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Abstract 
 

Thermoacoustic instability in premixed combustors 
occurs occasionally at multiple frequencies, especially 
in configurations where flames are stabilized on 
separating shear layers that form downstream of sudden 
expansions or bluff bodies.  While some of these 
frequencies are related to the acoustic field, others 
appear to be related to shear flow instability 
phenomena.  It is shown in this paper that shear flows 
can support self-sustained instabilities if they possess 
absolutely unstable modes. The associated frequencies 
are predicted using mean velocity profiles that resemble 
those observed in separating flows and for profiles 
obtained from numerical simulations, and are shown to 
match those derived from experimental and numerical 
investigations.  It is also shown that the presence of 
density profiles compatible with premixed combustion 
can affect this frequency and can change the absolute 
instability mode into a convectively unstable mode 
thereby reducing the possibility of the generation of 
self-sustained oscillations.  A qualitative prediction of 
the pressure amplitudes resulting from these shear layer 
modes is shown to be consistent with experimental 
measurements.  The results from the stability analysis 
are combined with those using the Proper Orthogonal 
Decomposition (POD) method to yield a reduced-order 
model. 
 

 
I. Introduction 

 
Thermoacoustic instability, which manifests as growing 
pressure oscillations, is predominantly due to 
destabilizing interactions between acoustics and heat-
release rate perturbations. Characterized by a positive 
Rayleigh Index, obtained when the pressure and heat 
release perturbations are in phase, the instability occurs 
normally at frequencies that are associated with 
acoustic modes that can be identified as a longitudinal, 

azimuthal, or bulk mode depending on the 
configuration of the combustor. These interactions have 
been modeled in a number of recent investigations by 
including acoustics and heat-release dynamics as 
primary components [1-7]. 

In some of the combustor configurations, however, 
the combustion instability occurs at multiple frequencies, 
not all of which can be identified with acoustics. In these 
combustors, a “hydrodynamic” instability has been 
argued to be the source of the oscillation [8-12]. In 
particular, the phenomenon of vortex shedding has been 
observed in combustors equipped with sudden 
expansions, bluff-bodies, swirlers, etc., all of which are 
utilized for flame stabilization in premixed systems. A 
representative configuration of these separating flows is 
a backward-facing step or dump combustor that has 
been used extensively in experimental and numerical 
studies, both for non reacting as well as reacting flows 
[13-16].  The pressure power spectra measured in these 
experiments often exhibit multiple peaks, some of 
which are easily related to existing acoustic modes, but 
others are not. This raises the possibility that other 
“resonance” phenomena play a role in determining the 
overall instability characteristics. Whether the 
resonances form due to acoustic forcing or through 
other mechanisms has not yet been proven. The 
existence of vortices in these cases, which raises the 
possibility that shear layer dynamics may be involved 
in the resonance, is confirmed by visualization studies 
that show flames wrapping around large vortical 
structures. As summarized by Najm et al. [17], the 
frequency of the most active oscillations in non reacting 
flows, or the corresponding vortex shedding frequency, 
satisfies, in most cases, the criterion 0.05 < St < 0.1, 
where the Strouhal number is based on the step height 
and the mean upstream flow speed.  Numerical 
calculations of the same flow, although they are mostly 
limited to relatively low Reynolds numbers, reproduce 
the same result.  The question that arises is whether 
self-sustained oscillations produced by a hydrodynamic 
instability can cause the heat release to be perturbed 
and as a result feed energy into the acoustic field, 
thereby producing additional resonant frequencies. 

As a representative example of non reacting and 
reacting flow data, the pressure power spectrum in the 
experiment of Cohen et al. [13] shows three peaks at 
48, 96 and 124 Hz in the reacting flow, and a dominant 
peak close to 100Hz in the non reacting flow. Solutions, 
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analytical in 1D and numerical in 2D, of the acoustic 
wave equation predict the presence of the modes at 48 
Hz and the 124 Hz, as the quarter mode and three-
quarter modes of the system, but not the mode at 96 Hz. 
Moreover the experimental data show that while these 
two modes appear as broad peaks, the 96 Hz peak is 
significantly sharper, implying that the latter is 
generated perhaps by a different mechanism.  It is 
interesting to note that the 96 Hz mode scales to a 
Strouhal number of 0.092, indicating that its origin may 
be related to hydrodynamic instability. 

In this paper, an attempt is made towards deriving 
a reduced-order model of reacting shear flow in a 
combustor with a backward-facing step.  By using  
linear stability theory of shear flow and applying it to 
separating flows, it is explored whether these flows can 
support self-sustained oscillations similar to those 
observed in experimental studies.  These results are 
suitably combined with a POD-based analysis to derive 
a reduced-order model. In section II, the basic linear 
stability theory of shear flows is introduced. Using the 
Green’s function for perturbed Euler equation and 
asymptotic evaluation of integrals, the frequency and 
the growth rate of the hydrodynamic mode are 
calculated, and the conditions under which the 
frequency corresponds to the absolutely unstable mode 
are delineated. Numerical simulations are used to obtain 
the mean velocity profiles, and the results from the 
linear stability analysis are compared with the 
numerical results. In section III, qualitative predictions 
of the pressure amplitudes, which may be expected at 
the shear layer modes, are compared with experimental 
data. Finally, in section IV, using numerical data, a 
reduced order model is constructed for potential use in 
active control design. 

 
 

II. Stability Analysis of Separating Shear Flow 
 

In this section, the separating flow downstream of a 
backward-facing step is analyzed using linear stability 
analysis. The objective of the analysis is to determine 
conditions under which the shear flow can support self-
sustained oscillations arising from intrinsic instabilities, 
even in the absence of upstream perturbations or 
resonance with other oscillations such as those due to 
acoustics. These forms of instabilities are known as 
absolutely unstable modes and have been shown to 
arise in a number of shear flows [18, 19]. 

This section is organized as follows. In section II.1, 
basic formulation of linear stability analysis is 
described. In section II.2, the definition of absolutely 
unstable modes and conditions under which they may 
be expected are presented. In section II.3, the effect of 
flow parameters including the local shear layer 
thickness and the magnitude of the backflow on the 
local stability properties is examined, and how these 
local phenomena may be used to predict global 

properties is explained. Both the unstable frequency and 
the location of the strongest unsteadiness are compared 
with the predictions obtained from a numerical 
investigation of the unsteady flow. In section II.4, the 
analysis is extended to the case with finite density 
gradients across the layer to examine the impact of 
combustion of the absolute stability properties of the 
flow. 

 
 
II.1 Formulation of Local Stability Analysis 
 

Assuming inviscid and incompressible channel flow, 
the 2-D Euler equation and continuity equations are 
combined to obtain the governing 2-D vorticity 
equation [18] 
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the velocity in the x and y direction, respectively, δ  is 
the Dirac delta function, and k

v
 is the unit vector in the 

z direction. The source term )()()( yxtus δδ  represents 
the effect of an upstream velocity perturbation at the 
backward-facing step. Also, we assume that the mean 
flow field, U, depends only on y, which implies that the 
stability analysis is ‘local’. Linearizing Eq. (1), we 
obtain the following equation for the perturbation 
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The boundary condition for this equation are derived 
from the impermeability condition at the upper and 
lower walls as 
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The Green’s function, G, is obtained from the impulse 
response of the flow as 
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Taking Fourier transforms in x and t, we obtain 
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where G
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 and G are related according to 

     ∫=
F

xi detyGtyxG αα
π

α),,(ˆ
2
1

),,( , (6) 

     ∫ −=
L

ti deyGtyxG ωωα
π

ω),,(
ˆ̂

2
1

),,(ˆ . (7) 

α and ω  are the wave number and the frequency 
respectively, and c = αω / .  To meet the causality 
condition, the path of integration L should be placed 
over all singularities in ω  plane, and the path F should 
be the real axis in the α  plane. 
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II.2  Identification of an Absolute Mode 
 

It should be noted that the objective of the analysis is to 
examine the long-term behavior of the flow near the 
step, i.e. at x = 0. The mode that dominates the flow 
along this line is defined as the absolute mode of the 
flow. If this mode is unstable, the flow is absolutely 
unstable, and it exhibits growing waves that are not 
convected out from the observation point, i.e. 
oscillations may persist and the flow demonstrates the 
properties of an unstable oscillator. For unstable but 
absolutely stable flows, the input is amplified 
downstream and the growing waves are convected out. 
These flows are referred to as convectively unstable 
flows. The major difference between absolute and 
convective instabilities is that in the first case, 
oscillations persist at a frequency determined by the 
properties of the flow, i.e. the flow achieves self 
resonance, while in the second external forcing or 
resonance with other oscillators must occur before 
overall sustained oscillations can be observed. 
Following the method used in [18], we now derive the 
frequency and the growth rate selection criterion for 
absolute modes. 

The homogeneous part of Eq. (5) is the well-known 
Rayleigh equation 1  whose solutions are denoted as  

)(1 yη  and )(2 yη  and satisfy the boundary conditions 
that 0)(1 =aη  and 0)(2 =bη . The forced response G of 

Eq. (4) can be determined using G
ˆ̂

, which is the 

solution of (5), and the integrals in (6) and (7).  G
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and )(yW  is the Wronskian 
02121)0(
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W ηηηη  which 

is non-zero when 21 and ηη  are two linearly 
independent solutions. To guarantee a nontrivial 
solution for the homogeneous equation which satisfies 
both boundary conditions, 21 and ηη  must also be the 
eigenfunction eigenη , and satisfy W = 0, which is the 

                                                 
1 The standard form for the Rayleigh equation is given by 
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where η (y) is the mode shape [20, 21]. 

same as the dispersion relation for the Rayleigh 
equation.  

To obtain G, we examine Eqs. (6) and (7).  The 
inverse transform in (7), from the frequency to the time 
domain, is performed by adding the residues of 

singularities in the integrand G
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. This is obtained as 
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where jω  is the eigen-frequency of the homogeneous 

solution corresponding α  with 0)( =ωW , and 1ω  
corresponds to the most unstable branch of the eigen-

frequency. That is, ( )[ ]iωω
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The long-time asymptotic solution of G can be 
evaluated by applying the method of steepest descent 
path to Eq. (6). It can be shown that the behavior of G 
depends only on one mode for each line tx / = const. 
Especially, on the line 0=x , the large-time asymptotic 
behavior of G is shown to be dependent only on one 
mode, ),( 00 αω , where )( 010 αωω =  and 0α  is such 
that 
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Thus this mode determines the frequency and the 
stability of the oscillation on the line   x = 0 for large 
t, and hence corresponds to an absolute mode. Equation 
(11) shows that the group velocity of the absolute mode 
is zero, which seems to be physically reasonable, 
because all other modes with non-zero group velocity 
are swept out from the point, eventually. The shear 
layer forms a locally unstable oscillator, only when it is 
absolutely unstable. That is, when 

 0,0 >iω .   (12) 
Given the dominance of the absolute mode, G in (6) is 
affected mostly near 0αα =  and hence 
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Taking the Laplace transform of Eq. (13), we obtain 
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Noting that 0ω  is complex, it follows that G  is a 
second order oscillator, which is unstable if Eq. (12) is 
satisfied. The time-domain representation of the shear-
layer oscillation may be derived from (14) as 
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where )(),(),,( tyxtyx ss ηψψ = , ),( yxsψ  is the spatial 
pattern of the mode, and )(tsη  is the temporal 
component of the mode. 

 
 

II.3 Absolute Modes for Separating Flow 
 

In section II.2, we considered the shear layer dynamics 
in a channel with impermeable walls, and showed that 
the dynamics are that of a second-order oscillator with a 
frequency 0ω  and a wave number 0α . 0ω  and 0α  (i) 
satisfy the dispersion relation W = 0, (ii) satisfy Eq. 
(11) since they correspond to the absolute mode, and 
(iii) satisfy Eq. (12) if this absolute mode is unstable. In 
this section, the properties (i)-(iii) are discussed in the 
context of a separating shear flow downstream of a 
backward-facing step. The complex frequency of the 
absolute mode, determined by Eq. (11), is evaluated 
using the cusp-map method [21, 22]. The following 
velocity profile is used to model a separating flow 
downstream a backward facing step;  
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where β  is the ratio of backflow to the forward flow, 
δ  defines the shear layer thickness, and wδ  is the 
boundary layer thickness at the wall.  The third and 
fourth terms are added to mimic the impact of the non-
slip boundary condition. When δ  and wδ  are 
reasonably small, the profile approximates the mean 
velocity distribution of step flows reasonably well. 
Figure 1 shows the mean velocity profile given by Eq. 
(16) for selected values of the parameters. We assume 

1.0and,1,1 ==−= wba δ , where all length scales are 
normalized with respect to the step height. These values 
are chosen to simulate the case with expansion ratio 2. 
We note that realistic values of β  vary from 0.3 to 0.4 
for the mean velocity profile in a backward-facing step 
flow at high Reynolds number.2  We also note that in a 

                                                 
2 See, for example, [14, 17, 23, 24]. 

typical recirculating flow, both the shear layer thickness 
and the backflow changes downstream of the step.  The 
profile in Eq. (16), however, is intended to model the 
velocity distribution at any particular section, using the 
original assumption that the flow is parallel. 

The absolute mode frequencies supported by these 
velocity profiles were calculated for various values of 
δ  and β , and the results are depicted in Figure 2. 
Because the Strouhal number is often based on the 
mean upstream velocity, 0U , we normalize the value of 

0ω  as 00 /Uω , where ∫
−=

=
1

1
0 )(

y

dyyUU .3  Results show 

that for a fixed value of δ , the growth rate of the 
unstable mode switches from being convectively 
unstable to absolutely unstable as the backflow 
increases. Moreover, the growth rate of the absolutely 
unstable mode increases with increasing β . Similar 
observation can be made for δ ; for a fixed backflow, 
decreasing δ  can lead to an absolutely unstable flow, 
with further drop in δ  causing an increase in the 
absolute mode growth rate. We also note that the mode 
frequency, r,0ω , is not strongly dependent on β , 

especially for larger values of δ , i.e. changes in the 
backflow, which is observed within the recirculation 
zone of a step flow, does not impact the frequency of 
the absolutely unstable mode significantly; they impact, 
however, the growth rate and hence absolute modes are 
more likely to originate at the section with strongest 
backflow. Because the shear layer thickness increases 
downstream of the step, reaching almost at the same 
order as the step height in the middle of the 
recirculation zone, we focus on the case with 4.0≈δ .  
This case corresponds to a shear layer thickness of 

                                                 
3 Because U(y) is already a nondimensional velocity 
profile, this does not violate the dimension matching 
principle. 
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Figure 1  Mean velocity profile given by Eq. (16) for different 
parameters. 
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almost unity, i.e. on the order of magnitude of the step 
height (see fig 1).  As shown in Figure 2, 6.0,0 ≈rω  at 

4.0≈δ , and the corresponding frequency of the 
absolute mode scales to 1.02/St ,0 ≅= πω r  for a range 

of β . This may explain the observation that strong 
fluctuations in backward-facing step flows occurs 

roughly near 1.0St
0

≅=
U

hf
, where h  is the step 

height and 0U  is the upstream mean velocity of the 
flow. 

Using these results, we can classify the stability 
characteristics of the mean velocity profiles at each 
section of backward-facing step flows (see Figure 3). 
The objective of this classification is to determine the 
most likely origin of the most-unstable absolute mode 
within the recirculation zone, and its overall impact on 
the flow.  At locations near the step, the shear layer is 
very thin, and the backflow is weak, and hence, 
according to Figure 2, the flow is absolutely stable. 
Near the middle of the recirculation zone, the mean 
velocity profile shows strong back flow, and the shear 
layer thickness is comparable to the step height; and 
hence the flow may become absolutely unstable at a 
frequency near 1.0St ≅ .  Note that, from previous 
observations, the frequency is only weakly dependent 
on the backflow and thus the absolute instability will be 
supported at the section of maximum backflow.  
Towards the end of the recirculation zone, the shear 
layer thickness remains almost the same, because the 
flow is bounded by the upper and lower walls, while the 
backflow diminishes. Figure 2 shows that under these 
conditions, the frequency should remain the same, 

1.0St ≅ , while the flow becomes absolutely stable. 
The following global picture of a separating shear 

layer instability, which is supported by strong 
backflow, emerges form the previous analysis. Self-
sustained oscillation occurring in the middle of the 
recirculation zone, where the backflow is strongest, 
propagates upstream and downstream. The frequency of 
these oscillations is determined by the thickness of the 
shear layer at the point of the initiation, i.e. the middle 
of the recirculation zone.  The evidence from 
experimental measurements and numerical simulations 
is that the thickness of the shear zone around the middle 
of the recirculation zone is of the order of magnitude of 
the step height. Oscillations associated with an 
absolutely unstable mode grow in place while spreading 
upstream and downstream. Once these oscillations 
reach an absolutely stable but convectively unstable 
region, the flow becomes convectively unstable, i.e. 
oscillation at the local convective mode with the most 
unstable frequency may be excited. While the growth of 
these oscillations, associated with the convective mode 
at the step, are swept by convection downstream, those 

due to an absolutely unstable mode in the middle of the 
recirculation zone persist. With a sufficiently large 
region of absolutely instability, corresponding to a zone 
with sufficient backflow, the flow shows a behavior of 
an unstable oscillator. In this sense, the absolutely 
unstable section acts as a wave maker for the whole 
flow, and the frequency of the oscillation is given by 

.1.0St≅ 4  It should be noted that the experimentally 
observed frequency 96 Hz in [13] corresponds to St = 
0.092 and is within this range. 

To support the conclusions of this analysis 
regarding the source of sustained oscillations in the 
separating shear layer, a numerically obtained mean 
velocity profile for a backward-facing step flow is 
examined.  Simulations are obtained using a two 
dimensional vortex code, running at Reynolds number 
of 5000.  Results of this simulation, shown in terms of the 
streamlines close to the steps plotted over a cycle of 
large-scale vortex shedding within the recirculation 
zone, are depicted in Figure 4.  These simulations show 

                                                 
4 This qualitative observation can be justified by the 
global mode frequency selection criterion given in [19]. 
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Figure 2  Absolute mode frequencies for the family of velocity 
profiles shown in equation (1), for different values of the 
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Figure 3. Schematic illustration of different regions in 
recirculation zone: (a) δ < O(1)  with weak backflow: local 
absolute frequency ω0~1/δ and locally absolutely stable. (b) δ 
= O(1)  with weak backflow: local absolute frequency St ~ 0.1 
and locally absolutely unstable. (c) δ = O(1)  with weak 
backflow: local absolute frequency St ~ 0.1 and locally 
absolutely stable. 
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two vortex shedding phenomena, one large eddy which 
forms in the middle of the recirculation zone over a 
period of 1.0 (non dimensionalized with respect to the 
incoming flow velocity and the step height), and 
another smaller eddy that forms close to the step within 
a fraction of this time.  The corresponding average 
streamlines which are used in the stability analysis are 
shown in Figure 5, depicting the primary recirculation 
zone extending almost six step heights downstream, and 
a secondary counter recirculation zone closer to the 
step.  These results were obtained without forcing, 
except for the perturbations introduced due to 
numerical truncation errors and the statistical noise 
associated with the random walk simulation of 
diffusion.  Similar results are obtained using finer 
numerical discretization indicating that it is unlikely 
that “numerical forcing” is the origin of the 
unsteadiness.  Moreover similar unsteadiness has been 
observed in other simulations of the same flow, using 
different numerical methods both in two and three 
dimensional flows [23-26].  The persistence of these 
unsteady features and the fact they are observed 
numerically and experimentally support the claim that 
they arise due to some intrinsic dynamics, which may 
have its origin in the instability characteristics of the 
flow. 

Results of the linear stability analysis of this flow 
are shown in Figure 6. For the purpose of the analysis, 
the mean velocity profiles corresponding to the average 
streamlines shown in Figure 5 have been calculated at 
about 30 sections across the recirculation zone and 
fitted to a mean velocity profile similar to Eq. (16), and 
the cusp-map method was used to analyze these profiles 
and determine the frequency of the absolute mode. As 
shown in Figure 6, the local absolute mode frequency 
shows a maximum growth rate near the point X = 1.5, 
i.e. close to the middle of the recirculation zone, as 
predicted before, and the frequency of the mode shows 
weak dependence on the location in the neighborhood 
of that point. In the numerical simulation, the formation 
of a large vortex occurs actively at the middle of the 
recirculation zone, which corresponds to the location of 
the maximum growth rate point. The corresponding 
Strouhal number is St = 0.083, also within the range of 

1.0St ≅ . This value is verified using the numerical 
simulation results. The Fourier transform of the data is 
analyzed at different points downstream the step, and 
the results for the most unstable mode, i.e. the mode 
with the largest amplitude locally, is shown in Figure 7. 
The locally dominant mode frequency decreases 
downstream, as shown in several experiments, and 
reaches a plateau towards the end of the reciruclation 
zone at values of  St ~ 0.08. 

Figure 4  Numerical simulations of the nonreacting flow over 
a step, Reynolds number 5000, showing the streamlines 
below a certain value to identify the dynamics of the 
vortical structures. Note the shedding of eddies at the step 
followed by pairing. 
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II.4 Shear Layer Instability in Reacting Flows 
 

Flows we have examined so far are isothermal, i.e. with 
uniform density. When combustion occurs, it changes 
the shear layer characteristics by introducing a 
temperature gradient, which in turn gives rise to a 
density gradient, and affecting the mean velocity 
profile.  To see the effect of the temperature gradient on 
the stability characteristics, we use the inviscid 
compressible Rayleigh equation, which is given in 
[21, 27]. At the subsonic limit: 

      vcyU
ydy

vd
y

yUcyU
dy
d ~))((

)(

~

)(
)())(( 2

−
Θ

=







Θ

′−− α
        (17) 

where Θ  is the normalized mean temperature profile. 
Now, we assume the following mean temperature 

field. 

 





−

+
+

=Θ
δ

γγ y
y tanh

2
1

2
1

)( ,    (18) 

where γ  is the temperature ratio, which represents a 

premixed combustion in shear layer. We assume that 
the thermal boundary layer thickness is of the same 
order of magnitude as the shear layer thickness. This 
choice mimics the case where the Prandtl number is 
near unity. 

Keeping a, b and wδ  same as before, the absolute 

modes for various values of γ , β  and δ  is computed. 

The result is shown in Figure 8, 9 and 10. For 
frequency and growth rate, the values obtained are 

divided by ∫
= Θ

b

ay

dy
y
yU
)(
)(

 for normalization before 

plotting. As γ  increases, the flow becomes “less 

absolutely unstable”, i.e. combustion stabilizes the flow 
by inducing a temperature gradient across the shear 
zone. Moreover, the flow may switch to a convectively 
unstable mode at some critical value of γ . The absolute 

mode frequency r,0ω  shows weak dependency on the 

backflow parameter β  as in the isothermal case. 

Previous studies of shear layer stability have indeed 
shown that the important parameters here is the density 
ratio, and simulations have been used to explain these 
effects [28]. In particular, the phase speed of the most 
unstable mode and the convective speed of eddies 
strongly depends on the density ratio, which suggests 
that the absolute mode characteristics determined in 
terms of the group velocity should also show a strong 
dependency on the density ratio. 

It should be noted that the average locations of 
shear layer and the flame zone may not coincide. 
Instead a finite offset between the centerline of both 

may exit, supported by the fact that the flame starts at 
the separation point and ends at the upper wall, as 
shown in [14], while the shear layer starts at the same 
point but moves downwards towards the lower wall. 
This offset tends to become larger at higher equivalence 
ratio as the burning velocity of the premixed flame 
increase forcing the flame to move towards the outer 
edges of the large eddies instead of burning closer to 
their centers. To study the impact of the offset, we 
replace y with ∆−y  in Eq. (18). The impact of the 

offset is shown in Figure 11. At small temperature 
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Figure 5  Time-averaged streamlines at Re=5000 without forcing 
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Figure 6  Local absolute mode frequencies for the mean velocity 
profiles obtained from the numerical simulation of a 
backward facing step flow shown in Figure 5. In the 
parenthesis next to the data point, the normalized location of 
the section (x/H) is shown. 
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ratios, i.e. at conditions of lean combustion, the offset is 
expected to be very small.  In any case, results show 
that, under these conditions, the offset has almost no 
impact of the mode frequency and growth rate.  At 
higher temperature ratio, as the equivalence ratio moves 

towards stoichiometry, the offset is expected to be finite 
and results show that its impact becomes important: at 
small offset, the flow is convectively unstable, but at 
larger values, it becomes absolutely unstable. This is 
clearly shown in Figure 11 where the curve 
corresponding to 0/ ,0,0 =ri ωω  delineates the border 

between the absolutely unstable and the convectively 
unstable regimes. It should be added here that the offset 
and the temperature ratio are not totally independent 
since, for the same fuel, they both depend on the 
equivalence ratio; in fact, it can be stated that they both 
increase as the fuel concentration in the mixture 
approaches stoichiometry. This is shown schematically 
by the thick arrow in Figure 11, where a line is drawn 
to connect qualitatively the possible trajectory of states 
of the flow as the equivalence ratio is increased from 
lean conditions to chemically stoichiometric conditions.  

The second effect of combustion, that is changing 
the mean velocity profile due to the exothermic effects, 
is harder to identify. In general, there is a tendency for 
combustion to reduce the reattachment length and 
increase the velocity within the recirculation zone, with 
an associated rise in backflow, these effects are 
currently under investigation. 

In summary, the results of linear stability analysis 
of shear flow show the following characteristics: 

 
1) The shear layer instability can produce self-sustained 

oscillations.  This is due to the presence of absolutely 
unstable modes which arise when the mean velocity 
profile shows a strong back-flow at sections where 
the shear layer thickness is relatively small. 

2) The absolutely unstable modes in a backward-facing 
step flow show an oscillation frequency close to 

1.0St ≈ .  The apparent universality of this value is 
explained by its dependence on the thickness of the 
layer, about a step height, and the value of backflow. 
Also, the predicted frequency matches the 
experimental observation (of St = 0.092) in [13]. 

3) The “global” separating shear layer mode frequency 
is the same as the local most absolutely unstable 
mode, i.e. the absolutely unstable mode with the 
highest growth rate within the separation zone. 

4) The impact of these modes is most pronounced at the 
middle of the recirculation zone, while closer to the 
step small scale shedding due to other, most likely 
convective modes, is observed. 

5) Large temperature gradients across the shear layer 
force the flow to become more absolutely stable, and 
hence stability characteristics can be affected by 
combustion. Flows at higher equivalence ratio can 
become absolutely unstable due to the offset between 
the shear layer and the flame boundary. 
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III. Acoustic Gain from Shear Layer 
Driven Heat Release 

 
As mentioned in the introduction, combustion 
instability is sometimes exhibited at multiple 
frequencies, not all of which can be attributed to 
acoustic frequencies.  The hypothesis that is put forth in 
this paper is that some of these frequencies could be 
due to an absolutely unstable shear-layer mode.  The 
analysis conducted in the previous section showed that 
a backward step configuration can lead to shear layer 
structures that generate self-sustained oscillations with 
a Strouhal number St = 0.1. The question is then 
whether oscillations at this frequency can lead to 
significant pressure oscillations.  In this section, a 
preliminary analysis is carried out and compared with the 
experimentally observed pressure amplitudes in [13]. 

The acoustic field is approximated using a Galerkin 
approximation [29, 30], in which the unsteady pressure 
p′ is expressed as: 

∑
=

=′
n

i
ii txptxp

1

)()(),( ζψ , (19) 

where )(xiψ  and )(tiζ are modal shape and amplitude.  

Assuming that the heat release is localized at fxx = , 

the amplitude, )(tiζ , can be shown to be governed by 
(see Ref. [31]) 

ffioii
i qxEa

dt
d ′=Ω+ − &)(12

2

2

ψγζ
ζ

,    (20) 

where iΩ is the acoustic frequency, pao γγ /)1( −= , 

∫=
L

ii dxxE
0

2)(ψ , and fq′  is the heat release rate per unit 

area at fx  .  Using Laplace transforms of Eq. (19) and 
Eq. (20), and noting that the configuration in [13] had 
two dominant acoustic modes, we get 

       f
i ii

fii q
sE

s
xxxp ′

Ω+
−=′ ∑

=

2

1
22 )(

)()()1()( ψψγ  (21) 

It is worth noting at any frequency, ω , including a 
shear-layer absolute frequency, p’ can be evaluated 
simply by setting ωjs = . In Ref. [13], srad /3021 =Ω  
and srad /7792 =Ω , which are the quarter and the 
three quarter modes, mx f 1.1= , mxs 4.1= , mL 4.2=  

and 4.1=γ . As shown in the previous section, this 
configuration may be capable of generating a 
hydrodynamic instability with 1.0St ≅ , which 
corresponds to a frequency of srad /603=ω . The 
amount of heat release rate perturbation q’ in a typical 
backward facing step flow due to shear layer 
perturbations has been observed to be 15% in an 
experimental investigation in [32] and 25% in a 
numerical study in [33] of the mean heat release rate, 
q .  Using a value of fq′ =0.15 q , the pressure 

amplitude at srad /603=ω  can be calculated using Eq. 
(21), which resulted in p’=0.08 psi.  This matches the 
experimentally observed value of 0.07 psi at the same 
ω .   

 
 

IV. Reduced Order Modeling Using POD Analysis 
 

In the preceding sections, we have discussed the 
dynamics of shear layers in the context of linear 
stability analysis, and showed that it can generate self-
sustained oscillations under certain conditions. An 
approximate estimation of the amplitude of pressure 
oscillation due to the shear layer dynamics is given in 
the previous section, which supports the conclusion that 
self-sustained oscillations due to the absolute mode of 
the shear layers can cause thermoacoustic instability. 
These discussions demonstrate that an accurate model 
of thermoacoustic instability must encompass the three 
components, acoustics, heat release dynamics, and 
shear layer dynamics. 

The analytical tool used in section II to model 
shear-layer instability is linear stability theory.  While 
the theory may be used to gain insight into stability 
characteristics of shear flow and their possible role in 
“post transition states”, and help explain and generalize 
results from numerical simulations, a quantitative 
behavior of shear layers cannot easily be obtained from 
linear stability analysis.  While detailed numerical 
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Figure 11. The impact of the temperature distribution on the 
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simulations can be accurate enough, the huge 
computational time needed for detailed simulations 
makes them insufficient for control applications.  What 
is more useful is a reduced-order model for shear layer 
dynamics, that is capable of utilizing numerical results 
available, and leads towards a more complete 
quantitative model of the overall combustion dynamics.  
In this section, we discuss such a tool, POD analysis, 
and use numerical results to obtain a reduced order 
model of the flow field in the presence of 
hydrodynamic instability.  

The POD is a tool for extracting coherent 
structures from numerical data, and it is a systematic 
and optimal way to derive reduced-order models. In 
POD, one uses numerical results to construct a space of 
optimal basis functions that describe the different 
modes of the flow, and apply these functions to 
construct time-dependent ordinary differential 
equations (ODEs) that determine the amplitudes of the 
corresponding modes under different conditions. The 
eigenvalues and eigenfunctions are obtained from the 
covariance matrix of the data evaluated at different time 
steps, while the ODEs are obtained from a Galerkin 
expansion of the dependent variables in these basis 
functions, and projecting the original Navier-Stokes 
equations onto their space [34]. 

As mentioned before, the numerical data are 
obtained from the two-dimensional simulation of a 
separating flow downstream of a backward-facing step 
using a vortex code. This code has been described 
extensively in the literature and several simulations of 
similar flow have been used to demonstrate its validity 
[17, 35]. The code was applied to the case of 1:2 
expansion, similar to the experiment in [13] with 
Re=5000. For the backward facing step flow, detailed 
formulation of the equations for POD modeling has 
been developed in [36]. We apply the same procedure 
as in [36] here, but use a different numerical data 
obtained from a vortex code as mentioned above.  The 
objectives of applying this procedure here are to: (1) 
confirm that the dominant mode in these data is that 
whose frequency is St ≅ 0.1, and (2) examine the 
accuracy of a reduced model of this complex flow. 
 
 

IV.1 Eigenvalues and Basis Functions 
 

Using 100 snapshots for the flow with a time step of 
0.1, 100 eigenvalues and basis functions are obtained 
with the following procedures [36]: 

 
1. The results are organized in the form ),( ktxu , where 

u  is the velocity, x  is the spatial and t  is the time 
coordinate at N(=100) different time steps, kt ,  

),,1( Nk K=     

2. The velocity, ),( ktxu , is decomposed such that 
),()(),( txuxutxu m ′+= , where mu  is the mean 

velocity and u′  is the perturbation. 
3. The covariance matrix C , which is defined as 

∫
Ω

Ω′′= dtxutxu
N

C jiij ),(),(
1

, is computed. 

4. The eigenvalue problem, WCW λ= , is solved to 
obtain the eigenvalues iλ . 

5. The basis functions, iΦ , are constructed such that: 

∑
=

=Φ
N

k
kiki txuW

1

),( . 

 
The resulting eigenvalues are show in Figure 12. Each 
eigenvalue corresponds to the energy contained in each 

mode, i.e. ∑
=

′Φ=
N

j
jii txu

N 1

2)),(,(
1

λ  where ),( ⋅⋅  denotes inner 

product. As can be seen from the figure, the energy 
contained in the first 10 modes correspond 96% of the 
total energy, showing that the first few modes may be 
sufficient to describe the flow accurately. We can 
expect that the accuracy of the reduced order model 
should improve as the number of modes used to 
construct the model increases.  In the following we 
examine this statement for the backward facing step 
flow. 
 
 

IV.2 Reduced Order Modeling 
 

Using the basis functions obtained in the previous 
section, a reduced order model is developed by 
projecting the NS equations onto the basis functions 
using a Galerkin expansion. Detailed formulation of the 
equations in the backward facing step is summarized in 
[36]. The reduced NS equation determines the time 
evolution, )(tiα , of the each modes, and the resulting 
velocity profile, u , as follows; 

)22()()(),(
*

1
i

N

i
im txutxu Φ+≅ ∑

=

α                                                                                 

where mu  is the mean velocity profile and *N  is the 
number of the modes used to construct the reduced 
order model. The coefficients iα  are obtained by 
numerically integrating the following nonlinear ODE: 

eA T +Μ+= αααα&  (23) 
where  

),(
Re
1

),(),( ijijmimjij uuA Φ∇Φ∇−ΦΦ∇⋅−Φ∇⋅Φ−= , 

),( ilkiklM ΦΦ∇⋅Φ−= , and ),( immi uue Φ∇⋅−= . 
The initial condition for the ODE is obtained by 
projecting the original initial condition to the POD basis 
functions, i.e. )),0,(()0( Φ= xuα .  
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With *N =10, the coefficients of the nonlinear 
ODE, A , M and e  are computed.  An analysis of the 
eigenvalues of A shows that the frequency and damping 
ratio of the first two POD modes in Figure 12 are 
St=0.083 and –0.097, respectively.  Similarly, the 
frequency and damping ratio for the third and fourth 
mode shown in Figure 12 are 0.23 and –0.0382, 
respectively. It can be seen that the first of the two 
frequencies with St=0.083 has a larger growth rate, and 
hence corresponds to the most unstable mode, which is 
consistent with the result obtained from the linear 
stability analysis carried out in section II.  Obviously, 
due to the assumption that the underlying flow contains 
only one dominant mode, the results in section II 
yielded only the most dominant Strouhal number.  
Equation (22) represents the flow field as the 
combination of the basis functions, iΦ , and equation 
(23) determines the coefficients of these functions in 
time. Therefore, these two equations completely 
describe the POD reduced order model, and it is 
possible to simulate the flow field. 

Figure 13 shows a comparison between the actual 
data and the POD reconstruction using 4, 6 and 10 
modes, and show that the reduced order model in (22) 
and (23) is reasonably accurate.  The model behavior at 
two different points in the flow is presented in the 
figure, and corresponds to the anti-node and the node of 
the first mode. Clearly the reconstruction accuracy 
depends on the dominant dynamics at the location and 
the number of modes, the more significant the higher 
frequencies are, the larger the number of modes that 
should be used in the reconstruction. 

 
 

V. Summary 
 

In this paper, the possibility that a hydrodynamic 
mechanism may introduce self-sustained oscillations in 
a combustor is examined.  Motivated by several 
observations in the literature where combustion 
instability is reported to occur at multiple frequencies, 
conditions under which unstable hydrodynamic modes 
can be present and cause combustion instability are 
investigated.  Using linear stability analysis of 
separating shear layers, it is shown that under 
conditions most often encountered in non reacting and 
reacting flows downstream a backward facing step, the 
flow possesses instability modes which may lead to 
self-sustained hydrodynamic oscillations.  The 
associated frequencies are determined by the shear flow 
properties, e.g., the shear layer thickness, the amount of 
backflow, the temperature or density across the shear 
zone, and the offset between the shear and burning 
zones.  The analysis is used to explain results of 
numerical simulations of non reacting flows which 
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exhibit strong unsteadiness at frequencies close to those 
predicted for certain modes, and is shown to match 
pressure amplitudes observed in experimental 
investigations of a backward-facing step combustor in 
[13].  In order to determine an overall combustion 
dynamics model that accurately represents the effect of 
shear-layer instability so as to carry out a model-based 
control design, POD analysis of the numerical data is 
carried out, and is shown that the first few POD modes 
are capable of capturing more 90% of the energy in the 
flow.  While the main focus of the paper has been on 
combustors with a backward-facing step, the tools 
introduced here are applicable for more general 
configurations. 
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