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Abstract

Thermoacoustic instability in premixed combustors
occurs occasionally at multiple frequencies, especially
in configurations where flames are stabilized on
separating shear layers that form downstream of sudden
expansions or bluff bodies. While some of these
frequencies are related to the acoustic field, others
appear to be related to shear flow instability
phenomena. It is shown in this paper that shear flows
can support self-sustained instabilities if they possess
absolutely unstable modes. The associated frequencies
are predicted using mean velocity profiles that resemble
those observed in separating flows and for profiles
obtained from numerical simulations, and are shown to
match those derived from experimental and numerical
investigations. It is also shown that the presence of
density profiles compatible with premixed combustion
can affect this frequency and can change the absolute
instability mode into a convectively unstable mode
thereby reducing the possibility of the generation of
self-sustained oscillations. A qualitative prediction of
the pressure amplitudes resulting from these shear layer
modes is shown to be consistent with experimental
measurements. The results from the stability analysis
are combined with those using the Proper Orthogonal
Decomposition (POD) method to yield a reduced-order
model.

I. Introduction

Thermoacoustic instability, which manifests as growing
pressure oscillations, is predominantly due to
destabilizing interactions between acoustics and heat-
release rate perturbations. Characterized by a positive
Rayleigh Index, obtained when the pressure and heat
release perturbations are in phase, the instability occurs
normally at frequencies that are associated with
acoustic modes that can be identified as a longitudinal,
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azimuthal, or bulk mode depending on the
configuration of the combustor. These interactions have
been modeled in a number of recent investigations by
including acoustics and heat-release dynamics as
primary components[1-7].

In some of the combustor configurations, however,
the combustion instability occurs at multiple frequencies,
not dl of which can be identified with acoustics. In these
combustors, a “hydrodynamic” instability has been
argued to be the source of the oscillation [8-12]. In
particular, the phenomenon of vortex shedding has been
observed in combustors equipped with sudden
expansions, bluff-bodies, swirlers, etc., all of which are
utilized for flame stabilization in premixed systems. A
representative configuration of these separating flows is
a backward-facing step or dump combustor that has
been used extensively in experimental and numerical
studies, both for non reacting as well as reacting flows
[13-16]. The pressure power spectra measured in these
experiments often exhibit multiple peaks, some of
which are easily related to existing acoustic modes, but
others are not. This raises the possibility that other
“resonance”’ phenomena play a role in determining the
overall instability characteristics. Whether the
resonances form due to acoustic forcing or through
other mechanisms has not yet been proven. The
existence of vortices in these cases, which raises the
possibility that shear layer dynamics may be involved
in the resonance, is confirmed by visualization studies
that show flames wrapping around large vortical
structures. As summarized by Najm et a. [17], the
frequency of the most active oscillations in non reacting
flows, or the corresponding vortex shedding frequency,
satisfies, in most cases, the criterion 0.05 < St < 0.1,
where the Strouhal number is based on the step height
and the mean upstream flow speed. Numerica
calculations of the same flow, athough they are mostly
limited to relatively low Reynolds numbers, reproduce
the same result. The question that arises is whether
self-sustained oscillations produced by a hydrodynamic
instability can cause the heat release to be perturbed
and as a result feed energy into the acoustic field,
thereby producing additional resonant frequencies.

As a representative example of non reacting and
reacting flow data, the pressure power spectrum in the
experiment of Cohen et a. [13] shows three peaks at
48, 96 and 124 Hz in the reacting flow, and a dominant
peak close to 100Hz in the non reacting flow. Solutions,



analytical in 1D and numerical in 2D, of the acoustic
wave equation predict the presence of the modes at 48
Hz and the 124 Hz, as the quarter mode and three-
guarter modes of the system, but not the mode at 96 Hz.
Moreover the experimental data show that while these
two modes appear as broad peaks, the 96 Hz peak is
significantly sharper, implying that the latter is
generated perhaps by a different mechanism. It is
interesting to note that the 96 Hz mode scales to a
Strouhal number of 0.092, indicating that its origin may
be related to hydrodynamic instability.

In this paper, an attempt is made towards deriving
a reduced-order model of reacting shear flow in a
combustor with a backward-facing step. By using
linear stability theory of shear flow and applying it to
separating flows, it is explored whether these flows can
support  self-sustained oscillations similar to those
observed in experimental studies. These results are
suitably combined with a POD-based analysis to derive
a reduced-order model. In section Il, the basic linear
stability theory of shear flows is introduced. Using the
Green's function for perturbed Euler equation and
asymptotic evaluation of integrals, the frequency and
the growth rate of the hydrodynamic mode are
caculated, and the conditions under which the
frequency corresponds to the absolutely unstable mode
are delineated. Numerical simulations are used to obtain
the mean velocity profiles, and the results from the
linear stability analysis are compared with the
numerical results. In section I11, qualitative predictions
of the pressure amplitudes, which may be expected at
the shear layer modes, are compared with experimental
data. Finally, in section IV, using numerical data, a
reduced order model is constructed for potential use in
active control design.

I1. Stability Analysis of Separating Shear Flow

In this section, the separating flow downstream of a
backward-facing step is analyzed using linear stability
analysis. The objective of the analysis is to determine
conditions under which the shear flow can support self-
sustained oscillations arising from intrinsic instabilities,
even in the absence of upstream perturbations or
resonance with other oscillations such as those due to
acoustics. These forms of instabilities are known as
absolutely unstable modes and have been shown to
arise in anumber of shear flows[18, 19].

This section is organized as follows. In section 1.1,
basic formulation of linear stability analysis is
described. In section 11.2, the definition of absolutely
unstable modes and conditions under which they may
be expected are presented. In section 11.3, the effect of
flow parameters including the loca shear layer
thickness and the magnitude of the backflow on the
local stability properties is examined, and how these
local phenomena may be used to predict global
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properties is explained. Both the unstable frequency and
the location of the strongest unsteadiness are compared
with the predictions obtained from a numerical
investigation of the unsteady flow. In section I1.4, the
analysis is extended to the case with finite density
gradients across the layer to examine the impact of
combustion of the absolute stability properties of the
flow.

11.1 Formulation of L ocal Stability Analysis

Assuming inviscid and incompressible channel flow,
the 2-D Euler equation and continuity equations are
combined to obtain the governing 2-D vorticity
equation [18]
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where Y is the stream function, the vorticity is
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the velocity in the x and y direction, respectively, d is
the Dirac deltafunction, and k is the unit vector in the
z direction. The source term u(t)d (X)d(y) represents
the effect of an upstream velocity perturbation at the
backward-facing step. Also, we assume that the mean
flow field, U, depends only on y, which implies that the
stability analysis is ‘loca’. Linearizing Eq. (1), we
obtain the following equation for the perturbation

Ny +U-NY , -U§  =u,()d(y) 2
The boundary condition for this equation are derived
from the impermeability condition at the upper and
lower walls as

y(a)=y (b)=0,aE y£b. (3)
The Green’s function, G, is obtained from the impulse
response of the flow as

éef T U 1G _
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Taking Fourier transformsin x and t, we obtain
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where G and G are related accordi ng to

1 - .
G(x,y,t) =—G(@,y.t) €**da , 6
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a and w are the wave number and the frequency
respectively, and ¢ = w/a . To meet the causdlity
condition, the path of integration L should be placed
over dl singularitiesin w plane, and the path F should
betherea axisinthe a plane.

G(x, Y1) = %@é(a LYsW) e dw .
L
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1.2 Identification of an Absolute Mode

It should be noted that the objective of the analysisisto
examine the long-term behavior of the flow near the
step, i.e. a x = 0. The mode that dominates the flow
along this line is defined as the absolute mode of the
flow. If this mode is unstable, the flow is absolutely
unstable, and it exhibits growing waves that are not
convected out from the observation point, i.e
oscillations may persist and the flow demonstrates the
properties of an unstable oscillator. For unstable but
absolutely stable flows, the input is amplified
downstream and the growing waves are convected out.
These flows are referred to as convectively unstable
flows. The major difference between absolute and
convective instabilities is that in the first case,
oscillations persist at a frequency determined by the
properties of the flow, i.e. the flow achieves self
resonance, while in the second external forcing or
resonance with other oscillators must occur before
overall sustained oscillations can be observed.
Following the method used in [18], we now derive the
frequency and the growth rate selection criterion for
absolute modes.

The homogeneous part of Eq. (5) is the well-known
Rayleigh equation whose solutions are denoted as
h,(y) and h,(y) and satisfy the boundary conditions

that h,(a) =0 and h,(b) = 0. The forced response G of
Eg. (4) can be determined using G, which is the

solution of (5), and the integrals in (6) and (7). G in
turn, can be computed as
b

&) = 51U g(ygaye= 1D
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and W(y) is the Wronskian W(0) =hh¢- hf,| | which
is non-zero when h,andh, ae two linearly

independent solutions. To guarantee a nontrivial
solution for the homogeneous equation which satisfies
both boundary conditions, h, andh, must also be the

eigenfunction h and satisfy W = 0, which is the

eigen !

! The standard form for the Rayleigh equation is given by

h - &7+ Y% 8 —oandh(a)=h(v) =0,
e U-cg

where h (y) isthe mode shape [20, 21].
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same as the dispersion relation for the Rayleigh
equation.

To obtain G, we examine Egs. (6) and (7). The
inverse transform in (7), from the frequency to the time
domain, is performed by adding the residues of

singularities in the integrand G. Thisis obtained as
H (y’0)|wwv1(a)
w
Tw

where w; is the eigen-frequency of the homogeneous

G=-i i )

w=w, (@)

solution corresponding a with W(w) =0, and w,
corresponds to the most unstable branch of the eigen-

frequency. That is, w, = arg[max(wi )] . Note that
H(y,0) is now defined on the singularity, W = 0, and
isgiven by
h, h,. (0
H(y,O) - 'e|gen (y) egen( ) .
iaU()- ¢
The long-time asymptotic solution of G can be
evaluated by applying the method of steepest descent
path to Eg. (6). It can be shown that the behavior of G
depends only on one mode for each line x/t = const.
Especially, on the line x =0, the large-time asymptotic
behavior of G is shown to be dependent only on one
mode, (w,,a,) , where w, =w,(a,) and a, is such

that

(10)

dw

da
Thus this mode determines the frequency and the
stability of the oscillation on the line x =0 for large
t, and hence corresponds to an absolute mode. Equation
(11) shows that the group velocity of the absolute mode
is zero, which seems to be physically reasonable,
because all other modes with non-zero group velocity
are swept out from the point, eventually. The shear
layer forms a locally unstable oscillator, only when it is
absolutely unstable. That is, when
Wy, >0. (12)

Given the dominance of the absolute mode, G in (6) is
affected mostly near a =a, and hence

G @%(ﬁe‘axd(a “a,)da

(a,) =0. (1)

=- i_l [H (y,o)]aU*WO ’ e'(aux'Wol) (13)
> AW
ewg ..

Taking the Laplace transform of Eg. (13), we obtain
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Noting that w, is complex, it follows that G is a

second order oscillator, which is unstable if Eq. (12) is
satisfied. The time-domain representation of the shear-
layer oscillation may be derived from (14) as

3d? d 2Ul ad . .0
Sy 2 gl .0 =g - w0 (1)

wherey (X,y,t) =y (X, y)h (), y ((x,y) is the spatia
pattern of the mode, and h_(t) is the temporal
component of the mode.

G(xy,s)=-

o0Wo

I1.3 Absolute M odes for Separating Flow

In section 11.2, we considered the shear layer dynamics
in a channel with impermeable walls, and showed that
the dynamics are that of a second-order oscillator with a
frequency w, and a wave number a,. w, and a, (i)
satisfy the dispersion relation W = 0, (ii) satisfy Eq.
(11) since they correspond to the absolute mode, and
(i) satisfy Eq. (12) if this absolute mode is unstable. In
this section, the properties (i)-(iii) are discussed in the
context of a separating shear flow downstream of a
backward-facing step. The complex frequency of the
absolute mode, determined by Eq. (11), is evaluated
using the cusp-map method [21, 22]. The following
velocity profile is used to model a separating flow
downstream a backward facing step;

b-1 b+l
U(y)=——+ t
(y) > >

a0 3 - ad
anhc==- btan T

edg g d, &

- bd
b2 (asyen)

d, &
where b is the ratio of backflow to the forward flow,
d defines the shear layer thickness, and d, is the

boundary layer thickness at the wall. The third and
fourth terms are added to mimic the impact of the non-
dip boundary condition. When d and d, are

reasonably small, the profile approximates the mean
velocity distribution of step flows reasonably well.
Figure 1 shows the mean velocity profile given by Eq.
(16) for selected values of the parameters. We assume
a=-1b=21andd, =0.1, where al length scales are
normalized with respect to the step height. These values
are chosen to simulate the case with expansion ratio 2.
We note that realistic values of b vary from 0.3 to 0.4

for the mean velocity profile in a backward-facing step
flow at high Reynolds number.? We also note that in a

(16)
- tan

2 See, for example, [14, 17, 23, 24].

typical recirculating flow, both the shear layer thickness
and the backflow changes downstream of the step. The
profile in Eq. (16), however, is intended to model the
velocity distribution at any particular section, using the
original assumption that the flow is parallel.

The absolute mode frequencies supported by these
velocity profiles were calculated for various values of
d and b, and the results are depicted in Figure 2.

Because the Strouhal number is often based on the
mean upstream velocity, U, we normalize the value of

w, asw,/U,, where U, = J(y)dy .> Results show
y=-1

that for a fixed value of d , the growth rate of the

unstable mode switches from being convectively

unstable to absolutely unstable as the backflow

increases. Moreover, the growth rate of the absolutely

unstable mode increases with increasing b . Similar

observation can be made for d ; for a fixed backflow,
decreasing d can lead to an absolutely unstable flow,
with further drop in d causing an increase in the
absolute mode growth rate. We also note that the mode
frequency, w,, , is not strongly dependent on b ,

especialy for larger values of d , i.e. changes in the
backflow, which is observed within the recirculation
zone of a step flow, does not impact the frequency of
the absolutely unstable mode significantly; they impact,
however, the growth rate and hence absolute modes are
more likely to originate at the section with strongest
backflow. Because the shear layer thickness increases
downstream of the step, reaching aimost at the same
order as the step height in the middle of the
recirculation zone, we focus on the case with d » 0.4.

This case corresponds to a shear layer thickness of

beta=0.3, delta,, =0.1
1

— delta=0.5
— delta=0.4
0.6 —— delta=0.3
— delta=0.2

0.8

0.4+
0.2+
> 0r
0.2k
.04
.OG |-

-0.8F

1 . . . . .
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
u)

Figurel Mean velocity profile given by Eq. (16) for different
parameters.

% Because U(y) is aready a nondimensional velocity
profile, this does not violate the dimension matching
principle.

4
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almost unity, i.e. on the order of magnitude of the step
height (see fig 1). Asshown in Figure 2, w,, » 0.6 at

d »0.4 , and the corresponding frequency of the
absolute mode scales to St =w,, /2p @0.1 for arange

of b . This may explain the observation that strong
fluctuations in backward-facing step flows occurs

roughly near St:% @0.1, where h is the step

0
height and U, is the upstream mean velocity of the

flow.

Using these results, we can classify the stability
characteristics of the mean velocity profiles at each
section of backward-facing step flows (see Figure 3).
The objective of this classification is to determine the
most likely origin of the most-unstable absolute mode
within the recirculation zone, and its overall impact on
the flow. At locations near the step, the shear layer is
very thin, and the backflow is weak, and hence,
according to Figure 2, the flow is absolutely stable.
Near the middle of the recirculation zone, the mean
velocity profile shows strong back flow, and the shear
layer thickness is comparable to the step height; and
hence the flow may become absolutely unstable at a
frequency near St €0.1. Note that, from previous
observations, the frequency is only weakly dependent
on the backflow and thus the absolute instability will be
supported at the section of maximum backflow.
Towards the end of the recirculation zone, the shear
layer thickness remains almost the same, because the
flow is bounded by the upper and lower walls, while the
backflow diminishes. Figure 2 shows that under these
conditions, the frequency should remain the same,
St € 0.1, while the flow becomes absolutely stable.

The following global picture of a separating shear
layer instability, which is supported by strong
backflow, emerges form the previous analysis. Self-
sustained oscillation occurring in the middle of the
recirculation zone, where the backflow is strongest,
propagates upstream and downstream. The frequency of
these oscillations is determined by the thickness of the
shear layer at the point of the initiation, i.e. the middle
of the recirculation zone. The evidence from
experimental measurements and numerical simulations
isthat the thickness of the shear zone around the middle
of the recirculation zone is of the order of magnitude of
the step height. Oscillations associated with an
absolutely unstable mode grow in place while spreading
upstream and downstream. Once these oscillations
reach an absolutely stable but convectively unstable
region, the flow becomes convectively unstable, i.e.
oscillation at the local convective mode with the most
unstable frequency may be excited. While the growth of
these oscillations, associated with the convective mode
at the step, are swept by convection downstream, those
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d=0.15 g=0.125

-04 1

-Q6 -

Figure2 Absolute mode frequenciesfor the family of velocity
profiles shown in equation (1), for different valuesof the
shear layer thickness § and the backflow B.

U(y: X)
Q)

Figure 3. Schematic illustration of different regionsin
recirculation zone: (a) d < O(1) with weak backflow: local
absolute frequency wo~1/d and locally absolutely stable. (b) d
= 0O(1) with weak backflow: local absolute frequency St ~0.1
and locally absolutely unstable. (c) d = O(1) with weak
backflow: local absolute frequency St ~ 0.1 and locally
absolutely stable.

due to an absolutely unstable mode in the middle of the
recirculation zone persist. With a sufficiently large
region of absolutely ingtahility, corresponding to a zone
with sufficient backflow, the flow shows a behavior of
an unstable oscillator. In this sense, the absolutely
unstable section acts as a wave maker for the whole
flow, and the frequency of the oscillation is given by
St@0l * It should be noted that the experimentally
observed frequency 96 Hz in [13] corresponds to St =
0.092 and is within this range.

To support the conclusions of this anaysis
regarding the source of sustained oscillations in the
separating shear layer, a numerically obtained mean
velocity profile for a backward-facing step flow is
examined. Simulations are obtained using a two
dimensional vortex code, running at Reynolds number
of 5000. Resultsof this simulation, shown in terms of the
sreamlines close to the steps plotted over a cycle of
large-scale vortex shedding within the recirculation
zone, are depicted in Figure 4. These simulations show

* This qualitative observation can be justified by the
global mode frequency selection criterion given in [19].
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two vortex shedding phenomena, one large eddy which
forms in the middle of the recirculation zone over a
period of 1.0 (non dimensionalized with respect to the
incoming flow velocity and the step height), and
another smaller eddy that forms close to the step within
a fraction of this time. The corresponding average
streamlines which are used in the stability analysis are
shown in Figure 5, depicting the primary recirculation
zone extending almost six step heights downstream, and
a secondary counter recirculation zone closer to the
step. These results were obtained without forcing,
except for the perturbations introduced due to
numerical truncation errors and the statistical noise
associated with the random wak simulation of
diffusion. Similar results are obtained using finer
numerical discretization indicating that it is unlikely
that “numerical forcing” is the origin of the
unsteadiness. Moreover similar unsteadiness has been
observed in other simulations of the same flow, using
different numerical methods both in two and three
dimensional flows [23-26]. The persistence of these
unsteady features and the fact they are observed
numerically and experimentally support the claim that
they arise due to some intrinsic dynamics, which may
have its origin in the instability characteristics of the
flow.

Results of the linear stability analysis of this flow
are shown in Figure 6. For the purpose of the analysis,
the mean velocity profiles corresponding to the average
streamlines shown in Figure 5 have been calculated at
about 30 sections across the recirculation zone and
fitted to a mean velocity profile similar to Eq. (16), and
the cusp-map method was used to analyze these profiles
and determine the frequency of the absolute mode. As
shown in Figure 6, the local absolute mode frequency
shows a maximum growth rate near the point X = 1.5,
i.e. close to the middle of the recirculation zone, as
predicted before, and the frequency of the mode shows
weak dependence on the location in the neighborhood
of that point. In the numerical simulation, the formation
of a large vortex occurs actively at the middle of the
recirculation zone, which corresponds to the location of
the maximum growth rate point. The corresponding
Strouhal number is St = 0.083, also within the range of
St €0.1. This value is verified using the numerical
simulation results. The Fourier transform of the data is
analyzed at different points downstream the step, and
the results for the most unstable mode, i.e. the mode
with the largest amplitude locally, is shown in Figure 7.
The locally dominant mode frequency decreases
downstream, as shown in severa experiments, and
reaches a plateau towards the end of the reciruclation
zone at values of St~ 0.08.

Hiap=Tidi
Birgam e Conirar lor BeeSi00 Mes 3000, Di=kD1, FEG; §,9°0.1
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Elap=T1H]
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i e
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T
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T o Pl
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Figure4 Numerical simulations of the nonreacting flow over
a step, Reynolds number 5000, showing the streamlines
below a certain value to identify the dynamics of the
vortical structures. Note the shedding of eddies at the step
followed by pairing.
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I1.4 Shear Layer Instability in Reacting Flows

Flows we have examined so far are isothermal, i.e. with
uniform density. When combustion occurs, it changes
the shear layer characteristics by introducing a
temperature gradient, which in turn gives rise to a
density gradient, and affecting the mean velocity
profile. To see the effect of the temperature gradient on
the stability characteristics, we use the inviscid
compressible Rayleigh equation, which is given in
[21, 27]. At the subsonic limit;

A v 2
Q- 9- U dTU_a* ) o
dye QY dyg Q)

where Q isthe normalized mean temperature profile.
Now, we assume the following mean temperature

field.
_1+9g 1-g &0
=—=+—tanhc==,
Q(y) 2 > [

where g is the temperature ratio, which represents a

premixed combustion in shear layer. We assume that
the thermal boundary layer thickness is of the same
order of magnitude as the shear layer thickness. This
choice mimics the case where the Prandtl number is
near unity.

Keeping a, b and d, same as before, the absolute

modes for various values of g, b and d is computed.

The result is shown in Figure 8, 9 and 10. For
frequency and growth rate, the values obtained are

(17)

(18)

b
divided by (‘)Mdy for normalization before
y=2 Q(Y)

plotting. As g increases, the flow becomes “less

absolutely unstable”, i.e. combustion stabilizes the flow
by inducing a temperature gradient across the shear
zone. Moreover, the flow may switch to a convectively
unstable mode at some critical value of g . The absolute

mode frequency w,, shows weak dependency on the

backflow parameter b as in the isothermal case.

Previous studies of shear layer stability have indeed
shown that the important parameters here is the density
ratio, and simulations have been used to explain these
effects [28]. In particular, the phase speed of the most
unstable mode and the convective speed of eddies
strongly depends on the density ratio, which suggests
that the absolute mode characteristics determined in
terms of the group velocity should also show a strong
dependency on the density ratio.

It should be noted that the average locations of
shear layer and the flame zone may not coincide.
Instead a finite offset between the centerline of both
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Figure6 Local absolute mode frequenciesfor the mean velocity
profiles obtained from the numerical simulation of a
backward facing step flow shown in Figure5. In the
parenthesis next to the data point, the normalized location of
the section (x/H) is shown.
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Figure7 Strouhal number distribution of dominant oscillation

at Re=5000 without forcing.

may exit, supported by the fact that the flame starts at
the separation point and ends at the upper wall, as
shown in [14], while the shear layer starts at the same
point but moves downwards towards the lower wall.
This offset tends to become larger at higher equivalence
ratio as the burning velocity of the premixed flame
increase forcing the flame to move towards the outer
edges of the large eddies instead of burning closer to
their centers. To study the impact of the offset, we
replace y with y- D in Eq. (18). The impact of the
offset is shown in Figure 11. At small temperature
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Figure 10 Normalized growth rate of absolute mode for
variousvaluesof g,d, and b .

ratios, i.e. a conditions of lean combustion, the offset is
expected to be very small. In any case, results show
that, under these conditions, the offset has aimost no
impact of the mode frequency and growth rate. At
higher temperature ratio, as the equivalence ratio moves

8

towards stoichiometry, the offset is expected to be finite
and results show that its impact becomes important: at
small offset, the flow is convectively unstable, but at
larger values, it becomes absolutely unstable. This is
clearly shown in Figure 11 where the curve
corresponding to w,, /w, =0 delineates the border

between the absolutely unstable and the convectively
unstable regimes. It should be added here that the offset
and the temperature ratio are not totally independent
since, for the same fuel, they both depend on the
equivalence ratio; in fact, it can be stated that they both
increase as the fuel concentration in the mixture
approaches stoichiometry. This is shown schematically
by the thick arrow in Figure 11, where a line is drawn
to connect qualitatively the possible trgjectory of states
of the flow as the equivalence ratio is increased from
lean conditions to chemically stoichiometric conditions.

The second effect of combustion, that is changing
the mean velocity profile due to the exothermic effects,
is harder to identify. In general, there is a tendency for
combustion to reduce the reattachment length and
increase the velocity within the recirculation zone, with
an associated rise in backflow, these effects are
currently under investigation.

In summary, the results of linear stability analysis
of shear flow show the following characteristics:

1) The shear layer instability can produce self-sustained
oscillations. This is due to the presence of absolutely
unstable modes which arise when the mean velocity
profile shows a strong back-flow at sections where
the shear layer thicknessisrelatively small.

2) The absolutely unstable modes in a backward-facing
step flow show an oscillation frequency close to
St » 0.1. The apparent universality of this value is
explained by its dependence on the thickness of the
layer, about a step height, and the value of backflow.
Also, the predicted frequency matches the
experimental observation (of St =0.092) in [13].

3) The “global” separating shear layer mode frequency
is the same as the local most absolutely unstable
mode, i.e. the absolutely unstable mode with the
highest growth rate within the separation zone.

4) The impact of these modes is most pronounced at the
middle of the recirculation zone, while closer to the
step small scale shedding due to other, most likely
convective modes, is observed.

5) Large temperature gradients across the shear layer
force the flow to become more absolutely stable, and
hence stability characteristics can be affected by
combustion. Flows at higher equivalence ratio can
become absolutely unstable due to the offset between
the shear layer and the flame boundary.
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Figure 11. Theimpact of the temperature distribution on the
properties of the absolute instability, shown in terms of the
ratio of absolute growth rate to absolute frequency
(wojilwoy) for various values of temperatureratio gand
offset Dwith § = 0.3 and B = 0.4. Thethick arrowed line
shows a possible path for increasing the equivalence ratio.

I11. Acoustic Gain from Shear Layer
Driven Heat Release

As mentioned in the introduction, combustion
instability is sometimes exhibited a multiple
frequencies, not al of which can be attributed to
acoustic frequencies. The hypothesisthat is put forth in
this paper is that some of these frequencies could be
due to an absolutely unstable shear-layer mode. The
analysis conducted in the previous section showed that
a backward step configuration can lead to shear layer
structures that generate sel f-sustained oscillations with
a Strouhal number St = 0.1. The question is then
whether oscillations at this frequency can lead to
significant pressure oscillations. In this section, a
preliminary andysis is carried out and compared with the
experimentally observed pressure amplitudesin [13].

The acoustic field is approximated using a Galerkin
approximation [29, 30], in which the unsteady pressure
ptisexpressed as:

p&x1) = rné;y (02, (1), (19)

wherey ,(x) and z, (t) are modal shape and amplitude.
Assuming that the heat release is localized at x = X, ,

the amplitude, z, (t), can be shown to be governed by
(see Ref. [31])

d’z,
e +W’z, =ga,Ey (x,)q¢,

(20)
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where W is the acoustic frequency, a, =(g- 1)/g p,
L
E =¢  (X)’dx, and qf isthe heat release rate per unit

areaat x, . Using Laplace transforms of Eq. (19) and

Eg. (20), and noting that the configuration in [13] had
two dominant acoustic modes, we get

p&x) = (9 - 1)ay Xy (X)E( +W2)q$t

It is worth noting at any freguency, w , including a
shear-layer absolute frequency, p° can be evaluated
simply by setting s= jw . In Ref. [13], W, =302rad/s
and W, =779ad/s, which are the quarter and the
three quarter modes, x, =1.1m, x, =1.4m, L =2.4m
and g=14. As shown in the previous section, this
configuration may be capable of generating a
hydrodynamic ingtability with St €0.1 , which
corresponds to a frequency of w =603rad/s . The
amount of heat release rate perturbation ' in a typical
backward facing step flow due to shear layer
perturbations has been observed to be 15% in an
experimental investigation in [32] and 25% in a
numerical study in [33] of the mean heat release rate,
g . Usng a vaue of qf =0.157q , the pressure

(21)

amplitude at w = 603rad /s can be calculated using Eq.
(21), which resulted in p'=0.08 psi. This matches the
experimentally observed value of 0.07 psi at the same
w.

V. Reduced Order Modeling Using POD Analysis

In the preceding sections, we have discussed the
dynamics of shear layers in the context of linear
stability analysis, and showed that it can generate self-
sustained oscillations under certain conditions. An
approximate estimation of the amplitude of pressure
oscillation due to the shear layer dynamics is given in
the previous section, which supports the conclusion that
self-sustained oscillations due to the absolute mode of
the shear layers can cause thermoacoustic instability.
These discussions demonstrate that an accurate model
of thermoacoustic instability must encompass the three
components, acoustics, heat release dynamics, and
shear layer dynamics.

The analytical tool used in section Il to model
shear-layer instability is linear stability theory. While
the theory may be used to gain insight into stability
characteristics of shear flow and their possible role in
“post transition states’, and help explain and generalize
results from numerical simulations, a quantitative
behavior of shear layers cannot easily be obtained from
linear stability analysis. While detailed numerical
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simulations can be accurate enough, the huge
computational time needed for detailed simulations
makes them insufficient for control applications. What
is more useful is a reduced-order model for shear layer
dynamics, that is capable of utilizing numerical results
available, and leads towards a more complete
guantitative model of the overall combustion dynamics.
In this section, we discuss such a tool, POD analysis,
and use numerical results to obtain a reduced order

model of the flow field in the presence of
hydrodynamic instability.
The POD is a tool for extracting coherent

structures from numerical data, and it is a systematic
and optimal way to derive reduced-order models. In
POD, one uses numerical results to construct a space of
optimal basis functions that describe the different
modes of the flow, and apply these functions to
congtruct  time-dependent  ordinary  differential
equations (ODES) that determine the amplitudes of the
corresponding modes under different conditions. The
eigenvalues and eigenfunctions are obtained from the
covariance matrix of the data evaluated at different time
steps, while the ODEs are obtained from a Galerkin
expansion of the dependent variables in these basis
functions, and projecting the origina Navier-Stokes
equations onto their space [34].

As mentioned before, the numerica data are
obtained from the two-dimensional simulation of a
separating flow downstream of a backward-facing step
using a vortex code. This code has been described
extensively in the literature and several simulations of
similar flow have been used to demonstrate its validity
[17, 35]. The code was applied to the case of 1.2
expansion, similar to the experiment in [13] with
Re=5000. For the backward facing step flow, detailed
formulation of the equations for POD modeling has
been developed in [36]. We apply the same procedure
as in [36] here, but use a different numerical data
obtained from a vortex code as mentioned above. The
objectives of applying this procedure here are to: (1)
confirm that the dominant mode in these data is that
whose frequency is St € 0.1, and (2) examine the
accuracy of areduced model of this complex flow.

V.1 Eigenvalues and Basis Functions

Using 100 snapshots for the flow with a time step of
0.1, 100 eigenvalues and basis functions are obtained
with the following procedures [36]:

1. The results are organized in the form u(X.t, ) , where
u is the velocity, X is the spatial and t is the time
coordinate at N(=100) different time steps, t, ,

(k=1...,N)

2. The velocity, u(X,t,) , is decomposed such that
u(x,t) =u_(X) +u(x,t) , where u_ is the mean
velocity and uC isthe perturbation.

3. The covariance matrix C , which is defined as

1. . - :
C, = ﬁ\/(?Jt(x,ti)u((x,tl.)dW, is computed.

4. The eigenvalue problem, CW =W , is solved to
obtain the eigenvalues |, .

5. The basis functions, F,, are constructed such that:

N
F =aWuxt,).
k=1

The resulting eigenvalues are show in Figure 12. Each
eigenvalue corresponds to the energy contained in each

mode, i.e. Iizﬁg(Fi,uttxtj))2 where (%3 denotes inner
=

product. As can be seen from the figure, the energy
contained in the first 10 modes correspond 96% of the
total energy, showing that the first few modes may be
sufficient to describe the flow accurately. We can
expect that the accuracy of the reduced order model
should improve as the number of modes used to
construct the model increases. In the following we
examine this statement for the backward facing step
flow.

V.2 Reduced Order M odeling

Using the basis functions obtained in the previous
section, a reduced order model is developed by
projecting the NS equations onto the basis functions
using a Galerkin expansion. Detailed formulation of the
equations in the backward facing step is summarized in
[36]. The reduced NS equation determines the time
evolution, &, (t) , of the each modes, and the resulting

velocity profile, u, asfollows;
u(x.t) @, (%) + & a, (OF,

where u,, is the mean velocity profile and N* is the
number of the modes used to construct the reduced
order model. The coefficients a, are obtained by
numerically integrating the following nonlinear ODE:

d =Aa+a'Ma +e (23)
where

~ ~ 1 - ~
Aj ='(Fj >Num’Fi)' (um >NFj’Fi)- E(NFj'NFi)!

(22)

Mikl :'(FkXNFUFi)vand € :'(umxﬂum’Fi)-

The initial condition for the ODE is obtained by
projecting the original initial condition to the POD basis
functions, i.e. a (0) = (u(x,0),F).
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With N' =10, the coefficients of the nonlinear
ODE, A, M and e are computed. An anaysis of the
eigenvalues of A shows that the frequency and damping
ratio of the first two POD modes in Figure 12 are
St=0.083 and —0.097, respectively. Similarly, the
frequency and damping ratio for the third and fourth
mode shown in Figure 12 are 0.23 and —0.0382,
respectively. It can be seen that the first of the two
frequencies with St=0.083 has a larger growth rate, and
hence corresponds to the most unstable mode, which is
consistent with the result obtained from the linear
stability analysis carried out in section 1I. Obvioudly,
due to the assumption that the underlying flow contains
only one dominant mode, the results in section Il
yielded only the most dominant Strouha number.
Equation (22) represents the flow field as the
combination of the basis functions, F, , and eguation

(23) determines the coefficients of these functions in
time. Therefore, these two equations completely
describe the POD reduced order model, and it is
possible to simulate the flow field.

Figure 13 shows a comparison between the actual
data and the POD reconstruction using 4, 6 and 10
modes, and show that the reduced order model in (22)
and (23) is reasonably accurate. The model behavior at
two different points in the flow is presented in the
figure, and corresponds to the anti-node and the node of
the first mode. Clearly the reconstruction accuracy
depends on the dominant dynamics at the location and
the number of modes, the more significant the higher
frequencies are, the larger the number of modes that
should be used in the reconstruction.

V. Summary

In this paper, the possibility that a hydrodynamic
mechanism may introduce self-sustained oscillations in
a combustor is examined. Motivated by several
observations in the literature where combustion
instability is reported to occur at multiple frequencies,
conditions under which unstable hydrodynamic modes
can be present and cause combustion instability are
investigated. Using linear stability anaysis of
separating shear layers, it is shown that under
conditions most often encountered in non reacting and
reacting flows downstream a backward facing step, the
flow possesses instability modes which may lead to
self-sustained  hydrodynamic  oscillations. The
associated frequencies are determined by the shear flow
properties, e.g., the shear layer thickness, the amount of
backflow, the temperature or density across the shear
zone, and the offset between the shear and burning
zones. The analysis is used to explain results of
numerical simulations of non reacting flows which

eigenvalues
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number of modes
Figure 12 The eigenvalues of the covariance matrix of the
data set obtained from the numerical simulation of a
backward facing step flow Re=5000.
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Figure 13 Comparison between data and POD model for u’ at
(a) an anti-node of the first mode located at (5.67, 0.33) and
(b) a node of the same mode, (4.73, 0.87). The POD model
uses 4, 6 and 10 modes to reconstruct the data.
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exhibit strong unsteadiness at frequencies close to those
predicted for certain modes, and is shown to match
pressure amplitudes observed in experimenta
investigations of a backward-facing step combustor in
[13]. In order to determine an overall combustion
dynamics model that accurately represents the effect of
shear-layer instability so as to carry out a model-based
control design, POD analysis of the numerical data is
carried out, and is shown that the first few POD modes
are capable of capturing more 90% of the energy in the
flow. While the main focus of the paper has been on
combustors with a backward-facing step, the tools
introduced here are applicable for more genera
configurations.
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