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Abstract

Control of autonomous helicopters in the presence of environmental and system uncertain-
ties is a challenging task. These uncertainties not only change the dynamics of the system but
the trim inputs themselves. In this paper, a viable multivariable adaptive control methodology
is proposed that is applicable for general maneuvers with arbitrary speeds and high bandwidth
requirements. The control design methodology achieves global stability, and is tested on a
high fidelity simulation of a real life autonomous helicopter. The results indicate a satisfactory
tracking performance even as the speeds and bandwidth requirements are increased well be-
yond hover, and as the parametric uncertainties were increased by about 20% of their nominal
values.

Nomenclature

� Inverse of adaptation gain matrix

�1 Adaptation gain

�2 Adaptation gain

�3 Adaptation gain

�r Adaptation robustness matrix

�r1 Adaptation robustness gain

�r2 Adaptation robustness gain

�r3 Adaptation robustness gain

� Efficiency of Engine
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� Pitch attitude

� System parameter vector

�0 Nominal system parameter vector

�c Controller parameter matrix

���

c Ideal controller parameter matrix

��c Augmented controller parameter matrix

�s Set of all system parameter values

�f Fraction of fuel capacity remaining

� Observability index of plant

�p Monic polynomial of degree 1

� Atmospheric density

� Roll attitude

� (t) Controller parameter error matrix

 Heading angle

! Non-minimal representation of xp

�! Augmented non-minimal state representation

!0 Vector of unit elements

!i Part of non-minimal state !, i = 1; :::; � � 1

!j Part of non-minimal state !, j = �; :::; 2� � 1


max Engine speed at maximum output


 Angular rate of main rotor

a1 Rotor disk pitch angle

a1;FB Flybar pitch angle

aFB Lift curve slope of flybar

amr Lift curve slope of main rotor blade

atr Lift curve slope of tail rotor blade

A State-space representation matrix

Ap State-space representation matrix about nominal trim
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b1 Rotor disk roll angle

b1;FB Flybar roll angle

bmr Number of main rotor blades

btr Number of tail rotor blades

B State-space representation matrix

Bm Reference model state space representation matrix

Bp State-space representation matrix about nominal trim

cFB Chord of flybar paddle

cmr Chord of main rotor blade

ctr Chord of tail rotor blade

C State space representation matrix

Ci Controller parameter matrix of size m�m, i = 1; :::; � � 1

CD0;mr Zero-lift drag coefficient of main rotor blade

CD0;tr Zero-lift drag coefficient of tail rotor blade

d̂ Trim error estimate

d0 Input disturbance due to dx and dy

d1 Input disturbance due to dx and dy

d1 Output disturbance

dx State disturbance

dy Output disturbance

De Gear reduction ratio of main rotor

Dj Controller parameter matrix of size m�m, j = 0; :::; � � 1

Dtr Tail rotor turns per turn of main rotor

e State error xp � xm

e0 Quaternion element

e1 Quaternion element

e1 (t) Output error zp (t)� zm (t)

e2 Quaternion element
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e3 Quaternion element

f System dynamics

g Gravitational Acceleration

Hp (s) Hermite normal form of system transfer function matrix

Ib Flapping inertia of main rotor blade

IFB Flapping inertia of flybar paddle

Ixx Roll axis moment of inertia

Iyy Pitch axis moment of inertia

Izz Yaw axis moment of inertia

ki Measure of column relative degree

K Control matrix

K0 Controller parameter matrix of size m�m

K0 Controller parameter matrix of size m�m

Kp High frequency gain of Wp (s)

Kp High frequency gain of plant with precompensator

Kfb
cyc Flybar cyclic pitch per cyclic pitch control input

Kcyc
fb Main rotor cyclic pitch per flybar tip path deflection

KGE Ground effect parameter

m Number of input and outputs of Wm (s)

me Mass without fuel

mf Fuel capacity

_mmax Fuel consumption rate at maximum output

n Order of plant

n�i Relative degree of individual elements of Wp (s)

p Body roll rate

P Adaptation gain matrix

Pbhp Engine brake power

q Body pitch rate
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Q Control Matrix

Q0 Positive definite matrix

r Body yaw rate

rm Reference input

rq (s) Hurwitz monic polynomial of degree � � 1

Rm (s) Polynomial matrix of monic Hurwitz polynomials

Rp (s) Polynomial matrix in coprime matrix fraction decomposition of Wp (s)

Rq (s) Diagonal matrix of polynomial transfer functions

RFB Radius of center of flybar paddle

Rmr Main rotor radius

Rpad (s) Adjoint of Rp (s)

Rprc Matrix column form of Rp (s)

Rtr Tail rotor radius

sFB Span of flybar paddle

Sa Selector matrix

Sld Selector matrix

Sli Selector matrix

T Post-compensator matrix

Ti Nonsingular matrices made of unit vectors i = 1; 2

u Forward Velocity (body frame), ft/sec

up System input linearized about nominal trim

upe System input linearized about trim

U System input

U0 Nominal trim input to plant

U�0 Searched nominal trim input

U1 Intermediate nominal trim input during search

Ue Trim input to plant

Ug Forward velocity (ground frame), ft/sec
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Ucol Main rotor collective

Upcyc Main rotor pitch cyclic

Uped Tail rotor collective

Urcyc Main rotor roll cyclic

Uthr Engine throttle

v Lateral Velocity (body frame), ft/sec

vp Input with precompensation

Vw Wind velocity vector (local-level frame)

w Vertical Velocity (body frame), ft/sec

Wa (s) Gradient stabilizer transfer function matrix

Wc (s) Precompensator transfer matrix

Wg Vertical velocity (ground frame), ft/sec

Wm (s) Reference model transfer function matrix

Wp (s) Plant transfer function matrix

W p (s) Plant with precompensator

Wcl (s) Closed loop transfer function matrix

x North position (local-level frame), ft

xm Reference model state

xp System state linearized about nominal trim

xht Horizontal tail c.p. location (forward of c.g.)

xmr Main rotor hub location (forward of c.g.)

xpe System state linearized about trim

xtr Tail rotor hub location (forward of c.g.)

xvt Vertical tail c.p. location (forward of c.g.)

X System state

X0 Nominal trim state of plant

X�

0 Searched nominal trim state

_X0 Commanded state derivative for nominal trim
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_X03 Part of nominal trim state derivative

_X04 Part of nominal trim state derivative

X1 Intermediate nominal trim state during search

Xa Fixed part of nominal trim

Xb Part of nominal trim determined through search

Xc Commanded state

_Xc Commanded state derivative

_Xc3 Part of commanded state derivative

_Xc4 Part of commanded state derivative

Xe Trim state of plant

_Xe Commanded state derivative for trim

Xg North position (ground frame) ft

X01 Part of nominal trim state

X02 Part of nominal trim state

Xc1 Part of commanded state

Xc2 Part of commanded state

Xuu;fus Axial fuselage drag coefficient

Y System output

y East position (local-level frame), ft

yc Commanded output linearized about nominal trim

ype System output linearized about trim

Yc Commanded output

Yg East position (ground frame) ft

Yuu;vt Trim vertical tail lift coefficient

Yuv;ht Vertical tail lift coefficient due to sideslip angle

Yvv;fus Lateral fuselage drag coefficient

Yvv;ht Vertical tail lift coefficient due to sidewash

YV V;vt;max Maximum vertical tail lift coefficient
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z Down position (local-level frame), ft

zm Modified reference output

zp Modified plant output

zfus Fuselate c.p. location (below c.g.)

zht Horizontal tail c.p. location (below c.g.)

zmr Main rotor hub location (below c.g.)

ztr Tail rotor hub location (below c.g.)

zvt Vertical tail c.p. location (below c.g.)

Zc (s) Controller polynomial matrix

Zd (s) Controller polynomial matrix

Zp (s) Polynomial matrix in coprime matrix fraction decomposition of Wp (s)

Zuu;ht Trim horizontal tail lift coefficient

Zuw;ht Horizontal tail lift coefficient due to angle of attack

ZV V;ht;max Maximum horizontal tail lift coefficient

Zww;fus Vertical fuselage drag coefficient

Zww;ht Horizontal tail lift coefficient due to downwash

1 Introduction

The control problem of high-performance helicopters is a challenging task since the vehicle dy-

namics are highly nonlinear and fully-coupled (Figure 1),1 and subject to parametric uncertainties.

Often, during complex maneuvers, the thrust is a function of roll, pitch and heading angles. Con-

trol inputs are invariably limited to variations in pitch of main rotor and tail rotor blades and the

throttle. In addition, the tail rotor needs to exactly cancel out the rotational torque due to the main

rotor in order for the helicopter to maintain steady yaw angle. Some of the system parameters can

change with the environment (e.g. the aerodynamic constants) or with the helicopter (e.g. lift curve

slopes). The unknown system parameters also cause the trim conditions for the helicopter to be

unknown. The complexity of this problem remains just as high in the case of both unmanned heli-

copters where remote communications with the ground are used for control as well as autonomous
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helicopters where it is expected that little or no information from the ground is utilized for control.

In this paper, our focus is on the latter for which we develop an adaptive multivariable controller

that is capable of simultaneously accommodating all coupling features, parametric uncertainties,

and the trim error, and as a result executes complex maneuvers autonomously.

Great strides have been made in unmanned helicopter technology in the past few decades. Con-

troller designs for these vehicles have involved highly augmented controller structures.2–5 These

controllers have multiple-inputs and multiple-outputs, are robust and have enabled aggressive flight

performance while ensuring stability. Typically, in such vehicles, remote communications are

maintained with a ground station for obtaining ground-based reference signals which are in turn

used to compute the desired control inputs. In contrast, in an autonomous helicopter, the controller

has to generate the appropriate action without these reference signals and still deliver the requi-

site high performance. A direct consequence of this is the introduction of an unknown trim error

which can be eliminated by a pilot and a ground station in a manned and unmanned helicopter,

respectively. This problem is further exacerbated in the context of system uncertainties which in-

troduce an additional unknown component into the trim error as the trim commands change with

the uncertainties. While the incorporation of integrals can help mitigate this problem, it is often

at the expense of trading off performance. What is more desirable is a control methodology that

is capable of adapting to the trim error while simultaneously accommodating all coupling features

and parametric uncertainties during the execution of maneuvers.

Previous work on linear control design for helicopters includes the use of Eigenstructure As-

signment,6–8 H2, H1,9 �-synthesis,10, 11 and dynamic inversion methods.12 These methods are

based on linearized helicopter models about hover, uniform forward flight trim conditions, or the

assumption that the modes are decoupled. Nonlinear control designs previously attempted include

neural network based controllers,13 fuzzy control,14, 15 differential flatness,16 and backstepping de-

signs.17 These methods either assume feedback linearizability, which in turn restricts the motion

to be around hover, or do not include parametric uncertainties, or realistic aerodynamics. Specific

issues such as unknown trim conditions that degrade the performance of the helicopter have not

been addressed. While adaptive control schemes have been proposed in the aircraft and spacecraft

control context,18 there is a lack of similar work on helicopter control. The non-minimum phase

nature of the helicopter dynamics adds to the challenge of finding a stable adaptive controller.
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In this paper, our objective is to present an adaptive controller that addresses the special needs

of autonomous vehicles. The proposed multivariable adaptive controller is comprised of the fol-

lowing features: it accommodates both parametric and unknown trim conditions through online

adjustments of parameters. Suitable Lyapunov functions insure closed loop stability and robust-

ness. The control design judiciously integrates linear design with online adaptive strategies, so as

to maximize benefit from off-line information and on-line measurements. A two-step nonlinear

optimization procedure is carried out to determine nominal trim states that allows the arbitrar-

ily close convergence to the global minima by making use of prior information available about

sub-components of the trim states during a given maneuver. The performance of the controller is

demonstrated using a high fidelity nonlinear simulation model of Draper Laboratory’s autonomous

helicopter.

The new control design structure, together with a trim error estimate, controller parameter

update laws and system augmentation for stable adaptation leads to a stable robust system with en-

hanced performance, thereby resulting in a viable multivariable adaptive controller for helicopters.

Overall, the suggested design methodology reduces the gap between state of the art adaptive con-

trol theory and design for non-full-state feedback systems and the needs of realistic applications

such as autonomous helicopters.

The paper is organized as follows. In section 2 the problem is stated and a brief description

of the nonlinear model of the helicopter dynamics used in section 3 is presented. In section 3

the adaptive control design methodology is presented. Section 4 compares the performance of the

adaptive controller with that of other controllers using different scenarios, while Section 5 offers

conclusions.

2 Statement of the Problem

In this section, a statement of the problem and the helicopter model used for the design of the

adaptive controller is described in Section 2.1. The unknown trim conditions are described in

Section 2.2 and the effect of using a nominal trim is described in Section 2.3.
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2.1 The Control Problem

Our goal is to design controllers for autonomous helicopters so that accurate command following is

achieved. A helicopter dynamics model developed at Draper Laboratory,1, 19–21 is used to develop

the control design. This model is obtained by considering the fuselage of the helicopter as a rigid

body attached to the main rotor and tail rotor. The 6-DOF equations of the fuselage are derived

from Newton’s second law.

The system can be expressed as an equivalent block, f , in the following manner.

_X = f (X;U;�) ; (1)

For the helicopter,

X = [e0; e1; e2; e3; u; v; w; p; q; r; x; y; z;
; a1; b1; a1;FB; b1;FB; �f ]
T ; (2)

U = [Urcyc; Upcyc; Uped; Ucol; Uthr]
T ; (3)

� = [me; mf ; g; Ixx; Iyy; Izz; xmr; zmr; Rmr; amr; bmr; cmr; CD0;mr;

Ib; KGE; RFB; aFB; cFB; sFB; IFB; K
FB
cyc ; K

cyc
FB; �; xtr; ztr;

Dtr; Rtr; atr; btr; ctr; CD0;tr; Pbhp; �;
max; _mmax; De; zfus;

Xuu;fus; Yvv;fus; Zww;fus; xht; zht; Zuu;ht; Zuw;ht; Zww;ht;

ZV V;ht;max; xvt; zvt; Yuu;vt; Yuv;vt; Yvv;vt; YV V;vt;max]: (4)

Of the state variables in X , a1; b1; a1;FB; b1;FB, and �f are difficult and expensive to measure

and are therefore not available in most cases. Similarly, an exact measure of �f is also usually not

available. Therefore, the system output is given by

Y = [e0; e1; e2; e3; u; v; w; p; q; r; x; y; z;
] : (5)

In terms of the vehicle model described in Equations (1)–(5) the problem under consideration

can therefore be stated as follows. For the system given by Equations (1)–(5), the objective is to

find U such that Y ! Yc while all other signals remain bounded in the presence of uncertainties in

the helicopter and environment, for any given operating condition.
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2.2 Effect of Unknown Trim Conditions

One of the most common methods of controlling the nonlinear system in (1) is through lineariza-

tion. The linearized model corresponding to (1) is given by

_xpe = Axpe +Bupe ype = Cx (6)

where

xpe = X �Xe; upe = U � Ue; ype = Y � CXe: (7)

Suppose the goal is to carry out a forward flight or a vertical climb. Xe; Ue must satisfy the

equation

f(Xe; Ue;�) = 0 (8)

The determination of trim conditions for a given maneuver is tantamount to finding solutions of

a set of nonlinear equations as in (8). This determination becomes even more complex in the

presence of uncertainties. This is because of the fact that � in (8) is unknown and therefore the

trim conditionsXe; Ue which are obtained as solutions of (8) are unknown as well. As a result, xpe,

upe, and ype in Eq. (7) are not measurable. Therefore even the very first step in the control design

cannot be taken due to the presence of uncertainties.

One possible approach for overcoming this difficulty is to estimate � at a simple maneuver,

such as the hover, using parameter identification methods, and proceed to determine Xe; Ue and

therefore the linear controller using (6). However, as environmental and system conditions change

during the vehicle maneuvers, new changes in � can occur. These in turn necessitate continued

estimation of either �, or its effects on the trim conditions. We adopt such an approach in this paper

of an adaptive control design where the unknown trim condition is estimated on-line in addition to

the estimation of the control parameters, to generate the desired control input.

2.3 Nominal Trim Condition

Since pilot action to achieve the trim conditions in flight, Xe (�) ; Ue (�), is not available in the

case of an autonomous helicopter, we choose a pseudo-trim condition,X0; U0, for a known nominal
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value, �0, of �. Thus,

X0 = Xe (�0) ; (9)

U0 = Ue (�0) : (10)

Linearizing the plant in equation (1) about X0; U0, for simple maneuvers that satisfy (8) we obtain

that
_xp = Ap (�)xp +Bp (�)up + dx (�) ;

yp = Cxp + dy (�) ;
(11)

dx (�) = Ap (�) (X0 �Xe) +Bp (�) (U0 � Ue) ;

dy (�) = C (X0 �Xe) :
(12)

where xp = X � X0, up = U � U0 and _xp = _X � _X0. It can be seen from this equation

that an unknown constant disturbances dx (�) ; dy (�) is now added because of the unknown trim

conditions. The matricesAp (�) ; Bp (�) are also affected by parametric uncertainties. An adaptive

controller, to accommodate the parametric uncertainties and compensate for the unknown trim, is

therefore considered for control of this system. The objective is to design a up such that yp follows

yc where

yc = Yc � CX0: (13)

The above problem statement becomes more complex in the context of a complex maneuver.

In such a case, unlike (8), given Xc, X0; U0 satisfy the equation

f(Xe; Ue;�) = _Xc (14)

where, _Xc is not only nonzero but only partially specified. For example, in a coordinated turn, for

a specified u and _	, p is known to be zero, but � is to be determined; � is zero (or a small value)

but q needs to be calculated. In such cases, the solutions Xe and Ue need to be found using the

following procedure: Let

X0 = T1

�
X01
X02

�
; _X0 = T2

"
_X03
_X04

#
; Xc = T1

�
Xc1
Xc2

�
; _Xc = T2

"
_Xc3
_Xc4

#
(15)

X01 = Xc1; _X03 = _Xc3 : (16)
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Xc1 and _Xc3 are specified by the maneuver. X0, _X0 and U0 can now be calculated using (7), (8)

and (15). Linearizing the plant as before about X0; U0 we obtain the same plant description as

in (11) but with dx (�) given by

dx (�) = Ap (�) (X0 �Xe) +Bp (�) (U0 � Ue) + _Xe �
_X0 (17)

and dy (�) as in (12).

3 Adaptive Control Design

The problem that we address in this section is the control of the plant in (11) where Ap, Bp, dx,

and dy are unknown, such that yp follows yc defined in equation (13). The plant can be represented

in an input-output form given by

yp = Wp(s) [up + d0] + d1 (18)

where

Wp (s) = C (sI � A (�))�1B (�) 2 IRm�m
p (s) : (19)

d0 is the effective input disturbance and is, therefore, canceled out using a trim error estimate added

to up.

In section 3.1 the controller structure is described after which the specific components required

for its implementation on the helicopter are described in section 3.2. The adaptive control laws are

described in section 3.3.

3.1 Controller Structure

We use a model-reference approach to determine the adaptive rules for adjusting the controllers.

This requires the choice of a reference model specified by the input-output relation

ym = Wm(s)rm: (20)

One convenient and simple choice of the transfer function matrix Wm(s) is given by

Wm(s) = Rm(s)
�1 (21)
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where Rm(s) is a polynomial matrix whose entries are monic Hurwitz polynomials. The controller

structure can be described as follows:23

up = �c! (t) ;

! =
h
rm; !

T
1 ; :::; !

T
��1; !

T
� ; :::; !

T
2��1

iT
;

�c = [K0; C1; :::; C��1; D0; :::; D��1] ;

!i (t) = si�1

rq(s)
u (t) ; i = 1; :::; � � 1;

!j (t) = sj��

rq(s)
yp (t) ; j = �; :::; 2� � 1

(22)

Ci and Dj are chosen such that the closed-loop system has poles at desired locations. The well-

known Bezout Identity can be used to be determine the appropriate values ofCi andDj , as follows:

[(Rq � Zc)Rp � ZdZp] = RqK0W
�1
m Zp; (23)

Wp (s) = Zp (s)R
�1
p (s) ; (24)

Rq (s) = diag
�

1
rq(s)

�
;

Zc (s) =
P��1

i=1 Cis
i�1;

Zd (s) =
P��1

j=0 Djs
j:

(25)

where Zp (s) and Rp (s) are in right coprime form. For the closed-loop transfer function matrix

to match Wm(s), we need (a) K0 to be nonsingular, and (b) Zp (s) to be stably invertible. For

known values �, the pole-placement controller is completely specified by the equations (22)–(25).

It should be noted that in many applications, the plant description is not readily available in the

form of coprime matrices.

3.2 Pole Placement Control Design

As mentioned in the introduction, the dynamic model of autonomous helicopters is given by equa-

tions (1)–(5). These equations can then be linearized as in (11) where the nominal trim values X0

and U0 are to be computed for each maneuver. The controller for the plant in (11) is specified

by equations (22), (25), and (23). The complete control design requires the following steps to

be executed: (1) Determine the nominal trim conditions X0 and U0 which are the solutions of (8)

when � = �0. (2) Determine the coprime matrices Zp andRp from the linearized plant parameters

Ap(�0), Bp(�0), andC. (3) Ensure that the high frequency gainKp is nonsingular. (4) Ensure that
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the matrix Zp is stably invertible. The details of steps 1-4 are given in sections 3.2.1 through 3.2.4,

respectively. An additional property of the relative degree of the plant model of a helicopter is

outlined in section 3.2.5 which leads to a simple adaptive control design.

3.2.1 Determination of Nominal Trim Values X0; U0

In order to find the trim conditions X0 and U0 that are the solutions of (8), 19 highly coupled

nonlinear equations have to be solved, and hence an explicit determination of the solutionsX0 and

U0 is near impossible. Optimization schemes need to be used to find a solution to this equation.

Linear methods like Simplex are seen to converge to a local minima from almost all starting val-

ues. Nonlinear methods such as Simulated Annealing or Genetic Algorithms are computationally

expensive. A simpler way of solving this problem is now presented which exploits insight into the

nature of the helicopter dynamics and consists of a two stage optimization procedure for accurate

trim determination.

Often a part of the overall state that includes the attitude angles and angular rates have, either, a

small value for most maneuvers, or values that can be determined reasonably accurately. Defining

Xa = [�; �;  ; p; q; r]T , we fix Xa = Xac, and use a simplex search to determine the remaining

component Xb of X0 and U0. Denoting the resulting values X1 and U1 that this simplex search

leads to, in the second stage of the nonlinear optimization, we begin with X1 and U1, and carry out

a simplex search in the overall (X;U) space to result in the final trim determination of (X �

0 ; U
�

0 ).

The above two-step procedure has the potential to converge to the global minimum mainly

because of the prior information available about the trim values of a sub-component of the state

variables and inputs. This information is most likely available even in the most complex maneu-

vers, and therefore the above procedure is a valuable step in the control design.

3.2.2 Coprime Matrix Fraction Decomposition

The next step in the control design is to find coprime matrices, Zp (s) and Rp (s), starting from

time-domain matrices Ap, Bp, and C, as in equations (11). Diagonalizing the numerator matrix

of Wp (s) and separating out the poles from the transmission zeros is very sensitive to numerical

errors. For the helicopter, therefore, the algorithm suggested in Bigulac and Vanlandingham25 for
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right coprime matrix fraction decomposition is used. The algorithm is briefly outlined below.

1. Form Selector matrices Sa; Sld; Sli using pseudo-controllability indices.

2. With Ac (�), the controllable canonical form of Ap (�), get Rprc , using the equations

Rprc = Sld � SliAcSa: (26)

3. Find Zp (s) using the following equations

N (s) = Zp (s)Rpad (s) ; (27)
iX

j=0

ZpjRpadi�j
= Ni; i = 1; :::; n: (28)

This algorithm is found to give a reasonably accurate representation Zp (s) and Rp (s).

3.2.3 Non-singular High Frequency Gain

The next step is to find Zc (s) and Zd (s), using Zp (s) and Rp (s), and equation (23). We note

that a necessary requirement for finding Zc (s) and Zd (s) is the nonsingularity of Kp. In the case

of the helicopter, the relative degree of some columns of Wp (s) is higher than others. That is,

there are some elements of the input vector u which have lower relative degree transfer functions

to all outputs when compared to the other transfer functions. This results in the high frequency

gain matrix Kp to have the columns corresponding to these input elements to be identically zero.

Therefore, Kp is not invertible. This problem can be resolved by filtering these input elements

through stable filters of appropriate degree. A pre-compensator of the form

Wc (s) = diag
1

�kip
; (29)

is selected, where ki are equal to the maximum of the minimum column relative degree of the

matrix minus the minimum column relative degree of the column i. The new input to the system

vp is given by

vp = Wc (s)up: (30)

This changes the new transfer function of the plant to the following:

W p (s) = Wp (s)Wc (s) : (31)
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We note that W p (s) has a high frequency gain Kp which is obviously different from Kp, and

nonsingular. This enables us to find K 0 = K
�1
p in the Bezout Identity equation (23) corresponding

to W p (s). K0 is also non-singular which is needed for stable adaptation.

3.2.4 Minimum Phase Plant

In order to solve (23) without unstable pole-zero cancellations, we need the transmission zeros, i.e.

the roots of detZp (s) to be stable. This implies that Zp (s)R
�1
p (s) is minimum phase. With the

input U as in (3) and output Y as in (5), we proceed to design an output z (t) 2 IR5 such that

zp (t) = Typ (t) : (32)

where T is a post-compensator chosen such that TZp(s) is square and has stable transmission

zeros over the entire range of parameter space of interest. One natural choice of such a zp is

zp = [p; q; r; w;
]T added to other states available in (5) such that detZp (s) is stable. This gives us

a nearly decoupled system with stable transmission zeros and no unstable pole-zero cancellations.

3.2.5 Helicopter Relative Degree

For the helicopter model, it is seen that the relative degree n�i of the individual elements of Wp (s)

is 1 or 2. This is because the relative degree of the transfer function from the thrust force to the

velocity is 1 from Newton’s second law. The thrust forces in turn are dependent upon the angular

displacement of the rotor blades. These angular displacements a1 and b1 are described by a relative

degree 1 transfer function from the inputs Upcyc, Urcyc.

If the relative degree n�i is unity the adaptive controller requires m � (2m� + 1) controller

parameters, and 2m� states as can be seen in equations (22) since the notion of a strictly positive

real transfer function can be exploited. A slight extension to the same controller structure suffices

for the case when n�i is equal to two,26 which requires no additional parameters but an additional

filtered output of !. The number of states and parameters in both cases are significantly smaller

than those in the case when n�i is greater than two. For a plant withm = 5 and � = 4, the controller

states are 80 when n�i = 2 in comparison to 440 when n�i = 3.

The complete system is now represented by the following equation:

zp = TZp (s)R
�1
p (s)Wc (s) (up + d0 (�)) + Td1 (�) : (33)
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Here Zp (s)R
�1
p (s) is the coprime matrix fraction decomposition of the state space model in equa-

tion (11). The output in equation (5) is assumed to have all available states.

3.3 Adaptive Pole-Placement Control

The adaptive controller is now designed for the partial state feedback case of the helicopter. The

system is described by equations (11), and with the addition of the precompensator and post-

compensator, the transfer function changes to the representation in equation (33). An adaptive

controller structure based on the structure in pole-placement controller described before is now

chosen for the helicopter. In order to compensate for d0 in (18), ! and �c are augmented as

�! =
h
!T
0 ; !

T
iT

, and ��c(t) =
h
d̂T (t);�T

c (t)
iT

which results in the controller

up (t) = ��c(t)�! (t) : (34)

We define ���

c as the constant value of the controller parameters for which the closed loop transfer

function satisfies Wcl (s) � Hp (s). Hp (s) is the hermite normal form of the plant in equation (33)

and is diagonal.26 The error, e1 (t) = zp (t)� zm (t), is derived as

e1 (t) = Hp (s)Kp� (t) �! (t) + Td1 (�) : (35)

where � (t) = ��c (t)� ���

c and zm is the output of the reference plant

zm (s) = Hp (s) rm: (36)

For stable adaptation the transfer function Hp (s) needs to be Strictly Positive Real (SPR). If

the elements of Hp (s) are of relative degree 2 the input and error equations are modified as

u (t) = _�c (t)Wa (s)! (t) + �c (t)! (t) ; (37)

e1 (t) = Hp (s)W
�1
a (s)Kp� (t)! (t) + Td1 (�) ; (38)

where

Wa (s) =
1

s+ a
I a > 0 (39)
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and chosen such that Hp (s)Wa (s) is SPR.26 The following adaptation law is now chosen for

chosen for stable adaptation:

_�c = �Pe1Wa (s) �!
T
� �r�c; �r > 0 (40)

P = ��1 (41)

where

�Kp +KT
p � = Q0 > 0; 8� 2 �s: (42)

�r is chosen for robustness of the design to the trim disturbance d1 (�), nonlinearities, noise, and

other disturbances.

The initial value of K0 is the inverse of K�1
p , for the plant in equation (33) with nominal values

for �. The initial value of d̂ is chosen as zero. The initial values of the rest of the controller

parameters �c are found by solving (23) with Wm replaced by Hp, i.e., by solving

[(Rq � Zc)Rp � ZdZp] = RqK0H
�1
p Zp: (43)

Theorem 4.1 For the plant given in equation (33), model in equation (36), and controller

given in equation (37), given a Hp (s)Wa (s) that is strictly positive real, and a Kp which satisfies

equation (42), the adaptation law in equation (40)–(41) guarantees that all signals of the closed

loop system are bounded.

The reader is referred to Narendra and Annaswamy26 for the proof.

4 Numerical Studies

The controller presented in the previous section is simulated for the nonlinear dynamics presented

in section 2.1. 2% and 20% increases in m and Iyy are used as the uncertainties. These parameters

are seen to have the worst impact on the stability of the system and an increase in their values is

seen to have the most effect. Four different tasks are performed and the results of the dynamic

inversion controllers are compared against the adaptive controller. Adaptation is stopped after a

time in each case based on the output error value to observe learning behavior of the controller.

The results can be summarized in Table 1.
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The simulations use a high-fidelity model of the helicopter including aerodynamics and thrust

calculations as described in Johnson et al.21 However, for tasks 1 and 2 the model is simplified

to only the longitudinal dynamics and with the actuator dynamics neglected. The complete model

with actuator dynamics is used for tasks 3 and 4. Since this study represents a first step in the

design of a truly autonomous helicopter, the saturation constraints on the inputs have not been in-

corporated. The proposed controller is demonstrated in comparison with other existing controllers

designed with the same assumptions.

4.1 Controllers for Comparison

We use three fixed controllers based on linear LQ method,9 dynamic inversion (DI),12 and integra-

tor based design,9 whose performances will be compared to the adaptive controller presented in

this paper.

4.2 Task 1: Track Step Changes in Forward Flight Velocity

The first simulation involves step changes in forward flight velocity between 28ft=sec and 40ft=sec�

for the helicopter. In this maneuver, random steps are taken subsequent to the stoppage of adap-

tation to test the learned behavior of the adaptive controller. The LQ–controller, designed without

the inclusion of aerodynamics, and assuming full state access, is compared against the adaptive

controller. Since in this case, all relevant states are accessible, a simpler adaptive controller of the

form

up = Q
�
Kxp + rm + d̂

�
; (44)

_K = ��1

h
BT
mPex

T
p + �r1K

i
; (45)

_Q = ��2

h
QBT

mPeup
TQ� �r2Q

i
; (46)

_̂
d = ��3

h
BT
mPe+ �r3d̂

i
; (47)

was used, whose details can be found in Krupadanam.22 The LQ-controller has the same structure

as in Eq. (44) where Q and K are fixed at values that minimize a suitable quadratic cost function

�Higher speeds can be achieved with this controller by gain-scheduling. We also note that tasks 3 and 4 address
more complex maneuvers where gain-scheduling was used successfully. For ease of exposition, the speed was limited
to 40ft=sec It should be noted that this speed is significantly larger than what was previously studied in the Draper
simulation studies21
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and d̂ set to zero.

Figure 3 compares the adaptive controller against the LQ–controller with aerodynamics in-

cluded in the system design. It can be seen that the LQ–controller has a large steady state bias.

This is because the nonlinear part of the dynamics due to the aerodynamics are neglected in the

design. The response of a reference model are also included in figure 3 where the reference model

corresponds to the nominal linearized dynamics of the plant with the LQ–controller. The adaptive

controller was chosen as in equations (44)–(47), but with d̂ fixed as zero, and with the starting

values for K and Q as those for the LQ–controller. As shown in figure 3, the steady-state bias is

reduced by as much as 95% in the adaptive case. As shown in figure 3, even though adaptation

was stopped at 320 seconds, the adaptive controller continues to outperform the LQ–controller.

In order to address the issue of steady state bias an integral action was added to the DI–

controller, and the d̂ term was adjusted as in equation (47) of the adaptive controller. The resulting

response is shown in figure 4. Dynamic inversion reduces the steady state bias compared to the

LQ–controller. The addition of integrators eliminates steady state error but increases transients for

the dynamic inversion controller. For example, for a control design which maintains a rise time

of less than 5 seconds, transients of magnitude upto 10% of the step size and settling time greater

than 40 seconds are introduced with integral action. In contrast, the adaptive controller is seen to

outperform this controller by having low steady state bias, fast rise time and no overshoot or tran-

sients after the initial adaptation. The initial transients introduced by the adaptation are of similar

magnitude as those of the DI–controller with integrators. These are eliminated in subsequent itera-

tions of the maneuver as the controller parameter errors decrease. Finally, even after the adaptation

is stopped, the controlled system continues to show the learned performance.

Figure 5 shows training of the adaptive controller for a series of steps followed by stoppage

of adaptation. Random steps are then taken in forward velocity with the same controller values.

This shows that the controller gains and trim error estimate learned in the initial series of constant

steps is sufficient to provide good performance for maneuvers of similar frequency content. This is

because the adaptation enables the controller to minimize the state error for the particular maneu-

ver. The controller gains are therefore values that make the adapted system similar to the reference

model for these frequencies.

The main rotor pitch flapping angle, a1, is shown in figure 6 for the first 180 seconds which
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correspond to three initial steps in forward veloicty. It is seen that the bandwidth requirements are

similar for the adaptive and DI–controller in the first two steps. The maximum required magnitude

and angular rates for a1 are around 7 and 65 seconds for the DI–controller and adaptive controller

respectively. From the third step onwards the bandwidth requirements are lower for both cases as

seen from the transients. The maximum main rotor flapping angular rate is less than 100=sec for

both the adaptive and DI-controller. Thus the adaptive controller achieves better performance in

the long run without any greater bandwidth requirements on the inputs.

4.3 Task 2: Complex Maneuver in Forward and Vertical Velocities

We now a consider a maneuver that is to jump over hurdles, i.e., to track a circle in the Ug �Wg

plane. Since the commanded velocities vary significantly, a gain-scheduled approach is used with

12 distinct operating points along the maneuver, both for the adaptive and the DI–controller. The

DI controller is designed as in task 1, with integrators. The adaptive controller as in equations (44)–

(47) in task 1 is used. The resulting performances are shown in figures 7 and 8. The DI–controller

is seen to have very large initial transients, and with time, the integral action reduces the tracking

error. In contrast, the adaptive controller results in smaller transients (see Figure 7) and in an even

smaller tracking error (see Figure 8).

4.4 Task 3: Vertical Flight with Partial State Access

The controller presented in the section 3 is now simulated for the full helicopter dynamics pre-

sented in section 2.1 with a 20% uncertainty in the mass. The task performed involves steps in

vertical velocity that varies between 5 ft/sec and 10 ft/sec. The resulting sysem has four inputs and

four outputs with the throttle kept constant. The states that are not accessible are a1; b1; a1;FB; b1;FB

and �f . The results of the adaptive controller are compared with a pole-placement controller of a

similar structure but with fixed parameters which are 96 in number. Adaptation is stopped in the

former case, after a certain time as in tasks 1 and 2, to observe learning. It needs to be noted that,

the adaptive controller design includes, as initial values for the control parameters, plant parame-

ters obtained with linearization around nominal parameter values with the aerodynamics included.

At these speeds a design that neglects aerodynamics has inadequate robustness properties and in-

variably, simulations fail because of unacceptably large transients.
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The resulting performances of the controllers in the states w and u are shown in Figures 9,

10, which illustrate that the adaptive controller outperforms the pole-placement controller in terms

of steady state error and transients. In the case of the forward velocity, the transients are seen to

be lower than the pole-placement controller. The figures also show that the adaptive controller

exhibits a suitable learning behavior; even though the adaptation is switched off after just two

cycles, the tracking performance is seen to be as good as in the last adaptive cycle. The adaptive

controller also eliminates the steady state bias.

4.5 Task 4: Coordinated Turn

In this maneuver, the helicopter moves from a coordinated turn of 2:5Æ=sec to 5Æ=sec with a for-

ward velocity of 5ft=sec. A 20% uncertainty in the mass is added to the system. The requisite

controller in this case has 200 parameters. As in task 4, we compare the performance of the adap-

tive controller with a pole-placement controller of a similar structure. In this case too, the adaptive

controller is seen to outperform the pole-placement controller (see Figure 11). In this maneuver,

over a period of 30 seconds the linear controller is seen to result in a 6.5 feet error in the displace-

ment of the helicopter from the nominal designed model. The helicopter travels about 45 feet in

the Xg-direction during this period. The adaptive controller reduces the error to less than 3 feet

in the first cycle and to around 2 feet in the second cycle. In addition to the reduction in the steady

state error, the transients are reduced with time. Moreover, after stoppage of adaptation, it was

observed the learned values of controller parameters continue to show good performance for the

maneuver (see Figure 12).

5 Conclusions

This paper provides a design procedure for the multivariable adaptive control of an autonomous

helicopter. In the design model, all typically present aerodynamics, parametric uncertainties, and

trim error are included. The adaptive controller includes a trim error estimate and provides for sta-

ble adaptation even in the presence of non-minimum phase helicopter dynamics. The controllers

are demonstrated through simulations for the control of an autonomous helicopter for maneuvers

involving trajectory tracking, steady state bias and complex maneuvers and show considerable

24



improvement with adaptation. The adaptive controller is stable, robust and shows significant im-

provement in performance over other control designs. This new methodology is a control design

tool that helps bridge the gap between multivariable adaptive control theory and the needs of real-

istic applications such as autonomous helicopters.
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Task Advantages of Adaptive Controller Figure No.

1. Step changes in
forward velocity

Low steady state error, improvement in
transients over time, little overshoot, good
learned performance after adaptation is
stopped.

Figures 3–5

2. Sinusoidal
forward velocity
command

Low steady state error, low transients,
good learned performance after adaptation is
stopped for frequencies different from train-
ing set.

Figures 7, 8

3. Step changes in
vertical velocity

Low steady state error, low transients and im-
provement in transients over time, little over-
shoot, good learned performance

Figures 9, 10

4. Coordinated
turn

Low transients, smaller tracking error, good
learned performance

Figures 11, 12

Table 1: Summary of numerical simulation tasks.
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