure at its boundaries. The effect of the flame on the acoustic field is therefore analogous to

that of a flow source (e.g. speaker) which (as will be shown in Section 4.2) acting like a monopole

[7], and the energy exchange between the flame and the acoustic field can be regarded as “work

exchange”.
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An equivalent, more revealing but less general statement can be obtained by expressing the

pressure perturbation as a Galerkin expansion in time and space, p0=p = ��i(t) i(x). Using the

acoustic modes in the absence of heat addition, which satisfy the boundary conditions, to express

the spatial dependence, one can develop equations governing �i(t). Assuming that one mode,

whose amplitude is �, can be used to capture the dynamics adequately1, and substituting in the

equations governing the perturbation [3], the system response can be described by the following

oscillator equation:

�� + !2� = eb :q0; (6)

where ! is the mode frequency, eb is a constant which depends on the flame location. In Eq. (6),

it is assumed that the heat release zone is compact, concentrated at a distance from the inlet of the

combustor, and that dissipation is negligible. The oscillator equation is closed by expressing q 0 in

terms of � and
:
� (note that

:
� is proportional to the velocity perturbation). We can assume, without

loss of generality that q 0 = q0(
:
�) and for convenience write the above as

�� +G(
:
�)

:
� +!2� = 0: (7)

This equation shows that a combustion system becomes an unstable oscillator, i.e., possesses “neg-

ative damping”, when G(
:
�) < 0. For small amplitudes, one can expand G and retain only the

constant term to obtain the condition of the linear instability. One can show that this is equivalent

to the Rayleigh criterion. As the perturbation grows, and making the reasonable assumption that

combustion dynamics become nonlinear before acoustic dynamics, Eq. (7) can still be used to ap-

proximate the nonlinear behavior and the conditions and mechanisms responsible for establishing

limit cycles. In this case, the dependence of G on
:
�, which is the only source of nonlinearity, must

be retained.

3 Actuation in a Finite Dimensional Model

A finite dimensional model that includes both forms of actuation: speaker [8] and fuel injector [1]

has been developed. Two mechanisms of combustion instabilities are reported in practical systems,

1Without external actuation, this assumption is valid. In case of external actuation, it may be necessary to use more

than one mode [3].
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the first is due to coupling of acoustics and heat release through flame-surface-area perturbations

[2, 3] while the second is due to the coupling of acoustics and heat release oscillations through

equivalence ratio perturbations [1, 4, 9, 10]. Experimental evidence of the former has been pre-

sented in [11, 12] while the latter has been observed in [13, 14, 15, 16]. We present the former

form of instability in the analysis in this paper.2 The final form of the finite-dimensional model is

given by [3, 8]:

��i + !2
i �i = ebi :q0f +ebci :vc; (8)

:
q0f +bfq

0
f = !f egf(u0f

uf
+
�0f
�f

+

:
�0f
!f�f

); (9)

u0f = �ni=1eci :�i +�rvc; (10)

p0(x; t) = p�ni=1cci(x)�i(t); (11)

where ebi = ao i(xf)=E, eci = 1
k2

i

d i(xf )

dx
, ebci = �r i(xa)=E, cci =  i(xs), !f = 4Su=dp,

bf = !f(1 � �aoegf), ao = ( � 1)=p, E =
R L
0  i 

T
i dx, and egf = nf��hruf�f (dp=D)2. Note

that here we are modeling a premixed organ pipe type combustor of diameter D and length L with

a perforated disk (with nf holes of diameter dp) acting as a flame holder [3]. , Su and �hr are

the specific ratio, the burning velocity and the enthalpy of reaction of the reactants, respectively.

vc and
:
vc are the velocity and acceleration of a typical flow source (e.g. a speaker), respectively,

�f and uf are the equivalence ratio and the velocity at the flame (out of a perforation), p is the

pressure, (:) and (:)0 are the mean and perturbation of a variable. xf , xs, and xa are the flame, the

sensor (e.g., a microphone), and the flow source actuator (e.g., a speaker) locations measured from

the upstream end, respectively. �r is the ratio of the speaker membrane surface area to that of the

duct cross section area. � 2 (0; 1) is a parameter expressing the effect of u0f ahead and behind the

flame on its dynamics [3]. ki and E are the wave number and the energy in the mode, respectively.

2The instability triggered by equivalence-ratio fluctuations due to the convective time-delay is associated with a

time-lag mechanism while that induced by flame surface area is due to a phase lag mechanism. In both cases, the

phase relation between p
0 and q

0 is the same and hence the approach presented here is applicable to both cases.
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4 The Role of a Speaker

4.1 Dynamic Analysis

Using a single mode to describe the acoustic dynamics, namely the unstable mode3 we investi-

gate how the loudspeaker impacts the combustor dynamics. For a single mode, Eqs.(8)-(10) are

combined as follows:

��1 � eb1!f egf ec1 :
�1 +!

2
1�1 = eb1!f egf1�rvc + ebc1 :vc; (12)

where egf1 = egf=uf . We neglect the second term on the LHS of Eq.(9), since the flame character-

istic frequency is often an order of magnitude smaller than the acoustic frequency [2] (bulk modes

may be exceptions to this rule, and are treated in [4]). Equations (8) and (12) show that the speaker

affects the combustor dynamics through two parallel paths, a direct path through the pressure gen-

erated by its diaphragm acceleration,
:
vc, and an indirect path through an additional component of

unsteady heat release generated by its diaphragm velocity, vc. If these two paths are managed,

using an intelligent controller, so that they generate, collaboratively, “positive damping” that coun-

ters the “negative damping” induced by the unsteady heat release, the combustor can be stabilized.

To achieve this “damping”, both vc and
:
vc must have components which are proportional to

:
�1.

The dynamics of the diaphragm motion of a typical loudspeaker can be modeled as [7]:

:
vc +2�!lvc + !2

l

Z
vcdt = klI; (13)

where !l =
q
kd=md is the natural frequency of the loudspeaker diaphragm, kd and md are the

equivalent stiffness and mass of the diaphragm, respectively, � is a damping ratio, k l is a speaker

gain, and I is the input current. We assume that !l < !1 which allows us to approximate the

loudspeaker dynamics as

:
vc �= klI: (14)

The input current into the actuator is determined by a controller according to a measurement of

3Under certain conditions combustor control analysis may require more than one mode for accurate modeling [3].

For the sake of analytical tractability and to gain the requisite insight, we focus on cases where a single mode is

sufficient.
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p0, u0f or q0f which is obtained via a sensor placed at a certain location in the combustor. In the

following, we examine the impact of two different control algorithms.

4.1.1 A Proportional Controller:

The measured signal is chosen to be p0 which is proportional to �1, and we need either or both the

source terms in the oscillator Eq. (12) to be proportional to
:
�1. The simplest controller that can

stabilize the system is a proportional controller for which the control input I is proportional to the

sensor signal p0, I = kppcc1�1. We compute
:
vc= klkppcc1�1 and vc = klkppcc1

:
�1=!

2
1 , where the

approximate relation, �1 �= ���1=!
2
1 is used to get the later. The oscillator equation becomes

��1 � eb1!f egf1
 ec1 � �r

klkppcc1
!2
1

!
:
�1 +

�
!2
1 �

ebc1klkppcc1� �1 = 0: (15)

Equation (15) shows that only the indirect path adds damping to the system. A stable oscillator

must satisfy

eb1!f egf1
 ec1 � �r

klkppcc1
!2
1

!
< 0: (16)

The proportional controller has two free parameters: the sensor location which determines cc1 ,

and the gain kp, both of which have selectable signs. Thus, the controller has enough degrees

of freedom to satisfy the inequality. Interestingly, the actuator location does not contribute to

the damping, since it affects only the direct path. Although the proportional controller is able to

add enough damping to achieve stability, it requires high gain since it takes advantage of a single

channel only. Moreover, it changes the frequency of the oscillation substantially; part of the input

energy is not utilized to suppress the instability. A large change in the frequency is expected, sinceebc1klkppcc1 > (ebc1ec1=�r)!2
1 , and (ebc1ec1=�r) � O(1). Thus, a fraction of the input energy, which

will be quantified in Section 4.2, is ”wasted”.

The analysis shows some surprising results. While one traditionally considers the role of an

acoustic actuator as a means of imposing a pressure signal which is out of phase with the existing

signal, i.e., an anti-sound mechanism, our results here show that this is not always the case. In

the case analyzed above, the only mechanism by which the actuator can impact the system is by

affecting the heat source, through the extra velocity signal which is managed by the controller for

stability.
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4.1.2 A Phase-Lead Controller

To overcome the drawbacks in the proportional controller, one should design a controller such that

both source terms in Eq.(8) contribute directly to
:
�1. This can be achieved using a phase-lead

compensator whose dynamics are governed by4:

:
I +pcI = kcpcc1 (

:
�1 +zc�1) ; (17)

where pc; zc; and kc are the compensator parameters: pole, zero, and gain, respectively. In general,

the quantity pc� zc corresponds to the decay resulting from the damping effect that the phase lead

controller provides, while kc corresponds to the control effort needed to provide the damping.

The phase-lead compensator adds a positive phase that can counter the “natural” negative phase,

achieved via pc > zc [17]. There are two choices for the compensator pole: pc > !1 and pc < !1.

We discuss the first one only. In this case,

I �=
kcpcc1
pc

" 
1�

zc
pc

!
:
�1 �

��1
pc

+ zc�1

#
: (18)

Combining Eqs.(14) and (18), we write:

:
vc�=

kopcc1
pc

"
!1

 
zc
!1

+
!1

pc

!
�1 +

 
1�

zc
pc

!
:
�1

#
; (19)

which is integrated to

vc �=
kopcc1
pc

" 
1�

zc
pc

!
�1 �

1

!1

 
zc
!1

+
!1

pc

!
:
�1

#
; (20)

where ko = klkc. Substituting in Eq. (12), we obtain:

��1 +

(
�eb1!f egf1ec1 + kopcc1

pc

"eb1!f egf1�r
!1

 
zc
!1

+
!1

pc

!
� ebc1

 
1�

zc
pc

!#)
:
�1

+

(
!2
1 �

kopcc1
pc

"ebc1!1

 
zc
!1

+
!1

pc

!
� eb1!f egf1�r

 
1�

zc
pc

!#)
�1 = 0 (21)

The damping terms due to direct and indirect channels (the third and second term in the bracket

multiplied by
:
�1, respectively) show that the condition for the direct path to lead to positive damp-

ing is ebc1kocc1 < 0, and that for the indirect path is eb1kocc1 > 0. Recall that ebc1 ; eb1; and cc1 depend

4The phase-lead controller has enough dynamics to create terms in � 1 and its derivative _�1. The latter is proportional

to the velocity, u0, and hence a similar control input can be obtained by sensing u
0 in addition to p

0, and modulating

them through respective proportional controllers.
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on the locations of the actuator, flame, and sensor, respectively, while ko is the gain. The phase-

lead controller has enough degrees of freedom to satisfy both inequalities at the same time, since

we can choose sign(kocc1) = sign(eb1), and sign(ebc1) = �sign(kocc1).

To examine both effects in more detail, let ko=pc =const. In this case, the indirect damping

decreases with pc, while the direct damping increases. If the actuator is located close to a pressure

node, where ebc1 = 0, the indirect damping becomes dominant. The “optimization” of damping

from both channels, i.e., achieving maximum total damping, is not well defined in the absence of

actuator constraints, e.g., its location. For instance, when the actuator is close to a pressure node,

then zc � !1 maximizes total damping. However, if we assume that ko=pc =const. and zc = 0,

maximum total damping is achieved when pc � !1. If the actuator is located at a pressure anti-

node, maximum damping is achieved when the contribution from the direct and indirect paths are

of the same order of magnitude. Similar results are obtained for pc < !1.

Thus, by properly selecting the controller parameters, one can impose damping through both

channels and hence minimize the required input control energy for a given settling time.

4.1.3 Optimization

Here, we define optimization as minimizing “the maximum input power”. Using j
:
�1 j � !1j�1j,

we find, for pc > !1, that:

jIj �=
kcpcc1!1

pc

vuut zc
!1

+
!1

pc

!2

+

 
1�

zc
pc

!2

j�1j = Pdj�1j (22)

subject to the constraint that

kopcc1
pc

"eb1!f egf1�r
!1

 
zc
!1

+
!1

pc

!
� ebc1

 
1�

zc
pc

!#
= const: (23)

The constraint comes from the fact that we need to minimize the input power for a certain settling

time, and hence the damping coefficient must be held constant. Let kc
pc

= w1, zc
!1

+ !1
pc

= w2,

1 � zc
pc

= w3, pcc1!1 = g1, klpcc1
eb1!f egf1�r=!1 = g2 and klpcc1

ebc1 = �g3. The minimization

problem is written as:

Pdmin
= min

�
w1g1

q
w2

2 + w2
3

�
; (24)
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subject to

w1(g2w2 + g3w3) = cd; (25)

leading to:

Pdmin
=

cdg1
g3

min

24s�w2

w3

�
2 + 1�

 
g2w2

g3w3
+ 1

!�1
35 : (26)

Equation (26) shows that the function to be minimized is reduced to a function in a single variable:

(w2=w3). The minimum power is reached at

(w2=w3)min = g2=g3; (27)

and the minimum maximum amplitude of the input current is:

jIjmin�max �=
cdg1q
g22 + g23

j�1jmax: (28)

It is worth noting that the optimal ratio in Eq. (27) leads to no change in the natural frequency

of the oscillator in Eq.(21). Moreover, the problem of maximizing the damping while keeping

the input power constant leads to the same result as in Eq. (27). Similar results are obtained for

pc < !1.

To illustrate the optimization results, we test two controllers, an optimal and a non-optimal,

with a combustor setup similar to Ref. [3]. The combustor is 4 cm in diameter and 50 cm long

with closed upstream end and open downstream end. The flame is anchored on a perforated disc

with 80 holes (each 1.5 mm in diameter), at xf=32.5 cm. Assuming a perfect gas with  = 1:4,

p =1 atm, and �hr = 2.15�106J/kg, which corresponds to � = 0:7, Su = 0:3 m/s. Effects of

the mean flow and mean heat addition are neglected. However, we include two acoustic modes

(quarter and three quarter modes), the low frequency dynamics of the heat release, and the speaker

dynamics (as in Eq. (13), with kl = 1404, !l = 1822, and � = 0:1) in the combustor model.

Since the analytical optimization result is based on one mode, we choose the sensor and actuator

locations such that the coupling between modes is weak [3], namely we set xs=1 cm and xa=15

cm. Using the optimization analysis, we obtain kc = �0:1437; zc = 2018:9, and pc = 9173:2. On

the other hand, the second controller which is designed considering the phase needed for stability

has kc = �0:1437; zc = 100, and pc = 15000. We choose the gain of the latter to be equal to
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Figure 2: Controlled combustor responses. “a” and “c”: optimal, “b” and “d”: non-optimal

that of the optimal controller to ensure equal maximum input current. The pressure responses of

the two controllers are shown in Figs. 2-a and 2-b (control is switched on at 400 ms). The control

effort in terms of the speaker input current is given in Figs. 2-c and 2-d. One can see that for the

same maximum input current, the optimal controller reduces the pressure to 5% of its initial value

in 17 ms, while the non-optimal one needs 41.6 ms.

4.2 Energy Analysis

In Section 4.1, we based the stability analysis on the properties of the oscillator which models the

combustor dynamics. Here, we pursue a different analysis for the purpose of explaining the origin

of the “dissipation” in the oscillator equation. The primary energy storage mechanism in the com-

bustor is the acoustic field. Increasing the stored (or internal) energy of this field can be achieved

by doing positive work by “external” sources which include the flame and the actuator. Work done

by the flame has been explained in Section 2 as work done on the field by expansion/contraction of

a small volume surrounding the flame against negative/positive unsteady pressure. When actuation
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using a speaker is incorporated and dissipation is neglected, the integral of Eq. (5) leads to

��

 Z L

0
e0dx

!
=

 � 1

�c2

Z �

0

Z L

0
p0q0dxdt

��r

Z �

0

Z L

0
p0Æ(x� xa)~vb:bndxdt��L

�Z �

0
E 0dt

�
; (29)

where �� and �L denote the change over time and over length, respectively, and we denote ~vb =

�vc, since the direction of the velocity from the speaker membrane is opposite to the unit normal

to the control surface, bn, (note that the acoustic field is regarded here as the control volume). The

RHS terms are the work per unit cross-section area of the combustor done by the heat source,

in this case the flame, the speaker, and the net acoustic energy convected across the boundaries,

respectively. The loudspeaker which is a flow source exerts work on the acoustic field similar to a

monopole source [7].

Rewriting Eq. (29) as ��

�R L
0 e

0dx
�
= Wf +Wd, substituting for the heat release dynamics

using Eqs. (9) and (10), neglecting bf with respect to the acoustics frequencies (as in Section 4.1),

assuming the presence of one mode only, and carrying out the integration over L, we get

Wf = Wq +Wi; (30)

Wq =
 � 1


!f egf1ccf ec1 Z �

0
�21dt; (31)

Wi =
 � 1


!f egf1ccf�r Z �

0
�1

�Z �

0
vbdT

�
dt; (32)

and Wd = �rpcca

Z �

0
�1vbdt; (33)

where Eqs. (31)-(33) denote the work exchange between the flame and the acoustic field; the actu-

ator and the flame; and the actuator and the acoustic field directly, respectively. Wf is composed of

the total work exchange with the flame. Without actuation, only Wq exists and work is done by the

flame on the acoustic field. Wi arises because the speaker does work on the flame (through Eqs.

(9) and (10)) and hence indirectly affects the acoustic field. This constitutes negative work on the

field which counteracts Wq. Wd is work done by the field on the speaker.

Without active control,Wd = Wi = 0 and for an unstable combustor, ��

�R L
0 e

0dx
�
> 0, and

hence Wf =Wq > 0, while q0f and p0 are in phase. When active control is applied, the condition

for stability, ��

�R L
0 e

0dx
�
< 0, leads to Wi +Wd < �Wq.

For the proportional controller considered in Section 4.1.1, and for the conditions obtained by
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the dynamic analysis (Eq. (16)), we find that

Wi = �
 � 1


!f egf1�rklkppcc1ccf!2

1

Z �

0
�21dt < 0; (34)

andWd =
�rklkpp

2cc1cca
2!2

1

h
�21(0)� �21(�)

i
> 0: (35)

Thus, as shown before, the impact of actuation which contributes to stabilization comes only from

the indirect path while the direct path adds energy to the acoustic field. Moreover, since Wi <

�Wq, Wf < 0, and q0f and p0 are out of phase. Actuation adds energy to the field from the direct

channel, Wd, while it modifies the flame oscillations such that the work is done by the field on the

flame (Wf < 0), and is so much larger than Wd that the overall effect is stabilizing.

The ratio of the “useful” work done by the loudspeaker, which stabilizes the combustor, and

that wasted in the process, i.e., consumed in altering !1 as discussed in Section 4.1.1, is

����Wi

Wd

���� = 2
 � 1



!f egf1
p

�����ccfcca
�����
�����

R �
0 �

2
1dt

[�21(0)� �21(�)]

����� ; (36)

where

�����
R �
0 �

2
1dt

[�21(0)� �21(�)]

����� �=
1=!1

�=!1
=

1

�
; (37)

and � is the decay rate. This leads to jWi=Wdj � O(1). Thus, the useful work is of the same order

as that wasted in changing the potential energy of the acoustic field. This ratio stays the same if q 0f

is chosen as the feedback signal since q 0f / �1. When u0f(/
:
�1) is fed back, Wd becomes dominant.

When the phase-lead controller is used, for pc > !1 and maintaining the same stable conditions

obtained from the dynamic analysis (Section 4.1.2), the work done per unit area is:

Wi
�= �

 � 1


!f egf1�rkopcc1ccfpc!1

 
zc
!1

+
!1

pc

! Z �

0
�21dt < 0; (38)

and Wd
�=

�rkop
2cc1cca
pc

 
1�

zc
pc

! Z �

0
�21dt < 0: (39)

Both forms of work exchange are done by the acoustic field on the actuator and the flame, i.e.,

actuation couples with the flame and the acoustic field to generate energy sinks for the acoustic

field. Note that Wd in Eq. (39) is negative because of the choice of sign(kocc1) = �sign(cca) =

sign(ccf ), in agreement with the stability conditions discussed in Section 4.1.2. Similar conclu-

sions can be reached for the case with pc < !1. Thus, both the indirect and direct actuation paths
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Figure 3: The different energy channels in the controlled combustor when only the direct effect is

active, and the indirect effect is forced to zero
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Figure 4: The different energy channels in the controlled combustor when only the indirect effect

is active, and the direct effect is forced to zero
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participate in decreasing the acoustic energy in the combustor. However, while the former mech-

anism changes the phase between q0f and p0 from < 90Æ to > 90Æ, the latter appears as work done

by the field on the actuator.

Figures 3 and 4 depict graphical representations of the results for a combustor similar to that

described in Section 4.1.3 except for the values of xf , xa, and xs, which are chosen as 24cm,

12.3cm, and 25cm, respectively. The controller parameters are kc = 250, zc = 100, and pc = 1000

and make the direct and indirect work of the same order. Figure 3 shows the different energies for

conditions when the indirect path is forced to zero. The latter can be weak if the flame is robust,

i.e., is non responsive to fluctuations in the acoustic field. As shown in Fig. 3-d, the combustor

is driven to stability when the control is turned on at 40ms, and the acoustic energy is reduced to

zero. Wf (equivalent to the Rayleigh index) remains > 0 (Fig. 3-c), i.e., p0 and q0f remain in phase,

whereas the energy sink stems completely from Wd (Fig. 3-b), i.e., the speaker extracts energy

from the acoustic field. In Fig. 4, when the direct path is forced to zero, which can happen if the

speaker is placed at a pressure node, Wi < 0 as shown in Fig. 4-b, i.e., p0 and q0f become out of

phase, and Wf decreases as in Fig. 4-c. In this case also, the field does work on the speaker.

Using the optimal phase-lead controller designed in Section 4.1.3, we illustrate in Fig. 5 the

different work exchanges. Note thatWd (Fig. 5-a) is dominant and contributes more to stabilization

than Wi (Fig. 5-b). Thus, for this optimal controller, Wf > 0 (Fig. 5-c), i.e., p0 and q0f remain in

phase. Figure 5-d shows that the combustor has been stabilized, and the acoustic energy is driven

to zero.

The simulation illustrates that the different work exchanges affecting the acoustic energy main-

tain the same signs as predicted in the one-mode analysis, even in the presence of two modes and

with no simplification in the heat release dynamics model (Eqs. (8)-(11)).

5 The Role of a Fuel Injector

In the case where an oscillating fuel stream (operated by a solenoid valve) is used for actuation,

as in [18]-[21], we choose to inject the secondary fuel either at the burning zone, or upstream the

flame where it mixes with the incoming mixture of reactants creating an unsteady equivalence ratio
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Figure 5: The different energy channels when the optimal phase-lead controller is used, as in

Section 4.1.3

component, �0. In the latter case, injection of a secondary fuel is done at a distance upstream the

flame to guarantee good mixing. This introduces a convective time lag, �i, in �0 and the controlled

equivalence ratio at the flame can be expressed as �0f(t) = �0(t � �i), where �i = xi=u; xi is

the distance between the injector and the flame front, and u is the mean velocity of the reactants.

In most cases, �i is greater than the acoustic time constant of the system, � = 2�=!, (�i=� =

kxi=2�M , where k is the wave number and M is the Mach number), and conventional control

techniques will fail to stabilize the system [17]. Several studies have proposed control solutions

for systems with large delays [22, 23] and the implementation of these schemes is described in

other articles [1, 4, 9]. In this paper, we will analyze the case when injection is done at the flame

zone [18]-[20], thus minimizing transport lag.
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5.1 Dynamic Analysis

Equations (8)-(10) are combined to derive the oscillator equation:

��1 � eb1!f egf2ec1 :�1 +!2
1�1 = eb1!f egf2(�0f+ :

�0f =!f); (40)

where egf2 = egf=�f . The combustion system, through the heat release dynamics, Eq. (9), reacts to

equivalence ratio perturbations, and its rate of change [1, 4, 9]. It is clear that if �0
f is modulated in

such a way to create positive damping that would counteract the destabilizing damping caused by

heat release, stability can be reached. For the purpose of this paper, the dynamics of the injector

will be disregarded for simplicity (see [1] for analysis of injector dynamics) assuming that the

bandwidth of the injector is much higher than the acoustic frequencies. Therefore, we assume

�0f
�= kiI . Using a pressure transducer as sensor, consistent with the analysis done with the speaker

in Section 4, the signal fed to the controller is proportional to �1.

5.1.1 A Proportional Controller:

A proportional control is the simplest structure that can be used to stabilize the combustor. Similar

to Section 4.1.1, the equivalence ratio at the burning zone is written as �0
f = kikppcc1�1, with its

rate of change
:
�0f= kikppcc1

:
�1, and hence the oscillator becomes

��1 � eb1!f egf2
 ec1 � kikppcc1

!f

!
:
�1 +

�
!2
1 �

eb1!f egf2kikppcc1� �1 = 0: (41)

Eq. (41) shows that there are two channels through which the actuation input due to fuel

injection affects the dynamics, where the first is due to the effect of �0f , and the other is due to
:
�0. Both inputs are affected by the dynamics of the controller used. Hence, both could be sources

of positive damping similar to the direct and indirect effects in the speaker case. The equivalence

ratio (at the heat release zone) has a dynamic effect because the input from the injector is ”filtered”

through the flame area dynamics, heat release dynamics, and acoustics dynamics. It should be

noted that the rate of heat release is the primary effect on the acoustics dynamics which in turn is

strongly affected by the rate of change of the equivalence ratio. The reader is referred to [9, 1, 4]

for further details regarding fuel-injection dynamics.
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Thus only
:
�0f adds damping to the system, whereas the �0

f channel contributes only in changing

the frequency at which the system oscillates. The condition for stability is

eb1!f egf2
 ec1 � kikppcc1

!f

!
< 0: (42)

The proportional controller has enough degrees of freedom to stabilize the system. These are the

sensor’s location, cc1 , and the gain, kp, both of which have selectable signs. We note that unlike the

speaker in Section 4.1.1, the “wasted” effort is much smaller, and can be estimated using Eqs. (41)

and (42) as eb1!f egf2kikppcc1 > !1 which is less than !2
1 by O(!1). In section 5.2, this “wasted”

energy will be estimated as a fraction of the “useful” energy.

5.1.2 A Phase-Lead Controller:

For the case when pc > !1, a phase-lead controller can be approximated as described in Eq. (18),

with �0f replacing
:
vc in Eq. (19), and ko = kikc. The rate of equivalence ratio variation becomes:

:
�0f
�=
kopcc1
pc

"
!2
1

 
1�

zc
pc

!
�1 + !1

 
zc
!1

+
!1

pc

!
:
�1

#
: (43)

Substituting in Eq. (40) leads to:

��1 +

(
�eb1!f egf2ec1 � eb1!f egf2 kopcc1pc

"
!1

 
zc
!1

+
!1

pc

!
+

 
1�

zc
pc

!#)
:
�1

+

(
!2
1 �

eb1!f egf2 kopcc1pc

"
!1

 
zc
!1

+
!1

pc

!
� !2

1

 
1�

zc
pc

!#)
�1 = 0: (44)

We note that both channels contribute to “positive” damping when the condition for stabilityeb1kocc1 < 0, and hence sign(kocc1) = �sign(eb1), is satisfied.

As in the case of a proportional controller, some energy is wasted in changing the frequency

of the oscillator, and this can be estimated following arguments similar to 4.1.2 for the speaker. In

order to force the injector to target all the effort towards adding damping without waste in changing

the potential energy of the system, i.e., !1, an optimal approach similar to Section 4.1.3 can be

utilized. As discussed before, the optimization will lead to zero change in the natural frequency.

In the following, we quantify both analytically and graphically the energy exchanges between the

injector’s inputs,
:
�0f and �0f , and the combustor which cause positive damping.
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5.2 Energy Analysis

The energy balance equation for a combustor with an unsteady fuel injector, assuming no external

dissipation is identical to Eq.(29) without the second term in the RHS (which is due to the speaker).

The only means for stabilizing a combustor using a secondary fuel injector is to affect the phase

between q0f and p0, similar to the indirect actuation in the speaker (Section 4.2). Because of the

linearity of the problem, one can identify easily the work contributed by actuation, Winj , and by

the acoustic field, Wq, to the total work, Wf , as follows:

Wf = Wq +Winj; (45)

Winj = W� +W:
�
; (46)

W� =
 � 1


!f egf2ccf Z �

0
�1

�Z �

0
�0fdT

�
dt; (47)

and W:
�

=
 � 1


!f egf2ccf Z �

0

�0f
!f
�1dt; (48)

As discussed in Section 5.1, the injector has two contributions: one from the equivalence ratio and

the other from its rate of change; they are denoted here as W�, and W:
�
, respectively. When no

active control is implemented, Wq > 0 (and is defined in Eq. (31)), the energy in the combustor

grows according to Eq. (29). Thus, the for stability, negative work must be introduced using � 0
f in

order to satisfy Winj < �Wq.

As discussed in Section 5.1, using a proportional controller, only
:
�f can be made to contribute

to stability. This can be illustrated also in terms of the work done per unit area where:

W:
�
�=

 � 1


!f egf2kikppcc1 Z �

0
�21dt < 0; (49)

and W�
�=

 � 1



!f egf2kikppcc1
2!2

1

[�21(0)� �21(�)] > 0: (50)

The ratio of the useful work, targeted towards dissipative energy, to the work wasted in chang-

ing the potential energy of the system can be estimated by considering Eqs. (49) and (50), with

(37), as ������
W:

�

W�

������ �=
2!2

1

!f

1

�
�= O

 
!1

!f

!
> 1: (51)

In this case, unlike the case of the speaker (Section 4.2), the useful work of the injector is larger

than the wasted one, supporting the results in the dynamic analysis in Section 5.1.1.
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Figure 6: The different energy channels in the controlled combustor when using a fuel injector.

The phase-lead controller, discussed in Section 5.1.2, has sufficient degrees of freedom to

accomplish stability, and one can show that

W:
�

�=
 � 1


!f egf2 kopcc1ccfpc!f

 
zc
!1

+
!1

pc

!Z �

0
�21dt < 0; (52)

andW�
�=

 � 1


!f egf2 kop2cc1pc

 
1�

zc
pc

! Z �

0
�21dt < 0: (53)

Although both W:
�

and W� contribute in stabilizing the combustor, the former effect is larger

than the latter, and this can be quantified as������
W:

�

W�

������ =

�
zc
!1

+ !1
pc

�
�
1� zc

pc

� !1

!f
� O(10): (54)

Figure 6 is a graphical representation of the analytical results. The phase-lead parameters are

kc = 2000, zc = 100 and pc = 1000. Both channels, W _� (in Fig. 6-b) and W� (in Fig. 6-c),

suppress the instability by doing work on the heat release such that the phase between q 0f and p0 is

modified to ¡90Æ, similar to the indirect effect in a speaker. It is worth noting, from Fig. 6 b and c,

that W:
�
=W� � O(10) as estimated by Eq. (54).
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6 Summary

The impact of two different types of actuators; flow and heat source actuators, which are most

commonly used for abating combustion instability, are analyzed using two different approaches.

First, a typical flow source actuator; an acoustic speaker, is studied. The dynamic analysis reveals

how controlled actuation introduces dissipation, and is used to obtain the criteria for stability in

terms of the controller parameters, the sensor/actuator locations, and the combustor parameters.

The energy analysis is then carried out to relate the dissipative terms to the work done by/on the

speaker. The speaker is found to exchange work with the acoustic field directly, and indirectly

through the flame. One can quantify these energy transfers, define their physical origins, and

determine the necessary control signals to the actuators for minimizing the acoustic energy in the

combustor. Controller optimization analysis is performed based on the physical insight gained

from the dynamic analysis of the combustor.

A heat source actuator in the form of a fuel injector is then analyzed dynamically as well as

energetically. The work exchange between the injector and the acoustic field is shown to resemble

the indirect work exchange between the speaker and the acoustic field, since both actions affect

the acoustics through modulating the flame. The results presented herein shed more light on the

physics behind the different actuation effects, and emphasize the importance of using this under-

standing in designing effective actuators and stabilizing optimal controllers.
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