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Abstract— In recent decades, moves toward higher integra-
tion of Renewable Energy Resources have called for funda-
mental changes in both the planning and operation of the
overall power grid. One such change is the incorporation of
Demand Response (DR), the process by which consumers can
adjust their demand in a flexible manner. This paper presents a
survey of various aspects of DR including the different types of
participants, as well as the underlying challenges and the overall
potential of DR when it comes to large-scale implementations.
Benefits of DR as reported in the literature for performance
metrics such as frequency control and price control, as well
as methods for ensuring privacy are discussed. A quantitative
taxonomy of DR recently proposed in the literature based on
the inherent magnitude, run-time, and integral constraints is
discussed and its integration with economic dispatch is explored.

I. INTRODUCTION

In recent decades, global warming and a growing concern
for the environment has prompted massive investments in
Renewable Energy Resources (RERs), such as wind turbines,
hydropower plants and photovoltaic technology [1]. The
integration of RERs introduces intermittency and volatility
into the generation side of the electricity grid, creating the
need for a new electricity grid architecture. Smart Grid,
a cyber-enabled end-to-end transformation of the electric
power system from fuel source to end use, that is currently of
much attention and debate [2][3], crucially depends on two-
way communication to carry information from the electric
power generator companies all the way to the final consumers
(residential, commercial or industrial) on the demand side
and back. New and exciting opportunities are becoming
available for balancing generation and demand, increasing
energy efficiency and lowering electricity costs. One fun-
damental change is the involvement of consumers in power
balancing and frequency regulation by intelligently adjusting
demand, a concept referred to as Demand Response (DR).

The Federal Energy Regulatory Commission (FERC) de-
fines DR as [4]

”changes in electric use by demand-side resource
from their normal consumption patterns in re-
sponse to changes in the price of electricity, or
to incentive payments designed to induce lower
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electricity use at times of high wholesale market
prices or when system reliability is jeopardized.”

This definition clearly demonstrates the diversity of possible
implementations within the DR paradigm. An equivalent
definition by the European Network of Transmission System
Operators for Electricity (ENTSO-E) is stated in [5]. In
this paper, we provide a survey of recent publications on
DR including an overview of the challenges, the proposed
solutions and their potential for grid-wise implementations.

The remainder of this paper is organized as follows. In
Section II the possible DR participants and their flexibility
are examined. Section III discusses the challenges of imple-
menting DR when it comes to large-scale implementations.
In Section IV the potential of DR and its positive impacts are
explored, and a taxonomy for classifying DR is presented.
Finally, in Section V a summary is provided.

II. PARTICIPANTS

The demand side of the electricity grid is traditionally
divided into residential, commercial and industrial consumer
sectors. Comprehensive research is being conducted to clar-
ify how each sector can and/or should participate to make
DR an important player in the Smart Grid and its success in
securing a new reliable, efficient and sustainable electricity
grid. According to the U.S. Energy Information Administra-
tion (EIA), the sectoral distribution of electricity use in 2011
was 37%, 34% and 26%, respectively. The remaining 3%
is in rail transportation and plug-in hybrid electric vehicles
(PHEVs) [6]. Such an even sectoral distribution seems to
indicate that all sectors should equally participate for the DR
program to be optimal (see for example the FERC report [7]).

FERC distinguishes between two classes of DR participa-
tion [4]: time-based DR programs and incentive-based DR
programs. In time-based DR programs, electricity consumers
take voluntary actions to change their electricity consumption
based on price signals, whereas changes are encouraged
through incentives during system reliability threats or as mar-
ket opportunities present themselves in incentive-based DR
programs. The amount of reported potential peak reduction
from time-based DR programs is increasing yearly, yet as of
2012, incentive-based DR programs remain dominant [4].

A. Commercial and Industrial Demand Response

Although commercial and industrial consumers collec-
tively hold roughly half of the DR potential of the future
Smart Grid [7], they amount to only about 10% of the
total number of electricity consumers [8]. Despite being
low in numbers, the commercial and industrial consumers



were responsible for 60% of the electricity usage in the
United States (US) in 2011 [6], making them an important
participant in an optimal DR program. Further, the com-
mercial and industrial consumers are strongly motivated to
participate in DR programs to increase the reliability of
the electricity grid as they suffer greatly during outages.
Based on publicly available data, [8] found the total annual
economic cost of power interruptions to be $79 billion to
US electricity consumers. More than 72% of the total outage
cost is accounted for by the commercial sector alone, due to
a high outage cost per consumer in this sector. Nearly 26%
is accounted for by the industrial sector, and the residential
sector represents less than a mere 2% of the total outage cost.
The above numbers provide a compelling economic incentive
for commercial and industrial consumers to participate in
DR programs, besides the potential of heightened energy
efficiency and lowered electricity cost.

One specific area within the commercial and industrial
sectors which makes for good DR candidates is refrigeration.
By 2005, over 111 million cubic meters of refrigerated space
in the US required year-round conditioning. All in all, 16%
of the food industry’s total energy use stem from refrigeration
[9]. Such large volumes and large percentages makes refrig-
eration systems very good candidates for DR. As pointed
out in [10], some industrial refrigeration systems already
have control systems installed, which can help facilitate the
introduction of DR. In [11], a decentralized control method is
proposed, which does not require a model of the supermarket
refrigeration system.

The DR-potential of the chemical manufacturing industry
has been investigated in [12]. It is shown how the type
of participation depends on the hardware installed, as large
manufacturing sites have the potential to participate in the
reserve energy market with the correct investments.

Commercial and industrial data centers have become a no-
ticeable consumer of electricity within the recent decade. In
fact, 1.3% of all the world’s electricity usage was accounted
for by data centers in 2010. In the US alone, it accounted
for 2% of all electricity usage [13]. In [14], the participation
of data centers as regulation service reserves is investigated
while contractual Quality-of-Service (QoS) is met.

As final examples, [15] introduce a model for DR energy
management systems in industrial facilities and [16] propose
a load scheduling algorithm for industrial facilities.

B. Residential Demand Response

Large in numbers and representing 37% of the total
electricity usage in 2011, research in residential DR partici-
pation is immensely active [6][8]. Beginning at the level of
modeling the load profiles of household appliances, such as
washing machines, clothes dryers, air condition units, electric
ovens and refrigerators, as done in [17], the research covers
many areas.

In temperate climates, due to a significant thermal capacity
in houses (through concrete floor heating, water heating or
air conditioning in well insulated houses), individual houses
can successfully participate in DR programs. In [18], the

DR participation of a single-family house with an electric
heat pump for floor heating is considered where the allowed
change in indoor temperature is varied to analyse the po-
tential. The DR participation of single-family houses is also
investigated in [19], [20], [21].

Since the electricity usage of a single house inherently
represents a negligible portion of the total electricity con-
sumption, residential consumers are often considered in a
collective manner, acting as one control entity under the
term aggregator. In [22], an aggregator approach is used for
DR participation of a collection of 1,000 thermostat-based
residential consumption, whereas [23], [24], [25] investigate
aggregation of residential consumers for participation in
frequency balancing. Finally, [26], [27], [28], [29], [30]
investigate various different aspects of aggregation of res-
idential consumers with respect to DR participation.

III. CHALLENGES

Traditional power grids are inflexible in design and lack
communication between generation and demand side causing
growing concern for reliability of the power grid, due to
rising electricity demand and the occurring change from
reliant and dispatchable power resources (such as nuclear
and fossil-fired power plants) to RERs. In this section we
will outline the challenges and problems that DR faces when
it comes to large grid scale implementations.

A. Grid Structure

One of the major challenges when it comes to DR roll-out
on a large scale is the change it necessitates to the existing
grid structure. In order for consumers to participate in DR
programs in a broader scale than now, new technologies need
to be deployed. Advanced Metering Infrastructure (AMI) is
one such change set up by FERC in their national assessment
of DR potential [7]. Also known as Smart Meters, AMI is
currently being deployed all over the world with various
adoption rates. European countries are projected to have an
adoption rate of AMI from 80-100% by 2020 and Italy al-
ready implemented 100% penetration of AMI. China, Japan,
and Australia are projected to have 100% penetration of AMI
by 2020 and the US is projected to have 33% penetration of
AMI by 2015 [31]. One of the main reasons for AMI not
being fully deployed is the relative high cost associated with
production and installation. In the US, FERC has estimated
the cost of AMI equipment and installation to be above $226
per unit and in Europe, Berg Insight estimates the cost to be
between $130-$340 depending on location [32][33].

Latencies are another challenge associated with AMI as
they can affect both grid stability and performance [34][35].
In [34], the effect of DR in the presence of delayed price
responsiveness of consumers was investigated. It was shown
that with a lag in response of 30 minutes, DR is still a
viable and useful tool to reduce peak demand and mitigate
the volatile behavior of the RERs, despite the fact that about
70% of the benefits of DR was lost due to the latency. In
[35], delay in AMI communication and its effects on stability
and robustness of the electricity grid was investigated.



B. Privacy and Security

With the introduction of increased communication in the
electricity grid, there are growing concerns about privacy
and security [4]. AMI introduces frequent communication
between consumers and utility companies. This communica-
tion is highly private and sensitive and has been investigated
in [17], [36]. In [17], it was shown how, from AMI data, one
can distinguish major household appliances from each other
and easily determine if they are turned on or off. In [36],
the authors have studied the utility-privacy tradeoffs of AMI
data and shed light on the impact of leaking data both from
the utility and the consumer perspective. This demonstrates
that the privacy of the consumers electricity and appliance
usage can be highly compromised.

AMI can also be vulnerable to manipulation and alter-
ations which constitute a big security risk. Manipulation of
the signal between the consumer and utility company can
have a negative effect on the price of electricity or even worse
jeopardize the stability and reliability of the electricity grid.
Intensive studies of security have been carried out in [37],
[38], [39]. In [37], false data injection was investigated and
it was proven that this is possible and can pass commonly
used residual-based bad data detection tests. In [38], a secure
routing protocol is demonstrated and the tradeoffs between
efficiency, reliability and resilience in centralized and decen-
tralized approaches for secure routing are investigated. In
[39], the authors developed a formal model using intrusion
detection methods to guarantee that no attack can violate the
security policy without being detected.

C. Time-based and Incentive-based Programs

As mentioned in Section I, FERC divides DR into two
different categories: time-based and incentive-based DR pro-
grams. Time-based DR programs include methods such as
Critical Peak Pricing (CPP), Real-Time Pricing (RTP) [4],
while incentive-based programs include methods such as
Direct Load Control (DLC) and Spinning Reserves (SR) [4].
CPP is a rate and/or price structure designed to encourage re-
duced consumption during periods of high wholesale market
prices or system contingencies by imposing a pre-specified
high price on electricity for a limited time. RTP is a price
structure in which the retail price of electricity typically
fluctuates hourly or more often, to reflect changes in the
wholesale price of electricity on a day-ahead basis. DLC is a
DR activity in which the program operator remotely controls
a customer’s electrical equipment. SR programs are resources
that are synchronized with the grid and ready to provide fast
relieve for energy generation and demand imbalances within
the first few minutes of an emergency event.

Both time-based and incentive-based DR face challenges
if they are to be implemented in large scale. The challenges
for incentive-based DR is to be competitive enough and
provide enough incentive for the consumer to participate
in the programs. Time-based programs may on the other
hand, cause abrupt and unwarranted price increases due to
discontinuous operation of generating units and transmission
congestions [40]. In [29], the authors state that people are

more comfortable with fixed prices and may be hesitant to
enroll in DR programs with dynamic pricing due to complex-
ity. Another potential challenge with time-based programs is
that shifting too much power from expensive peak hours to
non expensive off-peak hours may simply lead to new peaks
of demand and potential congestion.

IV. POTENTIAL

Governments around the world are pushing for increases
in penetration levels of RERs (meaning percentage of peak
energy generation stemming from RERs) as a response to
global climate changes. In China, about 8% of the energy
comes from RERs as of 2013, with a goal of reaching
15% RER penetration by 2020 [41]. In Europe, all member
countries of the European Union have committed to national
renewable energy action plans setting goals for RER pene-
tration levels by 2020. Examples are listed in Table I.

In the US, President Bush stressed the need for greater
energy efficiency and a diverse energy portfolio in 2006
which in turn has led to a 2030 plan of covering 20% of the
US electricity needs by wind energy. The costs, challenges
and impacts have been extensively examined by National
Renewable Energy Laboratory (NREL) and U.S. Department
of Energy (DOE) [1]. A sample remark from [1] is worth
noting:

”The 20% Wind Scenario would require end users
to be able (via price signals and technology) to
respond to system needs by shifting or curtailing
consumption. Time-shifting of demand would help
reduce today’s large difference between peak and
off-peak loads and encourage more flexible loads
(such as plug-in hybrid cars, hydrogen produc-
tion, and smart appliances) that take energy from
the grid during low-load periods. These practices
would smooth electricity demand and open a larger
market for off-peak wind energy.”

This is a direct statement of the need for DR (as defined
by FERC [4]) and possibly energy storage to accommodate
that level of wind penetration. In a report prepared by GE
Energy in 2010, looking only at the price aspect, additional
energy storage is found unjustifiable at levels of 10-20% of
wind penetration scenarios, leaving the task to DR programs
[42]. This thesis is also confirmed in [43], where results show
no need for increase in reserve requirements at 13% wind
generation penetration if a 15% DR penetration is present.

Higher levels of RER penetration however mandate new
solutions, and in particular, the ability to curtail demand i.e.,
reduce peak consumption. In [4], FERC reports an estimated
US DR capability of 72 GW, about 9.2% of peak demand.
FERC estimates the peak reduction potential of DR to be
14% in an achievable DR participation level scenario by
2019 [7]. In [52], reductions in peak demand and electricity
cost for the consumer are shown to be achievable with DR
and distributed storage in microgrids. Using 50% Time-of-
Use (ToU) tariffs adoption, peak demand is shown to be
reducible and an increase in Social Welfare (SW) is achieved
in [53]. SW is a performance metric that includes consumer



TABLE I
RER PENETRATION LEVELS AND GOALS FOR SELECT EU MEMBER

COUNTRIES.

RER penetration
Country Actual in 2005 Goal by 2020
United Kingdom [44] 1.3% 15%
Italy [45] 4.92% 17%
Germany [46] 5.8% 18%
Spain [47] 8.7% 20%
France [48] 9.6% 23%
Denmark [49] 17% 30%
Austria [50] 24.4% 34%
Sweden [51] 39.8% 49%

and generator surpluses that is widely used as the parameter
to maximize in analyses of DR programs. Peak-to-average
ratio (PAR) is another parameter often used to measure the
ability of DR programs to curtail and/or shift demand. (PAR
reductions have many different names in present literature
e.g., demand shaping, valley filling.) In [20], the PAR is
reduced by almost 20% and the average electricity cost is
reduced by more than 15% with a residential DR program.
Shifting the demand to off-peak periods is shown to lower
electricity cost in [54] and in [55], increase in SW and re-
ductions in electricity cost are presented with a DR program
which combines shifting demand to off-peak periods and
curtailing demand in response to price signals.

Financial benefits are a huge motivator in the adoption of
DR programs. In [56], annual savings of e360 are shown
possible in a representation of a single-family electrically
heated Danish house acting as thermal storage. In another
approach, [18] demonstrates 7% savings for a single-family
electrical heat pump heated house. Looking at residential and
small business consumers, [29] proposes a DR program ca-
pable of lowering the total energy cost by more than 12%. In
the industrial sector, [14] shows data centers able to save 30%
on monetary costs by participation in the regulation services
without significant loss in QoS. Further, [11] shows reduced
power consumption of industrial refrigeration systems and
[12] presents an example indicating as much as a 30%
increase in operating profits for a chemical manufacturing
site.

Reliability and stability are important properties of the
Smart Grid which DR programs must support. In [23],
[24], DR programs are demonstrated to be able to provide
frequency regulation using residential consumer appliances
and the high heat capacity of thermal loads, respectively.
A hierarchical transactive controller, handling power imbal-
ances and frequency drops due to wind generation loss,
presented in [57], is shown to increase SW by proposing
a hierarchical architecture of dynamic market transactions
at the top level and active frequency control at the lower
area and unit levels with faster time scales. Running from
early 2006 through March 2007, the Grid Friendly Appli-
ance Project managed by the Pacific Northwest National
Laboratory (PNNL) demonstrated a DLC DR program able
to provide underfrequency protection [58]. Autonomous,

grid-responsive controllers, called Grid FriendlyTM appliance
(GFA) controllers, were installed in 150 residential clothes
dryers and 50 residential water heaters making the appli-
ances able to react when the grid frequency dropped below
59.95 Hz and shed the load. Despite lacking the scale to
significantly affect and control grid frequency, the project
concluded that they

”succeeded in demonstrating the reliability of and
opportunity for grid-responsive underfrequency
protection controllers like the GFA controller.”

The GFA Project was one part of the two field-demonstration
project by PNNL called the Pacific Northwest GridWiseTM(b)

Testbed Demonstration. The second, referred to as the
Olympic Peninsula Project, tested whether automated two-
way communication could improve electrical and economic
efficiencies. With five water pumps, two distributed diesel
generators, and residential DR for electric water and space
heating in 112 households, the project demonstrated shift
of thermostatically-controlled loads, peak load reduction,
and improved system efficiency [59]. Another example of
a large scale implementation of DR is in [60], showing peak
reduction in the vicinity of 7% in 2006.

Finally, the role of the aggregator is of high interest in the
context of high penetration of DR. In [26], they conclude that
an aggregator should coalesce 10% of the residential users
in a grid area to achieve a useful power reduction. With an
aggregation of supermarket refrigeration and a chiller with
ice storage, [61] shows a heterogeneous aggregation portfolio
superior to a homogeneous one using the ability of utilizing
the flexibility in a clever manner.

A. A Quantitative Taxonomy of DR

As demonstrated throughout this paper, current research
in DR examines many different cases covering the immense
possibilities in various areas of a Smart Grid. Consequently,
the topic is accompanied by an abundant amount of abbrevi-
ations, technical terms and quantities, and classifications of
participation. One method by which these various methods
of participation can be organized is based on the inherent
magnitude, run-time, and integral constraints that may be
present in any demand. One such taxonomy proposed in [62]
includes three classes of DR denoted as Buckets, Batteries
and Bakeries, and is discussed in some detail below.

The Bucket is a power and energy constrained integrator,
and could be an example of a simplified model for thermal
energy storage. The Battery is similar to a Bucket, but has
an additional constraint of a specific deadline for reaching
a fully charged state. An example of a Battery could be
PHEVs. Lastly, the Bakery is an extension of the Battery, as
it has one more constraint requiring that the charging must
happen in one continuous period with a constant consump-
tion. Manufacturing companies with a fixed production cycle
could exemplify Bakeries. These DR classes are presented
Definitions 1, 2 and 3, and are illustrated on Figs. 1, 2 and
3. In these definitions, Ts denotes the time step size, PDi

(k)
denotes consumed power, PDi

and PDi denote consumption
rate limits, EDi(k) denotes stored energy, EDi

and EDi



denote energy storage limits and ui(k) is the binary on/off
state of Bakery i at time k.

Definition 1 (Bucket): The demand PDi(k) is defined to
be a Bucket if PDi

(k) and the stored energy EDi
(k) satisfy

the following constraints:

EDi
(k + 1) = EDi

(k) + TsPDi
(k) k = 0, 1, . . . ,∞ (1a)

PDi
≤ PDi

(k) ≤ PDi k = 0, 1, . . . ,∞ (1b)

EDi
≤ EDi

(k) ≤ EDi, k = 0, 1, . . . ,∞ (1c)

where PDi
≤ 0 ≤ PDi. The set of all demands in a Bucket

is denoted as Cn.
Definition 2 (Battery): The demand PDi(k) is defined to

be a Battery if PDi
(k) and the stored energy EDi

(k) satisfy
the following constraints:

EDi
(k + 1) = EDi

(k) + TsPDi
(k) k = 0, 1, . . . ,∞ (2a)

0 ≤ PDi
(k) ≤ PDi k = 0, 1, . . . ,∞ (2b)

0 ≤ EDi
(k) ≤ EDi k = 0, 1, . . . ,∞ (2c)

EDi
(Ti,end) = EDi, (2d)

where Ti,end ∈ N+. The set of all demands in a Battery is
denoted as Tn.

Definition 3 (Bakery): The demand PDi(k) is defined to
be a Bakery if PDi

(k) and the stored energy EDi
(k) satisfy

the following constraints:

EDi
(k + 1) = EDi

(k) + TsPDi
(k) k = 0, 1, . . . ,∞ (3a)

PDi
(k) = PDiui(k) k = 0, 1, . . . ,∞ (3b)

0 ≤ EDi
(k) ≤ EDi k = 0, 1, . . . ,∞ (3c)

EDi
(Ti,end) = EDi (3d)

0 ≤
k+Ti,run−1∑

l=k

ui(l)− Ti,run

(
ui(k)− ui(k − 1)

)
, (3e)

where PDi ≥ 0, EDi = PDiTi,run, Ti,end ∈ N+, Ti,run ∈
N+ and Ti,end ≥ Ti,run. The set of all demands in a Bakery
is denoted as Kn.

We now classify all references on DR into one or more of
the three classes defined above, as shown in Table II. Such a
classification of DR is unique, to the best of our knowledge,
in its span, applicability, and analytical tractability.

It should be noted that no such distinct analytical classi-
fication as above currently exists in the literature with the
exception of [55]. In [55], DR is classified as adjustable and
shiftable where adjustable demand comes from participants
that have the ability to curtail their consumption, whereas
shiftable demand participants must consume a given amount
within a certain time horizon but are flexible during that
period. Similarly to Buckets, Batteries and Bakeries, both
adjustable and shiftable DR can be under a time-based or
an incentive-based DR program. The Buckets, Batteries and
Bakeries classification as above is more comprehensive and
a significant improvement over [55].

B. Economic Dispatch with Integration of DR

The benefit of the above taxonomy of various DR devices
is that it has the potential to enable a direct integration of

Energy

Time

EDi

EDi

Fig. 1. Illustration of the power and energy properties of a Bucket.
Energy

Time

EDi

Ti,end

Fig. 2. Illustration of the power and energy properties of a Battery.
Energy

Time

EDi

Ti,endTi,run

Fig. 3. Illustration of the power and energy properties of a Bakery.

DR into economic dispatch (ED). We describe one possible
strategy below which is based on a security-constrained unit
commitment (SCUC) approach [63].

The underlying problem is one of constrained optimiza-
tion, posed as

min

NP∑
i=1

NT∑
k=0

[
Ci

(
PGi(k)

)
+ Con

i (k)won
i (k)

+ Coff
i (k)woff

i (k)
]

(4)

subject to∑
i∈Θn

PGi
(k)−

∑
i∈Cn

PDi
(k)−

∑
i∈Tn

PDi
(k)−

∑
i∈Kn

PDi
(k)

−
∑

m∈Ωn

Pnm(k) = 0 ∀n ∈ Ω,∀k ∈ T (5a)

−RGi
vi(k)− PGi

woff
i (k) ≤ PGi

(k)− PGi
(k − 1)

∀i ∈ Θ,∀k ∈ T (5b)
PGi

(k)− PGi
(k − 1) ≤ RGi

[
1− won

i (k)
]

+ PGi
won

i (k)

∀i ∈ Θ,∀k ∈ T (5c)
PGi

vi(k) ≤ PGi(k) ≤ PGivi(k) ∀i ∈ Θ,∀k ∈ T (5d)

0 ≤
[
T on
i (k − 1)− T on

i

][
vi(k − 1)− vi(k)

]
∀i ∈ Θ,∀k ∈ T (5e)

0 ≤
[
T off
i (k − 1)− T off

i

][
vi(k)− vi(k − 1)

]
∀i ∈ Θ,∀k ∈ T (5f)

−Pnm ≤ Pnm(k) ≤ Pnm ∀n ∈ Ω,∀m ∈ Ωn,∀k ∈ T (5g)

All variables in (4) and (5) are defined in Table III, and
the demand PDi(k) in (5a) includes Buckets, Batteries and



Bakeries and satisfy the constraints in (1), (2) and (3), respec-
tively. Non-responsive demand is also included with Buckets,
Batteries and Bakeries by application specific specification
of power consumption, energy storage, and run-time limits.
Generation constraints include nodal power balance in (5a),
generator ramping constraints in (5b) and (5c), operating
constraints in (5d), on- and off-time constraints in (5e) and
(5f) and transmission line constraints in (5g).

A wide range of possible approaches can be used to solve
this problem including dynamic market mechanisms (e.g.,
[55][64]). This in turn will directly enable a quantitative as-
sessment of the distribution of DR devices, Buckets, Batteries
and Bakeries and perhaps leads to an integration of a high
percentage of RERs.

V. SUMMARY

Moves toward higher integration of RERs in the recent
decade have called for transformative changes in the planning
and operation of the electricity grid. An ideal example of
such a change is the incorporation of DR. In this paper, a
comprehensive survey of DR including participants of DR
programs, challenges, and potential associated with DR for
large-scale implementations was presented.

Various participating parties in the electricity market are
traditionally divided into residential, commercial and indus-
trial sectors. At present, commercial and industrial sectors
are participating more in DR programs than the residential
sector but the latter has great potential of participating in
future DR programs. All sectors however have equal interest
in participating in DR program due to potentially lower
electricity prices, higher energy efficiency, and minimization
of expensive outages in the electricity grid.

AMI is being rolled out all over the world to accommodate
the need for two-way communication between the utilities
and consumers in a Smart Grid. Challenges regarding im-
plementation of AMI are the costs associated with it and the
delays they can introduce which, if not handled, can cause
reliability and stability issues in the electricity grid. Some
of the data communicated from AMI can be highly sensitive
and private, making privacy a growing concern. Security is
also an issue since AMI data can be subject to manipulation
which can be hard to detect and handle.

All countries in the European Union have individual goals
for RER penetration by 2020, as do many other countries
e.g., China, and US setting 2030 as the target. All of these
goals emphasize the need for demand side solutions and
to fully explore the potential of DR to help cope with the
volatile nature of RERs.

Several questions still remain to be answered regarding
large-scale implementation of DR. One such question is
about the percentage of DR which can be realistically
achieved in the residential sector that can lead to a mean-
ingful reduction in peak demand. A related question is if
aggregation of residential DR can help in mitigating the
intermittent and volatile behavior of RERs. The quantitative
framework proposed in this paper as well as ongoing investi-
gations in this topic are preliminary steps in answering these

TABLE II
OVERVIEW OF MODELED FLEXIBILITY IN REFERENCED LITERATURE.

DR Program Behavior References

Bucket
[56], [25], [65], [57], [52], [61], [22],
[10], [11], [12], [14], [18], [19], [23],
[24], [30], [34], [35], [53], [59]

Battery [43], [58]
Bakery [20], [16]
Bucket and Battery [55], [40], [27], [28]
Battery and Bakery [26], [54], [15]
Bucket, Battery and Bakery [17], [29]

TABLE III
NOMENCLATURE.

Symbol Description

Ci(·) Production cost function of unit i
Con

i (k) Startup cost‡

Coff
i (k) Shutdown cost‡

Cn ? Bucket demands at bus n

Kn
? Bakery demands at bus n

NP Number of generating units
NT Maximum time of interest
PGi

(k) Power generation‡

PGi Maximum power generation†

PGi
Minimum power generation†

Pnm(k) Power flow from bus n to m at time k

Pnm Maximum power capacity of line n to m

RGi Generation ramp-up limit†

RGi
Generation ramp-down limit†

T ? time period of interest
T on
i (k) On-time‡

T on
i Minimum on-time†

T off
i (k) Off-time‡

T off
i Minimum off-time†

Tn ? Battery demands at bus n

vi(k) Binary on/off state‡

won
i (k) Binary startup state‡

woff
i (k) Binary shutdown state‡

Ω ? buses
Ωn

? buses connected to bus n

Θ ? generating units
Θn

? generating units at bus n

† of unit i, ‡ of unit i at time k, ? Set of indices of

questions to realize large scale implementations of DR in a
Smart Grid.
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