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Abstract

This paper addresses the control of time-delay systems whose relative degree does not exceed two.
An adaptive Smith controller together with an adaptive law similar to the delay-free case is proposed. By
using Lyapunov-Krasovskii functionals for an appropriate model transformation of the original system,
semiglobal stability of the closed-loop system and asymptotic convergence of the output error is estab-
lished. Strict positive realness together with the low relative degree of the plant is exploited to establish
the stability properties. Robustness properties of the adaptive controller are briefly discussed.

1 Introduction

It is well known that the stabilization of systems involving delays in the states or in the inputs is a difficult

problem since the existence of a delay in a system model may induce instability or bad performances for the

closed-loop schemes (see, e.g. [9, 12] for further references). A unique approach for controlling systems with

known time-delay was originated by Otto Smith in the fifties [17] by compensating for the delayed output

using input values stored over a time window of[t � �; t] and estimating the plant output using a model of

the plant (see also [15] and references therein). In [10], this idea was extended to include unstable plants as

well using finite-time integrals of the delayed input values thereby avoiding unstable pole-zero cancellations

that may occur in Smith’s controller. In [8, 14], adaptive versions of [10] were developed and was shown

that the plant can be adaptively controlled in a stable manner in the large. Ortega and Lozano improved the

results of [8] in [14] by making use of an augmented error approach and showing that the resulting controller

is globally stable for a general linear plant with arbitrary relative degree and minimum phase zeros. In this

paper, we consider a smaller class of plants where the relative degree of the plant is less than or equal to two.

We show that a fairly simple adaptive controller can be used to stabilize the system. The advantages of the

proposed controller over those in [8, 14] are two-fold: The first is that for the cases whenWm(s) is unknown
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or too difficult to determine, which may occur in cases where the plant is of a very high order, the controller

proposed here can be determined unlike the controllers in [8, 14] which requireWm(s). The second is that

the controller proposed here is much simpler, which is enabled by making use of the positive realness of

the underlying model as well as the knowledge of the time-delay. We also note that the controller proposed

here has been directly utilized in both simulation and experimental studies of a practical system and has been

shown to be successful in the presence of fairly large delays [4].

The controller structure is similar to that in [14], which is motivated by the Smith controller in [17] and

its improvements in [10]. The adaptive law is however along the lines of those used for error model 3 in [11]

for delay-free plants. Instead of using the standard quadratic Lyapunov function, an appropriate Lyapunov-

Krasovskii functional is added, and is instrumental in deriving the stability properties. With the modified

functional, it is shown that for all initial conditions within a bounded domain, and a value of the time-delay

that depends on the size of the domain, the closed-loop system will remain bounded. This domain is shown

to encompass the entire state-space as� ! 0. The case whenn� = 1 is treated in more detail while the case

whenn� = 2 is briefly outlined.

The adaptive controller is presented in section 2, with the controller structure in section 2.1, and its

adaptive counterpart in section 2.2. In section 3, the main stability result is stated and proved. The robustness

properties of the controller are discussed.

2 The Adaptive Smith Controller

The problem is the control of a plant given by the input-output description

y(t) = Wp(s)[u(t� �)]; Wp(s) =
kpZp(s)

Rp(s)
(2.1)

whereWp(s) is the transfer function of a finite-dimensional system whose ordern is known, relative degree

n� is known and less than or equal to two, zeros are inIC�, and its high frequency gain is known.The time-

delay� is assumed to be known as well. The plant poles and zeros are unknown and it is assumed that all poles

have multiplicity one. It is also assumed that the states are not accessible and only input-output measurements

are available.

It is required that the plant output follow the output of a reference model with a transfer function

ym(t) = Wm(s)[r(t� �)]; Wm(s) =
km

Rm(s)
(2.2)

whereRm is a monic Hurwitz polynomial of degreen � n�, andkm > 0. Our goal is to determine a stable

adaptive controller for this class of problems. For ease of exposition, in what follows, we assume that the high

frequency gain is known withkp = km = 1.
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2.1 The Smith Controller

The controller that we propose is an adaptive version of the Smith controller and utilize the finite-time integrals

as in [14, 8]. To facilitate the derivation of the adaptive controller, we describe the fixed controller structure

in this section.

Since states are not accessible, an standard pole-placement controller is utilized. The presence of the

time-delay motivates the use of an additional signal (denoted asu1 below) which attempts to anticipate the

future outputs using a model of the plant. The resulting controller structure can be described as follows [8]:

u(t) =
c(s)

�(s)
u(t� �) +

d(s)

�(s)
y(t) + u1(t) + r(t)

u1(t) =
n1(s)

Rp(s)
u(t) +

n2(s)

Rp(s)
u(t� �) (2.3)

where�(s) is a hurwitz polynomial of degreen, c, d, andn1, are polynomials of degreen� 1, respectively,

which satisfy the relations

c(s)Rp(s) + d(s)kpZp(s) = �n2(s)�(s) (2.4)

n1(s) = Rp(s)�Rm(s)kpZp(s) (2.5)

Rm(s) is a monic Hurwitz polynomial of degreen� and represents the desired closed-loop poles of the plant,

andn2(s) is ann� 1 degree polynomial. From Bezout identity, it can be easily shown thatc, d, andn1 exist

that satisfy (2.4) and (2.5). The controller structure in (2.3) can be shown to result in a closed-loop system

with the transfer functionWm(s)e�s� where

Wm(s) =
1

Rm(s)
: (2.6)

The controller in (2.3) can be implemented as follows:

u = ��T1 !1 + ��T2 !2 + u1 + r (2.7)

_!1 = �0!1 + `u(t� �) (2.8)

_!2 = �0!2 + `y(t) (2.9)

u1(t) =
nX

i=1

��i

�Z 0

��
e��i�u(t+ �)d�

�
4
=

Z 0

��
��(�)u(t + �)d� (2.10)

where�0 is an asymptotically stablen� n matrix,

��T1 (sI � �0)
�1` =

c(s)

�(s)
; ��T2 (sI � �0)

�1` =
d(s)

�(s)
; Rp(s) = �n

i=1(s� rpi);

nX
i=1

��i
s� rpi

=
n1(s)

Rp(s)
;

nX
i=1

��i e
rpi�

s� rpi
=

n2(s)

Rp(s)
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The realization ofu1(t) as in (2.10) is needed to ensure that no unstable pole-zero cancellations can occur

for the case when the plant is open-loop unstable [10, 8]. Such a representation using finite-time integrals

requires that the plant poles have multiplicity one.

The discussions in [8] demonstrate that the controller given by (2.7)-(2.3) together with (2.4) and (2.5)

stabilizes the plant in (2.1) if all plant parameters including the time-delay are known. It can also be shown

that the controller provides stability robustness to uncertainties in the plant parameters including the time-

delay [13]. In the next section, we show how an adaptive controller can be developed in the presence of a

time-delay and parametric uncertainties.

2.2 The adaptive controller

We now consider the control of the plant in (2.1) when the transfer functionWp(s) has unknown coefficients

and the time-delay� is known. The form of the controller in (2.7)-(2.10) can be directly utilized to develop

the adaptive controller, as was done in [8, 14]:

_!1 = �0!1 + `u(t� �)

_!2 = �0!2 + `y(t)

u = �T1 (t)!1 + �T2 (t)!2 + r(t) +

Z 0

��
�(t; �)u(t+ �)d� (2.11)

Let

! = [!T
1 ; !

T
2 ]

T ; � = [�T1 ; �
T
2 ]

T ; �� = [��T1 ; ��T2 ]]T ; e� = � � ��; e�(t; �) = �(t; �)� ��(�) (2.12)

where�� and�� are the control parameter values that correspond to the desired closed-loop. That is, with the

control input of the form

u = r + ��T! +

Z 0

��
��(�)u(t+ �)d� + e�T! +

Z 0

��

e�(t; �)u(t+ �)d� (2.13)

if the parameter errorse� � 0, ande�(t; �) � 0, then the closed-loop transfer function matches that of the

model and is given byWm(s)e�s� . When the parameter errors are present, it follows that the closed-loop

system equations are of the form

y = Wm(s)e�s�
�
r + e�T! +

Z 0

��

e�(t; �)u(t+ �)d�

�
(2.14)

Denoting the output error ase1 = y � ym, it follows that the error equation is of the form

e1(t) = Wm(s)e�s�
�e�T (t)!(t) + Z 0

��

e�(t; �)u(t + �)d�

�
(2.15)
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The state-space representation of Eq. (2.15) is useful for the stability analysis and is derived below. The

finite-dimensional representation ofu1 is given by

_!3 = Ap!3 + bpu(t) (2.16)

_!4 = Ap!4 + bpu(t� �) (2.17)

u1 = ��T3 !3 + ��T4 !4 =

Z 0

��
��(�)u(t+ �)d� (2.18)

where

��T3 (sI �Ap)
�1bp =

n1(s)

Rp(s)
��T4 (sI �Ap)

�1bp =
n2(s)

Rp(s)
:

We note that a controller defined by Eqs. (2.7)-(2.9) together with Eqs. (2.16)-(2.18) stabilizes the plant in

(2.1) for suitable values of��i , i = 1; : : : ; 4 that are such that Eqs. (2.4) and (2.5) are satisfied. In addition,

it follows that at these parameter values, the closed-loop transfer function of the plant together with the

controller is given byWm(s)e��s. For such a system, using a plant representation given by

_xp = Apxp + bpu(t� �); y = cTp xp

and the controller in (2.11) which can be represented as

u = �
T
(t)!(t) + r

where! = [!T
1 ; !

T
2 ; !

T
3 ; !

T
4 ]

T , � = [�T1 ; �
T
2 ; �

T
3 ; �

T
4 ]

T , the closed-loop system can be derived to be

_X = AX + b

�e
�
T

(t� �)!(t� �) + r(t� �)

�
y = cTX (2.19)

where

X = [xTp ; !
T ]T ; �

�
= [��T1 ; ��T2 ; ��T3 ; ��T4 ]T ; e

� = � � �
�
; andcT (sI �A)�1b = Wm(s): (2.20)

DefiningXm as the model state corresponding toX when the parameter errore� in (2.19) is zero, and the state

errore ase = X �Xm, we obtain that the underlying error model is of the form

_e = Ae(t) + b
e
�
T

(t� �)!(t� �); e1 = cT e (2.21)

Since Eqs. (2.16)-(2.18) is an alternative representation ofu1 in (2.10), Eq. (2.21) can be equivalently

described as

_e = Ae(t) + b

�e�T (t� �)!(t� �) +

Z 0

��

e�(t� �; �)u(t� � + �)d�

�
e1 = cT e (2.22)

5



We note therefore that (2.22) is a state-space representation of the error equation (2.15). It is also easy to see

that when� = 0, Eq. (2.22) collapses to the standard error equations in adaptive control.

An additional property of the above error equation is the relation between!, u(t + �), � 2 [��; 0], and

X, and is useful in proving the main result of this paper and is shown below. Eqs. (2.10) and (2.18) show that

��T3 !3 + ��T4 !4 =

Z 0

��
��(�)u(t + �)d� (2.23)

Since!i is a subcomponent ofX in (2.20), we have that

k!i(t)k � kX(t)k i = 1; 2; 3; 4: (2.24)

Equations (2.23) and (2.24) imply that

ju(t+ �)j � kkX(t)k 8 � 2 [��; 0] (2.25)

wherek is a finite positive constant. Eqs. (2.24) and (2.25) are useful in proving the main result.

When the relative degreen� is equal to unity, it is easy to see that we can find aWm(s) that is strictly

positive real. Whenn� = 2, an addition of an inputu2 to u as

u2(t) = _�T (t)!0(t) +

Z 0

��

_�(t; �)u0(t+ �)d�

_!0 = �aI!0 + !; _u0 = �au0 + u; a > 0

can be used to derive yet another error equation of the form [11]

e1(t) = Wm(s)(s+ a)e�s�
�e�T (t)!0(t) + Z 0

��
�(t; �)u0(t+ �)d�

�
(2.26)

wherea > 0 is chosen such that(s + a)Wm(s) is strictly positive real. Therefore, it suffices to consider the

stability of Eq. (2.22) and show that a stable adaptive law can be derived to adjust� whenWm(s) is positive

real despite the presence of the time-delay; the results can then be extended to the case whenn� = 2 by

making use of the additional inputu2.

3 Main result

The underlying error equation to be analyzed is given by (2.22) and is of the form(
_e(t) = Ae(t) + b

he�T (t� �)!(t� �) +
R 0
��
e�(t� �; �)u(t� � + �)d�

i
e1(t) = cT e(t);

under an appropriate initial vector-valued function defined on the interval[��; 0] [7, 9].
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Suppose theadaptive law is chosen, as in the delay-free case as

_e�(t) = �e1(t)!(t� �)

_e�(t; �) = �e1(t)u(t� � + �); � 2 [��; 0]: (3.27)

We shall rewrite the error equation as follows:

_e(t) = Ae(t) + b

�e�T (t)!(t� �) +

Z 0

��

e�(t; �)u(t� � + �)d�

�
(3.28)

� b
he�T (t)� e�T (t� �)

i
!(t� �)� b

Z 0

��

he�(t; �)� e�(t� �; �)
i
u(t� � + �)d�:

Using the Leibniz-Newton formula, we have:

e�T (t)� e�T (t� �) =

Z 0

��

_e�T (t+ �)d� = �

�Z 0

��
cT e(t+ �)!(t+ � � �)d�

�T

;

e�(t; �) � e�(t� �; �) =

Z 0

��

_e�(t+ �; �)d� = �

�Z 0

��
cT e(t+ �)u(t� � + � + �)d�

�
: (3.29)

Some simple, but tedious computations lead to the following error equation:

_e(t) = Ae(t) + b

�e�T (t)!(t� �) +

Z 0

��

e�(t; �)u(t � � + �)d�

�
(3.30)

+b!T (t� �)

Z 0

��
cT e(t+ �)!(t+ � � �)d�

+b

Z 0

��

�Z 0

��
cT e(t+ �)!(t+ � + � � �)d�

�
u(t� � + �)d�

_e�(t) = �e1(t)!(t� �)

_e�(t; �) = �e1(t)u(t� � + �); �� � � � 0: (3.31)

Remark 1: The model transformation technique used above was largely used in the control literature for

derivingdelay-dependent (e.g. including information on the delay size) stability conditions. A brief overview

and further comments may be found in [12].

The correspondence between the solutions of the systems (2.22) and (3.31) can be done similarly to

Rasvan [16], based on a ‘step-by-step’ method idea proposed in Halanay [6] for computing the solutions of

the corresponding differential equation. Using the same steps as in [12], we may prove the following stability

results:

Proposition 1 Consider ! 2 L1, and ut(�) 2 L1([��; 0];Rn). Then the stability of the system (3.31) for

any delay � 2 [0; ��) under the inputs ! and u implies the stability of the original system on the same delay

interval and under the same inputs.
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It is quite evident that in the delay-free case (� � 0), if the corresponding system is SPR, we may find a

Lyapunov function of the form

V1(e; e�; e�) = e(t)TPe(t) + e�T (t)e�(t) + Z 0

��

e�2(t; �)d� (3.32)

whereP = PT > 0 satisfies the Kalman-Yakubovich-Popov (KYP) lemma(
ATP + PA+Q = 0;
P b = c:

(3.33)

for someQ = QT > 0. Based on it, introduce now the following Lyapunov-Krasovskii functional:

V (e; e�; e�; _e�; _e�) = V1(e; e�; e�) + V2(
_e�) + V3(

_e�); (3.34)

where the additional terms are given by:

V2(
_e�) =

Z 0

��

�Z t

t+�

_e�(�)T _e�(�)d�� d�; (3.35)

V3(
_e�) =

Z 0

��

"Z t

t+�

 Z 0

��

�
_e�(�; �)�2

d�

!
d�

#
d�:

Remark 2: Further remarks on such constructions may be found in [12]. The idea is to useV2 andV3 in order

to complete the square for a negative-definite derivative.

It is clear thatV in (3.34) is positive definite and has an infinitesimal upper bound defined appropriately

by the corresponding “sup” norm in the spaceRn � L2([��; 0];Rm). We shall now compute the derivative

of V along the solutions of the model transformation (3.31) and use (3.33). Some simple computations lead

to the derivatives:

_V1 = e(t)T (ATP + PA)e(t) + 2e(t)TPbe�(t)T!(t� �)

+2e(t)TPb!(t� �)T
Z 0

��
e1(t+ �)!(t+ � � �)d�

+2e(t)TPb

Z 0

��

e�(t; �)u(t � � + �)d�

+2e(t)TPb

Z 0

��

�Z 0

��
e1(t+ �)u(t+ � � � + �)u(t� � + �)d�

�
d�

�2e1(t)e�(t)T!(t� �)� 2

Z 0

��

e�(t; �)e1(t)u(t� � + �)d�

_V2 = �ke1(t)!(t� �)k2 �

Z 0

��
ke1(t+ �)!(t+ � � �)k2d�:

_V3 =

Z 0

��

"Z 0

��

�
_e�(t; �)�2 d� � Z 0

��

�
_e�(t+ �; �)

�2
d�

#
d�

= �

Z 0

��
ke1(t)u(t� � + �)k2d� �

Z 0

��

Z 0

��
ke1(t+ �)u(t+ � � � + �)k2d�d�:
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Using the KYP lemma, it follows that:

_V = �e(t)TQe(t) + 2e1(t)!(t� �)T
Z 0

��
e1(t+ �)!(t+ � � �)d�

+2e1(t)

Z 0

��

�Z 0

��
e1(t+ �)u(t+ � � � + �)u(t� � + �)d�

�
d�

+�ke1(t)!(t� �)k2 �

Z 0

��
ke1(t+ �)!(t+ � � �)k2d�

+�

Z 0

��
ke1(t)u(t� � + �)k2d� �

Z 0

��

Z 0

��
ke1(t+ �)u(t+ � � � + �)k2d�d�: (3.36)

Denoting

�a = e1(t)!(t��); �b = e1(t+�)!(t+���); �c = e1(t)u(t��+�); �d = e1(t+�)u(t+���+�);

Eq. (3.36) can be rewritten as

_V = �eTQe+

Z 0

��

h
2�aT�b+ �aT �a� �bT�b

i
d� +

Z 0

��

Z 0

��

h
2�cT �d+ �cT �c� �dT �d

i
d�d�

� �e(t)T
�
Q� 2�

�
k!(t� �)k2 +

Z 0

��
ku(t� � + �)k2d�

�
ccT

�
e(t): (3.37)

For bounded signals! andu satisfying at time “t” the matrix inequality:

Q� 2�

�
k!(t� �)k2 +

Z 0

��
ku(t� � + �)k2d�

�
ccT > 0: (3.38)

Since! andu are dependent variables, condition (3.38) may not be easy to check. Note however that the

bound above on_V at time “t” is given by some bounds on! defined att � � and onu defined on the whole

interval [t � 2�; t � � ]. We show below that this condition can be replaced by bounds on states at timet0

and over the interval[t0 � 2�; t0] so that the domain of attraction over which_V � 0 can be delineated more

precisely.

Suppose the values of! andu over [t0 � �; t0) and[t0 � 2�; t0), respectively, are such that

sup
�2[t0��;t0)

k!(�)k2 � 1; (3.39)

sup
�2[t0�2�;t0)

ku(�)k2 � 2; (3.40)

for some real positive1; 2, and a delay value��1 is such that

2��1(1 + 2��1)cc
T < Q: (3.41)

Then using thestep-by-step type argument for the construction of the solution of the associated FDE with

persistent perturbation [6], it follows that combining (3.39)-(3.41) on the interval[t0; t0 + �), the following

inequality

2�

�
k!(� � �)k2 +

Z 0

��
ku(� � � + �)k2d�

�
ccT < Q; 8� 2 [t0; t0 + �); 8� 2 (0; ��1) (3.42)
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is satisfied, and it follows that the Lyapunov-Krasovskii functionalV is non-increasing on the interval[t0; t0+

�), if the bound on the delay� is given by��1. Thus:

�min(P )ke(�)k2 � V (e0; e�0; e�0; _e�t0 ; _e�t0); 8� 2 [t0; t0 + �); (3.43)

wheree(t0) = e0, e�(t0) = e�0, ande�0 = e�(t0). Defining

X2
0 =

V (e0; e�0; _e�t0)
�min(P )

+Xmo

whereXmo is a bounded quantity that depends on the model initial conditions, it follows from (2.24) and

(2.25) that

k!(�)k � X0 8� 2 [t0; t0 + �) (3.44)

ku(� + �)k � kX0 8� 2 [t0; t0 + �); � 2 [��; 0): (3.45)

It should be noted thatX0 does not depend on the values1; 2 but only on the system initial conditions. Let

�2 be a positive value such that the following inequality holds:

2� 2(X0 + 2�2)cc
T < Q; (3.46)

using the same argument as in the previous step, it follows thatV is anon-increasing function on the interval

[t0; t0 + 2minf� 1(1; 2)); � 2(2)g). Suppose

�� = min f�1(1; 2); �2(2); �3g : (3.47)

where�3 satisfies the inequality

2�3(1 + k�3)X0cc
T < Q; (3.48)

which, once again, depends onX0 and not on1 or 2. Then, for� � � , inequality (3.38) continues to

remain satisfied over an interval[t0 + �; t0] and hence_V is nonpositive over this interval. By applying the

arguments repeatedly, and sincet0 is arbitrary, it follows that for all! andu that satisfy (3.39) and (3.40) and

all time-delays that satisfies (3.47),V (t) is non-increasing for allt � t0. This in turn implies that all signals

are bounded. Using the same arguments as in [11], it can be shown thatlim
t!+1

ke(t)k = 0. This leads to our

main result outlined below:

Theorem 1 Consider the closed-loop system defined by the plant in (2.1), the controller in (2.11), and the

adaptive law in (3.27), with the model as in (2.2) where Wm(s) is SPR. Then for any bounded signals!

and u satisfying the inequalities (3.39) and (3.40), respectively, and for any delay� that satisfies (3.47), the

following two properties hold:
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(i) limt!+1 ke(t)k = 0,

(ii) all other signals of the closed-loop system are bounded.

Remark 3: Our first remark concerns the bound�� on the allowable time-delay.�� can be interpreted as a

design parameter in that if one wants to have more degree-of-freedom on the signal! on [t0 � �; t0] by

increasingi (i = 1; 2), then �1; � 2 has to be smaller, i.e.�� smaller, which is in concordance with the

continuity principle. We also note that�3 is completelyindependent of 1; 2, but depends only on the initial

values of the statesx ande� of the adaptive system. The larger the mismatch between the plant and model

parameters, the larger thee�0, and smaller the allowable delay.

Remark 4: Theorem 1 shows that the stability semi-global with respect ot� . For a given atttraction domain,

we may compute amaximal delay value guaranteeingstability of e ( lim
t!+1

ke(t)k = 0) and boundedness

for all other signals. Reciprocally, animposed delay value may generate a“maximal” attraction domain

guaranteeing the corresponding properties. As is, this proves attractive in a number of applications, where

even when the plant is open-loop unstable, inherent nonlinearities present in the plant ensure the boundedness

of the output (for example, active combustion control [3]) with the problem being regulation of the output to

zero. It should also be noted from (3.38) that when� ! 0, the stability domain reachesRm, and hence we

recover the stability result derived for systems free of delay.

Remark 5: Even thoughe�(t � �) is used in the error model, Theorem 1 demonstrates that there is no harm

in adjusting the derivative ofe� at t in the adaptive law and that stability can still be guaranteed by finding an

appropriate Lyapunov function. Note also that Lyapunov function in eq. (3.34) suggests that the evolution ofe�
over the interval[��; 0], _e�, should also be used. The triple integral is due to the fact thate1(t) and!(t) evolve

independently in_e�, and the fact thatu(�) is a distributed quantity defined over the whole interval[t � �; t].

As specified in Remark 2,V2 andV3 are used to complete the square by an appropriate “weight” in “t” with

respect to all evolutions over some�-delay interval[t+ �; t], with � 2 [��; 0] as a parameter.

Remark 6: The method in [13] is quite similar to the one proposed here. Note however that the controller

in [13] makes use of some discretization procedure ofu1 over one delay interval, which simplifies the adaptive

scheme to: (
_e(t) = Ae(t) + be�T (t� �)!(t� �)
e1(t) = cT e(t)

;

for a suitably redefinede� and! with the adaptive law

_e�(t) = �e1(t)!(t� �)

leading to similar conclusions as in Theorem 1. For the sake of brevity, the corresponding results are not

discussed here.
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Remark 7: The results are still valid for the more general system:(
_e(t) = Ae(t) + b

he�T (t� �1)!(t� �2) +
R 0
��3

e�(t� �4; �)u(t� �5 + �)d�
i

e1(t) = cT e(t);

with theadaptive law

_e�(t) = �e1(t)!(t� �2)

_e�(t; �) = �e1(t)u(t� �5 + �); � 2 [��3; 0]: (3.49)

In fact, the corresponding Lyapunov functional allows a‘mixed’ delay-independent/delay-dependent stabil-

ity [12] result which isdelay-independent with respect to�2 and�5, anddelay-dependent with respect to�1,

�3 and�4. This aspect proves the “decoupling” property betweene� and!. Furthermore, it becomes more

coherent that the choice of�1 in the model isstrongly connected with the parameter1; 2 for characterizing

the signals! andu on [t0 � �̂ ; t0), where�̂ = maxf�1; �2; �3 +maxf�4; �5gg. This aspect explains better

why we mentioned before the use of the delay� (�1 and/or�4 here) as a (possible) design parameter.

Remark 8: A more complicated adaptive law including an augmented error was proposed in [8, 14] and

requires explicit construction ofWm(s) in the generation of the adaptive law. In several problems such as

regulation at a desired operating point, however, the choice of the reference model is often unclear though it

can be shown to exist and have a desired behavior. In these cases, making full use of any positive realness

that may be present in the underlying system leads to a low-order adaptive controller with few adjustable

parameters. Such a control strategy has recently been shown to be very useful in applications related to active

combustion control [3].

3.1 Robustness of the Adaptive Controller

As in adaptive control theory for systems in the delay-free case [11], the adaptive controller proposed here can

be shown to be robust with respect to disturbances and unmodeled dynamics by introducing modifications to

the adaptive law. A brief example of this property is mentioned below where a scalar error equation with an

unknown parameter��(�), � 2 [0; � ], is discussed for ease of exposition.

If a disturbanced(t) is present in the system, and a�-modification as in [18] is used, the underlying error

equations are typically modified as8<: _e1(t) = �e1(t) +
R 0
��
e�(t� �; �)u(t� � + �)d� + d(t)

_e�(t; �) = �e1(t)u(t� � + �)� �0

�e�(t; �) � ��(�)
�
; �0 > 0

(3.50)

For a functionV = V1(e1; e�) + V3(
_e�), where

V1 = e21(t) +

Z 0

��

e�2(t; �)d�;
V3 =

Z 0

��

Z t

t+�

�Z 0

��
ke1(�)u(� � � + �)k2d�

�
d�d� +

�

�

Z 0

��

Z t

t+�

�Z 0

��
(e�(�; �) � ��(�))2d�

�
d�d�
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after some simplifications, we obtain the time-derivative

_V � �2e1(t)
2
�
1� �(1 + ��0)

Z 0

��
ku(t� � + �)k2d�

�
+ 2e1(t)d(t)

+�0

Z 0

��

h
(��(�))2 � e�(t; �)2i d�: (3.51)

Thus, if

1� �(1 + ��0)

Z 0

��
ku(t� � + �)k2d� > 0; (3.52)

then _V � 0 for all Dc, whereD is a compact set in the(e1; e�(�; �)) space. The condition on (3.52) depends

only on� , �0 and past values over one delay interval of the inputu, and hence the solutions of the adaptive

system can be shown to be bounded ifu(�), � 2 [0; �) satisfies (3.52), using the same arguments as in the

disturbance-free case. The experimental investigations in [4] used such modifications in the adaptive law and

led to a successful implementation.

4 Summary

In this paper, a simple continuous-time adaptive controller is proposed for time-delay systems whose relative

degree does not exceed two. The controller structure is motivated by the Smith Controller and modified so

as to accommodate plants that may be unstable in the open-loop. Motivated by strict positive realness of an

underlying transfer function, a simple adaptive law as that in the third error model for delay-free plants is used.

A novel positive definite function that consists of an appropriate Lyapunov-Krasovskii functional derived for a

model transformation of the original system is utilized to derive stability properties of the closed-loop system.

The latter is shown to be semi-global in the time-delay� , and leads to asymptotic convergence of the output

error to zero. The controller is also shown to be robust to disturbances.
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