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Abstract 

 

 We present a heat release dynamics model which utilizes a well-stirred reactor (WSR) 

model and one-step kinetics to describe the unsteady combustion process.  The model 

incorporates the linearized mass and energy equations to describe the response of the 

reactor to external perturbations, and is cast in the form of a first order filter.  The model 

is able to predict the phase between the mass flow rate oscillations and the resulting heat 

release fluctuations, as function of the operating conditions, e.g., the mean equivalence 

ratio and mean mass flow rate.  The model predicts a sudden shift in phase in the region 

between the maximum reaction rate and the blow-out limit.  We show that this phase 

change may trigger combustion instability.  We use this novel model to predict 

combustion instability conditions in high swirl combustion, and demonstrate that these 

predictions agree qualitatively with experimental studies. 
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I. Introduction 

 

Combustion in high performance engines utilizes strong swirl, recirculation and 

interacting jets to enhance the mixing rate of the fuel, air and products, and hence 

maximize the burning rate.  The ideal limit for these systems is often modeled as a well-

stirred reactor [1], in which the mixing rate is faster than the fuel conversion rate, and 

products exit the reactor at their interior uniform state.  The operation of a well-stirred 

reactor is governed by a characteristic residence time, resτ , which is the nominal time the 

reactants spend inside the reactor;  
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where iρ  is the density of the reactant, V is the reactor volume, and im&  is the mass flow 

rate at the inlet.   Stable operation is achieved when the residence time is larger than the 

characteristic chemical time; otherwise blow-out should be expected.  

 

Combustion instability, resulting from coupled heat release-pressure oscillations, has 

been suspected to occur when oscillations in the mass-flow rate, equivalence ratio, inlet 

temperature and pressure, etc., occur at the same time-scale.  However, the mechanisms 

that support the positive coupling between the heat release dynamics and acoustic 

perturbations have not yet been investigated or modeled thoroughly.  The condition under 

which a combustion system becomes unstable has been expressed in terms of the 

Rayleigh criterion [2]: 
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 and vPE ′′=′ r  are the acoustic energy density and acoustic energy 

flux, respectively, ρ′ is the perturbation in the density of the unburned mixture, A is the 

cross-sectional area of the combustor, Φ&  is the perturbation in the rate of energy 

dissipation, x and t are the distance and time, respectively, and L∆ signifies the difference 

over the combustor length L .  The conclusion drawn from this mathematical condition is 

that a combustion system becomes unstable when the heat release increases at a moment 

of a rise in pressure, i.e., o90)( ≤′−′∠ pq .  The Rayleigh criterion also shows that acoustic 

energy depends on the dissipation in the system, and hence the gain in the qp ′−′( ) 

relationship also plays an important role in determining the characteristics of instability. 

 

Combustion instability has been modeled using a well-stirred reactor and one-step 

kinetics by Richards et al. [3], Janus and Richards [4], Lieuwen et al. [5], and Lieuwen 

and Zinn [6].  Richards et al. [3] investigated the effect of heat loss, flow rate and friction 

in a tailpipe of a pulse combustor.  The governing flow equations were reduced to a set of 

ODEs assuming a well-mixed combustion zone and choked inlet flow. The authors 

showed that the simulation results of the ODEs agree qualitatively with the experimental 

data.  A similar approach was used by Janus and Richards [4] for a premixed combustor.  

In that study, the authors showed that the model could predict the effect of the inlet 

temperature and open loop control by comparing the simulations with experimental 

results.  Lieuwen et al. [5] investigated the impact of the equivalence ratio oscillation on 

the heat release.  Given a perturbation in the equivalence ratio, as the mean equivalence 

ratio is decreased, they show that a well-stirred reactor model yields an increase in the 

magnitude of the corresponding heat release perturbations. In [6], the same model was 
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coupled with acoustics and a convective time delay for the equivalence ratio perturbation, 

and instability was predicted over a range equivalence ratio of 0.6-1.  

 

In this work, we investigate the linear response of a WSR model to the mass flow rate, 

or residence time oscillations, using one-step kinetics.  We show that as the mean 

equivalence ratio or the mean residence time approach the blow-out limit, the operating 

point may transition from stability to instability due to a sudden phase change between 

pressure and heat release oscillations.  

   

In Section II, a linearized heat release dynamics model is developed and the resulting 

model is examined in light of the physics of a WSR.  In Section III, we investigate the 

impact of the operating conditions, e.g., mean equivalence ratio and mean mass flow rate 

on the properties of the model.  In section IV, coupling with acoustics is described and 

conditions of thermoacoustic instability are investigated.  Predictions are then compared 

with experimental results and evidence supporting the WSR model results are 

summarized in Section V.  In Section VI, we assemble a model for the LSU experiment 

and compare our prediction regarding impact of operating conditions with the results of 

that experiment.  Conclusions are summarized in Section VII.    
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II Analytical Modeling of the WSR 

 

II.1  Governing Equations 

 

The governing equations of a well-stirred reactor are obtained using the conservation 

laws and a set of reaction-rate equations.  The conservation equations of the mass, energy 

and species in the WSR are given by:   

Mass Conservation: mm
dt

dM
i && −= ,               (2) 

Energy Conservation: rii Qhmhm
dt
dE &&& +−= ,   (3) 

Species Conservation: kkiki
k WYmYm

dt
dM &&& −−= , ,        (4) 

where M , E , and kM are a total mass, energy and mass of species k  inside the 

combustor, respectively, rQ&  is the heat release rate due to the chemical reaction, kW&  is a 

consumption rate of species k , m&  is the mass flow rate, h is the enthalpy, Y is the mass 

fraction, and subscript i refer to the inlet condition.  We assume that the condition at the 

exit are the same as inside, consistent with the assumption that mixing is much faster than 

the chemical reaction.  Equation (4) can be written for all species; e.g., mnHC , 2O , 2CO , 

OH2 , etc.  In case of one-step kinetics, one differential equation is sufficient and the mass 

fractions of other species are related by stoichiometry.  Equation (2) and (3) can be 

simplified as follow: 

    
ripip QTTcm

dt
dpV

dt
dTVc && +−=− )(ρ

      (5) 
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where ρ is the density of the mixture, V is the volume, pc  is the specific heat, T  is 

temperature, and p  is the pressure.  In deriving equation (5), we assume that the vc , 

pc and V are constants.  The 
dt
dpV  term can be expressed as a function of T  using the inlet 

and exit conditions, and the ideal gas law. Assuming that the pressure oscillations are 

weak, the pressure energy term is negligible, and equation  (5) reduces to 

ripip QTTcm
dt
dTVc && +−= )(ρ .       (6) 

Using equation (2),  equation (4) reduces to 

kkiki
k WYYm

dt
dYV && −−= )( ,ρ .          (7) 

The source terms, rQ& , and kW& for the fuel, can be represented as function of Y and 

T using a one-step kinetics mechanism [7] as follows: 

)exp()()( 2
2

o

an
o

n
fff T

T
YYVAW of −

= ρρ&  and  frr WhQ && ∆=                                            (8) 

where fA  is the frequency factor, rh∆ is the enthalpy of reaction (measured per unit mass 

of fuel), and RET aa /=  where aE  is activation energy and R  is the gas constant. 

 

At a fixed φ , 
2oY  and fY  are related by the stoichiometric mass ratio sψ as follows: 

)1(1
22 f

s
Of

s
O YYYY

ψψ
−+=           (9) 

Near stoichiometric conditions, f
s

O YY
ψ
1

2
≈ , and far from the stoichiometry, i.e., in a fuel 

lean mixture, constYO ≈
2

.  In a fuel lean mixture, fnρ  can taken as a constant around the 

equilibrium point because the strongest dependence of the reaction rate on temperature 

comes from exponential term.  Therefore, equation (8) can be simplified to 
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)exp(
o

ann
rfr T

TYVhAQ −∆′= ρ&

        
(10) 

where fYY =  and 
2of nnn += at near stoichiometric condition, and fnn =  under fuel-lean 

condition.   

 

 

II.2  Linearized Heat Release Model 

 

While the dynamics of a well–stirred reactor can be investigated by integrating these 

nonlinear ODEs directly, a linearized model makes it possible to examine its properties, 

such as the blow-out limit, and the gain and phase relations between the heat release rate 

and mass flow perturbations.  A linear heat release model can be obtained from equations 

(6), (7) and (10) assuming small perturbations around a steady state.  In deriving the 

linear heat release model, it is assumed that the air and the fuel lines are choked.  

Therefore, equivalence ratio oscillations are absent, while the mass flow rate and 

temperature oscillations in the combustion zone are the forcing terms of the heat release 

model. The dependent variables T , Y , ρ and im&  are represented using steady-state and 

perturbation terms, e.g. YYY ′+= . The linearized reaction rate equation (10) is: 

[ )exp()exp( 11

T
T

YYn
T
T

YnVhAQ annann
rfr

−′+
−′∆′=′ −− ρρρ& ]T

T
T

T
T

Y aann ′−
+ )exp(

2
ρ .   (11) 

Moreover, ρ′  is expressed in terms of T ′  (assuming constant pressure and molecular 

weight), 

                            
o

o

T
T ′

−=′ ρρ .                        (12)
 

Using equation (11) and (12), one can linearize equations (6) and (7) as 
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Since the ratio =
′′
)/()(

m
m

T
T

i

i
&
&

)1( −γaM , for low Mach number flows, we neglected ′
iT in 

equation (13).  Using Laplace transforms of equations (11), (13), and (14), we obtain the 

following linear heat release rate model: 

m
s

msJQr ′
+

=′=′ &&&
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                          (17) 

Note that )(sJ  is a first order filter.  

 

The cut-off frequency α and the static gain β  of the linear model are functions of the 

mean residence time, the equivalence ratio, and the inlet temperature.  At a fixed 

equivalence ratio, if the residence time is much larger than the chemical reaction time, 

almost all the fuel is burnt, i.e., 0≈Y .  In this case, α  and β  are much larger than the 
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acoustic frequency (due to the Y  term in the denominator in equation (16) and (17)), and 

the heat release responses instantaneously to the acoustic perturbations.  As the residence 

time decreases, the unburned fuel Y  increases, so the values of α  and β  decrease. 

Moreover, the change of the residence time affects the equilibrium temperature T . As 

the residence time decreases, the equilibrium temperature T  decreases, while α  and β  

change from positive to negative values because of the a
o

io T
T

TT
2

)( −−  term.  When 

α becomes negative, the heat release model itself becomes unstable since a perturbation 

grows exponentially as te α− .  The system is critically stable when 0=α . As we will see 

in the next section, this corresponds to blow-out.  The value of T  which leads to 0=α  in 

equation (16) is defined as *T  which is the blow-out temperature;  *T  satisfies the 

following equation: 

0
)(

)(
)()(

1
2*

*

*

*
=

−
+

−
−

−
+

Y

YY
nT

T
TT

T
TT

n i
a

ii                                                                       (18) 

Equation (15) shows that  when β changes sign, it introduces a o180  phase change 

between m& ′  and rQ& ′ .  If the heat release dynamics is coupled with acoustics, this phase 

change may trigger a thermoacoustic instability as an out-of-phase relationship between 

),( qp ′′ becomes in-phase.  That is, at 0=β , the system can transition from stability to 

instability. This thermoacoustic driven instability is different from the instability of the 

flame dynamics itself, which is defined by the sign of α  in the above paragraph.  The 

critical value of T which corresponds to 0=β  in equation (17) is denoted as **T , and is 

determined from
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As will be shown in the next section, 0=β corresponds to burning at the maximum 

heat release rate. Equations (18) and (19) are similar expect for the extra “1” in equation 

(18).  Based on this, one expects β  to become negative before α as the residence time 

decreases.  Therefore, just before blow out ( 0=α ), the heat release experiences a phase 

change.  That is, the onset of thermoacoustic instability may occur before blow-out. 

 

The change of the equivalence ratio at a fixed residence time also changes the 

equilibrium temperature T , thereby affecting α and β . One can expect that α  and β  

become negative as the equivalence ratio decreases due to the drop of the equilibrium 

temperature T . Therefore, the linearized model shows that by decreasing the residence 

time or the equivalence ratio, one expects phase change or blow-out to occur. 

 

 

II.3  Physical Insight into the WSR Model 

 

The heat release dynamics model presented in Section II.2 has two parameters α and 

β .  To gain insight into the meaning ofα and β , we examine the critical steady state 

response of the WSR.  We define 

)( ipif TTcmQ −= &&  
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as the energy added to the flow across the reactor, and draw rQ&  and fQ& as  m& changes, as 

shown in Figure 11.  The equilibrium or steady-state temperature is determined by the 

intersection of two curves.  As known in the well-stirred reactor theory , three solutions 

exist; hot and cold stable solutions and an unstable hot solution.  As the slope of the fQ& -

curve increases due to an increase in mass flux (or decrease of the residence time), the 

two hot solutions collapse onto one. There is no hot solution for higher values of mass 

flux. Therefore, the equilibrium point in Figure 1 where fQ& -line becomes tangent to the 

rQ& -curve is a critically stable point, and it can be calculated by solving the following 

equations: 

 fr QQ && =  and  dT
Qd

dT
Qd fr

&&
=

             
(20) 

The solution of these equations is given by equation (18), indicating that 0=α  captures 

the static blowout limit. 
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Figure 1 Definition of the blow-out Temperature *T . Data are for 8.0=φ , 
smkgVm 3/1040/ =& and KT 1800* =  . 

                                                 
1 All the Figures in this paper are calculated for 62 HC , for which 81024.4 ⋅=fA , 1.0=fn , 65.1

2
=On , 

KTa 15098=  and KTi 600= . 
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Another critical point exists in rQ& -curve. It occurs when rQ&  reaches a maximum, as 

shown in Figure 2.  The condition corresponding to maximum heat release rate, 

0=
dT
Qd r
&

 ,                 (21) 

is shown in Figure 2.  The equation defining this temperature is exactly the same as 

**T obtained from equation (19).  The Figure shows that for **TT >  ri Qm ′′ && ,( ) are in-phase; 

however, for *** TTT << , their phase changes by o180 .   This is confirmed in Figure 3, 

where the equilibrium solution corresponds to *** TTT << .   For **TT > , as the mass flow 

rate, im&  increases rQ&  also increases, i.e., ri Qm ′′ && ,( ) are in-phase.  On the other hand, for 

**TT < , as the mass flow rate, im& , increases, rQ&  decreases, indicating an out-of-phase 

relation. 

 

500 1000 1500 2000 2500
0

0.5

1

1.5

2
x 106

Temp(K)

Q
 (K

J/
m

3  s
)

T**

Qr
Qf

. 

. 

. 

Stable      
equilibrium 
temperature 

Conditions corresponding
to maximum heat release rate 

 

Figure 2 Plot showing conditions for in-phase relation between rQ′&  and m′& , corresponding 
to **TT > . Data are for  8.0=φ , smkgVm 3/800/ =&  and KT 1882** = . 
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Figure 3 Plot showing conditions for out-of-phase relation between rQ′&  and m′& , 
corresponding to  *** TTT << . Data are for  8.0=φ , smkgVm 3/1030/ =& , KT 1800* =  and  

KT 1882** = . 
 

Therefore, the phase between ),( ri Qm ′′ && changes by o180  as the point of the maximum 

heat release rate is crossed.  In Figure 2 and 3, the equilibrium condition shifts due to the 

change of the residence time (mass flow rate), which also leads to a phase change.  

Changing the equivalence ratio also can introduce phase change, as shown in Figure 4.  

As the equivalence ratio decreases, rQ&  curve moves down causing the equilibrium point 

to cross the maximum heat release point. We conclude that a phase change of o180 occurs 

either by decreasing the residence time, or equivalence ratio, in the regions between the 

maximum heat release point and the blow-out point.   

 

In summary, the heat release dynamics is modeled as a first-order filter with a transfer 

function )(sJ given by equation (15).  It is worth noting that even with such a simple 

form, the heat release model is capable of capturing blow-out, and the transition across 
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the maximum heat release rate point.  The first-order filter is able to characterize both of 

these characteristics through the two degrees of freedom α  and β  which are parameters 

of the transfer function )(sJ . 
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Figure 4 Plot showing the effect of φ on rQ& .   Data are for smkgVm 3/530/ =& . 

 

 

III Impact of Operating Conditions on the WSR Dynamics. 

 

The heat release model, )(sJ , describes the linearized dynamics around a fixed 

operating condition. The operating condition is determined by φ , m& , and iT .  While the 

structure of the heat release model does not change as the operating condition changes, 

its parameters, the gain β  and the cut-off frequency α , depend on the φ , im&  and iT  

through equations (16) and (17).  We now show how these quantities change with φ  and 
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m&  for KTi 600= .  Figure 5 depicts the impact of m& on α and β at a fixed equivalence 

ratio.  For values of Vm /& is less than smkg 3/700 , the cutoff frequency α  is about 3khz. In 

this region, the heat release model )(sJ  responds to the acoustic perturbation 

instantaneously when the frequency of the latter is of the order of a hundred Hz.  As 

Vm /&  increases, β  becomes negative beyond the maximum heat release rate point.  

Around this area, α  is close to the acoustic frequency.  For a narrow range of Vm /& , the 

phase between rQ′&  and m′&  changes by o180 .  Figure 6 shows the effect of the equivalence 

ratio on α  and β at a fixed mass flow rate. As the equivalence ratio decreases, α and 

β decrease. In a narrow range of equivalence ratio from 0.7 to 0.705, β  is negative 

which introduces o180 phase change between ),( rQm ′′ && .  In both cases, the o180  phase 

change for 0<β  and 0>α may trigger a thermoacoustic instability near the blow-out 

limit, as shown next. 
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Figure 5 The dependence of the cut-off and static gain on the mass flow rate at 8.0=φ . 
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Figure 6 The dependence of the cut-off and static gain on the equivalence ratio at 
3/530/ mkgVm =& . 

 

The characteristics of the heat release model are exhibited in Figures 7-10 at a given 

acoustic frequency, e.g., 200 Hz.  The phase between im& ′  and rQ& ′  changes from o0  at low 

im&  to small negative values as we approach **T (the point of the maximum heat release) 

as shown in Figure 7.  A o180 increase in phase is experienced at **T .  For im&  

corresponding to *** TTT << , the phase decreases to o90 .   The sudden phase jump at the 

maximum heat release point corresponds to the sign change of β , while the continuous 

phase change is due to the decrease of α .  Figure 8 shows the dependence of the gain on 

m& .  Note the sharp increase for **TT < .   
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Figure 7 Dependence of the phase of the heat release model on the mass flow rate at 
different equivalence ratios 
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Figure 8 Dependence of the gain of the heat release model on the mass flow rate at 
different equivalence ratio 
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Figure 9 Dependence of the p ′ - rQ′&  phase on the mass flow rate for a quarter-wave mode 
using the heat release  model  in Figure 7 and 8 
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Figure 10 The Rayleigh Index for a quarter-wave mode using the heat release model in 
Figure 8 and 9. 
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IV Heat Release Dynamics-Acoustics Coupling 

 

The possibility that a phase change of o180  at **T  may trigger a thermoacoustic 

instability is now demonstrated.  To model the latter, we must determine the vp ′−′  

relationship. The momentum equation shows that the phase between p ′ and v′  (inlet 

velocity perturbation) is o90 .  In open-closed boundary conditions, the first two 

longitudinal acoustic modes correspond to a quarter-wave and a three-quarter-wave.  For 

a quarter-wave mode, p ′  leads v′  over the entire combustor, i.e. o90−=′−′∠ vp .  For a 

three-quarter-wave, p ′  leads v′  on either sides of the left and right nodes,  o90−=′−′∠ vp , 

while v′ leads p ′  between  the two nodes, o90=′−′∠ vp .  Moreover, m& ′  can be 

represented as 

Avm i ′=′ ρ&                                       (22) 

where iρ  is the density and A is the cross sectional area of the combustor.  Using the heat 

release model, the phase vp ′−′∠  and the relation in equation (22), the phase between p ′  

and rQ′&  can be determined.  Figure 9 shows p ′ - rQ′&  phase as a function of m&  for three 

different equivalence ratios, assuming a quarter-wave mode for the p ′ - v′ relation.  It 

shows that p ′  and rQ′&  are in-phase between the point of maximum heat release rate and 

the blow-out limit.  As discussed in Section I, thermoacoustic instabilities occur when p ′  

and rQ′&  are in-phase.  Moreover, as shown in Figure 8, as the mass flow rate increases, 

the gain decreases first reaching a minimum at **T , and then increases again.  Both 

effects indicate that one should expect strong pressure oscillation near the blow-out limit.   
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Given the magnitude and the phase relation as shown in Figure 8 and 9, it is possible 

to compute the Rayleigh Index, RI , which is defined as  

∫∫ ′′= dtdVqpI R , 

where VQq r /&=′ .  Positive values of RI lead to strong pressure oscillation, whereas 

negative RI indicates a stable system. Figure 10 shows the Rayleigh Index normalized by 

its maximum value at the same conditions shown in Figure 8 and 9.  The Rayleigh Index 

experiences a sharp increase between the point of maximum heat release and blow-out as 

the mass flow rate increases.  The maximum Rayleigh Index is achieved at the blow-out 

point.   

 

Figure 11 shows the impact of the equivalence ratio on ( p ′ , rQ′& ) gain and phase 

relations.  Near blow-out, p ′  and rQ′&  become in-phase while their gain increases sharply.   

Note the narrow range of φ  within which conditions support an instability. 
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Figure 11  The )( rQp &−′  phase and gain for a quarter-wave mode at a fixed mass flow rate 
(530kg/m^3 s), as a function of the equivalence ratio. 
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V Experimental Evidence 

 

There exists ample experimental evidence that as the equivalence ratio is decreased at 

a fixed mass flow, or the mass flow rate is increased as a fixed equivalence ratio, the 

system develops self-sustained oscillations.  Soon after these oscillations are observed, 

blow-out is often encountered. In this section, we review some of these results and use 

the theory developed in this paper to explain some of concomitant observations. 

 

In an experiment conducted to examine the response of a lean premixed, swirl 

stabilized combustor [8], it was observed that the system remained stable until rather low 

values of φ , where thermoacoustic instabilities seem to become strong.  Soon after the 

onset of the instability, and within a small decrease in φ , combustion blows out in a way 

that is qualitatively similar to the prediction in Figure 11.   

 

Results of a lean premixed combustor in which a flame was stabilized behind a 

rearward-facing step [9] exhibited the dependence of the pressure amplitude on the 

equivalence ratio shown in Figure 12.  As the equivalence ratio decreased, the amplitude 

of a 48 Hz mode increased, while that of a 124 Hz mode decreased within the same 

range.  According to the system configuration in [9], the 48Hz mode corresponded to a 

quarter-wave mode, while the 124Hz mode corresponded to a three-quarter-wave mode.   

The theory presented in this paper predicts this mode selective behavior, as shown below.  

Since the flame was located in the middle of the combustor in [9], p ′  leads v ′  in the 
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quarter-wave mode while v ′  leads p ′  in the three-quarter-wave mode, as mentioned 

above.  This in turn implies that at a given φ , if p ′  and rQ ′&  are in-phase in one mode, they 

are out-of-phase in the other.  At the same time, the results of the previous section show 

that, for a given mode, the p ′ - rQ ′&  phase goes through a sudden change of o180 as φ  

changes.  Together these two facts lead to the observation that if one mode, say the 96 Hz 

mode, is stable and another mode, say the 124 Hz mode, is unstable at a given φ , the 

stability can switch between the two modes as φ  is decreased.  We should mention that 

this agreement is only qualitative since the heat release dynamics in the experiment may 

be governed by flame surface motion.  However, since the chemical time scale governs 

the heat release rate near the lean blow-out limit, the combustion dynamics can be 

approximated by a well-stirred reactor in that region.  Note that the pressure amplitudes 

increase sharply prior to blow-out, as captured by the WSR model. 

 

 

Figure 12 Pressure amplitudes in a lean premixed combustor near the blow-out conditions 
[9] 
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The experimental results of Richards et al. [3] also agree with the prediction of the 

WSR model.  In that study, the combustor used to investigate the effect of the heat loss, 

flow rate and friction was composed of a choked inlet, well-mixed combustion zone and 

a tail pipe.  Because the inlet was choked, equivalence ratio fluctuations were absent.   As 

shown in Figure 13, the pressure amplitude increased as the equivalence ratio was 

decreased at a fixed residence time (39ms).  Figure 14 shows the impact of the residence 

time at a fixed equivalence ratio.  As the residence time was decreased (by increasing the 

mass flow rate), the pressure amplitude increased. The dependence of the stability of the 

system on the equivalence ratio and the residence time qualitatively match the predictions 

based on the WSR heat release dynamics model.  Figure 13 and 14 also show that the 

mode changes to a lower frequency as the pressure amplitudes grow.  This may be due to 

our prior observation that different phase relations for mp ′−′∠ &  should be considered for 

different modes, and that the phase strongly depends on φ and m&  through the model 

parameters α  and β . 

 

  Another set of experimental result where a three-nozzle sector combustor was used 

with full-scale engine hardware [10] to examine the characteristics of an annular 

combustors showed sharp rise of pressure oscillation within the narrow range of 

equivalence ratios between 0.41 and 0.42 as shown in Figure 15.  This is similar to the 

simulation result of the WSR model as shown in Figure 11.   

 

  In summary, these experimental studies support the following characteristics of the 

heat release dynamics model:   
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1) As the equivalence ratio decreases or the mass flow rate increases, the system 

becomes unstable.  The transition seems abrupt. 

2) The instability is due to a sudden phase change near the lean blow-out limit. 

While the gain increases there as well, it cannot explain mode switching. 

3) The combustion instability region is narrow  ( 1.0≈∆φ ), and exists just before the 

lean blow-out. 

 

Figure 13 Pressure amplitudes in a combustor at various equivalence ratios [3] 
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Figure 14 Pressure amplitudes in a combustor  at various flow times [3] 

 

 

Figure 15 Change of pressure amplitudes near the lean blow-out limit [10] 
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We observed that the system follows the characteristics of WSR model as shown in 

Figures 12-15. It is also necessary to examine whether the system can be represented by 

WSR model in those operating conditions to confirm the applicability of WSR model. 

One can determine the validity of the WSR model in a particular condition using two 

parameters in the phase plane, e.g., Damkohler number, aD , and normalized turbulence 

intensity, uSu /′ , where u ′ is the magnitude of the turbulence fluctuations in velocity 

[11,12]. aD  is given by 

ωρτ
τ

/
/ t

r

t
a

uL
D ==  

where tτ  is the time scale of turbulence, rτ is the time scale of combustion, L  is the 

characteristic length of a combustor, tu  is turbulence velocity and ω  is mass rate of 

formation. To justify using the WSR model in a particular operating condition, the 

following conditions should be satisfied: 

1)( <aDO  and 1)/( >′ uSuO  . 

One can estimate u ′  from p′ using the following equation: 

)/( cpu ⋅′≈′ ρ  

which is derived from the conservation equations. p′  was 0.4 Psi in Ref [9] at 73.0=φ .   

Assuming KT 1700= , we get sec/7.15 mu ≈′ . Considering that smSO u /1)( ≈ , we get 

uSu /′  to be order of 10.  For tτ , the length of the step height )025.0( mL =  is used and 

uut ′≈  is assumed.  It gives sec6.1 mt =τ . To calculate aD , it is necessary to determine 

rτ  which strongly depends on temperature and mass ratio of species.  Due to insufficient 

information, it is difficult to calculate exact rτ .  Instead, one can approximately estimate 
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the chemical reaction time using experimental data of hydro-carbon fuel. Figure 16 

shows the chemical reaction time as a function of the equivalence ratio. It is shown that 

below φ<0.8, the chemical reaction time decreases drastically. Near the blow out limit, 

rτ becomes larger than 1.6msec, which gives 1<aD . However, we observe that the 

chemical reaction time is much smaller than the turbulence time scale ( 1.0)( ≈aDO ) at 

stoichiometry. Therefore, it suggests that the WSR mode is applicable near the blow-out 

limit where the chemical time scale increases drastically, but it is not applicable at 

stoichiometry.  It agrees with the results in section II.2 that the dynamics of the chemical 

reaction is negligible at stoichiometry where the time constant,α , of the WSR model is 

much smaller than other time scales. For ref [3] and [10], as shown in Figures 13 to 15, 

the turbulence intensity is much larger than Ref [9] (One can expect it from the 

magnitude of the pressure oscillations) and the equivalence ratio is lower.  Therefore, it is 

also reasonable to assume that those systems as WSR near the blow out limit. 

 

Figure 16 Characteristic chemical time for a hydrocarbon fuel [13] 
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VI Thermoacoustic Instability Simulations 

 

The model presented in Section II can be used to predict combustion instability once 

an acoustic model is derived.  Using a Galerkin approximation [14-15], we express the 

unsteady pressure p′ as: 

∑
=

=′
n

i
ii txptxp

1

)()(),( ηψ , 

where )(xiψ  and )(tiη are modal shape and amplitude.  Assuming that one acoustic mode 

is dominant, and that the heat release is localized at fxx = , the amplitude this mode can 

be shown to be governed by (see Ref. [16]): 

dt
QdxEa

dt
d r

fo
′

=+ −
&

)(12
2

2
ψγηωη ,     (23) 

where ω is the acoustic frequency, 
p

ao γ
γ 1−= and ∫=

L

dxxE
0

2)(ψ .  Using the configuration 

of the LSU-swirl stabilized combustor [17], in which srad /1257=ω  for a quarter mode, 

mL 6.0= , mx f 03.0= , 20196.0 mA = , 4.1=γ , 3/6.0 mkgi =ρ , 618.2=k and atmp 1= , the 

following acoustic model is obtained   

rr Q
s

sQsF ′
×+

=′= &&
62 10579.1

0133.0)(η  . (24)          

The feedback relationship between rQ ′&  and p ′  can be obtained as follows:  The 

dependence of rQ ′&  on m ′&  can be expressed using equation (15).  Moreover the 
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relationship between m′& and p′  can be expressed using the momentum equation and 

equation (22)  (see Ref. [16]) 

dt
dk

dx
dAvAm

fx
ii

ηψ
γ

ρρ 21 −=′=′&    (25) 

where iρ  is the density, A is the cross sectional area of the combustor, and k  is the wave 

number.  Using the data of  the LSU combustor, we get 

dt
dm η410512.2 −×−=′& .                 (26) 

The parameters α  and β  in the heat release model are evaluated for two different 

operating conditions.  In both cases, KTi 600= and 6.0=φ , while for 

Case I.  smkgVmi
3/100/ =& , 

5594
106.6)(

6

+
×=

s
sJ ,                            (27) 

and to 

Case II.  smkgVmi
3/230/ =& , 

5.746
10475.3)(

5

+
×−=

s
sJ .                      (28) 

Using equations (24), (26), and heat release models in (27) and (28), we develop the 

combustion feedback system shown in Figure 17.  For the given data, the maximum 

reaction is at KT 1605** = , while the blow-out is at KT 1555* = .   The equilibrium 

temperature is K1815  in Case I and K1588 in Case II.  Note that the equilibrium 

temperature is TT <**  in Case I, while *** TTT << in Case II.  Figure 9 shows that in 

Case I o& 100−=′−′∠ rQp , and in Case II o& 0=′−′∠ rQp .   Therefore, one can expect stable 

operation in Case I and pressure oscillation in Case II based on the Rayleigh Criterion.  

This is supported by the simulation results shown in Figure 18 and 19. 
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Figure 17 The combustion feedback system with the WSR model 
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Figure 18 Simulation of pressure oscillation in Case I 
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Figure 19 Simulation of pressure oscillation in Case II 
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As shown in Figure 20, the same trend is observed in LSU experiment.  As  im&  increases 

or φ  decreases, the magnitudes of the pressure oscillations increase.   

 

 

Figure 20 Pressure oscillation map in LSU swirl stabilized rig [17] 

 

VII Summary 

 

In this paper, we obtain a linearized heat release dynamics model based on the 

assumptions used in a well-stirred reactor, and express the heat release oscillation as a 

function of the mass flow rate.  We limit the analysis to the case of single-step kinetics.  

The heat release dynamics model has the form of a first order filter, having a pole and a 

static gain.  The model captures static blow-out as the pole becomes unstable, and shows 

that the phase between mass flow rate and the heat release oscillations changes by o180 at 

the point of the maximum hear release,  corresponding to the change of the sign of the 

gain.  
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The phase and gain between mass flow oscillation and heat release perturbation 

depend on the mean residence time and equivalence ratio.  Phase change occurs soon 

before blow-out.  For certain cases, while it depends on the nature of the acoustic mode 

and the location of the heat release zone, the phase between rQp ′′ &,( ) changes from about 

o90−  before the maximum reaction point to about + o90 , following a transition across this 

point, to around o0  at blow-out as the residence time or the equivalence ratio is 

decreased.  Based on the Rayleigh Criterion, the combustor may become unstable due to 

the positive coupling between the heat release dynamics and acoustics at the maximum 

power, or at lean burn condition close to lean blow-out.  Experimental studies [3, 9, 10 

17] show similar characteristics.  

 

We are currently extending the formulation of the heat release model to the case of a 

multi-step kinetics mechanism, which can yield more accurate model over a wide-range 

of operating condition.  
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