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PREFACE

The MIT Department of Mechanical Engineering offers a series of graduate-level subjects

on the Mechanics of Solids and Structures that in recent years has included:

2.071: Mechanics of Solid Materials,

2.072: Mechanics of Continuous Media,

2.074: Solid Mechanics: Elasticity (formerly 2.083),

2.073: Solid Mechanics: Plasticity and Inelastic Deformation,

2.075: Mechanics of Soft Materials,

2.080: Structural Mechanics,

2.094: Finite Element Analysis of Solids and Fluids,

2.095: Molecular Modeling and Simulation for Mechanics, and

2.099: Computational Mechanics of Materials.

I have taught the second and third of these subjects on several occasions and the current

four volumes comprise the notes I developed for them. These are notes, not textbooks. The

earliest rough drafts were written in 1987 and 1988 and they have been expanded and refined

on every subsequent occasion when I taught these classes. They are organized as follows:

Volume I: A Brief Review of Some Mathematical Preliminaries

Volume II: Continuum Mechanics

Volume III: An Introduction to Finite Elasticity

Volume IV: Linear Elasticity (Not as-yet ready.)

This is Volume III.

Until 2018, the subject 2.074 on elasticity treated only the linear(ized) theory. In re-

cent years, several students doing research on “soft materials” and “biomaterials” asked for

references to books where they could learn the nonlinear theory on their own and I would

direct them to one of the books listed below. In fall 2018 I decided to devote the first part

of 2.074 to the nonlinear theory and the rest to the linearized theory. Volume III consists of

the notes from the first part (with somewhat more detail than what I actually cover). Due

to the limitation of time – less than one semester – the treatment is special in many ways,

e.g. inertial effects are not considered. While there is some duplication of material between

Volumes II and III, the more narrow focus here should be helpful to the student encounter-

ing this material for the first time. An expanded treatment of the underlying theory can be

found in the relevant chapters of Volume II.



The content of these notes is entirely classical, in the best sense of the word. While the

material covered is not original, some of it is not usually emphasized in textbooks. They

include the several boundary-value problems focused on illustrating nonlinear phenomena

(Chapter 5), strain-energy functions with multiple energy-wells used in the study solid-to-

solid phase transitions (Chapter 7), and Cauchy’s lattice-based theory of elasticity (Chapter

8).

One of the few positive outcomes of the COVID-19 pandemic was that in the fall of

2020, when 2.074 was taught remotely, I recorded a few (amateur) videos on some particular

topics. Links to them are provided in the text.

In case you wonder why “an introduction” is about 700 pages long, it is because of the

numerous examples and exercises that are included in almost every chapter. They are an

essential part of these notes. Many of these problems illustrate general concepts through

particular examples. Some provide further details on items touched on in the text. Others

generalize previously described special cases. Some concern proofs of results that had simply

been quoted before, or they refer to results that will be used in what follows.

The problems are numbered as follows: Problem 2.6 for example can be found at the end

of Chapter 2 in the section on Exercises, while Problem 2.6.2 is located within Section 2.6.

This distinction between problems identified by two numbers (e.g. 2.6) versus three (e.g.

2.6.2) has been adopted throughout.

My appreciation for mechanics was nucleated by Professors Douglas Amarasekara and

Munidasa Ranaweera of the (then) University of Ceylon, and was subsequently shaped and

grew substantially under the influence of Professors James K. Knowles and Eli Sternberg

of the California Institute of Technology. I have been most fortunate to have had the

opportunity to apprentice under these inspiring and distinctive scholars.

I would especially like to acknowledge the innumerable illuminating and stimulating

interactions with my mentor, colleague and friend the late Jim Knowles. His influence on

me cannot be overstated.

I am also indebted to the many MIT students who have given me enormous fulfillment

and joy to be part of their education and for their feedback on these notes.

My understanding of elasticity has benefitted greatly from numerous conversations with

many colleagues including Kaushik Bhattacharya, Janet Blume, Eliot Fried, Morton E.

Gurtin, Richard D. James, Stelios Kyriakides, David M. Parks, Sensei Phoebus Rosakis,



Stewart Silling and Nicolas Triantafyllidis. My grateful thanks to them all.

I have drawn on a number of sources over the years as I prepared my lectures. I cannot

recall every one of them but they certainly include those listed at the end of each chapter.

I have found the following articles and books particularly useful:

Volume III: An Introduction to Finite Elasticity

– J. M. Ball, Some recent developments in nonlinear elasticity and its applications to

materials science, in Nonlinear Mathematics and Its Applications, edited by P.J. As-

ton, pp. 93–119. Cambridge University Press, 1996.

– P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Wiley, 1976.

Reprinted by Dover,1999.

– A. Goriely, A. Erlich and C. Goodbrake, C5.1 Solid Mechanics, Online problem sheets,

Oxford University. The 2020 version was at https://courses-archive.maths.ox.

ac.uk/node/view_material/52105.

– M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Con-

tinua, Cambridge University Press, 2010.

– J. K. Knowles and E. Sternberg, (Unpublished) Lecture Notes for AM136: Finite Elas-

ticity, California Institute of Technology, Pasadena, CA 1978.

– R.W. Ogden, Nonlinear Elastic Deformations, Ellis Horwood, 1984. Reprinted by

Dover, 1997.

– D.J. Steigmann, Finite Elasticity Theory, Oxford, 2017.

For a treatment of the rigorous mathematical underpinnings, the student may refer to:
– S. S. Antman, Nonlinear Problems of Elasticity, Springer-Verlag, 1995.

– J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity, Prentice-

Hall, 1983. Reprinted by Dover 1994.

The following notation will be used in Volume III, though there will be a few lapses (for

reasons of tradition):

– Greek letters will denote scalars;

– lowercase boldface Latin letters will denote vectors; and

– uppercase boldface Latin letters will denote linear transformations (tensors).

Thus, for example, α, β, γ... will denote scalars (real numbers); a,b, c, ... will denote vectors;

and A,B,C, ... will denote tensors.

One consequence of this notational convention is that I will not use the uppercase bold-

face letter X to denote the position vector of a particle in the reference configuration (as

https://courses-archive.maths.ox.ac.uk/node/view_material/52105
https://courses-archive.maths.ox.ac.uk/node/view_material/52105


many authors do). Being a boldface uppercase letter, my convention would dictate that

X represent some tensor. Instead, I use the lowercase boldface letters x and y to denote

the respective position vectors of a particle in the reference and current configurations. I

sometimes lightheartedly refer to this as the “Caltech-Minnesota notation”.

I have been frequently asked whether I intend to publish these notes in the form of a

traditional textbook, and my answer has aways been “no”. These notes are being made

available primarily for students who like me, when I was studying in Sri Lanka, could not

afford the cost of purchasing a textbook. I therefore intend to make these notes available for

free online.

Finally, I would like to express my grateful thanks to Jane and Neil Pappalardo for their

friendship and support over many years. The writing of Volume III was supported by the

MIT-Pappalardo Series in Mechanical Engineering.
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List of symbols

Table 1: Kinematics

Quantity Symbol

Position vector of particle in reference configuration x

Position vector of particle in deformed configuration y

Deformation field y(x)

Displacement field u(x)

Infinitesimal material fiber in reference configuration dx

Infinitesimal material fiber in deformed configuration dy

Volume of an infinitesimal part in reference configuration dVx

Volume of an infinitesimal part in deformed configuration dVy

Infinitesimal (vector) area in reference configuration dAx nR

Infinitesimal (vector) area in deformed configuration dAy n

Deformation gradient tensor F = Grad y

Jacobian determinant J = det F

Displacement gradient tensor H = Grad u

Right (Lagrangian) stretch tensor U

Left (Eulerian) stretch tensor V

Rotation tensor R

Principal stretches λ1, λ2, λ3

Principal directions of Lagrangian stretch r1, r2, r3

Principal directions of Eulerian stretch `1, `2, `3

Right Cauchy-Green deformation tensor C = U2 = FTF

Left Cauchy-Green deformation tensor B = V2 = FFT

Principal scalar invariants of C I1(C), I2(C), I3(C)

General Lagrangian strain tensor E(n)

Green Saint-Venant strain tensor E

Particle velocity v

Velocity gradient tensor L = grad v(y, t)
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Table 2: Mechanics

Quantity Symbol

Cauchy (true) traction vector t(y, n)

Normal stress Tnormal

Magnitude of resultant shear stress Tshear

Cauchy (true) stress tensor field T(y)

Principal Cauchy stresses τ1, τ2, τ3

Principal directions of Cauchy stress t1, t2, t3

Piola traction vector s(x,nR)

Piola stress tensor field S(x)

Stress tensor work conjugate to strain tensor E(n) S(n)

Biot stress tensor S(1)

2nd Piola-Kirchhoff stress tensor S(2)

Body force per unit deformed volume b

Body force per unit reference volume bR

Mass density in deformed configuration ρ

Mass density in reference configuration ρR

Table 3: Constitutive Description

Quantity Symbol

Strain energy function Ŵ (F)

Strain energy function W (C)

Strain energy function W̃ (I1(C), I2(C), I3(C))

Strain energy function W ∗(λ1, λ2, λ3)

Reactive stress due to an internal material constraint N

Reactive pressure due to incompressibility constraint q

Fiber directions in anisotropic material mR,m

Structural tensor for anisotropic material M

Additional invariants for anisotropic material I4(C,M), I5(C,M), . . .
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Some Useful Formulae

1. Mathematical background.

Orthogonal matrix [Q] : QikQjk = QkiQkj = δij (1.1)

Tpqr...i...z δij = Tpqr...j...z (1.2)

det[A] = eijkA1iA2jA3k = eijkAi1Aj2Ak3 =
1

6
eijkepqrAipAjqAkr. (1.3)

epqr det [A] = eijkAipAjqAkr. (1.4)

epijepk` = δikδj` − δi`δjk. (1.5)

eijk = −ejik, eijk = −eikj (1.6)

u · v = v · u (1.7)

|u| =
√

u · u (1.8)

cos θ =
u · v
|u| |v| (1.9)

|u| = 0 ⇔ u = o (1.10)

u× v = −v × u (1.11)

|u× v| = |u| |v| sin θ, (u× v) · u = (u× v) · v = 0 (1.12)

ei · ej = δij . (1.13)

ei × ej = eijk ek. (1.14)

v = viei, vi = v · ei (1.15)

u · v = uivi. (1.16)

|u| = (u · u)1/2 = (ukuk)
1/2

. (1.17)

(u× v)i = eijkujvk. (1.18)

I u = u, 0u = o for all vectors u (1.19)

Au · v = u ·ATv for all vectors u,v (1.20)

(AB)T = BTAT (1.21)

Symmetric tensor A : A = AT (1.22)
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Skew-symmetric tensor A : A = −AT , (1.23)

Positive definite tensor A : Au · u > 0 for all vectors u 6= 0 (1.24)

Nonsingular tensor A : Au = o if and only if u = o (1.25)

Nonsingular tensor A : AA−1 = A−1A = I (1.26)

(AB)−1 = B−1A−1 (1.27)

Orthogonal tensor Q : QQT = QTQ = I (1.28)

Orthogonal tensor Q : |Qu| = |u| for all vectors u (1.29)

A = S + W, S = ST =
1

2
(A + AT ), W = −WT =

1

2
(A−AT ) (1.30)

Nonsingular tensor F : F = RU = VR, R orthogonal, U,V symmetric positive definite (1.31)

(a⊗ b)x = (x · b)a for all vectors x (1.32)

(a⊗ b)T = b⊗ a, (a⊗ b)(c⊗ d) = (b · c)(a⊗ d). (1.33)

A(a⊗ b) = (Aa)⊗ b, (a⊗ b)A = a⊗ (ATb). (1.34)

e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = I. (1.35)

Aej = Aij ei, Aij = (Aej) · ei. (1.36)

A = Aijei ⊗ ej . (1.37)

tr A = tr [A] = Aii, det A = det [A]. (1.38)

det(AB) = det A det B. (1.39)

det(αA) = α3 det A (1.40)

tr(AB) = tr(BA) (1.41)

(Fa× Fb) · Fc = detF (a× b) · c (1.42)

Fa× Fb = det F F−T (a× b) (1.43)

A ·B = tr (ABT ) = AijBij . (1.44)

AB ·C = B ·ATC = A ·CBT , (1.45)

|A| = (A ·A)
1/2

=
[
tr (AAT )

]1/2
= (AijAij)

1/2
, (1.46)

(a⊗ b)ij = aibj . (1.47)

(Aei)⊗ ei = A. (1.48)

tr (a⊗ b) = a · b (1.49)

det(I + a⊗ b) = 1 + a · b (1.50)
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(I + a⊗ b)−1 = 1− a⊗ b

1 + a · b (provided a · b 6= −1) (1.51)

v′i = Qijvj , {v′} = [Q]{v} where Qij = e′i · ej (1.52)

A′ij = QipQjqApq, {A′} = [Q][A][Q]T where Qij = e′i · ej (1.53)

det(A− µI) = −µ3 + I1(A)µ2 − I2(A)µ+ I3(A) (1.54)

where

I1(A) = tr(A), I2(A) =
1

2
[(tr(A))2 − tr(A2)], I3(A) = det(A). (1.55)

Eigenvalues and eigenvectors

Aa = αa (1.56)

Symmetric tensor S : S = σ1s1 ⊗ s1 + σ2s2 ⊗ s2 + σ3s3 ⊗ s3 (1.57)

dJ

dt
= J F−T · dF

dt
, J(t) = det F(t) (1.58)

∂J

∂F
= JF−T, J(F) = det F (1.59)

d

dt
(F−1) = −F−1 dF

dt
F−1, F = F(t) (1.60)

If W (C) is defined for all symmetric tensors C then(
∂W

∂C

)
ij

=
1

2

(
∂W

∂Cij
+
∂W

∂Cji

)
(1.61)

(
∇φ
)
i

= (gradφ)i =
∂φ

∂xi
(1.62)

φ(x + δx) = φ(x) + (∇φ) · δx + o(|δx|) as |δx| → 0. (1.63)(
∇v
)
ij

= (grad v)ij =
∂vi
∂xj

(1.64)

v(x + δx) = v(x) + (∇v)δx + o(|δx|) as |δx| → 0. (1.65)

div v =
∂vi
∂xi

= tr (∇v) (1.66)

(
curl v

)
i

= eijk
∂vk
∂xj

. (1.67)

(
div T

)
i

=
∂Tij
∂xj

, (1.68)
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(
curl T

)
ij

= eipq
∂Tjq
∂xp

. (1.69)∫
∂R

Tjk...z ni dA =

∫
R

∂

∂xi
Tjk...z dV (1.70)

∇φ =
∂φ

∂R
eR +

1

R

∂φ

∂Θ
eΘ +

∂φ

∂Z
eZ . (1.71)

∇u =
∂uR
∂R

(eR ⊗ eR) +
∂uΘ

∂R
(eΘ ⊗ eR) +

∂uZ
∂R

(eZ ⊗ eR)+

+
1

R

(
∂uR
∂Θ
− uΘ

)
(eR ⊗ eΘ) +

1

R

(
∂uΘ

∂Θ
+ uR

)
(eΘ ⊗ eΘ) +

1

R

∂uZ
∂Θ

(eZ ⊗ eΘ) +

+
∂uR
∂Z

(eR ⊗ eZ) +
∂uΘ

∂Z
(eΘ ⊗ eZ) +

∂uZ
∂Z

(eZ ⊗ eZ).

(1.72)
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2. Kinematics

Deformation : y = y(x) = x + u(x) (2.1)

F = ∇y Fij =
∂yi
∂xj

(2.2)

dy = Fdx, (2.3)

λ(mR) = |FmR| (2.4)

dVy = J dVx, J = det F (2.5)

dAy n = dAx J F−T nR . (2.6)

F = R U, U =
√

FTF, R = FU−1. (2.7)

F = VR, V =
√

FFT R = V−1F. (2.8)

B = FFT = V2, C = FTF = U2 (2.9)

U =

3∑
i=1

λiri ⊗ ri, V =

3∑
i=1

λi`i ⊗ `i; (2.10)

F =

3∑
i=1

λi`i ⊗ ri, R =

3∑
i=1

`i ⊗ ri. (2.11)

C =

3∑
i=1

λ2
i (ri ⊗ ri), B =

3∑
i=1

λ2
i (`i ⊗ `i). (2.12)

I1(C) = tr C, I2(C) =
1

2

[(
tr C

)2 − tr C2
]
, I3(C) = det C, (2.13)

Ik(C) = Ik(QCQT ) (2.14)

I1(C) = λ2
1 + λ2

2 + λ2
3, I2(C) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3(C) = λ2

1λ
2
2λ

2
3. (2.15)

E(U) = e(λ1) r1 ⊗ r1 + e(λ2) r2 ⊗ r2 + e(λ3) r3 ⊗ r3. (2.16)

E(n) =
1

n

(
Un − I

)
(2.17)

Biot strain tensor: E(1) = U− I (2.18)

Green-Saint Venant strain tensor: E(2) =
1

2
(U2 − I) (2.19)

E(V) = e(λ1) `1 ⊗ `1 + e(λ2) `2 ⊗ `2 + e(λ3) `3 ⊗ `3. (2.20)

Piola identity: Div
(
J F−T

)
= o,

∂

∂xj

(
JF−1

ji

)
= 0 (2.21)

Piola identity: div
(
J−1 FT

)
= o,

∂

∂yj

(
J−1Fji

)
= 0 (2.22)
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F =
∂r

∂R
(er ⊗ eR) +

1

R

∂r

∂Θ
(er ⊗ eΘ) +

∂r

∂Z
(er ⊗ eZ)+

+r
∂θ

∂R
(eθ ⊗ eR) +

r

R

∂θ

∂Θ
(eθ ⊗ eΘ) + r

∂θ

∂Z
(eθ ⊗ eZ)+

+
∂z

∂R
(ez ⊗ eR) +

1

R

∂z

∂Θ
(ez ⊗ eΘ) +

∂z

∂Z
(ez ⊗ eZ) .

(2.23)

B = Brrer ⊗ er + Bθθeθ ⊗ eθ + Bzzez ⊗ ez +

+Brθ(er ⊗ eθ + eθ ⊗ er) + Brz(er ⊗ ez + ez ⊗ er) +

+Bθz(ez ⊗ eθ + eθ ⊗ ez),

(2.24)

where

Brr =

(
∂r

∂R

)2

+
1

R2

(
∂r

∂Θ

)2

+

(
∂r

∂Z

)2

,

Bθθ = r2

[(
∂θ

∂R

)2

+
1

R2

(
∂θ

∂Θ

)2

+

(
∂θ

∂Z

)2
]
,

Bzz =

(
∂z

∂R

)2

+
1

R2

(
∂z

∂Θ

)2

+

(
∂z

∂Z

)2

,

Brθ = Bθr = r

[
∂r

∂R

∂θ

∂R
+

1

R2

∂r

∂Θ

∂θ

∂Θ
+
∂r

∂Z

∂θ

∂Z

]
,

Brz = Bzr =
∂r

∂R

∂z

∂R
+

1

R2

∂r

∂Θ

∂z

∂Θ
+
∂r

∂Z

∂z

∂Z
,

Bθz = Bzθ = r

[
∂θ

∂R

∂z

∂R
+

1

R2

∂z

∂Θ

∂θ

∂Θ
+
∂θ

∂Z

∂z

∂Z

]
.



(2.25)

F =
∂r

∂R
(er ⊗ eR) +

1

R

∂r

∂Θ
(er ⊗ eΘ) +

1

R sin Θ

∂r

∂Φ
(er ⊗ eΦ)+

+r
∂θ

∂R
(eθ ⊗ eR) +

r

R

∂θ

∂Θ
(eθ ⊗ eΘ) +

r

R sin Θ

∂θ

∂Φ
(eθ ⊗ eΦ)+

+r sin θ
∂ϕ

∂R
(eϕ ⊗ eR) +

r sin θ

R

∂ϕ

∂Θ
(eϕ ⊗ eΘ) +

r sin θ

R sin Θ

∂ϕ

∂Φ
(eϕ ⊗ eΦ) .

(2.26)

B = Brrer ⊗ er + Bϑϑeϑ ⊗ eϑ + Bϕϕeϕ ⊗ eϕ +

+Brϑ(er ⊗ eϑ + eϑ ⊗ er) + Brϕ(er ⊗ eϕ + eϕ ⊗ er) +

+Bϑϕ(eϕ ⊗ eϑ + eϑ ⊗ eϕ),

(2.27)
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where

Brr =

(
∂r

∂R

)2

+
1

R2

(
∂r

∂Θ

)2

+
1

R2sin2Θ

(
∂r

∂Φ

)2

,

Bϑϑ = r2

[(
∂ϑ

∂R

)2

+
1

R2

(
∂ϑ

∂Θ

)2

+
1

R2sin2Θ

(
∂ϑ

∂Φ

)2
]
,

Bϕϕ = r2 sin2 ϑ

[(
∂ϕ

∂R

)2

+
1

R2

(
∂ϕ

∂Θ

)2

+
1

R2sin2Θ

(
∂ϕ

∂Φ

)2
]

Brϑ = Bϑr = r

[
∂r

∂R

∂ϑ

∂R
+

1

R2

∂r

∂Θ

∂ϑ

∂Θ
+

1

R2sin2Θ

∂r

∂Φ

∂ϑ

∂Φ

]
,

Brϕ = Bϕr = r sin ϑ

[
∂r

∂R

∂ϕ

∂R
+

1

R2

∂r

∂Θ

∂ϕ

∂Θ
+

1

R2sin2Θ

∂r

∂Φ

∂ϕ

∂Φ

]
,

Bϑϕ = Bϕϑ = r2 sin ϑ

[
∂ϑ

∂R

∂ϕ

∂R
+

1

R2

∂ϕ

∂Θ

∂ϑ

∂Θ
+

1

R2sin2Θ

∂ϑ

∂Φ

∂ϕ

∂Φ

]
.



(2.28)
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3. Traction, stress, equilibrium.

t(n) = Tn (3.1)

Tij = ti(ej) = Tej · ei, (3.2)

T = Tijei ⊗ ej , T =

3∑
i=1

τi ti ⊗ ti. (3.3)

Tnormal(n) = t(n) · n = Tn · n = Tijninj = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3 (3.4)

Tshear(n) =
√
|t|2 − T 2

normal =

√[
t(n) · t(n)

]
−
[
t(n) · n

]2
. (3.5)

T 2
shear = |t(n)|2 − T 2

normal = τ2
1n

2
1 + τ2

2n
2
2 + τ2

3n
2
3 − (τ1n

2
1 + τ2n

2
2 + τ3n

2
3)2. (3.6)

div T + b = 0,
(
div T

)
i

=
∂Tij
∂yj

(3.7)

∂Tij
∂yj

+ bi = 0 , (3.8)

T = TT (3.9)

Pure shear stress: T = τ(m⊗ n + n⊗m) (3.10)

Uniaxial stress: T = σ m⊗m (3.11)

s dAx = t dAy (3.12)

s = SnR (3.13)

SnR dAx = Tn dAy (3.14)

Piola stress tensor: S = JTF−T (3.15)

S = Sijei ⊗ ej , Sij = si(ej) (3.16)

Div S + bR = 0,
(
Div S

)
i

=
∂Sij
∂xj

(3.17)

∂Sij
∂xj

+ bRi = 0 , (3.18)

SFT = FST (3.19)

Stress power density = S · Ḟ = J T ·D (3.20)

L = grad v, Lij =
∂vi
∂yj

. (3.21)

D =
1

2

(
grad v + (grad v)T

)
, Dij =

1

2

(
∂vi
∂yj

+
∂vj
∂yi

)
(3.22)

Ḟ = LF (3.23)

Biot stress tensor: S(1) =
1

2
(SR + RTS) (3.24)

2nd Piola-Kirchhoff stress tensor: S(2) = JF−1TF−T = F−1S (3.25)
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∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
∂Trz
∂z

+
Trr − Tθθ

r
+ br = ρar,

∂Tθr
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

+
Trθ + Tθr

r
+ bθ = ρaθ,

∂Tzr
∂r

+
1

r

∂Tzθ
∂θ

+
∂Tzz
∂z

+
Tzr
r

+ bz = ρaz ,

(3.26)

∂Trr
∂r

+
1

r

∂Trφ
∂φ

+
1

r sinφ

∂Trθ
∂θ

+
2Trr − Tφφ − Tθθ + Trφ cotφ

r
+ br = ρar,

∂Trθ
∂r

+
1

r

∂Tφθ
∂φ

+
1

r sinφ

∂Tθθ
∂θ

+
3Trθ + 2Tθφ cotφ

r
+ bθ = ρaθ,

∂Trφ
∂r

+
1

r

∂Tφφ
∂φ

+
1

r sinφ

∂Tφθ
∂θ

+
3Trφ + (Tφφ − Tθθ) cotφ

r
+ bφ = ρaφ.

(3.27)
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4. Constitutive relation.

S · Ḟ = Ẇ (4.1)

S =
∂W

∂F
, T = J−1SFT =

1

J

∂W

∂F
FT . (4.2)

Ŵ (F) = Ŵ (QF) (4.3)

Ŵ (F) = W (C) where C = FTF. (4.4)

S = 2F
∂W

∂C
, T =

2

J
F
∂W

∂C
FT . (4.5)

G = {Q : QQT = I, det Q = 1, Ŵ (F) = Ŵ (FQ) for all nonsingular F}.

Ŵ (F) = Ŵ (FQ) for all Q ∈ G and all nonsingular F. (4.6)

W (C) = W
(
QCQT

)
for all Q ∈ G and all symmetric positive definite C. (4.7)

I1(C) = tr C, I2(C) =
1

2

[(
tr C

)2 − tr C2
]
, I3(C) = det C (4.8)

W = W̃
(
I1(C), I2(C), I3(C)

)
(4.9)

T = 2J
∂W̃

∂I3
I +

2

J

[
∂W̃

∂I1
+ I1

∂W̃

∂I2

]
B − 2

J

∂W̃

∂I2
B2,

S = 2I3
∂W̃

∂I3
F−T + 2

[
∂W̃

∂I1
+ I1

∂W̃

∂I2

]
F − 2

∂W̃

∂I2
BF.

 (4.10)

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3 = λ2

1λ
2
2λ

2
3. (4.11)

W = W ∗(λ1, λ2, λ3) (4.12)

W ∗(λ1, λ2, λ3) = W ∗(λ2, λ1, λ3) = W ∗(λ1, λ3, λ2) = . . . . (4.13)

T = τ1 `1 ⊗ `1 + τ2 `2 ⊗ `2 + τ3 `3 ⊗ `3 (4.14)

τ1 =
λ1

λ1λ2λ3

∂W ∗

∂λ1
, τ2 =

λ2

λ1λ2λ3

∂W ∗

∂λ2
, τ3 =

λ3

λ1λ2λ3

∂W ∗

∂λ3
. (4.15)

S = σ1 `1 ⊗ r1 + σ2 `2 ⊗ r2 + σ3 `3 ⊗ r3 (4.16)

σ1 =
∂W ∗

∂λ1
, σ2 =

∂W ∗

∂λ2
, σ3 =

∂W ∗

∂λ3
. (4.17)

τi = λiσi/J (no sum on i) (4.18)

φ̇ =
∂φ

∂F
· Ḟ = 0, (4.19)

S =
∂W

∂F
− q ∂φ

∂F
, T =

1

J

∂W

∂F
FT − q

J

∂φ

∂F
FT . (4.20)

S =
∂W

∂F
− qF−T , T =

∂W

∂F
FT − qI (4.21)

T = −q I + 2

[
∂W̃

∂I1
+ I1

∂W̃

∂I2

]
B − 2

∂W̃

∂I2
B2, (4.22)
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S = −qF−T + 2

[
∂W̃

∂I1
+ I1

∂W̃

∂I2

]
F − 2

∂W̃

∂I2
BF. (4.23)

W = W ∗(λ1, λ2, λ3) (4.24)

W ∗(λ1, λ2, λ3) = W ∗(λ2, λ1, λ3) = W ∗(λ1, λ3, λ2) = . . . . (4.25)

τ1 = λ1
∂W ∗

∂λ1
− q, τ2 = λ2

∂W ∗

∂λ2
− q, τ3 = λ3

∂W ∗

∂λ3
− q. (4.26)

W (C,M) = W̃ (I1, I2, I3, I4, I5), Wi =
∂W̃

∂Ii
, i = 1, 2, 3, 4, 5. (4.27)

I4(C,M) = C ·M, I5(C,M) = C2 ·M. M = mR ⊗mR (4.28)

T = 2JW3 I +
2

J
[W1 + I1W2] B − 2

J
W2B

2+

+
2

J
W4(FmR ⊗ FmR) +

2

J
W5

[
(FmR ⊗BFmR) + (BFmR ⊗ FmR)

]
,

(4.29)

W (C,M) = W̃ (I1, I2, I3, I4, I5, I6, I7, I8), Wi =
∂W̃

∂Ii
, i = 1, 2, . . . 8. (4.30)

I6 = Cm′R ·m′R I7 = C2m′R ·m′R, I8 = Cm′R ·mR. (4.31)

T = −qI + 2W1B + 2W2(I1B−B2)+

+2W4FmR ⊗ FmR + 2W6Fm′R ⊗ Fm′R+

+2W5(FmR ⊗BFmR + BFmR ⊗ FmR) + 2W7(Fm′R ⊗BFm′R + BFm′R ⊗ Fm′R)+

+W8(FmR ⊗ Fm′R + Fm′R ⊗ FmR)

(4.32)

∫
∂Rt

t · v dAy +

∫
Rt

b · v dVy =
d

dt

∫
Rt

1

2
ρv · v dVy +

d

dt

∫
RR

W dVx (4.33)
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10. Potential energy functional.

Φ{z} =

∫
RR

W (∇z) dVx −
∫
RR

bR · z dVx −
∫
S2

ŝ · z dAx. (10.1)



Contents

1 BRIEF REVIEW OF MATHEMATICAL PRELIMINARIES 1

1.1 Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Indicial notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Vector algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Components of a vector in a basis. . . . . . . . . . . . . . . . . . . . 20

1.3.2 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Tensor algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4.2 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.4.3 Components of a tensor in a basis. . . . . . . . . . . . . . . . . . . . 48

1.4.4 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.5 Invariance. Isotropic functions. . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.5.1 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.6 Change of basis. Cartesian tensors. . . . . . . . . . . . . . . . . . . . . . . . 57

1.6.1 Two orthonormal bases. . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.6.2 Vectors: 1-tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.6.3 Linear transformations: 2-tensors. . . . . . . . . . . . . . . . . . . . . 59

xv



xvi CONTENTS

1.6.4 n-tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.6.5 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.7 Euclidean point space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.8 Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.8.1 Calculus of scalar, vector and tensor fields. . . . . . . . . . . . . . . . 67

1.8.2 Divergence theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.8.3 Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1.8.4 Function of a tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.8.5 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.8.6 Calculus in orthogonal curvilinear coordinates. An example. . . . . . 77

1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2 Kinematics: Finite Deformation 123

2.1 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.2 Some homogeneous deformations. . . . . . . . . . . . . . . . . . . . . . . . . 126

2.2.1 Pure stretch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.2.2 Simple shear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.2.3 Rigid deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.3 Deformation in the neighborhood of a particle. Deformation gradient tensor. 132

2.4 Change of length, orientation, angle, volume and area. . . . . . . . . . . . . 135

2.4.1 Change of length and direction. . . . . . . . . . . . . . . . . . . . . . 136

2.4.2 Change of angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.4.3 Change of volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.4.4 Change of area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.4.5 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



CONTENTS xvii

2.5 Stretch and rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

2.5.1 Right (or Lagrangian) Stretch Tensor U. . . . . . . . . . . . . . . . . 147

2.5.2 Left (or Eulerian) Stretch Tensor V. . . . . . . . . . . . . . . . . . . 149

2.5.3 Cauchy–Green deformation tensors. . . . . . . . . . . . . . . . . . . . 151

2.5.4 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

2.6 Strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

2.6.1 Remarks on the Green Saint-Venant strain tensor. . . . . . . . . . . . 162

2.7 Some other coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . . . 164

2.7.1 Cylindrical polar coordinates. . . . . . . . . . . . . . . . . . . . . . . 164

2.7.2 Spherical polar coordinates. . . . . . . . . . . . . . . . . . . . . . . . 168

2.7.3 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

2.8 Spatial and referential descriptions of a field. . . . . . . . . . . . . . . . . . . 172

2.8.1 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

2.9 Linearization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2.10 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

2.11 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

2.11.1 The material time derivative. . . . . . . . . . . . . . . . . . . . . . . 248

2.11.2 A transport theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

2.11.3 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3 Force, Equilibrium Principles and Stress 253

3.1 Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

3.2 Force and moment equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 259

3.3 Consequences of force balance. Stress. . . . . . . . . . . . . . . . . . . . . . 260

3.3.1 Some particular stress tensors. . . . . . . . . . . . . . . . . . . . . . 265



xviii CONTENTS

3.3.2 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3.4 Field equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

3.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

3.5 Principal stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

3.6 Mean pressure and deviatoric stress. . . . . . . . . . . . . . . . . . . . . . . 275

3.7 Formulation of mechanical principles with respect to a reference configuration. 275

3.7.1 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

3.8 Rate of working. Stress power. . . . . . . . . . . . . . . . . . . . . . . . . . . 285

3.8.1 Work Conjugate Stress-Strain Pairs. . . . . . . . . . . . . . . . . . . 289

3.8.2 Some other stress tensors. . . . . . . . . . . . . . . . . . . . . . . . . 290

3.9 Linearization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

3.10 Some other coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . . . 291

3.10.1 Cylindrical polar coordinates. . . . . . . . . . . . . . . . . . . . . . . 291

3.10.2 Spherical polar coordinates. . . . . . . . . . . . . . . . . . . . . . . . 294

3.10.3 Worked examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

3.11 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

4 Constitutive Relation 339

4.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

4.2 An Elastic Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

4.2.1 An elastic material. Alternative approach. . . . . . . . . . . . . . . . 346

4.3 Material frame indifference. . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

4.4 Material symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

4.4.1 Material symmetry and frame indifference combined. . . . . . . . . . 355

4.4.2 Isotropic material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357



CONTENTS xix

4.5 Materials with Internal Constraints. . . . . . . . . . . . . . . . . . . . . . . . 363

4.6 Response of Isotropic Elastic Materials. . . . . . . . . . . . . . . . . . . . . . 369

4.6.1 Incompressible isotropic materials. . . . . . . . . . . . . . . . . . . . 370

4.6.2 Unconstrained isotropic materials. . . . . . . . . . . . . . . . . . . . . 376

4.6.3 Restrictions on the strain energy function. . . . . . . . . . . . . . . . 378

4.7 Some Models of Isotropic Elastic Materials. . . . . . . . . . . . . . . . . . . . 386

4.8 Linearized elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

4.9 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

5 Some Nonlinear Effects: Illustrative Examples 455

5.1 Summary and boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . 455

5.1.1 Field equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

5.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

5.2 Example (1): Torsion of a circular cylinder. . . . . . . . . . . . . . . . . . . 458

5.2.1 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

5.3 Example (2): Deformation of an Incompressible Cube Under Prescribed Ten-

sile Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

5.3.1 Appendix: Potential energy of an elastic body subjected to conserva-

tive loading: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

5.4 Example (3): Growth of a Cavity. . . . . . . . . . . . . . . . . . . . . . . . . 481

5.5 Example (4): Limit point instability of a thin-walled hollow sphere. . . . . . 488

5.6 Example (5): Two-Phase Configurations of a Thin-Walled Tube. . . . . . . . 493

5.7 Example(6): Surface instability of a neo-Hookean half-space. . . . . . . . . . 508

5.7.1 Example: Surface instability of a neo-Hookean half-space. . . . . . . . 509

5.7.2 An arbitrary small deformation superimposed on an arbitrary homo-

geneous finite deformation. . . . . . . . . . . . . . . . . . . . . . . . . 518



xx CONTENTS

5.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

6 Anisotropic Elastic Solids. 553

6.1 One family of fibers. Transversely isotropic material. . . . . . . . . . . . . . 553

6.1.1 Example: pure homogeneous stretch of a cube. . . . . . . . . . . . . . 557

6.2 Two families of fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

6.2.1 Example: pure homogeneous stretch of a cube. . . . . . . . . . . . . . 563

6.2.2 Inextensible fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

6.2.3 Inflation, extension and twisting of a thin-walled tube. . . . . . . . . 571

6.3 Worked Examples and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . 575

7 A Two-Phase Elastic Material: An Example. 581

7.1 A material with cubic and tetragonal phases. . . . . . . . . . . . . . . . . . . 581

8 A Micromechanical Constitutive Model 591

8.1 Example: Lattice Theory of Elasticity. . . . . . . . . . . . . . . . . . . . . . 592

8.1.1 A Bravais Lattice. Pair Potential. . . . . . . . . . . . . . . . . . . . . 592

8.1.2 Homogenous Deformation of a Bravais Lattice. . . . . . . . . . . . . . 594

8.1.3 Traction and Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

8.1.4 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

8.1.5 Material Frame Indifference. . . . . . . . . . . . . . . . . . . . . . . . 600

8.1.6 Linearized Elastic Moduli. Cauchy Relations. . . . . . . . . . . . . . 601

8.1.7 Lattice and Continuum Symmetry. . . . . . . . . . . . . . . . . . . . 601

8.1.8 Worked Examples and Exercises. . . . . . . . . . . . . . . . . . . . . 606

9 Brief Remarks on Coupled Problems 611

9.1 Hydrogels: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612



CONTENTS xxi

9.1.1 Basic mechanical equations. Balance laws and field equations. . . . . 614

9.1.2 Basic chemical equation. Balance law and field equation. . . . . . . . 614

9.1.3 Dissipation inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . 614

9.1.4 Constitutive equations: . . . . . . . . . . . . . . . . . . . . . . . . . . 615

9.1.5 Alternative form of the constitutive relation. . . . . . . . . . . . . . . 617

9.2 Thermoelasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

9.2.1 Basic mechanical equations. . . . . . . . . . . . . . . . . . . . . . . . 619

9.2.2 First law of thermodynamics. . . . . . . . . . . . . . . . . . . . . . . 619

9.2.3 Dissipation inequality. The second law of thermodynamics. . . . . . 620

9.2.4 Constitutive equations: . . . . . . . . . . . . . . . . . . . . . . . . . . 620

9.2.5 Alternative form of the constitutive relation. . . . . . . . . . . . . . . 621

9.2.6 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

9.3 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

10 Introduction to Variational Methods 629

10.1 Preliminary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

10.2 A brief introduction to the calculus of variations. . . . . . . . . . . . . . . . 630

10.2.1 Minimizing a functional. . . . . . . . . . . . . . . . . . . . . . . . . . 632

10.2.2 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

10.2.3 A formalism for deriving the Euler-Lagrange equation. . . . . . . . . 637

10.2.4 Natural boundary conditions. . . . . . . . . . . . . . . . . . . . . . . 639

10.3 Principle of minimum potential energy. . . . . . . . . . . . . . . . . . . . . . 642

10.4 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

10.5 Virtual Work. Weak formulation. . . . . . . . . . . . . . . . . . . . . . . . . 669

10.6 Worked examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671



xxii CONTENTS

10.7 Appendix: some remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

10.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Index 695



Chapter 1

BRIEF REVIEW OF

MATHEMATICAL

PRELIMINARIES

When studying the response of a body subjected to some loading, we will encounter entities

such as displacement u and traction t that are vectors, and deformation gradient F and

stress S that are tensors. We will need to carry out various calculations involving them that

require us to use vector and tensor algebra. We will sometimes work with the components

of these vectors and tensors in a basis, and these are represented as column and square

matrices respectively, e.g. {u}, {t}, [F ] and [S]. Calculations involving matrices can often be

carried out expeditiously using indicial notation. Finally suppose that a typical particle of

an undeformed body is located at x, and that the displacement of this particle is u. Since

the displacement varies from particle to particle, u will be a function of x and so we have the

displacement field u(x). Characterizing how the displacement varies with position requires

us to calculate the gradient of the displacement with respect to position, ∇u, and for this

we must rely on the calculus of vector and tensor fields.

What follows is mostly a list of definitions and properties pertaining to the main mathe-

matical concepts and methods that we will use in these notes. Some proofs are given in the

worked examples and exercises. A more detailed treatment of this material can be found in

Volume I as well as in the references listed at the end of this chapter. The reader who is

familiar with the material in Chapters 1-6 of Volume I can skip this chapter entirely.

The four main topics to be reviewed are (not in this order)

1
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– vector and tensor algebra,

– representation of vectors and tensors in terms of matrices (having chosen a basis),

– the use of indicial notation to simplify calculations, and the

– calculus of vector and tensor fields and of functions of tensors.

Links to some short introductory videos on indicial notation and tensor algebra can be found

in Sections 1.2 and 1.3 respectively.

In this chapter we will (almost) always use the following convention regarding notation:

Lowercase Greek letters:

α ..... scalar

Lowercase latin letters:

{a} ..... 3× 1 column matrix

a ..... vector

ai ..... ith component of the vector a in some basis; or

ith element of the column matrix {a}
Uppercase latin letters:

[A] ..... 3× 3 square matrix

A ..... second-order tensor (2-tensor) (linear transformation)

Aij ..... i, j component of the 2-tensor A in some basis; or

i, j element of the square matrix [A]

Blackboard bold letters:

C ..... fourth-order tensor (4-tensor)

Cijk` ..... i, j, k, ` component of C in some basis

While we will closely follow this same notational convention in the subsequent chapters as

well, there will be a few notable exceptions: for example, we will use the symbol W rather

than a lower case Greek letter to denote the (scalar-valued) strain energy function.

1.1 Matrices.

Our discussion here is limited to 3× 1 column matrices and 3× 3 square matrices.

The element1 in the ith row and jth column of a 3× 3 matrix [A] is denoted by Aij and

1We speak of the elements of a matrix and the components of a vector or tensor.
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the element in the ith row of a 3× 1 column matrix {x} is denoted by xi:

[A] =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , {x} =

 x1

x2

x3

 .

– The magnitude of a column matrix {x} is

|{x}| := (x2
1 + x2

2 + x2
3)1/2, (1.1)

and the magnitude of a square matrix [A] is

|[A]| :=
[
A2

11 + A2
12 + A2

13 + A2
21 + . . .+ A2

33

]1/2
. (1.2)

– The product of a 3× 3 matrix [A] with a 3× 1 matrix {x} is a third 3× 1 matrix {y}
whose element in the ith row is the sum of the pairwise products of the elements in

the ith row of [A] and the elements of {x}:

{y} = [A]{x} ⇒ yi =
3∑

k=1

Aikxk for each i = 1, 2, 3. (1.3)

– The product of two matrices [A] and [B] is a third matrix [C] whose element in the

ith row and jth column is the sum of the pairwise products of the elements in the ith

row of [A] and the jth column of [B]:

[C] = [A][B] ⇒ Cij =
3∑

k=1

AikBkj for each i, j = 1, 2, 3. (1.4)

While it may be preferable to say “for each i = 1, 2, 3 and each j = 1, 2, 3” we write it

as above for brevity.

– The product of two matrices is not commutative in general: [A][B] 6= [B][A].

– The transpose of a matrix [A] is denoted by [A]T . If the element in the ith row and jth

column of [A] is Aij, then the element in the ith row and jth column of [A]T is Aji.

– The transpose of the product of two matrices has the property

([A][B])T = [B]T [A]T . (1.5)
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– A matrix is symmetric if

[A] = [A]T , Aij = Aji for each i, j = 1, 2, 3, (1.6)

and skew- (or anti)-symmetric if

[A] = −[A]T , Aij = −Aji for each i, j = 1, 2, 3. (1.7)

If [A] is skew-symmetric, it follows from (1.7)2 that A11 = A22 = A33 = 0 and A12 =

−A21, A23 = −A32, A31 = −A13. Therefore there are only three independent elements

in a skew-symmetric matrix and so there is a one-to-one correspondence between skew-

symmetric matrices and column matrices.

– Every matrix can be uniquely decomposed into the sum of a symmetric and skew-

symmetric matrix:

[A] = [S] + [W ] where [S] = 1
2
([A] + [A]T ), [W ] = 1

2
([A]− [A]T );

Aij = Sij +Wij where Sij = 1
2
(Aij + Aji), Wij = 1

2
(Aij − Aji);

(1.8)

the second row of (1.8) holds for each i, j = 1, 2, 3 and so represents 9 scalar equations.

– The trace and determinant are two scalar-valued functions of a matrix that are en-

countered frequently. They are defined by

tr [A] := A11 + A22 + A33 =
3∑

k=1

Akk, (1.9)

det [A] := A11(A22A33 − A23A32)− A12(A21A33 − A23A31)+

+A13(A21A32 − A22A31).
(1.10)

– The determinant of the product of two matrices equals the product of the individual

determinants of the two matrices:

det([A][B]) = det[A] det[B]. (1.11)

The determinant of a matrix is unchanged by transposition:

det
(
[A]T

)
= det[A]. (1.12)

– The identity matrix [I] has the property

[A][I] = [I][A] = [A], [I]{x} = {x}

for all square matrices [A] and column matrices {x}. Also, det[I] = 1 and tr[I] = 3.
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– A matrix [A] is nonsingular (or invertible) if det[A] 6= 0; singular if det[A] = 0.

If [A] is nonsingular, then the only column matrix {x} for which [A]{x} = {0} is

{x} = {0}.
If [A] is nonsingular, it is invertible in the sense that there is a matrix denoted by [A]−1

and called the inverse of [A] for which

[A][A]−1 = [I], [A]−1[A] = [I]. (1.13)

The inverse of the product of two nonsingular matrices obeys(
[A][B]

)−1
= [B]−1[A]−1. (1.14)

– A matrix [Q] is orthogonal if it is nonsingular and

[Q]−1 = [Q]T . (1.15)

It follows that

[Q][Q]T = [I], [Q]T [Q] = [I], (1.16)

det [Q] = ±1. (1.17)

An orthogonal matrix whose determinant is +1 is said to be proper orthogonal and

represents a rotation. An orthogonal matrix whose determinant is −1 is said to be

improper orthogonal and represents a reflection.

– If {y} is a 3× 1 (column) matrix, then {y}T is the associated 1× 3 (row) matrix. The

element in the ith column of {y}T equals the element in the ith row of {y}. If {x} is

a second column matrix, then

{y}T{x} := y1x1 + y2x2 + y3x3 =
3∑
i=1

yixi. (1.18)

– The column matrices {x} and {y} are said to be orthogonal if

{y}T{x} =
3∑
i=1

yixi = 0. (1.19)

– A matrix [A] is positive definite if

{x}T [A]{x} =
3∑
i=1

3∑
j=1

Aijxixj > 0 (1.20)

for all nonzero column matrices {x}.
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– A scalar α and a column matrix {a} (6= {0}) for which

[A]{a} = α{a} (1.21)

are said to be an eigenvalue and eigen“vector” of [A].

– If [A] is symmetric, then it has three real eigenvalues α1, α2, α3 and three correspond-

ing eigenvectors {a(1)}, {a(2)}, {a(3)}. Without loss of generality the eigenvectors can

always be chosen so each has unit magnitude and each is orthogonal to the other two

in the sense that

{a(i)}T{a(j)} = a
(i)
1 a

(j)
1 + a

(i)
2 a

(j)
2 + a

(i)
3 a

(j)
3 =

3∑
k=1

a
(i)
k a

(j)
k =

 1 for i = j,

0 for i 6= j.

1.2 Indicial notation.

Three brief videos on indicial notation can be found at

https://www.dropbox.com/sh/bfcvwsnq7k3zefi/AAA-QqgSrOpxxOZZojyFptyYa?dl=0.

Indicial notation is convenient when carrying out calculations involving the elements of

matrices. When doing so, it is important that one adhere to certain rules/conventions.

The following terminology will be encountered in our discussion below:

– Free index,

– Dummy (or repeated) index,

– Range convention,

– Summation convention, and

– Substitution rule.

– Consider matrices [A], {x} and {y} satisfying the matrix equation

{y} = [A]{x} ⇔

 y1

y2

y3

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


 x1

x2

x3

 . (1.22)

https://www.dropbox.com/sh/bfcvwsnq7k3zefi/AAA-QqgSrOpxxOZZojyFptyYa?dl=0
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On carrying out the matrix multiplication, this is equivalent to the system of 3 scalar

equations

y1 = A11x1 + A12x2 + A13x3 =
3∑

k=1

A1kxk,

y2 = A21x1 + A22x2 + A23x3 =
3∑

k=1

A2kxk,

y3 = A31x1 + A32x2 + A33x3 =
3∑

k=1

A3kxk.


(1.23)

This system of scalar equations can be written more compactly as

yi =
3∑

k=1

Aikxk with i taking each value in the range 1, 2, 3. (1.24)

– Range convention: We can write (1.24) even more compactly by omitting the phrase

“with i taking each value in the range 1, 2, 3” and simply writing

yi =
3∑

k=1

Aikxk (1.25)

with the understanding that (1.25) holds for each value of the index i in the range

i = 1, 2, 3. This understanding is referred to as the range convention.

Likewise the matrix equation [C] = [A][B] can be written by (1.4) as

Cij =
3∑

k=1

AikBkj, (1.26)

having dropped the phrase “with i and j taking each value in the range 1, 2, 3”.

From here on we shall always use the range convention unless explicitly stated other-

wise.

– Observe the distinction between the two types of indices: free indices and repeated (or

dummy) indices. The index i in (1.25) is called a free index because it is free to take on

each value in the range 1, 2, 3, one at a time. Equation (1.26) involves two free indices

i and j, and each, independently, takes each value in the range 1, 2, 3.

On the other hand the index k (in both equations) is not a free index: it is summed

over 1, 2, 3 and is not free to take each value 1, 2, 3 one at a time. Since this index

appears twice (in the terms on the right-hand sides), it is called a repeated index or

(for reasons that will soon become clear) a dummy index.
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– Now consider the set of equations

yj =
3∑

k=1

Ajkxk. (1.27)

By the range convention, this holds with the free subscript j taking each value in the

range 1, 2, 3. Therefore the set of equations in (1.27) is identical to that in (1.25).

This illustrates the fact that the particular choice of index for the free subscript in an

equation is not important provided that the same free subscript appears in every term2

of the equation.

Likewise the equation

Cpq =
3∑

k=1

ApkBkq, (1.28)

is equivalent to (1.26) where we have simply used a different pair of free indices p, q.

– If an equation involves n free indices, then it represents 3n scalar equations. For

example (1.25) has 1 free subscript and it represents 31 = 3 scalar equations, while

(1.26) has 2 free subscripts and so represents 32 = 9 equations.

– In order to be consistent it is important that the same free index (or indices) appear

once, and only once, in every term of an equation. For example, the matrix equation

{y} = [A]{x}+ [B]{x} can be written in scalar form as

yi =
3∑
p=1

Aipxp +
3∑
q=1

Biqzq. (1.29)

Here we have a free index i on the left-hand side and this same free index i appears in

2It is worth clarifying how the word “term” is used in this section. In an equation such as

yi =

3∑
k=1

Aikxk +

3∑
q=1

aqxqzi,

when we say “the first term on the right-hand side” we do not mean Aik but rather
∑
Aikxk. Two terms

are separated by displayed +,− or = signs. If we wrote this out as

yi = Ai1x1 +Ai2x2 +Ai3x3 +

3∑
q=1

aqxqzi,

the first term on the right-hand side would be Ai1x1.
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each of the terms on the right-hand side. We will never write an equation such as

yi =
3∑
p=1

Ajpxp +
3∑
q=1

Bjqzq

which has the free index i on the left-hand side and the free index j on the right-hand

side.

Similarly in (1.26), since the free indices i and j appear on the left-hand side they must

also appear on the right-hand side. An equation such as Aij = Bpq would violate this

consistency requirement.

Observe from (1.29) that the same repeated index does not need to appear in every

term.

– Summation convention: Next, observe that on the right-hand side of equation

(1.25) the subscript k is (a) repeated and (b) there is a sum over it. Likewise in the

first term on the right-hand side of equation (1.29) the subscript p is repeated and

there is a sum over it, and in the second term the subscript q is repeated and there is

a sum over it. In each case there is a summation over the repeated index. An example

involving 2 repeated indices is

A11x
2
1 + A12x1x2 + . . .+ A33x

2
3 =

3∑
i=1

3∑
j=1

Aijxixj.

On the right-hand side the subscript i is repeated and there is a summation over it,

and likewise the subscript j is repeated and there is a summation over it as well.

In view of this observation we can simplify our writing even further by agreeing to drop

the summation sign and instead imposing the rule that summation is implied over a

subscript that appears twice in a term. With this understanding in force, we would

write (1.25), (1.26) and (1.29) as

yi = Aikxk, Cij = AikBkj, yi = Aipxp + Bqizq, (1.30)

respectively with summation on the subscript k in the first and second, and on p and

q in the third being implied.

– Note that we can write

tr[A] = Aii.
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– Since
3∑

k=1

Aikxk =
3∑
j=1

Aijxj,

it follows that

yi = Aijxj (1.31)

is identical to (1.30)1. Thus we see that the particular choice of index for the repeated

subscript is not important: it is a dummy index in this sense.

– In order to avoid ambiguity, no subscript is allowed to appear more than twice in any

term in general. Thus we shall not write, for example, Aiixi = yi since, if we did, the

index i would appear 3 times in the term on the left-hand side. We would not know

whether the left-hand side denotes (A11 + A22 + A33)xi or A11x1 + A22x2 + A33x3 or

perhaps there is no sum over i at all. On a few occasions, usually involving eigenvalues,

we will forced to include a term with the same subscript appearing more than twice.

In such cases we will make clear that the summation convention is being suspended

and the summation is shown explicitly, e.g. see (1.112) where the subscript i appears

3 times.

– Summary of Rules:

1. Lower-case latin subscripts take on values in the range 1, 2, 3.

2. A given index may appear either once or twice in each term of an equation. If

it appears once, it is called a free index and it takes on each value in its range,

one at a time. If it appears twice, it is called a dummy index and summation is

implied over it.

3. The same index may not appear more than twice in the same term.

4. All terms of an equation must have the same free indices.

– It is important to emphasize that an equation such as Aij = BikCkj involves scalar

quantities and therefore the order in which the scalar factors appear within a term is

not significant. For example

Aij = BikCkj, (1.32)

comprises 32 scalar equations. Consider the element A11. On setting i = 1, j = 1 in

(1.32) we get

A11 = B1kCk1 ⇒ A11 = B11C11 +B12C21 +B13C31.
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Clearly we can rearrange terms in the right most expression and write

A11 = C11B11 + C21B12 + C31B13 ⇒ A11 = Ck1B1k,

and so A11 = B1kCk1 = Ck1B1k, and more generally

Aij = BikCkj = CkjBik;

i.e. we can move Bik to the back of BikCkj and write CkjBik.

As a matrix equation Aij = BikCkj corresponds to [A] = [B][C] and so does Aij =

CkjBik. The latter does not correspond to [A] = [C][B] (as we shall explain below).

– Frequently, in the course of a calculation, we will have to change our choice of indices.

For example suppose yi = Aijxj and we want to calculate yiyi (which is y2
1 + y2

2 + y2
3).

We cannot write yiyi = (Aijxj)(Aijxj) = AijAijxjxj because we then have the index

j appearing more than twice in the same term. Instead, we would use the equivalent

alternative representations yi = Aijxj and yi = Aikxk to write yiyi = (Aijxj)(Aikxk) =

AijAikxjxk. Observe that no index appears more than twice in each term.

– The indices in an expression can be changed without altering the meaning of an ex-

pression provided that (a) the positions of the free and repeated indices does not change

and (b) one does not violate the preceding rules. Thus, for example, we can change

the free index p on both sides of the equation

yp = Apqxq

to any other index (except q, why not q?), say k, and equivalently write

yk = Akqxq.

We can also change the repeated subscript q to some other index (except k), say p,

and write

yk = Akpxp.

In fact, we can even write

yq = Aqpxq.

The four preceding sets of equations are identical.

However, the equations yp = Aqpxq and yp = Apqxq are not identical even though

none of the indicial notation rules are violated. This is because the free and repeated
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indices do not appear in the same positions: the free index p on the right-hand side of

yp = Aqpxq is in the second position in Aqp, but it is in the first position in Apq in

yp = Apqxq.

Similarly consider Aij = BikCkj. The fact that the second subscript of Bik is the

same as the first subscript of Ckj is what tells us that in matrix form this arises from

[A] = [B][C]; see (1.4). In contrast Aij = BkiCkj does not represent [A] = [B][C]

because the repeated index is in a different position on the right-hand side. .

– We emphasize that while the factors in a term can be moved around, one cannot

arbitrarily move indices. The location of the indices determines the order in which the

associated matrices are multiplied.

When we write Aijxj it is the second subscript of Aij that also appears in xj and this

is what tells us that Aijxj is the ith element of [A]{x}. For this reason Ajixj is not the

ith element of [A]{x}. But Ajixj is the ith element of some matrix (since it has one

free index i). But of what matrix? In order that this represent the product of a 3× 3

matrix with a column matrix, the second subscript of the element associated with the

3× 3 matrix must also appear in the element associated with the column matrix. To

achieve this we can write Ajixj = ATijxj which is now in the desired form. Therefore

Ajixj is the ith element of [AT ]{x}. Here [AT ] is the transpose of [A].

Similarly, observe in the matrix multiplication representation (1.32) that the second

subscript of Bik is the same as the first subscript of Ckj, whence BikCkj represents

the i, j element of the matrix product [B][C]. Suppose we have the expression BkiCkj.

To put it in the preceding form where adjacent subscripts are repeated, we can write

BkiCkj = BT
ikCkj. The last subscript of BT

ik is now the same as the first subscript of

Ckj and so BkiCkj = BT
ikCkj represents the i, j element of [B]T [C].

Alternatively we can write BkiCkj = CkjBki = CT
jkBki =

(
[C]T [B]

)
ji

. Therefore BkiCkj

is the j, i (not i, j) element of [C]T [B]. These alternative representations are of course

equivalent since
(
[B]T [C]

)
T = [C]T [B] by (1.5).

Kronecker delta: The Kronecker delta, δij, is defined as

δij :=

 1, i = j,

0, i 6= j,
for each i, j = 1, 2, 3. (1.33)
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Observe that δij is the element in the ith row and jth column of the identity matrix

[I] =

 1 0 0

0 1 0

0 0 1

 .

Note that

δii = 3. (1.34)

The Kronecker delta arises, for example, when working with a triplet {e1, e2, e3} of

orthonormal vectors (page 21) and when calculating the derivative ∂xi/∂xj (page 18).

Substitution rule: The following useful property of the Kronecker delta is called the

substitution rule. Suppose one wishes to simplify the expression δijuj for some column matrix

{u}. First note that δijuj = δi1u1+δi2u2+δi3u3 where i is a free subscript. Next, consider the

choice i = 1. Then δ1juj = δ11u1 +δ12u2 +δ13u3. Since δij = 0 unless i = j and δij = 1 if i = j

we conclude that the last two terms on the right-hand side of δ1juj = δ11u1 +��δ12u2 +��δ13u3

vanish and so it simplifies to δ1juj = u1.

In a similar manner we see that for any value of the free index i, two terms on the right-

hand side of δijuj = δi1u1 + δi2u2 + δi3u3 vanish trivially because the two subscripts of the

Kronecker delta in each of those terms will be distinct. The term that remains is the 1st, 2nd

or 3rd term depending on whether the free index i = 1, 2 or 3 respectively. Thus the term

that survives on the right-hand side is ui and so

δijuj = ui. (1.35)

In summary, (a) since δij is zero unless j = i, the expression being simplified has a non-

zero value only if j = i; and (b) when j = i, δij is unity. Thus we replace the Kronecker

delta by unity and simultaneously change the repeated subscript j in the other factor to the

non-repeated subscript i of the Kronecker delta. This gives δijuj = ui.

As a second example suppose that [A] is a square matrix and one wishes to simplify

δijAjk. Then by the same reasoning3,

δijAjk = δi1A1k + δi2A2k + δi3A3k = Aik (1.36)

3Observe that these results are immediately apparent by using matrix algebra. In the first example,

δijuj is simply the ith element of the column matrix [I]{u}. Since [I]{u} = {u} the result follows at once.

Similarly in the second example, δijAjk is simply the i, k-element of the matrix [I][A]. Since [I][A] = [A],

the result follows.
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and so the Kronecker delta has been replaced by unity and the repeated subscript j in Ajk

has been changed to i.

More generally, if some quantity or expression Tpq...i...z multiplies δij with the index i

appearing as a subscript in both factors, one simply replaces the Kronecker delta by unity

and changes the subscript i in T to j:

Tpq...i...z δij = Tpq...j...z. (1.37)

Levi-Civita symbol (or alternating symbol or permutation symbol): Consider the

following determinant:

det [M ] = det


a1 b1 c1

a2 b2 c2

a3 b3 c3

 = a1(b2c3 − c2b3)− b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

Observe in the final expression that (a) there are no terms in which the subscript 1, 2 or

3 appears more than once (i.e. the subscripts i, j, k in aibjck are distinct); (b) when the

subscripts are in cyclic order (i.e. 123, 231, 312) the coefficient is +1; and (c) when the

subscripts are in anti-cyclic order (i.e. 132, 213, 321) the coefficient is −1. We will encounter

this pattern in other settings as well. It is useful therefore to introduce a mathematical entity

that captures this. This is the role of the so-called Levi-Civita symbol, also referred to as

the alternating or permutation symbol. It is denoted by eijk and defined as

eijk :=


0 if two or more subscripts i, j, k, are equal,

+1 if the subscripts i, j, k, are in cyclic order,

−1 if the subscripts i, j, k, are in anticyclic order,

=


0 if two or more subscripts i, j, k, are equal,

+1 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1 for (i, j, k) = (1, 3, 2), (2, 1, 3), (3, 2, 1).

(1.38)

The expression above for the determinant of the matrix [M ] can now be written succinctly

as

det[M ] = eijkaibjck,

which can also be written as

det[M ] = eijkM1iM2jM3k = eijkMi1Mj2Mk3. (1.39)
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Other identities involving the determinant include

epqr det [M ] = eijkMipMjqMkr, (1.40)

det [M ] =
1

6
eijkepqrMipMjqMkr. (1.41)

Another setting in which we shall encounter the Levi-Civita symbol is when working with

the vector (cross) product (page 21).

Two useful properties of the Levi-Civita symbol are: (a) the sign of eijk changes whenever

any two adjacent subscripts are switched:

eijk = −ejik = ejki = −ekji = . . . , (1.42)

(i.e. it is skew-symmetric with respect to every pair of adjacent subscripts) and (b) the

Levi-Civita symbol and Kronecker delta are related by

epijepk` = δikδj` − δi`δjk; (1.43)

see Problem 1.3.

1.2.1 Worked examples.

Problem 1.2.1. (Matrices. Indicial notation.) The matrices [C], [D] and [E] are defined in terms of the

two matrices [A] and [B] by

[C] = [A][B], [D] = [B][A], [E] = [A][B]T . (i)

Express the elements of [C], [D] and [E] in terms of the elements of [A] and [B].

Solution: By the rules of matrix multiplication, the element Cij in the ith row and jth column of [C] is

obtained by multiplying the elements of the ith row of [A], pairwise, by the respective elements of the jth

column of [B] and summing. So, Cij is obtained by multiplying the elements Ai1, Ai2, Ai3 by, respectively,

B1j , B2j , B3j and summing. Thus

Cij = AikBkj ; (ii)

note that i and j are both free indices here and so this represents 32 = 9 scalar equations; moreover

summation is carried out over the repeated index k. It follows immediately from (ii) that the equation

[D] = [B][A] leads to

Dij = BikAkj or equivalently Dij = AkjBik, (iii)

where the second expression was obtained by simply changing the order in which the factors appear in the

first expression (since, as noted previously, the order of the factors within a term is insignificant since these
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are scalar quantities.) In order to calculate Eij , we first use (ii) to directly obtain Eij = AikB
T
kj . However,

by definition of transposition, the i, j-element of a matrix [B]T equals the j, i-element of the matrix [B]:

BTij = Bji and so we can write

Eij = AikBjk. (iv)

All four expressions here involve the ik, kj or jk elements of [A] and [B]. The precise locations of the

subscripts vary and the meaning of the terms depend crucially on these locations. It is worth repeating that

the location of the repeated subscript k tells us what term multiplies what term.

Problem 1.2.2. (Matrices. Indicial notation.) The matrices [A] and [B] are symmetric and skew-symmetric

respectively. Show that

AijBij = 0. (1.44)

Remark: This result will be useful in several later calculations.

Solution: We proceed as follows:

AijBij
(∗)
= −AjiBji

(∗∗)
= −AijBij ⇒ 2AijBij = 0 ⇒ AijBij = 0 �

where in step (∗) we used the symmetry Aij = Aji and skew-symmetry Bij = −Bji, while in step (∗∗) we

simply changed the dummy subscripts i→ j, j → i.

Problem 1.2.3. (Matrices. Indicial notation.) Show that

eijkAjk = 0 (1.45)

if and only if [A] is a symmetric matrix.

Solution: First suppose that [A] is symmetric. Then, since eijk is skew-symmetric in j, k while Ajk is

symmetric in j, k the result follows from (1.44).

Conversely suppose that (1.45) holds. Multiplying it by eipq gives

0 = eipqeijkAjk
(1.43)

= (δpjδqk − δpkδqj)Ajk = δpjδqkAjk − δpkδqjAjk
(∗∗)
= Apq −Aqp ⇒ Apq = Aqp �

and so [A] is symmetric. In step (∗∗) we used the substitution rule (1.37).

Problem 1.2.4. (Indicial notation.) Simplify the expressions

(a) Aijδij ,

(b) Aijδipδjq, and
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(c) δijδij .

Solution:

(a) In the expression Aijδij we have two repeated subscripts and so we can apply the substitution rule

to either. Consider for example the repeated subscript j. Then, according to the substitution rule we

replace δij by unity and change the repeated subscript j in the other factor (i.e. in Aij) to i. This

yields Aijδij = Aii.

(b) In simplifying Aijδipδjq (for clarity) we proceed in two steps. Consider δip and the repeated subscript

i. Thus we replace δip by unity and change the repeated subscript i in the other factor to p. This

yields Aijδipδjq = Apjδjq. We can apply the substitution rule again, this time on the index j, which

yields Apjδjq = Apq. Combing the two steps yields Aijδipδjq = Apq. We could of course have done

this in one step.

(c) The expression δijδij involves two repeated subscripts and so we can apply the substitution rule to

either one. If we apply the substitution rule on the repeated subscript i we get δijδij = δjj . Since

δjj = 3 by (1.34) we can simplify further to get δijδij = 3.

Problem 1.2.5. (Indicial notation.) Show that (a) eijpeijq = 2δpq and (b) eijkeijk = 6.

Solution

(a) We proceed as follows:

eijpeijq
(1.43)

= δjjδpq − δjqδpj
(1.34)

= 3δpq − δjqδpj
(1.37)

= 3δpq − δpq=2δpq. � (i)

(b) Set p = q = k in (i):

eijkeijk = 2δkk
(1.34)

= 6. � (ii)

Problem 1.2.6. (Matrices. Indicial notation.) A matrix [A] has the property that the magnitude of the

column matrix [A]{x} equals the magnitude of the column matrix {x} for all column matrices {x}. Show

that [A] is an orthogonal matrix.

(We can view the matrix [A] as mapping the column matrix {x} into the column matrix [A]{x}. The

particular matrix [A] in this problem preserves the magnitude of a column matrix under this mapping.)

Solution: Let {y} = [A]{x}. We are told that

{y}T {y} = {x}T {x} ⇔ yiyi = xixi. (i)

Since yi = Aijxj , (i)2 can be written as

AijxjAikxk = xixi ⇔ AijAikxjxk = xixi. (ii)
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We are told that (i)1 holds for all {x}. Therefore (ii)2 holds for all xp and so we can differentiate (ii)2 with

respect to xp. This yields

∂

∂xp

(
AijAikxjxk

)
=

∂

∂xp

(
xixi

)
⇒ AijAik

∂xj
∂xp

xk +AijAikxj
∂xk
∂xp

=
∂xi
∂xp

xi + xi
∂xi
∂xp

. (iii)

Since x1, x2, x3 are independent variables, it follows that ∂x1/∂x1 = 1, ∂x1/∂x2 = 0 etc., i.e. ∂xp/∂xq = 1

if p = q and ∂xp/∂xq = 0 if p 6= q. Thus
∂xp
∂xq

= δpq. (1.46)

Substituting (1.46) into (iii) gives

AijAikδjpxk +AijAikxjδkp = 2δipxi,

which by the substitution rule reduces to

AipAikxk +AijAipxj = 2xp ⇔ AipAikxk +AikAipxk = 2xp, (iv)

where in getting to the second equation we changed the dummy subscript j → k. Changing the order of the

factors in the second term on the left-hand side and simplifying leads to:

(iv) ⇒ AipAikxk +AipAikxk = 2xp ⇒ 2AipAikxk = 2xp ⇒ AipAikxk = xp. (v)

Since (v) holds for all xq we can differentiate it with respect to xq to get

AipAik
∂xk
∂xq

=
∂xp
∂xq

(1.46)⇒ AipAikδkq = δpq ⇒ AipAiq = δpq, (vi)

where we again used the substitution rule in getting to the last expression. In matrix form, (vi)3 can be

written as

[A]T [A] = [I] �

which shows that [A] is orthogonal.

1.3 Vector algebra.

– Perhaps the most familiar example of a vector is an “arrow”, a geometric entity with

both length and direction. Figure 2.1 shows the position vectors of a particle in a

body, x in the undeformed configuration and y in the deformed configuration, the

displacement vector of this particle being u.

Other commonly encountered vectors in mechanics include velocity, linear momentum,

angular velocity, angular momentum, force, traction and torque.
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– A collection of vectors (denoted by V), together with certain operations pertaining to

addition, multiplication by a scalar and the null vector, is called a vector space.

– The null vector o has the property that x + o = x for all vectors x in V.

– A set of vectors {u1,u2,u3} is said to be linearly independent if the only scalars

α1, α2, α3 for which

α1u1 + α2u2 + α3u3 = o

are α1 = α2 = α3 = 0. This implies that no vector in this set can be expressed as a

linear combination of the other two.

– If V contains 3 linearly independent vectors but does not contain more than 3 linearly

independent vectors, we say the dimension of V is 3.

– The scalar product (or dot product or inner product) of two vectors u and v is a

scalar that we denote by

u · v.

The scalar product obeys certain rules analogous to those listed in Problem 1.59.

– A vector space endowed with a scalar product is called a Euclidean vector space.

Unless stated otherwise, we shall always be concerned with 3-dimensional Euclidean

vector spaces which we denote by V (also commonly denoted by E3).

– The magnitude or length of a vector u is

|u| :=
√

u · u, (1.47)

and the distance between two vectors u,v is |u− v|.

– The only vector with zero length is the null vector:

|x| = 0 ⇔ x = o, (1.48)

where the double arrow (here and throughout these notes) is short-hand for “if and

only if”.

– The angle θ between two vectors u 6= o and v 6= o is defined by

cos θ :=
u · v
|u||v| , 0 ≤ θ ≤ π. (1.49)
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In order for this definition of the angle θ to be meaningful, the right-hand side of (1.49)

must lie in the interval [−1, 1]. The Cauchy-Schwartz inequality in Problem 1.3.5 shows

this to be true.

– If u ·v = 0 then θ = π/2 and we say the vectors u and v are orthogonal to each other.

– Two vectors a 6= o and b 6= o are said to be parallel if there is a scalar α for which

a = αb.

– The vector product (or cross product) of two linearly independent vectors u and v

is a vector that we denote by

u× v.

Its magnitude is |u| |v| sin θ, it is orthogonal to both u and v, and its sense is given

by the right-hand rule. Thus

u× v =
(
|u| |v| sin θ

)
n where n · u = n · v = 0, n · (u× v) > 0. (1.50)

The unit vector n is the direction of u × v, and the inequality in (1.50) tells us that

the triplet of vectors {u,v,n} is right-handed. The vector product of two linearly

dependent vectors is the null vector.

– The scalar and vector products have the respective properties

u · v = v · u, u× v = −v × u. (1.51)

– The following useful result is addressed in Problem 1.7: three vectors u,v,w are lin-

early independent if and only if

u · (v ×w) 6= 0. (1.52)

Geometrically, three vectors are linearly independent if they do not lie in the same

plane, i.e. they are non-coplanar.

1.3.1 Components of a vector in a basis.

A brief video on the use of indicial notation in vector algebra can be found at

https://www.dropbox.com/sh/4cuw28tfqvl0is9/AAAFWr40a2qNfpneJmJrdZiNa?dl=0.

Basis.

https://www.dropbox.com/sh/4cuw28tfqvl0is9/AAAFWr40a2qNfpneJmJrdZiNa?dl=0
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– A set of three linearly independent vectors {e1, e2, e3} forms a basis for a three-

dimensional vector space V. An arbitrary vector v ∈ V can be expressed as a unique

linear combination of the three basis vectors.

– The basis is said to be orthonormal if each basis vector has unit length and each is

perpendicular to the other two:

e1 · e1 = e2 · e2 = e3 · e3 = 1, e1 · e2 = e2 · e3 = e3 · e1 = 0.

This can be written succinctly as

ei · ej = δij, (1.53)

where δij is the Kronecker delta introduced in (1.33). We shall always restrict atten-

tion to orthonormal bases unless explicitly stated otherwise, and so we will drop the

adjective “orthonormal” (except when we wish to emphasize it).

– The basis {e1, e2, e3} is right-handed if

e1 × e2 = +e3 ⇔ (e1 × e2) · e3 = +1.

For a right-handed basis it can be readily verified that e1×e1 = o, e1×e2 = +e3, e1×
e3 = −e2 etc. and so we again encounter the numbers 0,+1 and −1 (as we did when

looking at the determinant of a matrix). It is not surprising therefore that we can

express ei × ej succinctly in terms of the Levi-Civita symbol eijk introduced in (1.38).

Indeed, for a right-handed basis (Exercise),

ei × ej = eijk ek, eijk = (ei × ej) · ek. (1.54)

Components of a vector.

– Given a basis {e1, e2, e3} for a three-dimensional vector space V, an arbitrary vector

v ∈ V can always be expressed as a unique linear combination of the three basis vectors:

v = v1e1 + v2e2 + v3e3 = viei. (1.55)

The scalars vi are called the components of v in the basis {e1, e2, e3}.

– When the basis {e1, e2, e3} is orthonormal, the components v1, v2, v3 of the vector v

can be calculated from

vi = v · ei. (1.56)

This follows by taking the scalar product of (1.55) with ej. Also, see Figure 1.1.
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Figure 1.1: Components {v1, v2, v3} of a vector v in an orthonormal basis {e1, e2, e3}.

– Observe from (1.56) that the components vi of the vector depend on both the vector

v and the choice of basis. If we change the basis the components vi will change even

if we don’t change the vector v.

– The components v1, v2, v3 of v in the basis {e1, e2, e3} may be assembled into a column

matrix

{v} =

 v1

v2

v3

 . (1.57)

Thus a vector, together with a basis, allows the vector to be represented as a column

matrix.

– Once a basis {e1, e2, e3} is chosen and fixed, there is a unique column matrix {v}
associated any given vector v (defined through (1.56), (1.57)); and conversely, there

is a unique vector v associated with any given column matrix {v} (defined by (1.55),

(1.57)) where the components of v in {e1, e2, e3} are {v}. Thus, once the basis is fixed,

there is a one-to-one correspondence between column matrices and vectors.

For example consider the vector equation

z = x + y.

Taking the scalar product of this equation with each basis vector ei gives z · ei = x · ei + y · ei so that

by (1.56), we obtain the system of scalar equations

zi = xi + yi for each i = 1, 2, 3,

where xi, yi and zi are the components of these vectors in the basis at hand. These components can

be assembled into column matrices which allows us to express the preceding equation in matrix form
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as

{z} = {x}+ {y}.

Thus, after choosing the basis, we can express the equation z = x + y in three equivalently forms –

vector, components and matrix.

– The fundamental notion of a vector stands on its own without the need to refer to its

components in a basis. For example we can speak of the displacement of a particle or

the force acting on a particle without needing to say anything about a basis.

– It follows from (1.55) and (1.53) that the scalar product of two vectors u = uiei and

v = viei can be calculated as u · v = (uiei) · (vjej) = uivj(ei · ej) = uivjδij = uivi and

therefore expressed as

u · v = uivi = u1v1 + u2v2 + u3v3. (1.58)

The magnitude of u can be written as

|u| = (u · u)1/2 = (u2
1 + u2

2 + u2
3)1/2 = (ukuk)

1/2 . (1.59)

– Similarly, it follows from (1.55) and (1.54) that the vector product of u = uiei and

v = viei can be expressed as

u× v = (ujej)× (vkek) = ujvk ej × ek
(1.54)
= ujvk ejkiei = ejkiujvk ei = (eijkujvk) ei,

(1.60)

where eijk is the Levi-Civita symbol. Equivalently, the ith component of the vector

u× v is

(u× v)i = eijkujvk. (1.61)

Exercise: Show that u · (v ×w) = eijkuivjwk.

– Finally, we illustrate through an example how one can go back and forth between vectors and their

components. For any three vectors a,b, c we want to show that

a× (b× c) = (a · c)b− (a · b)c. (i)

In order to prove this vector identity we shall (implicitly) pick and fix a basis for V and express all

vectors in terms of their components in that basis. The left-hand side of (i) is a vector. We start from
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its ith component:[
a× (b× c)

]
i

(1.61)
= eijkaj(b× c)k

(1.61)
= eijkaj(ekpqbpcq) =

(1.42)
= ekijekpqajbpcq

(1.43)
= (δipδjq − δiqδjp)ajbpcq =

= δipδjqajbpcq − δiqδjpajbpcq
(∗)
= aqbicq − ajbjci =

(1.58)
= (a · c)bi − (a · b)ci

from which (i) follows. In step (∗) we used the substitution rule.

1.3.2 Worked examples.

Problem 1.3.1. (Vector algebra.) Calculate the area of the triangle OAB defined by the linearly independent

vectors
−→
OA = a and

−→
OB = b shown in Figure 1.2.

h

Figure 1.2: Parallelogram OACB.

Solution: The angle θ = ∠AOB can be calculated from a · b = |a||b| cos θ. Suppose θ ∈ (0, π/2). By

geometry, the height h of the triangle is h = |b| sin θ. Thus

Area of OAB =
1

2
|OA|h =

1

2
|a|h =

1

2
|a| |b| sin θ (1.50)

=
1

2
|a× b|.

Problem 1.3.2. (Vector algebra.) Show that two vectors u and v are equal if and only if

u · x = v · x for all vectors x ∈ V. (i)

Solution: If u = v it is clear that (i) holds. It is the converse that needs to be established. Thus suppose

that (i) holds, which we can write as (u − v) · x = 0. Since this holds for all vectors x ∈ V it necessarily
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holds for the particular choice x = u− v. This gives (u− v) · (u− v) = 0 whence |u− v| = 0. However by

(1.48), the only vector with zero length is the null vector and so u− v = o. �

Problem 1.3.3. (Vector algebra.) Let a, b, c, be three linearly independent (i.e. non-coplanar) vectors

with (a× b) · c > 0. Show that the volume V0 of the tetrahedron formed by them, see Figure 1.11, is

V0 =
1

6
(a× b) · c.

Height

Figure 1.3: Volume of the tetrahedron defined by vectors a,b, c.

Solution: Using the symbols and formulae introduced in Figure 1.3 we have

V0 =
1

3
A0h0 =

1

3

(
1

2
|a× b|

)
c · (a× b)

|a× b| =
1

6
c · (a× b).

Problem 1.3.4. (Vector algebra) Let {a1,a2,a3} be an orthonormal basis and let b1 and b2 be two

orthogonal vectors that are perpendicular to a2 and a1 respectively. Show that either b1 must be parallel

to a1 or b2 must be parallel to a2.

Solution: Expressing the vectors b1 and b2 in terms of their components in the orthonormal basis {a1,a2,a3}
we have

b1 = β1a1 +��β2a2 + β3a3, b2 =��γ1a1 + γ2a2 + γ3a3, (i)

where we have used b1 · a2 = 0 and b2 · a1 = 0. We are told that b1 · b2 = 0 which, since {a1,a2,a3} is

orthonormal, requires

b1 · b2 = γ3β3 = 0.

Therefore either γ3 = 0 in which case (i)2 implies that b2 is parallel to a2, or β3 = 0 in which case b1 is

parallel to a1 according to (i)1.
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Problem 1.3.5. (Vector algebra.) (Cauchy-Schwartz inequality.) Show that

|u|2 |v|2 ≥ (u · v)2 for all u,v ∈ V. (1.62)

Solution: If u · v = 0 the result holds trivially and so consider the case u · v 6= 0. It then follows that u and

v are both 6= o and therefore that |u| 6= 0 and |v| 6= 0. Next, for any scalar ξ we have |u− ξv|2 ≥ 0 which

when expanded out reads

|u|2 − 2ξu · v + ξ2|v|2 ≥ 0.

The left-hand side of this expression is a quadratic form in ξ that achieves its smallest value at ξ = u ·v/|v|2.

Substituting this value of ξ into the preceding inequality and simplifying leads to (1.62).

Exercise: Show that (1.62) holds with equality if and only if u and v are linearly dependent.

Problem 1.3.6. (Vectors. Components.) For any four vectors p,q, r, s show, by expressing the vectors in

terms of their components in a basis, that

(p× q) · (r× s) = (p · r)(q · s)− (q · r)(p · s). (i)

Hence or otherwise, establish Lagrange’s identity

|a× b|2 + (a · b)2 = |a|2|b|2 for all a and b ∈ V. (ii)

Solution: Both p×q and r× s are vectors and the left-hand side of (i) is the scalar product of these vectors.

Thus

(p× q) · (r× s)
(1.58)

= (p× q)i(r× s)i
(1.61)

= (eijkpjqk)(eimnrmsn) = eijkeimnpjqkrmsn =

(1.43)
= (δjmδkn − δjnδkm)pjqkrmsn = δjmδknpjqkrmsn − δjnδkmpjqkrmsn =

(∗)
= pmqnrmsn − pnqmrmsn = (p · r)(q · s)− (p · s)(q · r), �

where in step (∗) we used the substitution rule. Pick p = r = a and q = s = b in (i):

(a× b) · (a× b) = (a · a)(b · b)− (b · a)(a · b),

which gives the desired result:

|a× b|2 = |a|2|b|2 − (a · b)2. �

1.4 Tensor algebra.

– In this section we consider linear transformations from the vector space V → V.

Such a transformation A takes each vector x ∈ V and maps it into another vector in
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V that we denote by Ax (where the mapping is subject to certain rules pertaining to

addition, multiplication by a scalar and the null linear transformation).

– The most familiar examples of linear transformations are perhaps geometric, say rota-

tion through an angle π about a certain axis which takes each vector into its rotated

image, see Figure 1.4.

Figure 2.6 depicts a deformation that carries an infinitesimal material fiber dx in an

undeformed body into its deformed image dy = Fdx, F being the deformation gradient

tensor. Other examples from mechanics include the inertia “tensor” J that takes the

angular velocity vector ω into the angular momentum vector h = Jω; and the stress

tensor T that takes a unit normal vector n into the traction vector t = Tn.

– Let F be a function (or transformation) that maps each vector x ∈ V into a second

vector F(x) ∈ V:

x→ F(x), x ∈ V, F(x) ∈ V. (1.63)

It is said to be a linear transformation if

F(αx + βy) = αF(x) + βF(y) (1.64)

for all scalars α, β and all vectors x,y in V. When F is a linear transformation, we

usually omit the parenthesis and write Fx instead of F(x). Note that Fx is a vector,

and it is the image of x under the transformation F.

– We shall refer to a linear transformation (from V into V) as a tensor.

– Observe that a tensor is defined by the way in which it operates on each vector in V.

O

A

BC

D

Figure 1.4: The tensor Q rotates the vector x =
−→
OA through an angle π about the axis n and takes it to

the vector Qx =
−→
OD. The plane P is perpendicular to n
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Example: As a geometric example consider the transformation Q implied by Figure 1.4. It rotates a

vector x (=
−→
OA) through an angle π about an axis n and carries it into the vector Qx (=

−→
OD). (Here x

is an arbitrary vector.) The plane P in the figure is perpendicular to the unit vector n. Observe that
−→
OB= −

−→
OC and

−→
BA=

−→
CD. Moreover, the magnitude of the vector

−→
BA is x · n and its direction is n and

therefore
−→
BA= (x · n)n. Thus

−→
OD =

−→
OC +

−→
CD = −

−→
OB +

−→
BA = −(

−→
OA −

−→
BA)+

−→
BA = −

−→
OA +2

−→
BA,

and so we have

Qx = −x + 2(x · n)n for all x ∈ V. (1.65)

Given any vector x ∈ V, the right-hand side of (1.65) tells us how to calculate Qx, i.e. it tell us what

Q does to every vector x, and therefore it defines Q. Observe that Q is a linear transformation since

Q(αx + βy) = αQx + βQy.

– The identity tensor I and the null tensor 0 have the properties

Ix = x, 0x = o for all x ∈ V, (1.66)

where o is the null vector.

– Continuing to keep in mind that a tensor is defined by the way it operates on vectors,

given two tensors A and B, their product AB is defined by

(AB)x = A(Bx) for all x ∈ V;

i.e. first the tensor B operates on the vector x to produce the vector Bx and then

the tensor A operates on the vector Bx to produce the vector ABx. In general,

AB 6= BA.

Tensor product.

– Let a and b be two given vectors. Define the associated tensor T as the transformation

that takes an arbitrary vector x into the vector Tx defined by

Tx = (x · b)a for all x ∈ V. (1.67)

Observe that corresponding to any vector x ∈ V, the right-hand side of (1.67) provides

a formula for calculating the vector Tx. Clearly this is a linear transformation. This
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particular tensor T is called the tensor product4 of the vectors a and b and is denoted

by

T = a⊗ b. (1.68)

Thus from (1.67) and (1.68)

(a⊗ b)x = (x · b)a for all x ∈ V. (1.69)

Note that the vector (a⊗ b)x is parallel to the vector a for all x.

For example observe that we can now write (1.65) as

Qx = −x + 2(x · n)n = −x + 2(n⊗ n)x =
[
− I + 2(n⊗ n)

]
x ,

and so the tensor Q representing a rotation through an angle π about the axis n is

Q = −I + 2n⊗ n. (1.70)

If {e1, e2, e3} is an arbitrary orthonormal basis for V then (Problem 1.4.1)

e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = I. (1.71)

For all vectors a,b, c,d ∈ V, (Problem 1.4.2)

(a⊗ b)(c⊗ d) = (b · c)(a⊗ d). (1.72)

– The set of all tensors (linear transformations from V→ V) is itself a vector space which

we shall denote by Lin (“Lin” standing for linear transformation). It is 9-dimensional.

The 9 tensors ei ⊗ ej, i, j = 1, 2, 3, are linearly independent and thus form a basis for

Lin5. Therefore given any tensor A, there is a unique set of nine scalars Aij such that

A = Aij ei ⊗ ej; (1.73)

the Aij’s are the components of A in this basis. The components Aij of the tensor

depend on the basis. If we change the basis, the components Aij will change even if

we don’t change the tensor A.

Our analysis of tensor algebra in this subsection will not depend on the choice of basis

and the components of the tensor in that basis. Even so, it will sometimes be useful

to refer to tensor components, e.g. in (1.75), though we could have postponed all

references to components to Section 1.4.3 where we shall say a lot more about them.

4or outer product or dyadic product
5After introducing the notion of a scalar product between two tensors in (1.120), we can then speak of

the magnitude of a tensor and of two tensors being orthogonal. This will allow us to show that these nine

tensors in fact form an orthonormal basis for Lin; see Problem 1.4.12.
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Problem 1.4.1. (Tensor product.) If {e1, e2, e3} is an arbitrary orthonormal basis for V, show that

e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = I.

Solution: For an arbitrary vector x,

(ei ⊗ ei)x
(1.69)

= (ei · x)ei
(1.56)

= xiei
(1.55)

= x
(1.66)1= Ix

Since this holds for all x ∈ V it follows that ei ⊗ ei = I.

Problem 1.4.2. (Tensor product.) For all vectors a,b, c,d ∈ V, show that

(a⊗ b)(c⊗ d) = (b · c)(a⊗ d). (i)

Solution: Before carrying out any calculation it is useful to observe that on the left-hand side we have a

tensor (which is the product of the two tensors a ⊗ b and c ⊗ d). On the right-hand side we also have a

tensor, as we must, (and this is the product of the tensor a ⊗ d by the scalar b · c). Also, note that if we

want to show that two tensors A and B are equal, we could show that Ax = Bx for all x ∈ V. With these

in mind, for an arbitrary vector x, we calculate

(a⊗ b)(c⊗ d)x = (a⊗ b)
(

(c⊗ d)x
)

(1.69)
= (a⊗ b)

(
(d · x)c

)
=

(∗)
= (d · x)(a⊗ b)c

(1.69)
= (d · x)(b · c)a

(∗∗)
= (b · c)(d · x)a =

=
(1.69)

= (b · c)(a⊗ d)x

where in step (∗) we used the fact that d · x is a scalar and so moved it to the front, and in step (∗∗) we

used the fact that b · c is a scalar and so moved it to the front. This establishes (i).

The transpose. Symmetric and skew-symmetric tensors.

– Corresponding to any tensor A, there exists a second tensor that we denote by AT

such that

Ax · y = x ·ATy for all vectors x and y ∈ V; (1.74)

AT is called the transpose of A.

Exercise: Show that

A = Aij ei ⊗ ej ⇔ AT = Aji ei ⊗ ej . (1.75)

Exercise: Show that

(AB)T = BTAT for all tensors A,B. (1.76)
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For all vectors a,b and all tensors A (Problem 1.4.3)

(a⊗ b)T = b⊗ a, (1.77)

A(a⊗ b) = (Aa)⊗ b, (a⊗ b)A = a⊗ (ATb). (1.78)

– A tensor A is symmetric if

A = AT , (1.79)

and skew-symmetric (or anti-symmetric) if

A = −AT . (1.80)

Several tensors that we will encounter including the Cauchy stress tensor T and the

Lagrangian and Eulerian stretch tensors U and V will be symmetric.

– Any tensor A can be uniquely decomposed into the sum of a symmetric tensor S and

a skew-symmetric tensor W:

A = S + W, S = ST , W = −WT ; (1.81)

S is called the symmetric part of A and W its skew-symmetric part. They are given

by

S =
1

2
(A + AT ), W =

1

2
(A−AT ). (1.82)

– Corresponding to every skew-symmetric tensor W, there is a vector ω such that

ω × x = Wx for all x ∈ V; (1.83)

ω is called the axial vector associated with W.

Exercise: If W is skew-symmetric show that W2 is symmetric and W3 skew-symmetric.

Problem 1.4.3. Establish (1.77) and (1.78):

(a⊗ b)T = b⊗ a, A(a⊗ b) = (Aa)⊗ b, (a⊗ b)A = a⊗ (ATb). (i)

Solution: In order to establish (i)1 we must show, according to (1.74), that (a⊗ b)x · y = x · (b⊗ a)y for

all vectors x and y. This follows from:

(a⊗ b)x · y (1.69)
= [(b · x)a] · y = (b · x)(a · y) = (x · b)(a · y) = x · [(a · y)b]

(1.69)
= x · (b⊗ a)y
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where we have used the fact that a · x and b · y are scalars.

To show (i)2 we proceed as follows: for any vector x,

A(a⊗ b)x
(1.69)

= A[(b · x)a] = (b · x)Aa
(1.69)

= (Aa⊗ b)x,

which establishes (i)2. The result in (i)3 can be obtained similarly.

Nonsingular tensors.

We are frequently interested in linear transformations that are one-to-one. For example

suppose two particles of a body are located at x1 and x2, and that the tensor F maps

(“deforms” the body and takes) them to the locations Fx1 and Fx2. We typically want

particles not to coalesce: if the particles x1 and x2 are distinct we want their locations

Fx1 and Fx2 to be distinct, i.e. we want x1 6= x2 to imply Fx1 6= Fx2. In addition we

usually want particles not to split: if the locations Fx1 and Fx2 are distinct we want them

to correspond to distinct particles, i.e. we want Fx1 6= Fx2 to imply x1 6= x2. Together,

they require Fx1 = Fx2 ⇔ x1 = x2, i.e. the linear transformation F must be one-to-one.

The following statements are equivalent: A tensor F is nonsingular (or “one-to-one” or

“invertible”) if and only if

(a) For all vectors x1,x2 ∈ V,

Fx1 = Fx2 ⇔ x1 = x2. (1.84)

(b) The only vector x for which Fx = o is the null vector x = o:

Fx = o ⇔ x = o. (1.85)

(c) The only vector x for which |Fx| = 0 is the null vector x = o:

|Fx| = 0 ⇔ x = o.

(d) There exists a unique tensor that we denote by F−1, and call the inverse of F, such

that

FF−1 = F−1F = I. (1.86)

(e) Also (1.94) below.
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Exercise: Show that these statements are equivalent; e.g. the example on page 34 shows that (1.94) implies

(1.85).

– If A and B are both nonsingular, then

(AB)−1 = B−1A−1. (1.87)

We shall denote the transpose of the inverse tensor, which equals the inverse of the transpose,

by

A−T := (A−1)T = (AT )−1. (1.88)

– A tensor A is positive definite if

Ax · x > 0 for all vectors x 6= o. (1.89)

Exercise: Show that a positive definite tensor is necessarily nonsingular but a nonsingular tensor need not

be positive definite.

Exercise: For any nonsingular tensor F show that the tensor FTF is symmetric and positive definite.

– The determinant of a tensor A is the scalar defined by

det A :=
Ax · (Ay ×Az)

x · (y × z)
for all linearly independent vectors x,y, z. (1.90)

We know from Problem 1.3.3 that the volume of the tetrahedron defined by three linearly

independent vectors x,y, z is 1
6
x · (y × z) and therefore the volume of its image under the

linear transformation A is 1
6
Ax · (Ay×Az). The determinant is therefore the ratio between

these two volumes. One can show that this ratio is independent of the particular choice of

x,y and z and so depends only on A.

The determinant of the product of two tensors has the property

det(AB) = det(BA) = det A det B, (1.91)

and for any scalar α

det(αA) = α3 det A. (1.92)

The determinants of A and AT coincide:

det AT = det A. (1.93)
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– A tensor A is nonsingular, as defined previously in (1.85), if and only if

det A 6= 0. (1.94)

Problem 1.4.4. (Nonsingular tensor.) If det A = 0 show that there is a nonzero vector x such that Ax = o;

see (1.94) and (1.85).

Solution: Suppose det A = 0. Then for any three linearly independent vectors a,b, c, equation (1.90) tells

us that Aa · (Ab×Ac) = 0. Therefore by (1.52) the vectors Aa,Ab,Ac are linearly dependent and so there

are scalars α, β, γ such that αAa + βAb + γAc = o. Since this can be written as A(αa + βb + γc) = o we

conclude that Ax = o for x = αa + βb + γc.

Orthogonal tensors.

Orthogonal tensors will play an important role in both the rigid deformation of a body

and the mapping between two different bases.

The following statements are equivalent: A tensor Q is orthogonal if and only if:

(a) It preserves the length of every vector:

|Qx| = |x| for all x ∈ V. (1.95)

(b) It preserves the length of every vector and the angle between every pair of vectors:

Qx ·Qy = x · y for all x and y ∈ V. (1.96)

(c) It is nonsingular and

Q−1 = QT , (1.97)

from which it follows that

QQT = QTQ = I. (1.98)

Exercise: Show that the preceding statements are equivalent; e.g. Problem 1.4.5 shows that (1.95) implies

(1.96); and Problem 1.4.17 shows that (1.95) implies (1.97).

If Q is orthogonal, then

det Q = ±1. (1.99)
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(The converse is not true: det Q = ±1 does not imply that Q is orthogonal.) If det Q = +1,

Q is said to be proper orthogonal. Otherwise it is improper orthogonal. If Q is improper

orthogonal, then −Q is proper orthogonal and vice versa.

Exercise: Show that the tensor

− I + 2n⊗ n (1.100)

is proper orthogonal. (We saw earlier in (1.70) that it describes a 180o rotation about the unit vector n).

Show that the tensor

I− 2n⊗ n (1.101)

is improper orthogonal. (It describes a reflection in the plane perpendicular to n; Problem 1.10.)

1.4.1 Worked examples.

Problem 1.4.5. (Orthogonal tensors.) According to (1.95), a tensor Q is orthogonal if it preserves the

length of every vector x:

|Qx| = |x| for all x ∈ V. (i)

Show that such a tensor necessarily preserves the angle between every pair of vectors x and y so that

Qx ·Qy = x · y for all x,y ∈ V. (ii)

This establishes (1.96).

Solution: Since (i) holds for all vectors in V, it necessarily holds for the vectors y and x− y, i.e.

|Qy| = |y| and |Q(x− y)| = |(x− y)|. (iii)

Now evaluate |Q(x− y)|2:

|Q(x− y)|2 = Q(x− y) ·Q(x− y) = (Qx−Qy) · (Qx−Qy) =

= Qx ·Qx−Qy ·Qx−Qx ·Qy + Qy ·Qy =

= |Qx|2 − 2Qx ·Qy + |Qy|2 (i),(iii)1
= |x|2 − 2Qx ·Qy + |y|2.

(iv)

Alternately, by using (iii)2 we can write

|Q(x− y)|2 = |x− y|2 = (x− y) · (x− y) = x · x− x · y − y · x + y · y =

= |x|2 − 2x · y + |y|2.
(v)

Equating (iv) and (v) yields the desired result.
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Problem 1.4.6. (Orthogonal tensors.) Let {e1, e2, e3} and {e′1, e′2, e′3} be two orthonormal bases. (a) Show

that the tensor

Q = e′1 ⊗ e1 + e′2 ⊗ e2 + e′3 ⊗ e3 (i)

is orthogonal. In fact, (b) show that Q maps {e1, e2, e3} into {e′1, e′2, e′3}. (c) If {e1, e2, e3} is right-handed,

show that {e′1, e′2, e′3} is right-handed if and only if Q is proper orthogonal.

Solution: (a) Since Q = e′i ⊗ ei it follows from (1.77) that

QT = ei ⊗ e′i. (ii)

Thus

QQT = (e′i ⊗ ei)(ej ⊗ e′j)
(1.72)

= (ei · ej)(e′i ⊗ e′j)
(1.53)

= δij(e
′
i ⊗ e′j) = e′i ⊗ e′i

(1.71)
= I

and so

QQT = I. (iii)

Therefore by (1.98), Q is orthogonal. Alternatively, for any vector x,

|Qx|2 = Qx ·Qx
(i)
=
[
(e′i ⊗ ei)x

]
·
[
(e′j ⊗ ej)x

] (1.69)
=

[
(x · ei)e′i

]
·
[
(x · ej)e′j

]
=

(1.56)
= (xie

′
i) · (xje′j) = xixj(e

′
i · e′j)

(1.53)
= xixjδij = xixi = x · x = |x|2

and therefore by (1.95), Q is orthogonal.

(b) Since

Qei = (e′j ⊗ ej)ei = (ei · ej)e′j = δije
′
j = e′i

it follows that Q maps each ei into e′i.

(c) We are told that (e1 × e2) · e3 > 0 and want to determine when (Qe1 ×Qe2) ·Qe3 > 0. Since

(Qe1 ×Qe2) ·Qe3
(1.90)

= det Q (e1 ⊗ e2) · e3

and (e1× e2) · e3 > 0 it follows that (Qe1×Qe2) ·Qe3 > 0 if and only if det Q > 0. But from (iii) we know

that det Q = ±1 and so the requirement is that det Q = +1 whence Q must be proper orthogonal.

Problem 1.4.7. (Orthogonal tensors.) Consider the tensor R that maps a vector x into the vector Rx

according to

Rx = x− 2(x · n)n for all x ∈ V. (i)

Here n is a given unit vector. Show that

(a) R is nonsingular,

(b) R is symmetric,

(c) R is orthogonal,
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(d) R is in fact improper orthogonal, and

(e) R2 = I and therefore that R is a square root of the identity tensor I. Note that R 6= I.

It will be shown in Problem 1.10 that the tensor R describes reflections in the plane perpendicular to n.

Solution: The solutions below do not use components in a basis. As an exercise, work this problem using

components.

Solution 1: By the definition (1.69) of the tensor product we know that (x · n)n = (n⊗ n)x. Therefore we

can write (i) equivalently as

Rx = (I− 2n⊗ n)x

which holds for all vectors x. Therefore

R = I− 2n⊗ n. (1.102)

(a) One way to show that R is nonsingular is to show that det R 6= 0. From (1.102) and (1.197) (page 94),

det R = det(I− 2n⊗ n) = 1 + (−2n) · n = −1

and so det R 6= 0 and therefore R is nonsingular. (Alternatively see part (d) of solution-2 below.)

(b) By using (1.77) and (1.102),

RT = I− 2n⊗ n,

and so R = RT whence R is symmetric.

(c) We proceed as follows

RRT (1.102)
= (I− 2n⊗ n)(I− 2n⊗ n) = I− 2n⊗ n− 2n⊗ n + 4(n⊗ n)(n⊗ n) =

(1.72)
= I− 4n⊗ n + 4(n · n)(n⊗ n) = I− 4n⊗ n + 4(n⊗ n) = I.

Thus RRT = I and so R is orthogonal.

(d) Consider a right-handed orthonormal basis {e1, e2, e3} with e3 = n. If {Re1,Re2,Re3} is left-handed

then R is improper orthogonal. Since e1 · n = e2 · n = 0 and n · n = 1 it follows that

Re1
(1.102)

= (I− 2n⊗ n)e1 = e1 − 2(n · e1)n = e1,

Re2
(1.102)

= (I− 2n⊗ n)e2 = e2 − 2(n · e2)n = e2,

Re3
(1.102)

= Rn = (I− 2n⊗ n)n = n− 2(n · n)n = −n = −e3.

Therefore the orthogonal tensor R carries the right-hand triplet of vectors {e1, e2, e3} into the left-handed

triplet of vectors {e1, e2,−e3} and therefore is improper orthogonal.

(e) Since RRT = I and R = RT it follows immediately that R2 = I. Therefore R is a square root of I (but

it is not positive definite. Why?)

Solution 2: Here we will not make use of the representation (1.102).
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(a) Another way in which to show that R is nonsingular is to show that the only vector x for which Rx = o

is the null vector x = o. From (i):

Rx ·Rx =
[
x− 2(x · n)n

]
·
[
x− 2(x · n)n

]
= x · x− 2(x · n)2 − 2(x · n)2 + 4(x · n)2 = x · x

Therefore

|Rx| = |x| for all vectors x ∈ V. (ii)

Consequently |Rx| = 0 if and only if |x| = 0 which implies that Rx = 0 if and only if x = 0 (since the only

vector whose length vanishes is the null vector). Therefore by (1.85), R is nonsingular.

(b) According to (1.74) and (1.79) the tensor R is symmetric if Rx · y = x ·Ry for all vectors x,y. From

(i),

Rx = x− 2(x · n)n, Ry = y − 2(y · n)n,

from which it follows that

Rx · y = x · y − 2(x · n)(n · y), x ·Ry = x · y − 2(y · n)(n · x).

Thus Rx · y = x ·Ry for all vectors x,y and so R is symmetric:

R = RT . (iii)

(c) By (1.95), an orthogonal tensor is one that preserves the length of every vector, and so it follows

immediately from (ii) that R is orthogonal.

(d) To show that R is improper orthogonal it is sufficient (since we know R is orthogonal) to show that

det R = −1. Note from (i) that Rn = −n. Let a and b ( 6= a) be two vectors orthogonal to n. Since

a · n = b · n = 0 it follows from (i) that Ra = a and Rb = b. Therefore taking x = n,y = a, z = b in the

definition (1.90) of the determinant we get

det R :=
Rn · (Ra×Rb)

n · (a× b)
=
−n · (a× b)

n · (a× b)
= −1.

Therefore R is improper orthogonal. (We could have used this to show that R is nonsingular in part (a).)

(e) Since RRT = I and R = RT it follows immediately that R2 = I. Therefore R is a square root of I.

Eigenvalues and eigenvectors.

– The trace of a tensor A is the scalar defined by

tr A :=
Ax · (y × z) + x · (Ay × z) + x · (y ×Az)

x · (y × z)
(1.103)

which is to hold for all linearly independent vectors x,y, z. Problem 1.58 asks you

to verify that the right-hand side of (1.103) is in fact independent of the choice of
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the vectors x,y, z and therefore depends only on the tensor A, (the dependence being

linear).

The trace of the product of two tensors has the property

tr (AB) = tr (BA). (1.104)

Exercise: Show that

tr(a⊗ b) = a · b. (1.105)

– Characteristic polynomial: The characteristic polynomial associated with any ten-

sor A and all scalars µ is (Problem 1.17)

det(A− µI) = −µ3 + I1(A)µ2 − I2(A)µ+ I3(A), (1.106)

where I1(A), I2(A) and I3(A) are the scalar-valued functions

I1(A) := tr A, I2(A) :=
1

2
[(tr A)2 − tr(A2)], I3(A) := det A. (1.107)

These three functions are called the principal scalar invariants of A (for reasons

that will be explained in Section 1.5).

According to the Cayley-Hamilton theorem

−A3 + I1(A)A2 − I2(A)A + I3(A)I = 0. (1.108)

– Eigenvalues and eigenvectors: A scalar α and vector a ( 6= o) are said to be an

eigenvalue and eigenvector of a tensor A if

Aa = αa. (1.109)

If a is an eigenvector of A, so is any scalar multiple of a and so there is no loss of

generality in assuming a to be a unit vector. The eigenvalues α obey the characteristic

equation

det(A− αI) = −α3 + I1(A)α2 − I2(A)α + I3(A) = 0 (1.110)

which is cubic in α. It has either one or three real roots.
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Exercise: Using the Cayley-Hamilton theorem or otherwise, show that

det A =
1

6

[[
tr A]3 − 3(tr A) tr(A2) + 2 tr(A3)

]
. (1.111)

Problem 1.4.8. (Eigenvalues. Eigenvectors.) Calculate the eigenvalues and eigenvectors of the tensor a⊗b

where a · b 6= 0 and a,b 6= o.

Solution: Let x (6= o) be an eigenvector and λ the corresponding eigenvalue. Then by definition

(a⊗ b)x = λx ⇒ (b · x)a = λx. (i)

One solution has x parallel to a and so we can take x = a/|a|. Substituting this back into (i)2 gives the

corresponding eigenvalue to be λ = a · b. The only other possibility occurs when b · x = 0 in which case

λ = 0. Thus the other two eigenvalues are 0 and 0 (i.e. the eigenvalue 0 with multiplicity 2) and any vector

perpendicular to b is a corresponding eigenvector. Alternatively the eigenvalues can be determined from the

cubic equation (1.110) using I2(a⊗ b) = I3(a⊗ b) = 0 and I1(a⊗ b) = a · b as shown in Problem 1.19.

Problem 1.4.9. (Eigenvalues) If W 6= 0 is skew-symmetric show that its characteristic equation is

ω3 + I2(W)ω = 0 (i)

and therefore that the only real eigenvalue is 0.

Solution: From the exercise on page 31 we know that W3 is skew-symmetric. Moreover it can be easily

shown that the trace of a skew-symmetric tensor vanishes. Thus tr W = tr W3 = 0 and so from (1.111) we

conclude that det W = 0. Therefore by (1.107), the principal scalar invariants of W are I1(W) = I3(W) = 0

and

I2(W) = −1

2
tr (W2) = +

1

2
W ·W > 0, (ii)

where the strict inequality follows since W 6= 0. Consequently from (1.110) the characteristic equation

det(W − ωI) = 0 reduces to (i). Since I2(W) > 0 by (ii), it follows that the only real eigenvalue is 0, the

other two being imaginary.

– Eigenvalues and eigenvectors of a symmetric tensor: A symmetric linear trans-

formation S has three real eigenvalues σ1, σ2, σ3. The corresponding eigenvectors

s1, s2, s3 can be chosen so they are orthonormal. The eigenvectors are referred to

as the principal directions of S, and the particular basis {s1, s2, s3} is called a principal

basis for S.
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– Spectral representation of a symmetric tensor: A symmetric linear transforma-

tion S can be expressed as

S = σ1 (s1 ⊗ s1) + σ2 (s2 ⊗ s2) + σ3 (s3 ⊗ s3) =
3∑
i=1

σi (si ⊗ si), (1.112)

where the orthonormal basis {s1, s2, s3} is comprised of eigenvectors. This is called the

spectral representation of the symmetric tensor S.

Remark: Observe that the subscript i occurs three times in the rightmost expression

in (1.112) and so we have suspended the usual summation convention and explicitly

displayed the summation on i; see the discussion below (1.31).

For any positive integer n,

Sn =
3∑
i=1

σni (si ⊗ si). (1.113)

If S is symmetric and nonsingular, then none of its eigenvalues vanish and

S−1 =
3∑
i=1

(1/σi) (si ⊗ si). (1.114)

If S is symmetric and positive definite, all three eigenvalues are positive, and there is a

unique symmetric positive definite tensor T such that T2 = S. The tensor T is called

the positive definite square root of S and denoted by T =
√

S: (Problem 1.25)

√
S =

3∑
i=i

√
σi (si ⊗ si). (1.115)

Exercise: In Problem 1.4.7 we showed that both I− 2n⊗ n and I are square roots of the identity tensor I.

Does this contradict the claim of uniqueness associated with (1.115)?

Exercise: Show that the principal scalar invariants of S can be written as

I1(S) = tr S = σ1 + σ2 + σ3, I2(S) = σ1σ2 + σ2σ3 + σ3σ1, I3(S) = det S = σ1σ2σ3. (1.116)

Exercise: If two symmetric tensors B and C have the same eigenvalues, we see from (1.116) that they have

the same principal scalar invariants. Conversely, if they have the same principal invariants, do they have the

same eigenvalues?
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Problem 1.4.10. (Spectral representation of a symmetric tensor) A symmetric tensor A necessarily has

three real (not-necessarily distinct) eigenvalues, α1, α2 and α3. They are the roots of the cubic equation

det(A− αI) = 0. If α obeys det(A− αI) = 0 then A− αI is singular and therefore by Problem 1.4.4 there

is a non-zero vector a such that (A − αI)a = o. Therefore corresponding to an eigenvalue α (defined as a

root of the characteristic equation det(A− αI) = 0) there exists an eigenvector a such that Aa = αa.

(a) If the eigenvalues α1 and α2 are distinct, show that the corresponding eigenvectors a1 and a2 are

orthogonal.

(b) If all three eigenvalues are distinct, α1 6= α2 6= α3 6= α1, it follows from part (a) that each eigenvector is

orthogonal to the other two and therefore that the eigenvectors {a1,a2,a3} form an orthonormal basis for

V. Then from the general representation A = Aijai ⊗ aj and Aai · aj = αiδij (no sum on i) one can show

that A = α1a1 ⊗ a1 + α2a2 ⊗ a2 + α3a3 ⊗ a3.

(c) Suppose two eigenvalues are coincident and distinct from the third: α2 = α3 6= α1. Show that A can

be expressed as A = α1a1 ⊗ a1 + α2(I− a1 ⊗ a1) and therefore that every vector perpendicular to a1 is an

eigenvector of A corresponding to the eigenvalue α2.

(d) If all three eigenvalues coincide, α := α1 = α2 = α3, then A = αI.

Solution: (a) Take the scalar product of Aa1 = α1a1 with a2, and the scalar product of Aa2 = α2a2 with

a1:

Aa1 · a2 = α1a1 · a2, Aa2 · a1 = α2a2 · a1.

Since A is symmetric we have Aa1 · a2 = a1 ·Aa2 and therefore the preceding equations yield

α1 a1 · a2 = α2 a1 · a2 ⇒ (α1 − α2) a1 · a2 = 0 ⇒ a1 · a2 = 0, �

where in the last step we used α1 6= α2.

(c) Suppose α1 6= α2 = α3 and

Aa1 = α1a1, Aa2 = α2a2. (i)

Since α1 6= α2 it follows from part (a) that a2 is perpendicular to a1. Let a3 be a unit vector perpendicular

to both a1 and a2. Then {a1,a2,a3} is an orthonormal basis for V and so we can write

A = Aijai ⊗ aj . (ii)

Operating A on a1 yields

Aa1
(ii)
= (Aijai ⊗ aj)a1 = Aij(aj · a1)ai = Aijδj1ai = Ai1ai

(i)1
= α1a1,

whence

A11 = α1, A21 = A31 = 0. (iii)

Similarly,

Aa2
(ii)
= (Aijai ⊗ aj)a2 = Aij(aj · a2)ai = Aijδj2ai = Ai2ai

(i)2
= α2a2.

and therefore

A22 = α2, A12 = A32 = 0. (iv)
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Since A is symmetric we further have from (iii) and (iv) that

A13 = A23 = 0. (v)

Therefore by (ii), (iii), (iv) and (v) we can express A as

A = α1a1 ⊗ a1 + α2a2 ⊗ a2 +A33a3 ⊗ a3. (vi)

Operating A on a3 and using a3 · a1 = a3 · a2 = 0 gives

Aa3 = A33a3.

Thus a3 is an eigenvector of A and A33 is the corresponding eigenvalue. Calculating the trace of (vi) gives

tr A = α1 + α2 + A33. However, since the eigenvalues of A are α1, α2, α2, it follows from (1.116)1 that

tr A = α1 + 2α2. Thus A33 = α2 and so we can write (vi) as

A = α1a1 ⊗ a1 + α2(a2 ⊗ a2 + a3 ⊗ a3).

On using the identity I = a1 ⊗ a1 + a2 ⊗ a2 + a3 ⊗ a3 this can be written as

A = α1a1 ⊗ a1 + α2(I− a1 ⊗ a1). � (vii)

Finally, for any vector x perpendicular to a1 we have

Ax
(vii)
= α1(a1 ⊗ a1)x + α2(I− a1 ⊗ a1)x = α1(x · a1)a1 + α2x− α2(x · a1)a1 = α2x,

where we used x · a1 = 0 in the last step. Thus every vector x perpendicular to a1 is an eigenvector

corresponding to the eigenvalue α2.

Polar decomposition theorem.

A certain nonsingular tensor F called the deformation gradient tensor will play a pivotal

role in describing the deformation of a body. Part of F will describe a rotation, the rest a

stretch/strain. The polar decomposition theorem tells us how to identify these two parts of

F.

– The polar decomposition theorem states that, corresponding to any nonsingular

tensor F, there exist unique symmetric positive definite tensors U and V and a unique

orthogonal tensor R such that6

F = RU = VR. (1.117)

6Given an arbitrary (possibly singular) tensor F ∈ Lin, there is a (unique) symmetric, positive semi-

definite tensor U, and a (not-necessarily unique) orthogonal tensor R, such that F = RU; see Halmos [5],

Section 83.
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The eigenvalues λ1, λ2, λ3 of U and V coincide. Let the corresponding orthonormal

eigenvectors of U and V be {u1,u2,u3} and {v1,v2,v3}. Then

U =
3∑
i=1

λiui ⊗ ui, V =
3∑
i=1

λivi ⊗ vi, R =
3∑
i=1

vi ⊗ ui. (1.118)

The eigenvectors are related by vi = Rui. Observe from (1.117) and (1.118), together

with (1.72), that F has the representation

F =
3∑
i=1

λivi ⊗ ui. (1.119)

Observe that both bases {u1,u2,u3} and {v1,v2,v3} appear in the right-hand side of

(1.119) and so the scalar coefficients of vi ⊗ ui are not the components of F in either

basis (except in the special case where these bases are identical).

Scalar product of two tensors.

As noted previously, the set of all linear transformations on V is a nine-dimensional vector

space we denote by Lin. One can define a scalar product on the vector space Lin by

A ·B := tr (ABT ) for all tensors A,B ∈ Lin; (1.120)

see Problem 1.59 for a justification of this definition and for various properties of the scalar

product.

Notation: Since we use lower case boldface letters to denote vectors and upper case boldface

letters to denote tensors, it will usually be clear as to whether a dot between two symbols

refers to the scalar product between vectors or between tensors. Some authors denote the

scalar product between tensors by a colon as in A : B.

The magnitude (norm) of a tensor A is denoted by |A| and defined by

|A| = (A ·A)1/2 =
[
tr (AAT )

]1/2
. (1.121)

According to item (d) of Problem 1.59,

|A| = 0 if and only if A = 0; (1.122)

see also (1.135). If A ·B = 0 for two non-null tensors A and B, we say that A is orthogonal

to B.
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A useful identity for all tensors A,B,C ∈ Lin is (Problem 1.14)

AB ·C = B ·ATC = A ·CBT . (1.123)

Also, for any symmetric tensor S and skew-symmetric tensor W (Problem 1.4.16)

S ·W = 0. (1.124)

Exercise: For any tensor A and vectors x and y show that

A · (x⊗ y) = Ay · x, (1.125)

where the scalar product on the left is between two tensors while that on the right is between two vectors.

1.4.2 Worked examples.

Problem 1.4.11. (Tensor algebra)

(a) For any skew-symmetric tensor W, show that

Wx · x = 0 for all vectors x ∈ V. (ii)

(b) If S is a symmetric tensor and

Sx · x = 0 for all vectors x ∈ V, (iii)

show that S = 0.

Note: In contrast, if A is an arbitrary tensor and Ax · x = 0 for all vectors x, this does not imply that

A = 0; only that A is skew-symmetric.

(c) If the tensor A obeys

Ax · y = 0 for all vectors x,y ∈ V, (iv)

show that A = 0. Note as an immediate consequence that if

Ax · y = Bx · y for all vectors x,y ∈ V, (v)

then A = B.

(d) If

A ·B = 0 for all tensors B ∈ Lin (vi)

show that A = 0.

(e) If

A ·B = 0 for all symmetric tensors B ∈ Lin, (vii)

show that A is skew-symmetric. It is important to note that (vii) does not imply A = 0.
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Solution:

(a) The result follows from the following calculation:

Wx · x (1.74)
= x ·WTx

(1.80)
= −x ·Wx

(1.51)1= −Wx · x

whence (ii) follows.

(b) Since S is symmetric, it has three real eigenvalues σ1, σ2, σ3 and corresponding orthonormal eigenvectors

s1, s2, s3. Since Sx · x = 0 for all vectors x ∈ V it must necessarily hold for the choice x = s1:

Ss1 · s1 = 0 ⇒ Ss1 · s1 = (σ1s1) · s1 = σ1(s1 · s1) = σ1 = 0.

Thus the eigenvalue σ1 = 0. Similarly the other eigenvalues also vanish. This implies that S = 0.

(c) Since (iv) holds for all vectors y ∈ V it necessarily holds for the vector y = Ax. So we have

Ax ·Ax = 0 for all vectors x ∈ V.

Thus |Ax| = 0 and since the only vector with zero length is the null vector, Ax = o. Since this holds for all

vectors x ∈ V, A = 0 by the definition (1.66)2 of the zero tensor.

(d) Since (vi) holds for all tensors B ∈ Lin it necessarily holds for B = A and so A ·A = 0. By (1.122), this

implies A = 0.

(e) Using the decomposition (1.81) we can write

A = S + W (viii)

where

S =
1

2
(A + AT ), W =

1

2
(A−AT ), (ix)

and so

A ·B = (S + W) ·B = S ·B + W ·B (1.124)
= S ·B.

Equation (vii) thus tells us that

S ·B = 0 for all symmetric tensors B.

Since this is to hold for all symmetric B, and since S is symmetric, it must necessarily hold for the particular

choice B = S. Therefore

S · S = 0.

By (1.122), this implies S = 0 and so from (ix)1

A = −AT

which says that A must be skew-symmetric.
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Problem 1.4.12. (Orthonormal basis for Lin.) Let {e1, e2, e3} be an orthonormal basis for a Euclidean

vector space V and let Lin be the set of all tensors from V→ V. Show that the nine tensors ei⊗ej , i, j = 1, 2, 3,

are

(a) linearly independent, and

(b) orthonormal.

Therefore if we can show that Lin is 9-dimensional (this is addressed in Problem 1.24), then the nine tensors

ei ⊗ ej , i, j = 1, 2, 3, form an orthonormal basis for Lin.

Solution:

(a) To show that the tensors ei ⊗ ej are linearly independent we must show that the only scalars αij for

which

αijei ⊗ ej = 0 (i)

are αij = 0. Suppose (i) holds for some scalars αij . Operating (i) on the vector ek gives

αij(ei ⊗ ej)ek = o ⇒ αij(ej · ek)ei = o ⇒ αijδjkei = o ⇒ αikei = o. (ii)

Taking the scalar product of (ii) with e` gives αikei · e` = αikδi` = α`k = 0. Thus the tensors ei ⊗ ej are

linearly independent.

(b) To show that two tensors A and B are orthogonal we must show that A ·B = 0 which by (1.120) requires

tr(ABT ) = 0. Consider the two tensors ei ⊗ ej and ek ⊗ e`. Their scalar product is

(ei ⊗ ej) · (ek ⊗ e`) = tr
[
(ei ⊗ ej)(ek ⊗ e`)

T
]

(1.77)
= tr

[
(ei ⊗ ej)(e` ⊗ ek)

]
(1.72)

= tr
[
(ej · e`)(ei ⊗ ek)

]
=

= (ej · e`) tr
[
(ei ⊗ ek)

]
(1.105)

= (ej · e`) (ei · ek) = δikδj`

Thus

(ei ⊗ ej) · (ek ⊗ e`) = δikδj`. (1.126)

Therefore if (ei ⊗ ej) 6= (ek ⊗ e`), i.e. i 6= k and j 6= `, we have (ei ⊗ ej) · (ek ⊗ e`) = 0 and so each of these

tensors is orthogonal to the others. On the other hand if (ei ⊗ ej) = (ek ⊗ e`), i.e. i = k and j = `, we

have (ei⊗ ej) · (ek ⊗ e`) = 1 and so the magnitude of each tensor is unity. Thus the nine tensors ei⊗ ej are

orthonormal.

Problem 1.4.13. (Tensor algebra.) Two symmetric tensors A and B have the same eigenvalues. This does

not imply that B = A. However it does imply that there is an orthogonal tensor Q such that B = QAQT .

Prove this.

Solution: Let λ1, λ2, λ3 be the eigenvalues of A and B, and let a1,a2,a3 and b1,b2,b3 be the corresponding

eigenvectors. Since A and B are symmetric, the eigenvectors can be chosen so each set is orthonormal:

ai · aj = δij , bi · bj = δij . (i)
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The tensors A and B can be represented in spectral form as

A =

3∑
i=1

λiai ⊗ ai, B =

3∑
i=1

λibi ⊗ bi. (ii)

Whenever an eigenvalue appears in an equation in this problem we will suspend the summation convention

(as we have in (ii)) and display the summation explicitly. (We do this because the summation is over an

index that appears three times.)

Since the bases {a1,a2,a3} and {b1,b2,b3} are orthonormal, it should not be surprising if the tensor

that maps one into the other is orthogonal and perhaps this is the tensor Q we are after. Define the tensor

Q by

Q = bk ⊗ ak, (iii)

and observe that

Qai = (bk ⊗ ak)ai = (ak · ai)bk = δkibk = bi. (iv)

Therefore Q maps each ai → bi and thus the basis {a1,a2,a3} into the basis {b1,b2,b3}. That Q is

orthogonal follows from

QTQ = (bi ⊗ ai)
T

(bj ⊗ aj)
(1.77)

= (ai ⊗ bi) (bj ⊗ aj) =

(1.72)
= (bi · bj)(ai ⊗ aj)

(i)
= δij(ai ⊗ aj)

(∗)
= ai ⊗ ai

(1.71)
= I,

where in step (∗) we used the substitution rule.

It can now be readily shown that B = QAQT :

B
(ii)
=

3∑
i=1

λibi ⊗ bi
(iv)
=

3∑
i=1

λiQai ⊗Qai
(1.78)

=

3∑
i=1

λiQ(ai ⊗ ai)Q
T = Q

(
3∑
i=1

λi(ai ⊗ ai)

)
QT (ii)

= QAQT .

1.4.3 Components of a tensor in a basis.

A few brief videos on the use of indicial notation in tensor algebra can be found at

https://www.dropbox.com/sh/lqj7j139bnwf4k3/AADAVAruud1tPrMA2FU7dN8Fa?dl=0.

– Let Lin be the set of all tensors from the vector space V→ V. Problem 1.24 shows that

the dimension of Lin is 9, and Problem 1.4.12 showed that ei⊗ej, i, j = 1, 2, 3, are nine

orthonormal tensors in Lin (where as usual {e1, e2, e3} is an orthonormal basis for V).

Therefore these 9 tensors form an orthonormal basis for Lin. Consequently, as noted

previously, given any tensor A, there is a unique set of nine scalars Aij such that

A = Aij ei ⊗ ej. (1.127)

The Aij’s are the components of A in this basis.

https://www.dropbox.com/sh/lqj7j139bnwf4k3/AADAVAruud1tPrMA2FU7dN8Fa?dl=0
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– Since the basis of nine tensors is orthonormal, one can derive the following formula for

the components Aij (show this):

Aij = (Aej) · ei. (1.128)

This says that the ith component of the vector Aej is Aij which can be equivalently

stated as

Aej = Aijei. (1.129)

Remark: We know that a tensor is characterized by the way it transforms every vector

in V. Since any vector can always be expressed in terms of the basis vectors, it follows

that in order to define a tensor A it is sufficient to (only) know how A transforms the

basis vectors, i.e. to know Aej for j = 1, 2, 3. According to (1.129) (and also (1.128))

the nine scalars Aij do this.

Exercise: If a and b have components ai and bi, show that the components of the tensor a⊗ b are

(a⊗ b)ij = aibj . (1.130)

If A and x have components Aij and xi, show that the ith component of the vector Ax is

(Ax)i = Aijxj . (1.131)

If the tensors A and B have components Aij and Bij respectively, show that the i, j component of the tensor

AB is

(AB)ij = AikBkj . (1.132)

Exercise: If Q is an orthogonal tensor, show that

QikQjk = QkiQkj = δij . (1.133)

Exercise: If the tensors A and B have components Aij and Bij in some basis, show that

A ·B = AijBij , (1.134)

|A| = (A ·A)
1/2

= (AijAij)
1/2

=
(
A2

11 +A2
12 +A2

13 + . . .+A3
33

)1/2

. (1.135)

It follows from (1.135) that |A| = 0 if and only if every component Aij = 0, i.e. if and only if A = 0.

Moreover, if |A| → 0 then each Aij → 0.

– The components of the identity tensor I in any basis are δij. This is reflected in (1.71).



50 CHAPTER 1. BRIEF REVIEW OF MATHEMATICAL PRELIMINARIES

– The components Aij of a tensor A in a basis {e1, e2, e3} can be assembled into a square

matrix:

[A] =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (1.136)

The components Aij depend on both the tensor A and the choice of basis.

– Once a basis {e1, e2, e3} is chosen and fixed, there is a unique matrix [A] associated

with any given tensor A; and conversely there is a unique tensor A associated with any

given square matrix [A] such that the components of A in {e1, e2, e3} are [A]. Thus,

once the basis is fixed, there is a one-to-one correspondence between square matrices

and tensors. Just as for vectors, the fundamental notion of a tensor stands on its own,

without the need to refer to its components in a basis. For example, the strain (tensor)

at a particle does not depend on a basis.

– If [F ] is the matrix of components of F in some basis, then [F ]−1 is the matrix of

components of F−1 in that basis (with F−1 defined as on page 32).

– If [A] is the matrix of components of A in some basis, one can show from (1.90), (1.73)

and (1.39) that (Problem 1.4.15)

det A = det[A]. (1.137)

Observe that we used (1.90), not (1.137), as the definition of det A. This is because the

components of a tensor depend on the choice of basis. Therefore det[A] may depend

on the choice of basis whereas the definition of det A in (1.90) does not. See Problem

1.6.1 for further discussion.

Similarly, one can show that

tr A = tr[A] = Aii. (1.138)

Again, we used (1.103), not (1.138), to define trA because tr[A] may depend on the

choice of basis. See Problem 1.6.1 for further discussion.

– Various algebraic operations on vectors and tensors correspond exactly to analogous

matrix operations on the associated matrices of components (once a basis has been

chosen). As an example suppose that y = Ax. Then by (1.131),

y = Ax ⇔ {y} = [A]{x} ⇔ yi = Aijxj, (1.139)
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where the elements of the column matrices {x} and {y} are the components of x and

y respectively. Similarly if C = AB, it follows from (1.132) that

C = AB ⇔ [C] = [A][B] ⇔ Cij = AikBkj. (1.140)

– Suppose [A] and [A′] are the matrices of components of A in any two orthonormal

bases. Then one can show that tr[A] = tr[A′] and det[A] = det[A′] (Problem 1.6.1).

Consequently, though the respective statements det A = det[A] and trA = tr[A] in

(1.137) and (1.138) involve components in a basis, they are in fact independent of the

choice of basis and so could have been used to define the trace and determinant.

Exercise: Work Problem 1.4.7 using components.

1.4.4 Worked examples.

Problem 1.4.14. According to Problem 1.11, the tensor Q describing a rotation through an angle θ about

a unit vector n is defined by

Qx = cos θ x + (1− cos θ)(n · x)n + sin θ (n× x) for all x ∈ V. (i)

Calculate the components of Q in a basis {e1, e2, e3} in the special case where the axis of rotation n is e3.

Solution: We shall use (1.129) to calculate the components Qij . Taking x = ej and n = e3 in (i) yields

Qej = cos θ ej + (1− cos θ)δ3je3 + sin θ e3jkek. (ii)

Therefore

Qe1 = cos θ e1 + sin θ e31kek = cos θ e1 + sin θ e312e2 = cos θ e1 + sin θ e2,

Qe2 = cos θ e2 + sin θ e32kek = cos θ e2 + sin θ e321e1 = cos θ e2 − sin θ e1,

Qe3 = cos θ e3 + (1− cos θ)e3 + sin θ e33kek = e3.


Therefore we can read off the components of Q from this using (1.129) to be

[Q] =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . �

Problem 1.4.15. The determinant of a tensor A was defined in (1.90). Show that det A = det[A] where

[A] is the matrix of components of A in a basis.
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Solution: Let a,b, c be an arbitrary set of linearly independent vectors, and let ai, bi, ci and Aij be the

components of these vectors and A in a basis. Then (motivated by the numerator of (1.90)) we evaluate the

quantity (Aa×Ab) ·Ac:

(Aa×Ab) ·Ac
(1.58)

= (Aa×Ab)i (Ac)i
(1.61)

= eijk (Aa)j (Ab)k (Ac)i =

(1.131)
= eijk (Ajm am) (Akn bn) (Ais cs) = eijk AisAjmAknam bn cs.

The identity (1.40) for the determinant of a matrix, esmn det [A] = eijk AisAjmAkn, allows us to write this

as
(Aa×Ab) ·Ac = esmn det[A] am bn cs = det[A] esmn am bn cs

(1.61)
= det[A] (a× b)s cs

(1.58)
= det[A] (a× b) · c.

(i)

Since a,b, c, are linearly independent it follows from (1.52) that (a× b) · c 6= 0. Thus, comparing this with

(1.90) shows that det A = det[A].

Aside: Observe from (i) that if A is nonsingular so that det A 6= 0, then (Aa ×Ab) ·Ac 6= 0 and so by

(1.52) the three vectors Aa,Ab,Ac are also linearly independent.

Problem 1.4.16. For any symmetric tensor S and skew-symmetric tensor W show that

S ·W = 0. (1.141)

Solution: The result follows immediately by writing (1.141) in terms of components and then using the result

in Problem 1.2.2.

Problem 1.4.17. An orthogonal tensor was defined in (1.95) as a tensor that preserves length, i.e. Q is

orthogonal if

|Qx| = |x| for all vectors x ∈ V. (i)

Show that an orthogonal tensor is nonsingular and that

QT = Q−1. (ii)

Solution 1: (Using components in a basis.) It follows from (i) that

Qx ·Qx = x · x ⇒ QijQikxjxk = xkxk.

Since this holds for all x1, x2, x3 we may differentiate it with respect to xp to get

QijQik
∂

∂xp
(xjxk) =

∂

∂xp
(xkxk) ⇒ QijQik(δjpxk + xjδpk) = 2δpkxk,

which after using the substitution rule yields QipQikxk +QijQipxj = 2xp. Changing the dummy subscript

j → k in the second term now leads to

QipQikxk = xp.
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Differentiating this with respect to xq yields

QipQikδkq = δpq ⇒ QipQiq = δpq ⇒ QTpiQiq = δpq ⇒ QTQ = I.

On taking the determinant of this equation we get det Q = ±1 and so det Q 6= 0 which implies that Q is

nonsingular. Post-multiplying both sides of the preceding equation by Q−1 now yields (ii).

Solution 2: (Without using components in a basis.) To show that Q is nonsingular we must show that the

only vector x for which Qx = o is x = o. Suppose Qx = o. Then |Qx| = 0 and so |x| = 0 by (i). This

implies that x = o since the only vector with zero length is the null vector; see (1.48). Therefore the only

vector x for which Qx = o is the null vector and so by definition (1.85), Q is nonsingular.

Next we write |Qx|2 = |x|2 as Qx ·Qx = x · x which because of (1.74) implies QTQx · x = x · x. Thus

(QTQ− I)x · x = 0 for all vectors x ∈ V. (iii)

Recall from Problem 1.4.11(c) that if Sx · x = 0 for all vectors x ∈ V and S is a symmetric tensor then

S = 0. Since QTQ− I is symmetric, it now follows that

QTQ− I = 0. (iv)

Operating on both sides of (iii) with Q−1 (we know that Q is nonsingular so Q−1 exists) gives the desired

result Q−1 = QT .

1.5 Invariance. Isotropic functions.

Consider two orthonormal bases {e1, e2, e3} and {e′1, e′2, e′3}. The orthogonal tensor Q =

e′1 ⊗ e1 + e′2 ⊗ e2 + e′3 ⊗ e3 maps the first into the second: Qek = e′k.

− It can be readily verified that for any vector v, the components of Qv in the basis

{e′1, e′2, e′3} equal the components of v in the basis {e1, e2, e3}. This is not surprising since

here we have transformed both the vector v and the basis {e1, e2, e3} by the same orthogonal

tensor Q to get Qv and {e′1, e′2, e′3}.

− If we think of a basis as an “observer” who sees the vector through its components in that

basis, then the observer {e1, e2, e3} sees the vector v exactly as the observer {e′1, e′2, e′3} sees

the vector Qv.

− Likewise for any tensor C, the components of QCQT in the basis {e′1, e′2, e′3} equal the

components of C in the basis {e1, e2, e3}. Thus the observer {e1, e2, e3} sees the tensor C

exactly as the observer {e′1, e′2, e′3} sees the tensor QCQT .
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Isotropic function of a vector:

− A scalar-valued function ϕ(v) is said to be isotropic (or invariant) if

ϕ(Qv) = ϕ(v) for all orthogonal Q. (1.142)

An example of an isotropic function is

ϕ(v) = |v|2 = v · v.

− Let vi be the components of v in the basis {e1, e2, e3}. Then there is an associated function

ϕ̂(v1, v2, v3) defined on R3 such that

ϕ(v) = ϕ̂(v1, v2, v3).

For instance in the case of the preceding example ϕ(v) = v · v,

ϕ̂(v1, v2, v3) = v2
1 + v2

2 + v2
3.

When ϕ(v) is isotropic, the function ϕ̂(v1, v2, v3) does not depend on the basis in the sense

that

ϕ̂(v′1, v
′
2, v
′
3) = ϕ̂(v1, v2, v3),

where v′1, v
′
2, v
′
3 are the components of v in the basis {e′1, e′2, e′3}. Note that it is the same

function ϕ̂ that appears on both side of this equation and so every observer {e1, e2, e3} sees

an isotropic function identically. In the example above,

ϕ̂(v′1, v
′
2, v
′
3) = (v′1)2 + (v′2)2 + (v′3)3 = v2

1 + v2
2 + v2

3 = ϕ̂(v1, v2, v3).

− Representation theorem. Corresponding to any isotropic scalar-valued function ϕ(v) there

exists a function ϕ(·) such that

ϕ(v) = ϕ(|v|).

Isotropic functions of a tensor:

− A scalar-valued function ϕ(C) defined for all symmetric tensors C is said to be isotropic

(or invariant) if

φ(C) = φ(QCQT ) for all orthogonal tensors Q. (1.143)

An example of such a function is (Problem 1.5.2)

ϕ(C) = tr C2 for all symmetric C ∈ Lin.
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− Let Cij be the components of C in the basis {e1, e2, e3}. Then there is an associated

function ϕ̂(C11, C12, . . . , C32, C33) defined on R9 such that

ϕ(C) = ϕ̂(C11, C12, . . . , C32, C33).

For the example ϕ(C) = tr C2,

ϕ̂(C11, C12, . . . , C32, C33) = C2
11 + C2

12 + . . .+ C2
32 + C2

33.

When ϕ(C) is isotropic, the function ϕ̂(C11, C12, . . . , C32, C33) does not depend on the basis

in the sense that

ϕ̂(C11, C12, . . . , C32, C33) = ϕ̂(C ′11, C
′
12, . . . , C

′
32, C

′
33),

where C ′ij are the components of C in the basis {e′1, e′2, e′3}. Every observer {e1, e2, e3} sees

an isotropic function identically.

− The three principal scalar invariants I1(C), I2(C), I3(C) introduced in (1.107) are isotropic

functions. (Problem 1.5.2.) It is because of this invariance that they are called “invariants”,

the reason for the adjective “principal” being that they are the particular invariants that

appear in the characteristic polynomial (1.106).

− Representation theorem. Corresponding to any isotropic scalar-valued function ϕ(C) of a

symmetric tensor C there exists a function ϕ(·, ·, ·) such that

ϕ(C) = ϕ(I1(C), I2(C), I3(C)). (1.144)

− A scalar-valued function ϕ(C,M) defined for all symmetric tensors C and M is said to

be jointly isotropic in its arguments if

ϕ(C,M) = ϕ(QCQT ,QMQT ) for all orthogonal Q. (1.145)

Two examples are given in Problem 1.5.5.

1.5.1 Worked examples.

Problem 1.5.1. Show that the functions

(a) φ(C) = tr Cn where n is a positive integer and (b) φ(C) = det C,

are isotropic.
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Solution: (a) Since

Cn = CC . . .CC︸ ︷︷ ︸
n times

(i)

it follows that

(QCQT )n = QCQTQCQT . . .QCQTQCQT︸ ︷︷ ︸
n times

= QCnQT , (ii)

where we have used QTQ = I. Therefore

φ(QCQT ) = tr
[
(QCQT )n

] (ii)
= tr (QCnQT )

(1.120)
= QCn ·Q (1.123)

= Cn ·QTQ
(1.98)

= Cn · I = tr Cn = φ(C).

Therefore φ(C) = tr Cn is isotropic.

(b) In view of (1.91) and (1.97),

φ(QCQT ) = det QCQT = det Q det C det QT = det C = φ(C),

and so φ(C) = det C is isotropic.

Problem 1.5.2. Show that the principal scalar invariant functions,

I1(C) = tr C, I2(C) =
1

2

[
tr C2 − (tr C)

2
]
, I3(C) = det C, (1.146)

are isotropic i.e. show that

Ii(C) = Ii(QCQT ), i = 1, 2, 3, for all orthogonal Q. (1.147)

Solution: This follows immediately from the results of Problem 1.5.1.

Problem 1.5.3. Consider the scalar-valued function Φ defined for all symmetric tensors C by

Φ(C) = GC ·C (i)

where G is some constant tensor. If Φ(C) is isotropic, what does this say about the form of the tensor G?

Solution: Only the symmetric part of G affects the value of the function Φ and so we might as well assume

G to be symmetric; see Problem (1.15). It follows from (i) that

Φ(QCQT ) = GQCQT ·QCQT (1.123)
= QTGQCQT ·CQT (1.123)

= QTGQCQTQ ·C (1.98)
= QTGQC ·C

Since Φ is isotropic it follows from (1.145), (i) and this that

QTGQC ·C = GC ·C ⇒ (QTGQ−G)C ·C = 0.

This is to hold for all symmetric tensors C and so it follows from part (e) of Problem 1.4.11 that QTGQ−G

must be skew-symmetric:

QTGQ−G = −
(
QTGQ−G

)T
= −

(
QTGQ

)T −G
(1.76)

= −QTGQ−G



1.6. CHANGE OF BASIS. CARTESIAN TENSORS. 57

where we have used the symmetry of G and
(
QT
)
T = Q. Therefore

QTGQ = G.

Since this is to hold for all orthogonal Q it follows from Problem 1.37 that G must be a scalar multiple of

the identity:

G = γI for some scalar constant γ.

Remark: Therefore Φ(C) = GC ·C = γC ·C = γ tr(C2) and so this is consistent with the general represen-

tation (1.144).

Problem 1.5.4. It was shown in Problem 1.5.1 that tr Cn is isotropic for all positive integers n. Express

the principal scalar invariant I3(C) in terms of tr C, tr C2 and tr C3. Do the same for tr C4. Hint: Use the

Cayley-Hamilton theorem (1.108).

Problem 1.5.5. Show that the functions

(a) φ(C,M) = C ·M, and (b) φ(C,M) = C2 ·M.

are jointly isotropic in C and M.

Solution: (a) To show that φ(C,M) = C ·M is isotropic, we proceed as follows:

φ(QCQT ,QMQT ) = QCQT ·QMQT (1.123)
= C ·QTQMQTQ = C ·M = φ(C,M).

(b) That φ(C,M) = C2 ·M is isotropic can be seen from

φ(QCQT ,QMQT ) = (QCQT )2 ·QMQT = (QCQTQCQT ) ·QMQT = QC2QT ·QMQT ,

followed by using (1.123) as in the preceding example.

1.6 Change of basis. Cartesian tensors.

We now look at the components of a vector/tensor in two orthonormal bases and examine

how these components are related. The vector/tensor stays fixed while the basis changes.
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1.6.1 Two orthonormal bases.

We first make some observations on the relation between the two bases. In accordance with

the standard way in which this topic is discussed in the literature, let QT be the orthogonal

tensor that maps the orthonormal basis {e1, e2, e3} into the orthonormal basis {e′1, e′2, e′3}:

e′i = QTei, ei = Qe′i. (1.148)

One can readily show that the components of Q in the two bases coincide,

Q = Qijei ⊗ ej = Qije
′
i ⊗ e′j,

and that

Qij = e′i · ej. (1.149)

Given the two bases, equation (1.149) provides a formula for calculating the elements Qij of

the matrix of components [Q]. Specifically, Qij is the cosine of the angle between the basis

vectors e′i and ej.

Since Q, and therefore [Q], is orthogonal,

[Q][Q]T = [Q]T [Q] = [I], QikQjk = QkiQkj = δij. (1.150)

If one basis can be rotated into the other as is the case if both bases are right-handed or both

are left-handed, then [Q] is proper orthogonal (det[Q] = +1). Otherwise [Q] is improper

orthogonal (det[Q] = −1).

Exercise: Show that

e′i = Qijej , ei = Qjie
′
j , (1.151)

1.6.2 Vectors: 1-tensors.

– Let vi and v′i be the components of the same vector v in the respective bases {e1, e2, e3}
and {e′1, e′2, e′3}:

vi = v · ei, v′i = v · e′i.

This is illustrated in Figure 1.5.
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Figure 1.5: Components {v1, v2, v3} and {v′1, v′2, v′3} of the same vector v in two different bases.

– These components are related by (Exercise)

v′i = Qijvj, {v′} = [Q]{v},

and equivalently

vi = Qjiv
′
j, {v} = [Q]T{v′}.

– A quantity whose components vi and v′i in (any) two orthonormal bases are related by

v′i = Qijvj, vi = Qjiv
′
j,

{v′} = [Q]{v}, {v} = [Q]T{v′},

 (1.152)

is called a 1st-order cartesian tensor or 1-tensor.

Observe that if we know the components of a 1-tensor in one basis, its components in

any other basis can be calculated using (1.152).

1.6.3 Linear transformations: 2-tensors.

– Let Aij and A′ij be the respective components of the same linear transformation A in

the two bases {e1, e2, e3} and {e′1, e′2, e′3}:

Aij = ei · (Aej), A′ij = e′i · (Ae′j).

– These components are related by (Exercise)

A′ij = QipQjqApq, [A′] = [Q][A][Q]T ,

the inverse relation being

Aij = QpiQqjA
′
pq, [A] = [Q]T [A′][Q].
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– An entity whose components Aij and A′ij in every two orthonormal bases are related

by

A′ij = QipQjqApq, Aij = QpiQqjA
′
pq,

[A′] = [Q][A][Q]T , [A] = [Q]T [A′][Q],

 (1.153)

is called a 2nd-order cartesian tensor or a 2-tensor.

Observe that if we know the components of a 2-tensor in one basis, its components in

any other basis can be calculated using (1.153).

Exercise: Show that the components of the identity 2-tensor I in every basis are δij .

1.6.4 n-tensors.

The concept of an n-tensor can be introduced analogously. Let T be an entity that is defined

in a given basis {e1, e2, e3} by a set of 3n ordered numbers Ti1i2....in . The numbers Ti1i2....in
are called the components of T in the basis {e1, e2, e3}. For example if T is a scalar, 1-

tensor or 2-tensor, it is represented by a set of 30, 31 or 32 ordered numbers respectively. Let

{e′1, e′2, e′3} be a second basis related to the first one by an orthogonal matrix [Q] as described

by (1.151). Let T′i1i2....in be the components of the entity T in the second basis. If for every

choice of bases these two sets of components are related by

T′i1i2....in = Qi1j1 Qi2j2 .... Qinjn Tj1j2....jn (1.154)

the entity T is said to be an n-tensor. Thus, the components of a tensor in every basis may

be determined if its components in any one basis are known.

The quotient rule states that if (TB)i1i2..in is an n-tensor for every m-tensor Bj1j2...jm ,

then T is an `-tensor where

(TB)i1i2..in = Tk1k2...k` Bj1j2...jm . (1.155)

Some of the subscripts on the right-hand side of (1.155) maybe repeated. This is called the

quotient rule (since it appears to say that the ratio of two tensors is a tensor).



1.6. CHANGE OF BASIS. CARTESIAN TENSORS. 61

1.6.5 Worked examples.

Problem 1.6.1. Let [A] and [A′] be the components of a 2-tensor A in two orthonormal bases. In general,

[A] 6= [A′]. Show that:

(a) If [A] is symmetric, then so is [A′]:

[A] = [A]T ⇔ [A′] = [A′]T . (1.156)

(b) The trace of the matrices [A] and [A′] are equal:

tr [A′] = tr [A]. (1.157)

(c) The determinants of the matrices [A] and [A′] are equal:

det [A′] = det [A]. (1.158)

Remark: Thus, the three characteristics symmetry, trace and determinant are independent of the choice of

basis. Therefore there is no ambiguity in defining

(a) a tensor to be symmetric if its matrix of components is symmetric,

(b) the trace of a tensor to be the trace of its matrix of components, and

(c) the determinant of a tensor to be the determinant of its matrix of components.

Solution:

(a) Using the properties ([B][C])T = [C]T [B]T and ([B]T )T = [B] we have

[A′]T
(1.153)

=
(
[Q][A][Q]T

)T
= [Q][A]T [Q]T = [Q][A][Q]T = [A′]. �

(b)

tr[A′] = A′ii
(1.153)

=
(
[Q][A][Q]T

)
ii

= QijAjkQ
T
ki = QijAjkQik = QijQikAjk

(1.133)
= δjkAjk = Ajj = tr[A]. �

(c) Using the properties det([B][C]) = det[B] det[C] and det([B]T ) = det[B] we have

det[A′]
(1.153)

= det
(
[Q][A][Q]T

)
= det[Q] det[A] det[Q]T =

(
det[Q]

)2
det[A] = det[A]. �

Problem 1.6.2. The Kronecker delta obeys

δij = QipQjqδpq (i)

for all orthogonal matrices [Q] which follows from the substitution rule and (1.133). Show that the Levi-

Civita symbol obeys

eijk = ±QipQjqQkrepqr (ii)
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for all orthogonal matrices [Q] where the + and − signs hold if [Q] is proper and improper orthogonal

respectively.

Remark: If equation (ii) had held with the ± replaced by + we would have used the term Levi-Civita tensor.

Perhaps you have been wondering why we speak of the Levi-Civita symbol and not the Levi-Civita tensor!

Solution: Equation (ii) follows immediately upon taking [A] = [Q] in (1.40), multiplying both sides by

QapQbqQcr and using (1.133).

Problem 1.6.3. Consider a scalar-valued function φ(A). Let [A] be the matrix of components of A in an

arbitrary orthonormal basis {e1, e2, e3}. Then, there is a function φ̂(·) defined on the set of all 3×3 matrices

such that φ(A) = φ̂([A]). Note that the function φ̂ depends on the choice of basis.

Let {e′1, e′2, e′3} be a second orthonormal basis and let [A′] be the matrix of components of A in this basis.

If φ(A) is an isotropic function, show that

φ̂([A]) = φ̂([A′]),

where the function φ̂ is the same on both sides.

Problem 1.6.4. The triplet of orthonormal vectors {e1, e2, e3} is carried into the set of vectors {e′1, e′2, e′3}
by a tensor R:

e′1 = Re1, e′2 = Re2, e′3 = Re3. (1.159)

Show that

(a) the set of vectors {e′1, e′2, e′3} is orthonormal if and only if R is orthogonal.

Assume from hereon that R is orthogonal.

(b) Show that R can be expressed as

R = e′i ⊗ ei = e′1 ⊗ e1 + e′2 ⊗ e2 + e′3 ⊗ e3. (1.160)

Note that (1.71) is a special case of this.

(c) If {e1, e2, e3} and {e′1, e′2, e′3} are both right-handed (or both left-handed), show that R is proper

orthogonal (and therefore represents a rotation). If one is right-handed and the other left-handed,

show that R is improper orthogonal.

(d) If [R] and [R′] are the matrices of components of the tensor R in the respective bases {e1, e2, e3} and

{e′1, e′2, e′3}, show that [R] = [R′]; and
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Solution:

(a) Suppose that R is orthogonal. To show that the triplet of vectors {e′1, e′2, e′3} is orthonormal we must

show that e′i · e′j = δij . This follows from

e′i · e′j
(1.159)

= Rei ·Rej
(1.74)

= RTRei · ej
(1.98)

= ei · ej = δij . (i)

where in the last step we used the fact that {e1, e2, e3} is an orthonormal set of vectors.

Conversely suppose that {e′1, e′2, e′3} is orthonormal. Then it is left as an exercise to show that R is orthog-

onal.

(b)

e′i ⊗ ei
(1.159)

= Rei ⊗ ei = R
(
ei ⊗ ei

) (1.71)
= RI = R.

(d) By the definition (1.128) of the components of a tensor in a basis,

Rij = ei ·Rej , R′ij = e′i ·Re′j . (ii)

Therefore

R′ij = e′i ·Re′j
(1.159)

= Rei ·RRej
(1.74)

= ei ·RTRRej
(1.98)

= ei ·Rej
(ii)1
= Rij .

Problem 1.6.5. (See also Problem 1.32.) When we analyze the bending deformation of a block (see page

167), it will be natural to use rectangular cartesian coordinates in the reference configuration and cylindrical

polar coordinates in the deformed configuration. In such settings we will work simultaneously with two

bases. That is the motivation for this problem.

Given two orthonormal bases {e1, e2, e3} and {e′1, e′2, e′3}, consider the tensor F that has the representation

F = Φije
′
i ⊗ ej . (i)

Note that both bases appear on the right-hand side of (i) whence Φij are not the components of F in either

basis.

(a) If xi are the components of a vector x in the basis {e1, e2, e3}, calculate the components of the vector

y = Fx in the basis {e′1, e′2, e′3}.

(b) Derive a representation analogous to (i) for FT .

(c) Calculate the components of C = FTF in the basis {e1, e2, e3} and those of B = FFT in the basis

{e′1, e′2, e′3}.

(d) Suppose that the two bases are related by e′i = Qijej , ei = Qjie
′
j where [Q] is an orthogonal matrix.

Calculate the components of y and B in the basis {e1, e2, e3} and the components of C in the basis

{e′1, e′2, e′3}.

(e) Calculate the components of F in both bases.
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Solution:

(a)

y = Fx = (Φije
′
i ⊗ ej)(xpep) = Φijxp(e

′
i ⊗ ej)ep

(1.69)
= Φijxp(ej · ep)e′i = Φijxpδjpe

′
i = Φipxp e′i, �

and so we can write

y = y′ie
′
i where y′i = Φipxp, {y′} = [Φ]{x};

here y′i are the components of y in the basis {e′1, e′2, e′3}. Observe that the vector equation y = Fx is

equivalent to the matrix equation {y′} = [Φ]{x} where {y′} are the components of y in one basis and {x}
are the components of x in the other basis.

(b) To determine the transpose we use the definition (1.74), i.e. Fx · y = x · FTy. Using (i),

Fx · y = Φij(e
′
i ⊗ ej)x · y = Φij(ej · x)(e′i · y)

(∗)
= Φji(ei · x)(e′j · y) = Φji(ei ⊗ e′j)y · x,

where in step (∗) we changed the dummy subscripts. Therefore

FT = Φji(ei ⊗ e′j)
(∗∗)
= Φij(ej ⊗ e′i), �

where in step (∗∗) we have changed the dummy subscripts again.

(c) First,

C = FTF = (Φpqe
′
p ⊗ eq)

T (Φije
′
i ⊗ ej) = (Φpqeq ⊗ e′p)(Φije

′
i ⊗ ej) = ΦpqΦij(eq ⊗ e′p)(e

′
i ⊗ ej) =

(1.72)
= ΦpqΦij(e

′
p · e′i)(eq ⊗ ej) = ΦpqΦijδpi(eq ⊗ ej) = ΦpqΦpj(eq ⊗ ej) = ΦpiΦpj(ei ⊗ ej),

and so we can write

C = Cij(ei ⊗ ej) where Cij = ΦpiΦpj , [C] = [Φ]T [Φ]; �

here Cij are the components of C in the basis {e1, e2, e3}.

Second,

B = FFT = (Φpqe
′
p ⊗ eq)(Φije

′
i ⊗ ej)

T = (Φpqe
′
p ⊗ eq)(Φijej ⊗ e′i).

(1.72)
= ΦpqΦij(eq · ej)(e′p ⊗ e′i) =

= ΦpqΦijδqj(e
′
p ⊗ e′i) = ΦpqΦiq(e

′
p ⊗ e′i) = ΦiqΦjq(e

′
i ⊗ e′j),

and so we can write

B = B′ij(e
′
i ⊗ e′j) where B′ij = ΦiqΦjq, [B′] = [Φ][Φ]T ; �

here B′ij are the components of B in the basis {e′1, e′2, e′3}.

Observe that the components of C were naturally expressed in the basis {e1, e2, e3} while those of B

have been expressed in the basis {e′1, e′2, e′3}. Moreover, even though [Φ] is not the matrix of components of

F in either basis, [Φ]T [Φ] is the matrix of components of FTF in the basis {e1, e2, e3}, and [Φ][Φ]T is the

matrix of components of FFT in the basis {e′1, e′2, e′3}.
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(d) Exercise!

(e) In order to determine the components of F in the basis {e1, e2, e3} we must express F = Φij e′i ⊗ ej in

the form F = Fij ei ⊗ ej by eliminating e′i in favor of ei. Likewise, to determine the components of F in the

basis {e′1, e′2, e′3} we must express F = Φij e′i ⊗ ej in the form F = F ′ij e′i ⊗ e′j by eliminating ei in favor of

e′i. This can be done by using the relations

e′i = Qijej , ei = Qjie
′
j . (ii)

We now find the components of F in the basis {e1, e2, e3} by using (ii)1 to eliminate e′i:

F = Φije
′
i ⊗ ej

(vi)1
= Φij(Qipep)⊗ ej

(∗)
= ΦkjQkiei ⊗ ej = QkiΦkjei ⊗ ej = ([Q]T [Φ])ijei ⊗ ej = Fijei ⊗ ej

(where in step (∗) we changed the dummy subscripts i→ k and p→ i) and so

[F ] = [Q]T [Φ]. �

Likewise we find the components of F in the basis {e′1, e′2, e′3} by using (ii)2 to eliminate ei:

F = Φije
′
i ⊗ ej

(vi)2
= Φije

′
i ⊗ (Qpje

′
p) = ΦijQpje

′
i ⊗ e′p

(∗)
= ΦikQjke

′
i ⊗ e′j = ([Φ][Q]T )ije

′
i ⊗ e′j = F ′ije

′
i ⊗ e′j

(where in step (∗) we changed the dummy subscripts j → k and p→ j) and therefore

[F ′] = [Φ][Q]T . �

Observe that [Φ] = [Q][F ] = [F ′][Q] i.e. [F ′] = [Q][F ][Q]T .

1.7 Euclidean point space.

It later chapters, when we study the mechanical response of a body, the body will occupy

some region of “physical space”. The quantities of interest, for example the stress, will vary

from point to point within this region. In this section we briefly touch on the connection of

physical space – a Euclidean point space – to a Euclidean vector space.

A Euclidean point space E is a collection of elements that we call points. Corresponding

to each ordered pair of points p, q ∈ E , there is a unique vector
→
pq in an associated Euclidean

vector space V with the properties

→
pq = −→qp and

→
pq =

→
pr +

→
rq,

for all points p, q, r ∈ E . Observe that each point is not a vector but each (ordered) pair

of points is associated with a vector. Geometric characteristics in E , such as distance and
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angle, are derived from the vector space V in a natural way, e.g. the distance between two

points p, q ∈ E is defined as the magnitude of the vector
→
pq, etc. There is no notion of the

addition of two points.

Figure 1.6: Points o, x and y in a Euclidean point space E ; (D is some domain of E). The position vectors

of the points x and y relative to the point o – the origin – are the respective vectors x =
→
ox and y =

→
oy of

the associated Euclidean vector space.

Pick and fix a point o ∈ E as depicted in Figure 1.6. Then, corresponding to each point

x ∈ E there is a unique vector x =
→
ox ∈ V. We refer to x as the position vector of point

x relative to the origin o. Observe that if x and y are the position vectors of points x and

y relative to an origin o, the vector y − x is in fact independent of the choice of origin.

An origin o ∈ E together with an orthonormal basis {e1, e2, e3} for V is referred to as

a frame which we denote by {o; e1, e2, e3}. The components (x1, x2, x3) of the position

vector x in this basis are called the coordinates of the point x in this frame. When the

orthonormal basis {e1, e2, e3} is fixed, we refer to {o; e1, e2, e3} as a rectangular cartesian

frame.

Since the quantities of interest will vary from point to point in the region of space occupied

by the body, they can be treated as functions of the position vector x (it being implicit that

an origin has been chosen).

Let D be a domain in physical space (a Euclidean point space) and let Φ(x) be a scalar-

valued function defined at each point x ∈ D. The function Φ(x) is referred to as a scalar

field on D. Vector- and tensor fields are defined analogously.

Once an origin o ∈ E has been chosen and fixed, there is a one-to-one correspondence

between the points x and the associated position vectors x =
→
ox. Let D be the set of all
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position vectors corresponding to the set of all points in D. Then there is a scalar-valued

function ϕ(x) defined at each position vector x ∈ D such that

ϕ(x) = Φ(x), x =
→
ox,

for all x ∈ D. Since the effect of a change of origin from say o to o′ is to add the vector
→
oo′ to all position vectors, the fact that ϕ depends on the choice of origin is not important.

Therefore from hereon we make no distinction between ϕ,D and Φ,D.

1.8 Calculus.

A brief video on the use of indicial notation in tensor calculus can be found at

https://www.dropbox.com/sh/8qugaq4ru0rk4dz/AACgJHFTe6hnUklwcdmUepg2a?dl=0.

1.8.1 Calculus of scalar, vector and tensor fields.

Throughout this section, R is a region in three-dimensional space whose boundary is denoted

by ∂R. The position vector of a generic point in R+ ∂R (with respect to some fixed origin)

is x. We shall consider a scalar field φ(x), a vector field u(x), and a tensor field T(x), each

defined for x ∈ R+ ∂R. The region R+ ∂R, and these fields, are assumed to be sufficiently

regular so as to permit the calculations carried out below.

In this section we shall work primarily with components in a cartesian (i.e. fixed or-

thonormal) basis {e1, e2, e3} in which xi = x · ei, ui = u · ei and Tij = Tej · ei denote

the respective components of x,u and T. In Section 1.8.6 we shall derive corresponding

expressions in cylindrical polar coordinates.

Gradient of a scalar field. First consider the scalar field φ(x) and let g(x) be the vector

field defined by

g(x) · a :=
d

dt
φ(x + ta)

∣∣∣∣
t=0

for all constant vectors a, (i)

https://www.dropbox.com/sh/8qugaq4ru0rk4dz/AACgJHFTe6hnUklwcdmUepg2a?dl=0
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where t is a scalar parameter, or equivalently by7

φ(x + a)− φ(x) = g(x) · a + o(|a|) as |a| → 0. (1.161)

(Here the remainder term o(|a|) is a term that approaches zero faster than |a|.) One refers

to g as the gradient of φ and we introduce the notation g = gradφ or ∇φ.

Since the partial derivative of φ with respect to xi is the derivative of φ(x) in the direction

ei we have
∂φ

∂xi
=

d

dt
φ(x + tei)

∣∣∣∣
t=0

. (ii)

One can show from (i) and (ii) that

g =
∂φ

∂xi
ei. (iii)

Equation (iii) is therefore the representation of gradφ with respect to the cartesian basis:

grad φ = ∇φ =
∂φ

∂xi
ei,

(
gradφ

)
i

=
(
∇φ
)
i

=
∂φ

∂xi
. (1.162)

Gradient of a vector field. Second, consider the vector field u(x) and let G(x) be the

tensor field defined by

G(x)a :=
d

dt
u(x + ta)

∣∣∣∣
t=0

for all constant vectors a, (iv)

where t is a scalar parameter, or equivalently by8

u(x + a)− u(x) = G(x)a + o(|a|) as |a| → 0; (1.163)

G is the gradient of u and we introduce the notation G = grad u or ∇u.

The partial derivative of u with respect to xj is the derivative of u(x) in the direction ei

and so
∂u

∂xj
=

d

dt
u(x + tej)

∣∣∣∣
t=0

. (v)

7We shall make use of this representation when calculating the gradient of a scalar field in cylindrical

polar coordinates in Section 1.8.6 .
8We shall make use of this representation when calculating the gradient of a vector field in cylindrical

polar coordinates in Section 1.8.6 .
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One can show from (iv) and (v) that

G =
∂u

∂xj
⊗ ej =

∂(uiei)

∂xj
⊗ ej =

∂ui
∂xj

ei ⊗ ej. (vi)

Equation (vi) is therefore the representation of grad u with respect to the cartesian basis:

grad u = ∇u =
∂ui
∂xj

ei ⊗ ej,
(
grad u

)
ij

=
(
∇u
)
ij

=
∂ui
∂xj

. (1.164)

Observe that the gradient of a n-tensor field is a n+ 1-tensor field, while (as we see next)

the divergence of a n-tensor field is a n− 1-tensor field.

Divergence and curl of a vector field. The divergence of the vector field u(x) is the

scalar field denoted by div u and defined by

div u = tr (∇u). (1.165)

By (1.164) and (1.165), in cartesian components,

div u =
∂ui
∂xi

. (1.166)

The curl of the vector field u(x) is the vector field denoted by curl u which in cartesian

components is defined by

curl u = eijk
∂uk
∂xj

ei,
(
curl u

)
i

= eijk
∂uk
∂xj

. (1.167)

Divergence and curl of a tensor field. The divergence and curl of the tensor field T(x)

are, respectively, the vector field denoted by div T and the tensor field denoted by curl T

whose cartesian components are defined by(
div T

)
i

=
∂Tij
∂xj

, (1.168)

(
curl T

)
ij

= eipq
∂Tjq
∂xp

. (1.169)

Exercise: Show that the divergence of a tensor field T(x) obeys(
div T

)
· v = div

(
TTv

)
for all constant vectors v,(

div T
)
· v = div(TTv)−T · grad v for all vector fields v(x). (1.170)

Note that TTv is a vector and so div(TTv) refers to the divergence of a vector field.

The Laplacian of the scalar field φ is denoted by ∇2φ or ∆φ and defined as

∇2φ =
∂2φ

∂xi∂xi
. (1.171)
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1.8.2 Divergence theorem.

The divergence theorem allows one to relate a surface integral on the boundary ∂R of a

closed region R to a volume integral over R. In particular, for a scalar field φ(x), a vector

field u(x) and a tensor field T(x) one has, with n(x) being the outward pointing unit vector

at points x on the boundary ∂R,∫
∂R
φn dA =

∫
R

gradφ dV, (1.172)

∫
∂R

u · n dA =

∫
R

div u dV, (1.173)

∫
∂R

Tn dA =

∫
R

div T dV, (1.174)

or, in terms of components, ∫
∂R
φni dA =

∫
R

∂φ

∂xi
dV, (1.175)

∫
∂R
uini dA =

∫
R

∂ui
∂xi

dV, (1.176)

∫
∂R
Tijnj dA =

∫
R

∂Tij
∂xj

dV. (1.177)

For a general field Di1i2...in(x) (which could be the product of various fields) the divergence

theorem gives ∫
∂R

Ti1i2...in nk dA =

∫
R

∂

∂xk
(Ti1i2...in) dV. (1.178)

1.8.3 Localization.

Let R be a bounded regular region of three-dimensional space and suppose that the scalar

field φ(x) is defined and continuous at all x ∈ R+ ∂R. If∫
D
φ(x) dV = 0 for all subregions D ⊂ R, (1.179)

then

φ(x) = 0 at every point x ∈ R. (1.180)
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Since (1.179) holds for all regions D ⊂ R, it is sometimes said to be a global statement, in

contrast to (1.180) that holds at each point in R and so is said to be (the associated) local

statement.

z

ε

Bε(z)

D

Figure 1.7: The region R, a subregion D, the point z and a neighborhood Bε(z) of the point z.

One can prove this by contradiction. Suppose that (1.180) does not hold. This implies

that there is a point, say z ∈ R, at which φ(z) 6= 0. Suppose that φ is positive at this point:

φ(z) > 0. By continuity, φ is necessarily (strictly) positive in some neighborhood of z as

well. Let Bε(z) be a sphere with its center at z and radius ε > 0. We can always choose ε

sufficiently small (and > 0) so that

φ(x) > 0 at all x ∈ Bε(z);

Bε(z) is a sufficiently small neighborhood of z. Since (1.179) holds for all regions D, we may

pick a region D that is a subset of Bε(z). Then φ(x) > 0 for all x ∈ D. Integrating φ over

this D gives ∫
D
φ(x) dV > 0

thus contradicting (1.179). An entirely analogous calculation can be carried out in the case

φ(z) < 0. Thus the starting assumption must be false and (1.180) must hold.

1.8.4 Function of a tensor.

– Let φ(F) be a scalar-valued function defined for all tensors F ∈ Lin. Then there is a

function φ̂ such that

φ(F) = φ̂(F11, F12, F13, F21, F22, F23, F31, F32, F33), (1.181)
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where the Fij’s are the components of F in a fixed orthonormal basis. We let ∂φ/∂F

denote the tensor with components(
∂φ

∂F

)
ij

=
∂φ̂

∂Fij
. (1.182)

– Let φ(C) be a scalar-valued function defined for all symmetric tensors C. Then ∂φ/∂C

must also be symmetric (since φ is only defined for symmetric tensors).

Suppose that in terms of components in a fixed basis we have

φ(C) = φ̂(C11, C12, C13, C21, C22, C23, C31, C32, C33). (1.183)

One must pay some attention when differentiating φ(C) to ensure that ∂φ/∂C is

symmetric. For example consider the function φ̂(C11, C12, . . . C33) = C12. If one

writes ∂φ̂/∂C12 = 1, ∂φ̂/∂C21 = 0, with all other ∂φ̂/∂Cij = 0, the resulting ten-

sor ∂φ/∂C is not symmetric since ∂φ̂/∂C12 6= ∂φ̂/∂C21. Instead, one can symmetrize

φ̂(C11, C12, . . . C33) = C12 by replacing C12 by 1
2
(C12+C21) and writing φ̂(C11, C12, . . . C33) =

1
2
(C12 + C21). When this is differentiated we get ∂φ̂/∂C12 = 1/2, ∂φ̂/∂C21 = 1/2. Al-

ternatively, we can define (∂φ/∂C)12 to be 1
2
(∂φ̂/∂C12 + ∂φ̂/∂C21).

Generalizing this, in the first approach we express the function φ̂ in “symmetric form”

such that

φ̂(C11, C12, C13, C21, C22, C23, C31, C32, C33) = φ̂(C11, C21, C13, C12, C22, C23, C31, C32, C33),

φ̂(C11, C12, C13, C21, C22, C23, C31, C32, C33) = φ̂(C11, C12, C31, C21, C22, C23, C13, C32, C33),

φ̂(C11, C12, C13, C21, C22, C23, C31, C32, C33) = φ̂(C11, C12, C13, C21, C22, C32, C31, C23, C33).

One can achieve such a symmetrization of φ̂ by replacing Cij by 1
2
(Cij + Cji). Then

∂φ/∂C denotes the symmetric tensor with components(
∂φ

∂C

)
ij

=
∂φ̂

∂Cij
=

∂φ̂

∂Cji
. (1.184)

In the second approach we let ∂φ/∂C be the symmetric tensor with components(
∂φ

∂C

)
ij

=
1

2

(
∂φ

∂Cij
+

∂φ

∂Cji

)
. (1.185)

In practice it is easier to use (1.185) than to symmetrize the function. See Problem

1.8.6.
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1.8.5 Worked examples.

Problem 1.8.1. (Vector and tensor fields.) For any tensor field A(x) and vector field u(x) show that

u · div A = div(ATu)−A · grad u. (1.186)

Solution:

Since u and div A are vectors, the left-hand side of (1.186) represents their scalar product:

u · div A = ui (div A)i
(1.168)

= ui
∂Aij
∂xj

=

=
∂

∂xj
(Aijui)−Aij

∂ui
∂xj

(1.164)
=

∂

∂xj
(ATu)j −Aij (grad u)ij =

(1.166)
= div(ATu)−A · grad u �

Problem 1.8.2. (Vector and tensor fields.) Consider the vector field u(x):

u(x) = β
x

r3
, r = |x| 6= 0, (i)

where β is a constant. The tensor field E(x) is related to u(x) by

E =
1

2

(
∇u +∇uT

)
, (ii)

and the tensor field S(x) is related to E(x) by

S = 2µE + λ tr (E) 1, (iii)

where λ and µ are constants. Verify that S(x) satisfies the differential equation:

div S(x) = o, |x| 6= 0. (iv)

Solution: We proceed in a straightforward manner by first substituting (i) into (ii) to calculate E(x); then

substituting E(x) into (iii) to calculate S(x); and finally checking whether this S(x) satisfies (iv).

In terms of components, (ii) can be written as

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (v)

and so we need to calculate ∂ui/∂xj . Since the expression (i) for ui involves r, it is convenient to start by

calculating ∂r/∂xj . Observe by differentiating |x|2 = r2 = xi xi that

2r
∂r

∂xj
= 2

∂xi
∂xj

xi = 2δijxi = 2xj ,

and therefore
∂r

∂xj
=
xj
r
. (vi)
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Now differentiating (i), i.e. ui = βxi/r
3, with respect to xj gives

∂ui
∂xj

=
β

r3

∂xi
∂xj

+ βxi
∂(r−3)

∂xj
= β

δij
r3
− 3β

xi
r4

∂r

∂xj

(vi)
= β

δij
r3
− 3β

xi
r4

xj
r

= β
δij
r3
− 3β

xi xj
r5

.

Substituting this into (v) gives us Eij :

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= β

(
δij
r3
− 3

xi xj
r5

)
. (vii)

Next, substituting (vii) into (iii) gives Sij :

Sij = 2µ Eij + λEkkδij = 2µβ

(
δij
r3
− 3xi xj

r5

)
+ λβ

(
δkk
r3
− 3

xk xk
r5

)
δij

= 2µβ

(
δij
r3
− 3xi xj

r5

)
+ λβ

(
3

r3
− 3

r2

r5

)
δij = 2µβ

(
δij
r3
− 3xi xj

r5

)
.

Finally we use this to calculate ∂Sij/∂xj

1

2µβ

∂Sij
∂xj

= δij
∂

∂xj
(r−3)− 3

r5

∂

∂xj
(xi xj)− 3xi xj

∂

∂xj
(r−5)

= δij

(
− 3

r4

∂r

∂xj

)
− 3

r5
(δij xj + xi δjj)− 3xi xj

(
− 5

r6

∂r

∂xj

)
(vi)
= −3

δij
r4

xj
r
− 3

r5
(xi + 3xi) +

15xi xj
r6

xj
r

= 0.

Therefore ∂Sij/∂xj = 0 which establishes the claim.

Problem 1.8.3. (Divergence theorem.) Show that∫
∂R

x⊗ n dA = vol(R) I,

where vol(R) is the volume of the region R.

Solution: In terms of components in a fixed basis, we have to show that∫
∂R

xinj dA = vol(R) δij .

The result follows immediately by using the divergence theorem:∫
∂R

xinj dA
(1.176)

=

∫
R

∂xi
∂xj

dV =

∫
R
δij dV = δij

∫
R
dV = δijvol(R).
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Problem 1.8.4. (Functions of a tensor.) The scalar-valued functions

I1(C) = tr C, I2(C) =
1

2

[
(tr C)2 − tr (C2)

]
, I3(C) = det C,

are defined for all nonsingular symmetric tensors C. Show that

∂I1
∂C

= I,
∂I2
∂C

= I1 I−C
∂I3
∂C

= I3C
−1. (1.187)

Solution: A direct way in which to establish (1.187) is by working with components and we shall take that

approach in Problem 1.8.5. Here we use an alternative (often very convenient) approach.

Consider a one-parameter family of symmetric tensors C(t) depending smoothly on the parameter t and

let Ċ = d
dtC. Since tr C = I ·C we can write I1(C) = I ·C. Differentiating both sides of this with respect

to t gives
∂I1
∂C
· Ċ = I · Ċ ⇒

(
∂I1
∂C
− I

)
· Ċ = 0.

Since this must hold for all Ċ and the term inside the parenthesis is symmetric and does not depend on Ċ

it follows9 that the term in the parenthesis must vanish. Thus

∂I1
∂C

= I. (i)

Next consider I2. Since tr C2 = C ·C we can write I2 as

I2(C) =
1

2

(
I2
1 (C)−C ·C

)
.

Differentiating both sides with respect to t gives

∂I2
∂C
· Ċ =

1

2

(
2I1

∂I1
∂C
· Ċ− Ċ ·C−C · Ċ

)
=

1

2

(
2I1

∂I1
∂C
· Ċ− 2C · Ċ

)
(i)
= (I1 I−C) · Ċ

which leads to (
∂I2
∂C
− (I1 I−C)

)
· Ċ = 0 ⇒ ∂I2

∂C
= I1 I−C.

Finally consider I3. Differentiating both sides of I3 = det C with respect to t gives

∂I3
∂C
· Ċ =

d

dt
det C

(1.206)
= det C C−T · Ċ = I3 C−1 · Ċ ⇒ ∂I3

∂C
= I3 C−1,

where we have used the fact that C−1 is a symmetric tensor.

Problem 1.8.5. (Functions of a tensor.) Given a function W (C) defined for all symmetric tensors C, define

the function W (F) for all tensors F ∈ Lin by

W (F) = W (C), C = FTF. (i)

Show that
∂W

∂F
= 2F

∂W

∂C
. (ii)

9This claim needs careful attention, e.g. see Section 3.4 of Gurtin et al. [4]
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Solution: In this problem we will work with components. You are encouraged to work this problem using

the approach taken in Problem 1.8.4.

Differentiating (i) and using the chain rule,

∂W

∂Fij
=

∂W

∂Cpq

∂Cpq
∂Fij

. (iii)

However in components, C = FTF reads Cpq = FkpFkq and so

∂Cpq
∂Fij

=
∂

∂Fij
(FkpFkq) =

∂Fkp
∂Fij

Fkq +
∂Fkq
∂Fij

Fkp = δkiδpjFkq + δkiδqjFkp = δpjFiq + δqjFip. (iv)

Substituting (iv) into (iii) and using the substitution rule gives

∂W

∂Fij
=

∂W

∂Cpq

∂Cpq
∂Fij

=
∂W

∂Cpq

[
δpjFiq + δqjFip

]
=

∂W

∂Cjq
Fiq +

∂W

∂Cpj
Fip = 2Fiq

∂W

∂Cqj
.

and so
∂W

∂F
= 2F

∂W

∂C
.

Problem 1.8.6. (Function of a symmetric tensor.) Let f(C) = C2m ·m be a scalar-valued function defined

for all symmetric tensors C, m being a fixed vector. Calculate ∂f/∂C.

Solution: We will start by showing why one must proceed with care in order to ensure that ∂f/∂C is a

symmetric tensor.

On writing f(C) in terms of the components Cij and mi in some fixed cartesian basis:

f(C) = C2m ·m = Cm ·CTm = Cm ·Cm = (Cm)i(Cm)i = CijmjCikmk = CijCikmjmk. (i)

Therefore

∂f

∂Cpq
=

∂

∂Cpq

(
CijCik

)
mjmk = δipδjqCikmjmk + Cijδipδkqmjmk =

= Cpkmqmk + Cpjmjmq = 2Cpjmqmj = 2(Cm)pmq = 2(Cm⊗m)pq

and so we might consider writing
∂f

∂C
= 2Cm⊗m. (ii)

This however would be incorrect since the right-hand side of (ii) is not a symmetric tensor.

To ensure that ∂f/∂C is a symmetric tensor we use (1.185) to define ∂f/∂C as the symmetric tensor

with components (
∂f

∂C

)
pq

=
1

2

(
∂f

∂Cpq
+

∂f

∂Cqp

)
.

Using this on the expression (i) gives

∂f

∂Cpq
=

1

2

(
∂

∂Cpq

(
CijCik

)
mjmk +

∂

∂Cqp

(
CijCik

)
mjmk

)
=

1

2
(2Cpjmqmj + 2Cqjmpmj) =

= Cpjmqmj + Cqjmpmj = (Cm)pmq +mp(Cm)q
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which yields
∂f

∂C
= (Cm)⊗m + m⊗ (Cm)

which is symmetric.

1.8.6 Calculus in orthogonal curvilinear coordinates. An example.

In this section we illustrate working in other orthogonal curvilinear coordinate systems

through some examples using cylindrical polar coordinates. A general treatment of or-

thogonal curvilinear coordinates can be found in Chapter 6 of Volume I.

x1

x2

x3

Figure 1.8: Cylindrical polar coordinates (R,Θ, Z) and the associated basis vectors eR, eΘ, eZ .

The rectangular cartesian coordinates (x1, x2, x3) of a point are related to its cylindrical

polar coordinates (R,Θ, Z) by

x1 = R cos Θ, x2 = R sin Θ, x3 = Z. (i)

As can be seen from Figure 1.8, the basis {eR, eΘ, eZ} associated with the cylindrical polar

coordinates is related to the fixed rectangular cartesian basis {e1, e2, e3} by

eR(Θ) = cos Θ e1 + sin Θ e2, eΘ(Θ) = − sin Θ e1 + cos Θ e2, eZ = e3. (ii)

On differentiating the basis vectors eR, eΘ and eZ with respect to R,Θ and Z we get

∂eR
∂Θ

= eΘ,
∂eΘ

∂Θ
= −eR,

∂eZ
∂Θ

= 0,

∂eR
∂R

=
∂eΘ

∂R
=
∂eZ
∂R

= 0,
∂eR
∂Z

=
∂eΘ

∂Z
=
∂eZ
∂Z

= 0.

(iii)
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From Figure 1.8 we see that the position vector x of a point can be written as

x = x(R,Θ, Z) = R eR + Z eZ , (iv)

and therefore by the chain rule

dx =
∂x

∂R
dR +

∂x

∂Θ
dΘ +

∂x

∂Z
dZ =

(iv)
=

∂

∂R
(R eR + Z eZ)dR +

∂

∂Θ
(R eR + Z eZ)dΘ +

∂

∂Z
(R eR + Z eZ)dZ =

(iii)
= eR dR +ReΘ dΘ + eZ dZ.

It follows by taking the scalar product of this equation with each unit vector eR, eΘ and eZ

that

dR = eR · dx, dΘ =
1

R
eΘ · dx, dZ = eZ · dx. (v)

Example: Gradient of a scalar field. Let ψ(x) = ψ(R,Θ, Z) be a scalar-valued field.

We wish to calculate its gradient, ∇ψ, which we do by relying on the relation dψ = ∇ψ · dx
(see (1.161)). Using the chain-rule on ψ = ψ(R,Θ, Z) gives

dψ =
∂ψ

∂R
dR +

∂ψ

∂Θ
dΘ +

∂ψ

∂Z
dZ =

(v)
=
∂ψ

∂R
(eR · dx) +

1

R

∂ψ

∂Θ
(eΘ · dx) +

∂ψ

∂Z
(eZ · dx) =

=

(
∂ψ

∂R
eR +

1

R

∂ψ

∂Θ
eΘ +

∂ψ

∂Z
eZ

)
· dx,

and therefore, since dψ = ∇ψ · dx, we obtain

∇ψ =
∂ψ

∂R
eR +

1

R

∂ψ

∂Θ
eΘ +

∂ψ

∂Z
eZ . (1.188)

Example: Gradient of a vector field. Let u(x) be a vector field that can be written in

component form as

u = uR(R,Θ, Z)eR + uΘ(R,Θ, Z)eΘ + uZ(R,Θ, Z)eZ . (vi)

We wish to calculate the gradient of u(x) in cylindrical polar coordinates which we do by

making use of the relation du = ∇u dx; see (1.163). First, from (vi) and the chain rule

du =
∂u

∂R
dR +

∂u

∂Θ
dΘ +

∂u

∂Z
dZ. (vii)
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Next, we calculate each term on the right-hand side of (vii). For example,

∂u

∂Θ
dΘ

(vi)
=

∂

∂Θ
(uReR + uΘeΘ + uZeZ) dΘ =

=

(
∂uR
∂Θ

eR + uR
∂eR
∂Θ

+
∂uΘ

∂Θ
eΘ + uΘ

∂eΘ

∂Θ
+
∂uZ
∂Θ

eZ

)
dΘ =

(iii)
=

(
∂uR
∂Θ

eR + uR eΘ +
∂uΘ

∂Θ
eΘ − uΘ eR +

∂uZ
∂Θ

eZ

)
dΘ =

=

(
∂uR
∂Θ
− uΘ

)
dΘ eR +

(
∂uΘ

∂Θ
+ uR

)
dΘ eΘ +

∂uZ
∂Θ

dΘ eZ =

(v)
=

(
∂uR
∂Θ
− uΘ

) (
1

R
eΘ · dx

)
eR +

(
∂uΘ

∂Θ
+ uR

)(
1

R
eΘ · dx

)
eΘ+

+
∂uZ
∂Θ

(
1

R
eΘ · dx

)
eZ =

=
1

R

(
∂uR
∂Θ
− uΘ

)
(eR ⊗ eΘ)dx +

1

R

(
∂uΘ

∂Θ
+ uR

)
(eΘ ⊗ eΘ)dx +

+
1

R

∂uZ
∂Θ

(eZ ⊗ eΘ)dx.

(viii)

Similarly one finds

∂u

∂R
dR =

∂uR
∂R

(eR ⊗ eR)dx +
∂uΘ

∂R
(eΘ ⊗ eR)dx +

∂uZ
∂R

(eZ ⊗ eR)dx. (ix)

∂u

∂Z
dZ =

∂uR
∂Z

(eR ⊗ eZ)dx +
∂uΘ

∂Z
(eΘ ⊗ eZ)dx +

∂uZ
∂Z

(eZ ⊗ eZ)dx. (x)

Therefore combining (vii), (viii), (ix) and (x) yields

du =
∂uR
∂R

(eR ⊗ eR)dx +
∂uΘ

∂R
(eΘ ⊗ eR)dx +

∂uZ
∂R

(eZ ⊗ eR)dx+

+
1

R

(
∂uR
∂Θ
− uΘ

)
(eR ⊗ eΘ)dx +

1

R

(
∂uΘ

∂Θ
+ uR

)
(eΘ ⊗ eΘ)dx +

+
1

R

∂uZ
∂Θ

(eZ ⊗ eΘ)dx +

+
∂uR
∂Z

(eR ⊗ eZ)dx +
∂uΘ

∂Z
(eΘ ⊗ eZ)dx +

∂uZ
∂Z

(eZ ⊗ eZ)dx.

(xi)
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Since du = ∇u dx we can now read off the gradient tensor ∇u from (xi) to be

∇u =
∂uR
∂R

(eR ⊗ eR) +
∂uΘ

∂R
(eΘ ⊗ eR) +

∂uZ
∂R

(eZ ⊗ eR)+

+
1

R

(
∂uR
∂Θ
− uΘ

)
(eR ⊗ eΘ) +

1

R

(
∂uΘ

∂Θ
+ uR

)
(eΘ ⊗ eΘ) +

1

R

∂uZ
∂Θ

(eZ ⊗ eΘ) +

+
∂uR
∂Z

(eR ⊗ eZ) +
∂uΘ

∂Z
(eΘ ⊗ eZ) +

∂uZ
∂Z

(eZ ⊗ eZ).

(1.189)

Example: Divergence of a vector field. The divergence of the vector field u(x) can be

readily found from (1.189) to be

div u = tr(∇u) =
∂uR
∂R

+
uR
R

+
1

R

∂uΘ

∂Θ
+
∂uZ
∂Z

. (1.190)

Example: Divergence of a tensor field. The divergence of a tensor field, div A(x), is a

vector field whose three components can be calculated using the identity (1.170) and taking

v = eR,v = eΘ and v = eZ in turn. This calculation is carried out in Section 3.10.1.
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1.9 Exercises

1. Matrices and Indicial Notation

Problem 1.1. (Indicial notation.) Evaluate the following expressions:

(a) eijkekji, (b) δijeijk, (c)δijδikδjk, (d) eik`ejk`.

Solution: (a) The calculation proceeds as follows:

eijkekji
(1.42)

= −eijkekij
(1.42)

= eijkeikj
(1.43)

= δjkδkj − δjjδkk
(1.37)

= δjj − δjjδkk
(1.34)

= 3− 9 = −6.

In the first two steps we have used the fact that eijk changes sign when any two adjacent subscripts are

switched. Subsequently we have used the substitution rule and δkk = 3.

(b) By the substitution rule

δijeijk
(1.37)

= ejjk
(1.38)

= 0

and where in the last step we have used the fact that eijk = 0 if two subscripts are equal. Since k is a free

index in δijeijk, this result says that δijeijk = 0 for each value of k = 1, 2, 3.

(c) By using the substitution rule, first on the repeated index i and then on the repeated index j, we have

δij δik δjk
(1.37)

= δjk δjk
(1.37)

= δkk
(1.34)

= δ11 + δ22 + δ33 = 3.

(d)

eik`ejk`
(1.42)

= e`ike`jk
(1.43)

= δijδkk − δikδkj
(1.37),(1.34)

= 3δij − δij = 2δij

Observe that the final result has two free indices i, j as does the starting expression eik`ejk`.

Problem 1.2. (Matrices. Indicial notation.) Derive equations (1.40) and (1.41) involving the determinant

of a matrix.

Problem 1.3. (Indicial notation.) From the definitions of δij and eijk show that

eijkepqr = det


δip δiq δir

δjp δjq δjr

δkp δkq δkr

 , (i)

and thus show that

eijkeipq = δjpδkq − δjqδkp. (ii)
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Solution: First, consider the case where any two of the indices i, j, k or p, q, r are the same. Then, on the

right-hand side of (i), either two rows or two columns of the matrix coincide and so the determinant vanishes.

On the left-hand side of (i), when two of the indices i, j, k or p, q, r are the same, it also vanishes in view of

(1.38).

Second, consider the case (i, j, k) = (p, q, r) = (1, 2, 3). Here the right-hand side of (i) equals unity since the

matrix is now the identity matrix. The left-hand side also equals unity by (1.38).

Finally, if any two adjacent indices i, j, k or p, q, r are interchanged, the corresponding Levi-Civita symbol

on the left-hand side changes sign by (1.42). On the right-hand side, an interchange of two indices results

in an interchange of two rows or two columns in the matrix, thus reversing the sign of the determinant.

This establishes (i).

Now set r = i in (i). Then

eijkepqi = det


δip δiq δii

δjp δjq δji

δkp δkq δki

 (∗)
= det


δip δiq 3

δjp δjq δji

δkp δkq δki

 =

= δip(δjqδki − δjiδkq)− δiq(δjpδki − δjiδkp) + 3(δjpδkq − δkpδjq) =

= δipδjqδki − δipδjiδkq − δiqδjpδki + δiqδjiδkp + 3δjpδkq − 3δkpδjq =

(∗∗)
= δjqδkp − δjpδkq − δjpδkq + δjqδkp + 3δjpδkq − 3δkpδjq =

= δjpδkq − δjqδkp

where step (∗) we used δii = 3 and in step (∗∗) the substitution rule. (By (1.42) we have epqi = −epiq = eipq

and so eijkepqi = eijkeipq and so (ii) is established.)

Problem 1.4. (Matrices.) If α1, α2 and α3 are the eigenvalues of a symmetric matrix [A] show that

tr[A] = α1 + α2 + α3, det[A] = α1α2α3.

Problem 1.5. (Matrices.) Let [F ] be a nonsingular matrix, [R] an orthogonal matrix and [U ] is symmetric

matrix such that [F ] = [R][U ]. Show that

(a) [U ]2 = [F ]T [F ], and

(b) if [F ] is nonsingular, then [U ]2 is positive definite.
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Problem 1.6. (Matrices.) Show that

det
(

[Q]T [A][Q]
)

= det[A], tr
(

[Q]T [A][Q]
)

= tr[A],

for any orthogonal matrix [Q] and arbitrary matrix [A].

2. Vector and tensor algebra.

Problem 1.7. (Vector algebra.) Show that

(a) u× v = o if and only if u and v are linearly dependent.

(b) u · (v ×w) = 0 if and only if u,v and w are linearly dependent.

Problem 1.8. (Vector algebra.) Show that

x× (y × z) = (y ⊗ z− z⊗ y)x, (1.191)

for all vectors x,y and z. This says that y× z is the axial vector associated with the skew-symmetric tensor

z⊗ y − y ⊗ z; see (1.83).

Problem 1.9. (Vector algebra.) Show that

(z× x)× (z× y) = (z⊗ z) (x× y), (i)

n ·
[
(n× x)× (n× y)

]
= n · (x× y), (ii)

where x,y, z are arbitrary vectors and n is an arbitrary unit vector.

Solution:

(a) The terms z × x and z × y on the left-hand side of (i) each represents a vector and therefore, so does

their cross-product (z× x)× (z× y). Its ith component is[
(z× x)× (z× y)

]
i

(1.61)
= eijk(z× x)j(z× y)k =

(1.61)
= eijk

(
ejpqzpxq

) (
ekrszrys

) (1.42)
= ekijekrs ejpqzpzrxqys =

(1.43)
= (δirδjs − δisδjr) ejpqzpzrxqys =

(∗)
= espqzpzixqys − erpqzpzrxqyi

(∗∗)
= espqzpzixqys =

= zizpespqxqys
(1.42)

= zizpepqsxqys
(1.61)

= zizp(x× y)p =

(1.130)
= (z⊗ z)ip(x× y)p =

[
(z⊗ z)(x× y)

]
i .
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In step (∗) we used the substitution rule and in step (∗∗) we used (1.45) keeping in mind that zpzr is

symmetric in p, r and erpq is skew-symmetric in p, r.

(b) On taking z = n in (i) we get

(n× x)× (n× y) = (n⊗ n)(x× y). (iii)

Each side of this equation is a vector and so we may take its scalar product with n:

n ·
[
(n× x)× (n× y)

]
= n ·

[
(n⊗ n)(x× y)

]
. (iv)

Since the left-hand sides of (iv) and (ii) are identical, it remains to show that the right-hand side of (iv)

equals the right-hand side of (ii).

Solution 1: using components in a basis. Simplifying the right-hand side of (iv):

n ·
[
(n⊗ n)(x× y)

]
(1.58)

= ni

[
(n⊗ n)(x× y)

]
i

(1.131)
= ni(n⊗ n)ij(x× y)j

(1.130)
= nininj(x× y)j =

= nj(x× y)j
(1.58)

= n · (x× y),

which is the right-hand side of (ii). In getting to the second line we used n · n = nini = 1.

Solution 2: without using components. Using (a⊗ b)c = (c · b) c with a = b = n and c = x× y,

(n⊗ n)(x× y) =
[
(x× y) · n

]
n, (v)

and therefore by taking the scalar product of this equation with n,

n ·
(

(n⊗ n)(x× y)
)

=
[
(x× y) · n

]
(n · n) = (x× y) · n (vi)

since n is a unit vector. Thus combining (iv) with (vi) establishes (ii).

Problem 1.10. (Reflection in a plane.) Consider a plane P and let n be a unit vector normal to it. The

operation of reflection in this plane takes a vector x into the vector Rx. This is illustrated geometrically in

Figure 1.9 where x =
−→
OA and Rx =

−→
OC.

O

A

B

C

Figure 1.9: The operator R reflects a vector x in the plane P.

Determine R and show that it is precisely the tensor encountered previously in (1.102) of Problem 1.4.7.
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Problem 1.11. (Rotation about an axis.) (See also Problem 1.4.14.)

(a) The operation of rotation through an angle θ about a unit vector n takes a vector x into the vector

Qx as illustrated geometrically in Figure 1.10. Show that

Qx = cos θ x + (1− cos θ)(n · x)n + sin θ (n× x) for all x ∈ V. (1.192)

Observe that Q is a linear transformation since Q(αx + βy) = αQx + βQy.

(b) Show that Qn = +n. (What geometric transformation does a tensor Q with the property Qn = −n

represent? Hint: Consider Problem 1.10.)

(c) Show from (1.192) that the tensor

Q = −I + 2n⊗ n

describes a rotation through an angle π about the axis n.

(d) The components of Q in a basis {e1, e2, e3} with e3 = n being the axis of rotation were determined

in Problem 1.4.14. Hence (or otherwise) show that unity is its only real eigenvalue.

(e) Approximate (1.192) to the case where the angle of rotation is small, |θ| � 1.

See also Problem 1.56.

C A

B

D

Figure 1.10: Left: The transformation Q rotates the vector x =
−→
OA through an angle θ about the unit

vector n and takes it to Qx =
−→
OB. Right: The plane containing A, B and C looking down the n-axis.(Figure

for Problem 1.11.)
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Solution:

(a) From the figure we see that

x =
−→
OA, Qx =

−→
OB =

−→
OC +

−→
CD +

−→
DB, (i)

where CD is the projection of CB onto CA as shown in the right-hand figure. First observe that the direction

of vector
−→
OC is n. Its magnitude |OC| is the projection of x onto n, i.e. x · n. Thus

−→
OC = (x · n)n. (ii)

We now have to calculate expressions for
−→
CD and

−→
DB. To this end pick unit vectors e1 and e2 as follows:

let e1 be a unit vector in the direction of
−→
CA and let e2 be a unit vector perpendicular to both e1 and n

such that n× e1 = e2. Let |CA| = |CB| = ρ. Then

−→
CD = ρ cos θ e1,

−→
DB = ρ sin θ e2 = ρ sin θ (n× e1). (iii)

We now eliminate ρ by substituting
−→
CA = ρe1 into (iii) to obtain

−→
CD = cos θ

−→
CA,

−→
DB = sin θ (n×

−→
CA). (iv)

Substituting (ii) and (iv) into (i)2 yields

Qx = (x · n)n + cos θ
−→
CA + sin θ (n×

−→
CA). (v)

Finally we can find
−→
CA by geometry:

−→
CA =

−→
OA −

−→
OC= x− (x · n)n. (vi)

Substituting (vi) into (v) yields

Qx = (x · n)n + cos θ
[
x− (x · n)n

]
+ sin θ n×

[
x− (x · n)n

]
which after simplification (and using n× n = o): gives

Qx = cos θ x + (1− cos θ)(x · n)n + sin θ n× x. �

This defines the tensor Q since it tells us how it operates on any vector x. This tensor is proper orthogonal,

see Problem 1.56.

(b) On setting x = n in (1.192) and using n× n = o and n · n = 1 we get

Qn = cos θ n + (1− cos θ)n = n.

Remark: It follows that n is an eigenvector of Q with unity being the corresponding eigenvalue.

(c) Setting θ = π in (1.192) leads to

Qx = −x + 2(n · x)n =
[
− I + 2n⊗ n

]
x
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from which the result follows.

(d) The eigenvalues of Q are given by the roots of the cubic equation det(Q−λI) = 0. Using the result from

Problem 1.4.14,

det
(
[Q]− λ[I]

)
= det


cos θ − λ sin θ 0

− sin θ cos θ − λ 0

0 0 1− λ

 = (λ− 1)(λ2 − 2λ cos θ + 1) = 0

The quadratic factor has a negative discriminant (when θ 6= 0, π) and so λ = 1 is the only real eigenvalue.

(e) For small θ we use cos θ = 1 + O(θ2) and sin θ = θ + O(θ3) in (1.192) to get

Qx = x + θ n× x,

to order θ. We can write this as

Qx = x−Wx

where the tensor W is defined by

Wx = −θ n× x.

One can show that W is skew-symmetric. (Exercise.)

Remark: Observe that Q = I−W + O(θ2). Therefore while a finite (i.e. arbitrary, not-necessarily infinites-

imal) rotation is represented by a proper orthogonal tensor, an infinitesimal rotation is represented by a

skew-symmetric tensor.

Problem 1.12. (Transformation of volume.) The non-singular tensor F maps the three linearly independent

vectors {a,b, c} into {p,q, r} = {Fa, Fb, Fc}. Show that the volume V∗ of the tetrahedron formed by p,q, r

is

V∗ = V0 det F, (1.193)

where V0 is the volume of the tetrahedron formed by a,b, c. (Hint: see Problem 1.3.3 and equation (1.90)).

Solution:

First consider the tetrahedron formed by a, b, c. Its volume is V0 = 1
3 A0 h0 where A0 is the area of its

base and h0 is its height. Taking the triangle defined by the vectors a and b to be the base, see Figure 1.11,

its area is A0 = |a× b|/2; this follows by geometrically interpreting the cross-product. If n is a unit vector

normal to the base, the height of the tetrahedron is h0 = c · n; we may take n = (a× b)/|a× b|. Therefore

V0 =
1

3
A0h0 =

1

3

( |a× b|
2

)(
c · a× b

|a× b|

)
=

1

6
(a× b) · c.

Similarly, the volume of the tetrahedron formed by p,q and r is

V∗ =
1

6
(p× q) · r =

1

6
(Fa× Fb) · Fc.
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Height

Figure 1.11: Volume of the tetrahedron defined by vectors a,b, c.

The desired result now follows immediately because of the identity

(Fa× Fb) · Fc = det F (a× b) · c

established previously in Problem 1.4.15.

Problem 1.13. (Tensor algebra.) For a nonsingular tensor F and arbitrary vectors a and b show that

Fa× Fb = det F F−T(a× b). (1.194)

We know from Problem 1.3.1 that the area of the triangle defined by two linearly independent vectors a and

b is 1
2 |a × b|. The area of its image under the linear transformation F is therefore 1

2 |Fa × Fb|. Equation

(1.194) will be useful when calculating the ratio of these two areas; see Problem 2.47.

Solution:

Without using components in a basis:

det F (a× b) · c (1.90)
= (Fa× Fb) · Fc

(1.74)
= FT (Fa× Fb) · c,

and therefore (
det F (a× b)− FT (Fa× Fb)

)
· c = 0 for all vectors c.

If x · c = 0 for all vectors c it follows that x = o and thus here,

FT (Fa× Fb) = det F (a× b).

When F is nonsingular this implies

Fa× Fb = det F F−T(a× b). �

Using components in a basis: To avoid working with the inverse of the tensor FT , we shall show that

FT (Fa× Fb) = det F (a× b). The ith component of the left-hand side is:[
FT (Fa× Fb)

]
i

(1.139)
= FTij

(
Fa× Fb

)
j

(1.61)
= Fji

[
ejpq(Fa)p(Fb)q

] (1.139)
= FjiejpqFpmamFqnbn =

= ejpqFjiFpmFqnambn
(1.40)

= eimn det F ambn = det F eimnambn
(1.61)

= det F (a× b)i
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Problem 1.14. (Tensor algebra.) Show that

AB ·C = B ·ATC = A ·CBT (1.195)

for all tensors A,B and C ∈ Lin where the dot between two tensors denotes their scalar product as defined

in (1.120).

Solution 1: Without using components:

(AB) ·C (1.120)
= tr ABCT (1.104)

= tr BCTA
(1.76)

= tr B(ATC)T
(1.120)

= B · (ATC). �

Similarly

(AB) ·C (1.120)
= tr ABCT (1.76)

= tr A(CBT )T
(1.120)

= A · (CBT ) �

Solution 2: Using components. Since P ·Q = PijQij for any two tensors P and Q,

AB ·C = (AB)ijCij = AikBkjCij = BkjAikCij = BkjA
T
kiCij = Bkj(A

TC)kj = B ·ATC.

Likewise

AB ·C = (AB)ijCij = AikBkjCij = AikCijBkj = AikCijB
T
jk = Aik(CBT )ik = A ·CBT .

Problem 1.15. (Tensor algebra.) Consider the scalar-valued function Φ defined for all symmetric tensors

E by

Φ(E) = CE ·E; (i)

here C is some constant tensor. Show that “there is no loss of generality in taking C to be symmetric”

(by which we mean that Φ depends only on the symmetric part of C; see (1.82) for what is meant by the

symmetric part of a tensor).

Solution: Let S and W be the symmetric and skew-symmetric parts of C: C = S + W; see (1.81). Then

Φ(E) = CE ·E = (S + W)E ·E = SE ·E + WE ·E. (ii)

However

WE ·E (1.74)
= E ·WTE

(1.80)
= −E ·WE = −WE ·E.

It follows that WE ·E = 0 and so (ii) reduces to

Φ(E) = CE ·E = SE ·E.

Thus it is only the symmetric part of C that affects the function Φ and so with no loss of generality we

might as well assume C to be symmetric.
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Problem 1.16. (Tensor algebra. Invariants.) Show that

x · (Ay ×Az) + Ax · (y ×Az) + Ax · (Ay × z)

x · (y × z)
= I2(A), (1.196)

for all linearly independent vectors x,y, z where I2(A) is the principal scalar invariant introduced in (1.107)2.

Solution: The fact that the left-hand side of (1.196) is in fact independent of the choice of the linearly

independent vectors x,y, z can be shown using the same procedure as in Problem 1.58. We will not carry

out that part of the solution here.

Let {e1, e2, e3} be an orthonormal basis. Since the left-hand side of (1.196) is independent of the choice of

x,y, z it necessarily holds for the choice x = e1,y = e2, z = e3. Thus

x · (Ay ×Az) + Ax · (y ×Az) + Ax · (Ay × z)

x · (y × z)
=

=
e1 · (Ae2 ×Ae3) + Ae1 · (e2 ×Ae3) + Ae1 · (Ae2 × e3)

e1 · (e2 × e3)
=

(1.129)
=

e1 · (Ap2ep ×Aq3eq) +Ap1ep · (e2 ×Aq3eq) +Ap1ep · (Aq2eq × e3)

e1 · e1
=

= Ap2Aq3 e1 · (ep × eq) +Ap1Aq3 ep · (e2 × eq) +Ap1Aq2 ep · (eq × e3) =

(1.54)
= Ap2Aq3 e1pq +Ap1Aq3 ep2q +Ap1Aq2 epq3 =

(1.38)
= A22A33 e123 +A32A23 e132 +A11A33 e123 +A31A13 e321 +A11A12 e123 +A21A12 e213 =

(1.38)
= A22A33 −A32A23 +A11A33 −A31A13 +A11A12 −A21A12 =

= (A11A22 +A22A33 +A33A11)− (A32A23 +A31A13 +A21A12) =

=
1

2
(A11 +A22 +A33)2 − 1

2
(A2

11 +A2
22 +A2

33 + 2A32A23 + 2A31A13 + 2A21A12) =

=
1

2
(Aii)

2 − 1

2
(AijAji) =

1

2

[(
trA

)2 − trA2
]

(1.107)
= I2(A) �

Problem 1.17. (Tensor algebra. Invariants.)

(a) Show for any tensor A and all scalars λ that

det(A− λI) = −λ3 + I1(A)λ2 − I2(A)λ+ I3(A), (i)

where

I1(A) = tr A, I2(A) =
1

2
[(tr A)2 − tr(A2)], I3(A) = det A. (ii)

Note that the identity (i) holds for all scalars λ not just the eigenvalues. The eigenvalues are the

roots of the cubic equation det(A− λI) = 0 – the so-called characteristic equation.



1.9. EXERCISES 91

(b) Suppose that A is symmetric and that α1, α2, α3 are its three (necessarily real) eigenvalues. Show

that

I1(A) = α1 + α2 + α3, I2(A) = α1α2 + α2α3 + α3α1, I3(A) = α1α2α3. (iii)

Solution:

(a) According to (1.90), the determinant of a tensor B is defined by

det B :=
Bx · (By ×Bz)

x · (y × z)
, (iv)

for all linearly independent vectors x,y, z. Taking B = A− λI,

det(A− λI) :=
(A− λI)x · ((A− λI)y × (A− λI)z)

x · (y × z)
, (v)

on expanding the numerator and using the formulae (1.103) for I1(A) = tr A, (1.196) for I2(A) and (1.90)

for I3(A) = det A, we get the desired result (i).

(b) Since A is symmetric it has three real eigenvalues α1, α2, α3 and a corresponding set of orthonormal

eigenvectors a1,a2,a3. Consider the orthonormal basis {a1,a2,a3} (a principal basis for A). If Aij are the

components of A in this basis then (with the summation convention suspended)

Aij
(1.128)

= Aaj · ai = λjaj · ai = λjδij , (vi)

having used Aaj = λjaj . Therefore the off-diagonal terms of [A] vanish and Aii = λi whence

[A] =


α1 0 0

0 α2 0

0 0 α3

 , [A]2 =


α2

1 0 0

0 α2
2 0

0 0 α2
3

 . (vii)

Thus

I1(A) = tr[A] = α1 + α2 + α3, tr[A2] = α2
1 + α2

2 + α2
3, I3(A) = det[A] = α1α2α3, �

and

I2[A] =
1

2

[
(trA)2 − tr(A2)

]
=

1

2

[
(α1 + α2 + α3)2 − (α2

1 + α2
2 + α2

3)
]

= α1α2 + α2α3 + α3α1. �

Problem 1.18. (Cayley-Hamilton theorem.) Show that any tensor A satisfies its own characteristic equa-

tion, i.e. show that

−A3 + I1(A)A2 − I2(A)A + I3(A)I = 0,

where the principal scalar invariants Ii(A), i = 1, 2, 3, were defined in (1.107).
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Solution: While the Cayley-Hamilton theorem holds for any tensor, the proof below is restricted to symmetric

tensors. When A is symmetric, its eigenvectors {a1,a2,a3} can be selected so that they form an orthonormal

basis for V.

Let α and a be an eigenvalue and corresponding eigenvector of the symmetric tensor A. Then Aa = αa,

and so A2a = A(Aa) = A(αa) = α(Aa) = α(αa) = α2a, and similarly A3a = α3a. Therefore[
A3 − I1(A)A2 + I2(A)A− I3(A)I

]
a = A3a− I1(A)A2a + I2(A)Aa− I3(A)a =

=
[
α3 − I1(A)α2 + I2(A)α− I3(A)

]
a.

(ii)

However, since α is an eigenvalue of A it obeys the cubic polynomial equation

α3 − I1(A)α2 + I2(A)α− I3(A) = 0.

Using this in (ii) shows that [
A3 − I1(A)A2 + I2(A)A− I3(A)I

]
a = o. (iii)

Equation (iii) holds for each eigenvector a1,a2,a3. Since {a1,a2,a3} forms a basis for V this implies that

(iii) in fact holds for all vectors a. Thus the term in square brackets in (iii) must be the null tensor which

establishes the desired result.

Problem 1.19. (Tensor product.) Let

A = u⊗ v (i)

for two vectors u and v.

(a) Show that for all integers n ≥ 2,

An = (u · v)n−1A. (ii)

(b) Calculate the principal scalar invariants of A.

(c) Hence or otherwise show that

det(I + A) = 1 + u · v. (iii)

(d) Determine the eigenvalues of A.

Solution:

(a) We shall establish this by induction. First we show that (ii) holds for n = 2. This follows from

A2 (i)
= (u⊗ v)(u⊗ v)

(1.72)
= (u · v)(u⊗ v)

(i)
= (u · v)A. (iv)

Next, suppose that (ii) holds for some integer n = N > 2:

AN = (u · v)N−1A. (v)
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Then we show that (ii) holds for n = N + 1. This follows from

AN+1 = ANA
(v)
= (u · v)N−1AA = (u · v)N−1A2 (iv)

= (u · v)NA.

Thus if (ii) holds for n = N it necessarily holds for n = N + 1. We know it holds for n = 2. It thus follows

that it holds for all integers n ≥ 2.

(b) Observe from (i) that

tr A = Aii = uivi = u · v, (vi)

and from (ii) that

tr An = (u · v)n−1tr A
(vi)
= (u · v)n. (vii)

Therefore in particular,

tr A2 = (u · v)2, tr A3 = (u · v)3. (viii)

Thus the first and second principal scalar invariants of A are

I1(A) = tr A = u · v, � (ix)

I2(A) =
1

2

[(
tr A

)2 − tr A2
]

=
1

2

[(
u · v)2 − (u · v)2

]
= 0. � (x)

There are several ways in which to calculate the third principal scalar invariant I3(A) = det A. Method 1:

According to the Cayley Hamilton theorem, (1.108),

A3 − I1(A)A2 + I2(A)A− I3(A)I = O. (xi)

Taking the trace of this equation gives

tr(A3)− I1(A)tr(A2) + I2(A)tr(A)− 3I3(A) = 0.

Substituting (viii), (ix) and (x) into this gives

(u · v)3 − (u · v)(u · v)2 + 0− 3I3(A) = 0 ⇒ I3(A) = 0. � (xii)

Method 2: Alternatively

I3(A)
(1.107)3= det(A)

(1.41)
= 1

6eijkepqr(A)ip(A)jq(A)kr =

(i)
= 1

6eijkepqruivpujvqukvr = 1
6 (eijkuiujuk)(epqrvpvqvr).

Next recall from (1.124) that SijWij = 0 for any symmetric matrix [S] and skew-symmetric matrix [W ].

Therefore in particular, for any fixed i, since eijk is skew-symmetric in jk and ujuk is symmetric in jk it

follows that eijkujuk = 0. Therefore

I3(u⊗ v) = 0. �.

(c) Setting µ = 1 in the identity (1.106), for any tensor A one has

det(A + I) = 1 + I1(A) + I2(A) + I3(A).
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Thus for A = u⊗ v we get

det(I + u⊗ v) = 1 + I1(u⊗ v) + I2(u⊗ v) + I3(u⊗ v)
(ix)(x)(xii)

= 1 + u · v.

Thus

det(I + u⊗ v) = 1 + u · v. � (1.197)

(d) By (1.110) and (1.107), the eigenvalues α1, α2, α3 of A are the roots of the cubic equation

det(A− αI) = −α3 + I1(A)α2 − I2(A)α+ I3(A) = 0,

which, because of (ix), (x) and (xii), simplifies to

−α3 + (u · v)α2 = 0.

Thus the eigenvalues of A are

α1 = α2 = 0, α3 = u · v.

Problem 1.20. (Additive decomposition of a tensor.) Show that an arbitrary tensor T can be uniquely

decomposed into the sum,

T = A + B,

of a tensor A with zero trace and a tensor B that is a scalar multiple of the identity.

Problem 1.21. (Symmetric part of a tensor.) You showed in Problem 1.4.16 that S·W = 0 for all symmetric

tensors S and skew-symmetric tensors W. Hence or otherwise, show that

S ·A = S ·Asym for all tensors A and all symmetric tensors S, (1.198)

where Asym is the symmetric part of A, i.e. Asym := 1
2 (A + AT ).

Problem 1.22. (Coaxial tensors.) Two symmetric tensors A and B are said to be coaxial if they have the

same principal directions. Show that A and B are coaxial if and only if

AB = BA. (1.199)

Problem 1.23. (Tensor algebra.) Let R and Q be proper orthogonal tensors, U a symmetric, positive

definite tensor and a and n two non-null vectors such that

RUQ = U + a⊗ n. (i)
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The goal of this problem is to derive three linearly independent scalar equations from (i) that do not involve

the rotations R and Q, and to this end proceed as follows:

(a) By taking the determinant of (i) show that

a ·U−1n = 0. � (ii)

(b) Next, show that

RU2RT = U2 + a⊗Un + Un⊗ a + a⊗ a, (iii)

and by taking its trace show that

2a ·Un + |a|2 = 0. � (iv)

Observe from (ii) that

(I + a⊗U−1n)−1 = (I− a⊗U−1n). (v)

(c) Use (i) and (v) to show that

RU−2RT = U−2 −U−1n⊗U−2a−U−2a⊗U−1
0 n + |U−1a|2(U−1n⊗U−1n), (vi)

and by taking its trace show that

2U−2a ·U−1n− |U−1a|2|U−1n|2 = 0. � (vii)

Problem 1.24. (Nine dimensional vector space Lin.) Show that Lin, the set of all tensors on the vector

space V, is nine dimensional.

Solution: Recall from Problem 1.4.12 that ei ⊗ ej , i, j = 1, 2, 3, are nine orthonormal tensors in Lin (where

as usual {e1, e2, e3} is an orthonormal basis for V). Since they are orthonormal, they are necessarily linearly

independent. In order to show that Lin is nine dimensional, it is therefore sufficient to demonstrate that any

tensor A ∈ Lin can be expressed as a linear combination of the nine tensors ei ⊗ ej , i, j = 1, 2, 3. To show

this, define nine scalars Aij by

Aij = (Aej) · ei. (i)

Observe that this says that the ith component of the vector Aej is Aij which can be equivalently stated as

Aej = Aijei. (ii)

Then for an arbitrary vector x ∈ V we have

Ax = A(xjej) = xjAej
(ii)
= xjAijei = Aijxjei = Aij(x · ej)ei = Aij(ei ⊗ ej)x.

Since this holds for all vectors x it follows that

A = Aij(ei ⊗ ej), (1.200)

and so an arbitrary tensor A ∈ Lin can be represented as a linear combination of the nine orthonormal

tensors ei ⊗ ej , i, j = 1, 2, 3. Thus Lin is nine dimensional (and the nine aforementioned tensors form an

orthonormal basis for it.)
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Problem 1.25. (Square root of a symmetric positive definite tensor.) Consider a symmetric positive

definite tensor S. Show that it has a unique symmetric positive definite square root, i.e. show that there is

a unique symmetric positive definite tensor T for which T2 = S.

Solution: In this solution we shall suspend the summation convention on repeated indices and instead show

all summations explicitly. Observe that we will have the same subscript appearing 3 times in some equations

below.

Since S is symmetric it has three real eigenvalues σ1, σ2, σ3 with corresponding eigenvectors s1, s2, s3

which may be taken to be orthonormal. Furthermore, we know that S can be represented in its so-called

spectral representation

S =

3∑
i=1

σi(si ⊗ si);

see the discussion surrounding (1.112). Since S is positive definite its eigenvalues are all positive. Hence one

can define a linear transformation T by

T =

3∑
i=1

√
σi(si ⊗ si),

and readily verify that T is symmetric, positive definite and that T2 = S. This establishes the existence of

a symmetric positive definite square-root of S. What remains is to show uniqueness of this square-root.

Suppose that S has two symmetric positive definite square roots T1 and T2 : S = T2
1 = T2

2. Let σ > 0

and s be an eigenvalue and corresponding eigenvector of S. Then Ss = σs and so T2
1s = σs. Thus we have

T2
1s− σs = (T2

1 − σI)s = (T1 +
√
σI)(T1 −

√
σI)s = 0 .

If we set f = (T1 −
√
σI)s this can be written as

T1f = −√σf .

Thus either f is an eigenvector of T1 corresponding to the eigenvalue −√σ (< 0) or f = o. Since T1 is

positive definite it cannot have a negative eigenvalue. Thus f = o and so

T1s =
√
σs .

A similar calculation shows that T2s =
√
σs. Thus

T1s = T2s.

This holds for every eigenvector s of S: i.e. T1si = T2si, i = 1, 2, 3. Since the triplet of eigenvectors form

a basis for the underlying vector space this implies that T1x = T2x for any vector x. Thus T1 = T2.

Problem 1.26. (Spectral representation.) The summation convention is suspended in this problem and

all summations are shown explicitly. The polar decomposition theorem (1.117) states that any nonsingular



1.9. EXERCISES 97

linear transformation F can be represented uniquely in the forms F = RU = VR where R is orthogonal

and U and V are symmetric and positive definite. Let λi,ui, i = 1, 2, 3 be the eigenvalues and eigenvectors

of U. As stated just below (1.117), the eigenvalues of V are the same as those of U and the corresponding

eigenvectors vi of V are given by vi = Rui. [Exercise: show this.] Thus U and V have the spectral

decompositions

U =

3∑
i=1

λiui ⊗ ui , V =

3∑
i=1

λivi ⊗ vi .

Show that

F =

3∑
i=1

λivi ⊗ ui , R =

3∑
i=1

vi ⊗ ui .

Solution: First, by using the property (1.78)1 and vi = Rui we have

F = RU = R

3∑
i=1

λiui ⊗ ui =

3∑
i=1

λi(Rui)⊗ ui =

3∑
i=1

λivi ⊗ ui. (1.201)

Next, since U is non-singular

U−1 =

3∑
i=1

λ−1
i ui ⊗ ui.

and therefore

R = FU−1 =

3∑
i=1

λivi ⊗ ui

3∑
j=1

λ−1
j uj ⊗ uj =

3∑
i=1

3∑
j=1

λiλ
−1
j (vi ⊗ ui)(uj ⊗ uj).

By using the property (1.72)2 and the fact that ui ·uj = δij , we have (vi⊗ui)(uj⊗uj) = (ui ·uj)(vi⊗uj) =

δij(vi ⊗ uj). Therefore

R =

3∑
i=1

3∑
j=1

λiλ
−1
j δij(vi ⊗ uj) =

3∑
i=1

λiλ
−1
i (vi ⊗ ui) =

3∑
i=1

(vi ⊗ ui). (1.202)

Problem 1.27. (Spectral representation.) The summation convention is suspended in this problem. Let

{v1,v2,v3} and {u1,u2,u3} be two orthonormal sets of vectors. Suppose that a tensor F has the represen-

tation

F =

3∑
i=1

λivi ⊗ ui.

If all three λi’s are non-zero, show that

F−1 =

3∑
i=1

λ−1
i ui ⊗ vi.

3. Change of basis.
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Problem 1.28. (See also Problem 1.29.) Consider two bases {e1, e2, e3} and {e′1, e′2, e′3} and define the

scalars Qij in the usual way by

Qij = e′i · ej . (i)

Show that

ei = Qjie
′
j , e′i = Qijej . (ii)

Let Q be the tensor whose components in the basis {e1, e2, e3} are Qij . Show that

e′i = QTei. (iii)

Therefore QT is the orthogonal transformation that carries the first basis into the second (not Q).

Problem 1.29. Let {e1, e2, e3} and {e′1, e′2, e′3} be two orthonormal bases. Define the tensor R by

R = e′i ⊗ ei = e′1 ⊗ e1 + e′2 ⊗ e2 + e′3 ⊗ e3. (i)

(a) Show that R is an orthogonal tensor.

(b) Show that R takes the basis {e1, e2, e3} into the basis {e′1, e′2, e′3}, i.e. show that

e′i = Rei. (ii)

(c) For any tensor A, let [A] and [A′] be its respective matrices of components in the bases {e1, e2, e3}
and {e′1, e′2, e′3}. Show that

[A′] = [R]T [A][R], (iii)

where [R] is the matrix of components of R in the basis {e1, e2, e3}.

Remark: Note that R is the transpose of the tensor Q in Problem 1.28.

Solution:

(a) We use (i) to calculate RRT :

RRT = (e′i ⊗ ei)(ej ⊗ e′j) = (ei · ej)(e′i ⊗ e′j) = δij(e
′
i ⊗ e′j) = e′i ⊗ e′i = I

where in the first equality we used (a⊗b)T = b⊗a, in the next step we used (a⊗b)(c⊗d) = (b ·c)(a⊗d),

and in the next we used ei · ej = δij . Therefore R is orthogonal.

(b) From (i) we have

Rej = (e′i ⊗ ei)ej = (ei · ej)e′i = δije
′
i = e′j . (iv)

where in the second step we used (a⊗ b)c = (b · c)a.

(c) From the definition of the components of a tensor:

Rej = Rijei, Aej = Aijei, A′ij = Ae′j · e′i. (v)
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Thus

A′ij
(v)3
= Ae′j · e′i

(iv)
= ARej ·Rei = RTARej · ei

(v)1
= RTA(Rpjep) · ei =

= RpjR
TAep · ei

(v)2
= RpjR

T (Aqpeq) · ei = RpjAqpR
Teq · ei =

= RpjAqpeq ·Rei
(v)1
= RpjAqpeq · (Rkiek) = RpjAqpRki eq · ek =

= RpjAqpRkiδqk = RpjAqpRqi = RTiqAqpRpj = ([R]T [A][R])ij

which leads to (iii).

Problem 1.30. Suppose that the basis {e′1, e′2, e′3} is obtained by rotating the basis {e1, e2, e3} through an

angle θ about the unit vector e3; see Figure 1.12. Write out the transformation rule (1.153) explicitly for a

2-tensor A whose matrix of components in {e1, e2, e3} is

[A] =

 A11 A12 0

A21 A22 0

0 0 0

 .

e1

e2

e′
1

e′
2

e3, e′
3

θ

θ

Figure 1.12: A basis {e′1, e′2, e′3} obtained by rotating the basis {e1, e2, e3} through an angle θ about the

unit vector e3.

Problem 1.31. Let [A] and [A′] be the components of a 2-tensor A in two bases. Show that the two

matrices [A] and [A′] have the same eigenvalues.

Hint: The eigenvalues of a matrix are the roots of the characteristic equation. For matrices [A] and [A′] the

respective characteristic equations are

det([A]− λ[I]) = 0 and det([A′]− λ[I]) = 0.
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To show that these two matrices have the same eigenvalues it is sufficient to show that the two characteristic

equations are identical. When the characteristic equations are written out each has the form given in (1.110).

Therefore we should aim to show that

I1([A]) = I1([A′]), I2([A]) = I2([A′]), I3([A]) = I3([A′]).

For this we must show that trace[A] = trace[A′], trace([A]2) = trace([A′]2) and det[A] = det[A′].

Solution: We know that

[A′] = [Q][A][Q]T , (i)

or in components

A′ij = QikQj`Ak`. (ii)

Therefore

trace[A′] = A′jj
(ii)
= QjkQj`Ak`

(1.98)
= δk`Ak`

(1.37)
= Akk = trace[A]. (iii)

Similarly consider the trace of [A′]2. If we set [B] = [A′]2 then Bij = A′ikA
′
kj and so Bjj = A′jkA

′
kj . Thus

trace[A′]2 = A′jkA
′
kj

(ii)
= (QjpQkqApq)(QkmQjnAmn) =

= (QjpQjn)(QkqQkm)Amn
(1.98)

= δpnδqmApqAmn =
(1.37)

= AnmAmn = trace[A]2
(iv)

From det[A′] = det[Q] det[A] det[QT ] = (det[Q])2 det[A] and det[Q] = ±1 we have

det[A′] = det[A]. (v)

It follows from (iii), (iv), (v) that

I1([A]) = I1([A′]), I2([A]) = I2([A′]), I3([A]) = I3([A′]),

and therefore that the eigenvalues of [A] and [A′] coincide.

Problem 1.32. (See also Problem 1.6.5.) A tensor F has the representation

F = Φije
′
i ⊗ ej , (i)

where {e1, e2, e3} and {e′1, e′2, e′3} are two right-handed orthonormal bases.

(a) Show that det F = det [Φ] where [Φ] is the matrix whose i, j-element is Φij .

(b) Suppose F is nonsingular. Since (ei⊗e′j)(e
′
i⊗ej) = ei⊗ei = I, the tensor F−1 has the representation

F−1 = Ψijei ⊗ e′j . (ii)

Show that Ψij is the i, j-element of the matrix [Ψ] := [Φ]−1.
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Solution:

(a) From (i) we obtain Fek = Φij(e
′
i ⊗ ej)ek = Φij(ej · ek)e′i = Φijδjke

′
i and so

Fek = Φike
′
i. (iii)

By taking x = e1,y = e2, z = e3 in (1.90) we get

det F = Fe1 · (Fe2 × Fe3) =

(iii)
= (Φi1e

′
i) ·
[
(Φj2e

′
j)× (Φk3e

′
k)
]

= Φi1Φj2Φk3 e′i · (e′j × e′k) =

(1.54)
= Φi1Φj2Φk3ejki = eijkΦi1Φj2Φk3

(1.39)
= det[Φ] �

Alternatively, from Problem 1.6.5, we have [F ] = [Q]T [Φ] whence det F = det[F ] = det[Φ] where we have

used the fact that det[Q] = +1 which is a consequence of [Q] being proper orthogonal since the two bases

are both right-handed and orthonormal.

(b) We can assume F−1 to have the form (ii) and need to show that [Ψ] = [Φ]−1. From (i) and (ii)

FF−1 = (Φije
′
i ⊗ ej)(Ψk`ek ⊗ e′`) = ΦijΨk`(ej · ek)(e′i ⊗ e′`) = ΦijΨk`δjk(e′i ⊗ e′`) = ΦikΨk`(e

′
i ⊗ e′`)

Since this equals the identity, which we can write as I = e′i ⊗ e′i = δi` e′i ⊗ e′`, it follows that

ΦikΨk` = δi`, [Φ][Ψ] = [I]. �

4. Invariant (isotropic) functions.

Problem 1.33.

(a) A scalar-valued function φ(x) : V → R is said to be isotropic if φ(x) = φ(Qx) for all orthogonal Q.

Show that φ(x) is isotropic if and only if there is a function φ̂ such that

φ(x) = φ̂(|x|) for all x ∈ V.

(Here R is the set of all real numbers.)

(b) A vector-valued function u(x) : V → V is said to be isotropic if Qu(x) = u(Qx) for all orthogonal

Q. Show that u(x) is isotropic if and only if there is a function φ̂ such that

u(x) = φ̂(|x|) x for all x ∈ V.
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Problem 1.34. Suppose that the principal scalar invariants of two symmetric tensors B and C have the

same values:

I1(B) = I1(C), I2(B) = I2(C), I3(B) = I3(C). (i)

Show that there necessarily exists an orthogonal tensor Q such that

B = QCQT . (ii)

Solution: Recall from (1.110) and (1.106) that the eigenvalues of a symmetric tensor A are given by the real

roots α of the cubic equation

det(A− αI) = −α3 + I1(A)α2 − I2(A)α+ I3(A) = 0. (iii)

It follows from (i) and (iii) that B and C have the same eigenvalues, say β1, β2 and β3, (but possibly different

eigenvectors). Let the corresponding orthonormal eigenvectors be {b1,b2,b3} and {c1, c2, c3}. Therefore

by (1.112), B and C can be expressed as

B =

3∑
i=1

βibi ⊗ bi, C =

3∑
i=1

βici ⊗ ci. (1.203)

Since each of the sets of vectors {b1,b2,b3} and {c1, c2, c3} is orthonormal, there is an orthogonal tensor

Q that takes {c1, c2, c3} into {b1,b2,b3}:

Qci = bi, i = 1, 2, 3; (iv)

see discussion preceding (1.160). In view of this and the tensor identity F(x⊗ y)G = (Fx)⊗ (GTy)

Q(ci ⊗ ci)Q
T = (Qci)⊗ (Qci)

(iv)
= bi ⊗ bi (no sum). (v)

Therefore

QCQT (1.203)2=

3∑
i=1

βiQ(ci ⊗ ci)Q
T (v)

=

3∑
i=1

βibi ⊗ bi
(1.203)1= B,

which establishes the result (ii).

Problem 1.35. Let φ(A) be an isotropic scalar-valued function defined for all symmetric tensors A. Show

that there exists a function φ̂ such that

φ(A) = φ̂(I1(A), I2(A), I3(A))

where the Ii’s are the principal scalar invariant functions defined in (1.107).

Solution: Let φ(A) be an isotropic scalar-valued function:

φ(A) = φ(QAQT ) (i)

for all symmetric tensors A and orthogonal tensors Q. It is sufficient for us to show that

φ(B) = φ(C) (ii)
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whenever

I1(B) = I1(C), I2(B) = I2(C), I3(B) = I3(C). (iii)

From the result in Problem 1.34, whenever (iii) holds there is an orthogonal tensor Q such that

B = QCQT . (iv)

Therefore φ(B)
(iv)
= φ(QCQT )

(i)
= φ(C) and thus (ii) holds.

Problem 1.36. Let φ(A) be the function defined for all symmetric tensors A by

φ(A) =
1

2
Cijk`AijAk`. (i)

The components here have been taken with respect to a fixed basis and C is a constant 4-tensor. If φ is

isotropic, find the most general form of φ and also of C.

Solution: We know from the general representation (1.144) of an isotropic function that φ(A) can be written

as a function of the three principal invariants: φ(A) = φ̂(I1(A), I2(A), I3(A)). Observe that (i) is the most

general quadratic polynomial function of A, and note from (1.107) that I1(A) is a linear function of A, I2(A)

is a quadratic function of A, and I3(A) is a cubic function of A. It therefore follows that the most general

isotropic quadratic polynomial function can be written as

φ(A) = c1
(
I1(A)

)2
+ c2I2(A) (ii)

for two constants c1 and c2. Since

I1(A) = tr(A) = Aii, I2(A) =
1

2
[(tr(A))2 − tr(A2)] =

1

2

(
AiiAjj −AikAki

)
, (iii)

(ii) can be written as

φ(A) = c1AiiAjj +
1

2
c2

(
AiiAjj −AikAki

)
,

which leads to

φ(A) = c3AiiAjj + c4AikAki = c3
(
trA

)2
+ c4tr

(
A2
)

� (iv)

for two other constants c3 and c4. This is the most general isotropic function of the form (i).

Observe that

AiiAjj = δpqδrsApqArs, AijAij =
1

2
(δprδqs + δpsδqr)ApqArs

and so we can write (iv) as

φ(A) = c3δpqδrsApqArs +
1

2
c4(δprδqs + δpsδqr)ApqArs =

1

2

[
2c3δpqδrs + c4(δprδqs + δpsδqr)

]
ApqArs

which is of the form (i) with

Cpqrs =
1

2

[
2c3δpqδrs + c4(δprδqs + δpsδqr)

]
. �

We will encounter this 4-tensor when studying isotropic linear elastic materials.
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Problem 1.37. A symmetric tensor B that has the property

QBQT = B for all orthogonal tensors Q (1.204)

is said to be isotropic. Show that B is isotropic if and only if it has the representation B = βI for some

scalar β.

Problem 1.38. Let F(B) be a symmetric tensor-valued function that is defined for all symmetric tensors

B. Such a function is said to be isotropic if F(QBQT ) = QF(B)QT for all orthogonal tensors Q. Show

that F(B) is isotropic if and only if it has the representation

F̂(B) = β2B
2 + β1B + β0I, (1.205)

where the βj ’s are functions of the principal scalar invariants of B.

5. Calculus.

Problem 1.39. Let F(t) be a one-parameter family of nonsingular tensors that depend smoothly on the

parameter t. Show that

(a)
d

dt
(det F) = det F tr(ḞF−1) = J F−T · Ḟ, (1.206)

where J = det F and Ḟ = dF/dt.

(b) Show also that
d

dt

(
F−1

)
= −F−1ḞF−1. (1.207)

See also Problem 1.47.

Solution:

(a) We write (1.90) as

x · (y × z) det F = Fx · (Fy × Fz) (i)

Differentiating (i) with respect to t and letting A = ḞF−1

x · (y × z) d
dt (det F) = Ḟx · (Fy × Fz) + Fx · (Ḟy × Fz) + Fx · (Fy × Ḟz) =

= AFx · (Fy × Fz) + Fx · (AFy × Fz) + Fx · (Fy ×AFz) =

(1.103)
= (tr A) Fx · (Fy × Fz)

(i)
= (tr A) (det F) x · (y × z)
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Therefore
d

dt
(det F) = (det F) (tr A) = (det F) (tr ḞF−1) = J (tr ḞF−1)

(1.120)
= JF−T · Ḟ. �

(b) Differentiating

FF−1 = I

with respect to t gives

ḞF−1 + F
d

dt

(
F−1

)
= 0

which yields the desired result (1.207). �

Problem 1.40. Let φ, v, and w, be a scalar field and two vector fields, respectively. Show that:

(a) div(φv) = φ divv + v · gradφ,

(b) grad(φv) = φ gradv + v ⊗ gradφ,

(c) grad(v ·w) = (∇w)Tv + (∇v)Tw,

(d) div(v ⊗w) = (div w)v + (div v)w.

Problem 1.41. (Gradient in spherical polar coordinates.) Calculate the gradient of a scalar field and the

gradient and divergence of a vector field in spherical polar coordinates (R,Θ,Φ) with associated basis vectors

eR, eΘ, eΦ as defined by equations (2.80) and (2.81) on page 168.

Problem 1.42. (Localization) “Localization” refers to deriving local equations (i.e. equations that hold at

each point in a region R) from a global statement in integral form. In Section 1.8.3 we encountered one

circumstance in which localization is possible. Here we look at a second.

Let φ(x) be a continuous scalar-valued function defined for all x ∈ R. Suppose that∫
R
φ(x)ψ(x) dV = 0

for all continuous functions ψ(x) defined on R. Show that this implies φ(x) = 0 at all points in R.

Remark: In Section 1.8.3 the global statement held for all subregions of R; in contrast here, we have a single

integral statement that hold on R. On the other hand here, the integrand involves an arbitrary function ψ

while such a function was absent in Section 1.8.3.
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Problem 1.43. (Weak and strong forms.) Let A(x) and b(x) be smooth tensor and vector fields respectively

defined on some regular region R. Suppose that∫
∂R

An ·w dA+

∫
R

b ·w dV =

∫
R

A · ∇w dV, (i)

for all smooth vector fields w(x). Here ∂R is the boundary of R. Show by localization that

div A + b = o at each x ∈ R. (ii)

One often speaks of (i) as being the weak form of the differential statement (ii), and (ii) as being the strong

form of the integral statement (i). Note that (i) does not require A(x) to be differentiable while (ii) does.

Solution: By the definition A ·B = AijBij of the scalar product of two tensors,

A · ∇w = Aij(∇w)ij
(1.164)

= Aij
∂wi
∂xj

. (iii)

We can now write (i) in terms of components as∫
∂R

Aijnjwi dA+

∫
R
biwi dV =

∫
R
Aij

∂wi
∂xj

dV. (iv)

By using the divergence theorem (1.178) we can write the first term in (iv) as∫
∂R

Aijwinj dA =

∫
R

∂

∂xj
(Aijwi) dV =

∫
R

[
∂Aij
∂xj

wi +
∂wi
∂xj

Aij

]
dV. (v)

Substituting (v) into (iv) gives ∫
R

[
∂Aij
∂xj

+ bi

]
wi dV = 0.

We are told that this holds for all smooth vector fields w(x) and so the (natural generalization of the)

localization theorem in Problem 1.42 allows us to conclude that

∂Aij
∂xj

+ bi = 0 at each x ∈ R.

When written in basis-free notation (and keeping (1.168) in mind) this yields (ii).

In Chapter 3 we will find that (ii) is the equilibrium equation for a certain stress tensor A = S with (i)

being a statement of the principle of virtual work.

Problem 1.44. (Divergence theorem.) Let u(x) be a smooth vector field defined on some regionR. Suppose

that ∫
∂D

u(x)⊗ n(x) dA = 0 for all subregions D ⊂ R, (i)

where n(x) is the unit outward normal vector at a point x on the boundary ∂D. Show by using the divergence

theorem and localization that (i) holds if and only if

∇u = 0 at each x ∈ R. (ii)
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Problem 1.45. (Divergence theorem. Localization.)

(a) Let S(x) be a continuously differentiable tensor field on R with the property∫
∂D

S(x)n(x) dA = o for all subregions D ⊂ R, (i)

where n(x) is the unit outward normal vector at a point x on the boundary ∂D. Show by using the

divergence theorem and localization that (i) implies

div S = o at each x ∈ R. (ii)

(b) Conversely, if S(x) is a tensor field such that (ii) holds, show that then (i) holds.

(c) Suppose that S(x) is a smooth tensor field that obeys (ii). Show that∫
D

Sn ·w dA =

∫
D

S · ∇w dV

for any smooth vector field w.

Solution:

(a) In terms of components in a fixed basis, we are told that∫
∂D

Sijnj dA = 0 for all subregions D ⊂ R. (iv)

By using the divergence theorem (1.178), this implies that∫
D
Sij,j dV = 0 for all subregions D ⊂ R.

We are told that Sij,j is continuous on R, and so the localization result established in Problem 1.8.3 allows

us to conclude that

Sij,j = 0 at all x ∈ R. (v)

(b) Now we start with Sij,j = 0. Integrating this over D and using the divergence theorem gives (iv).

Problem 1.46. (Divergence theorem. Localization.)

Reconsider the tensor field S(x) introduced in part (a) of Problem 1.45. Suppose that in addition to

equation (i) there, S(x) also has the property that∫
∂D

x× S(x)n(x) dA = o for all subregions D ⊂ R. (iii)

Show that if (i) and (iii) hold, then

S = ST at each x ∈ R. (iv)

Hint: Use the divergence theorem, localization and equation (ii) of Problem 1.45.
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6. Functions of a tensor.

Problem 1.47. The function J(F) = det F is defined for all nonsingular tensors F. Show that

∂J

∂F
= JF−T. (1.208)

Problem 1.48. Consider the function W (F) defined for all nonsingular tensors F by W (F) = Ŵ (I1(C))

where C = FTF and I1(C) = tr C. Calculate the components of the 4-tensor

∂2W (F)

∂Fij∂Fk`
.

Solution: First note that
∂Fij
∂Fk`

= δikδj`, (i)

C = FTF ⇒ Cij = FkiFkj , (ii)

I1 = tr C = Cii = FkiFki. (iii)

Therefore
∂I1
∂Fpq

(iii)
=

∂

∂Fpq
(FkiFki)

(i)
= δkpδiqFki + Fkiδkpδiq = Fpq + Fpq = 2Fpq, (iv)

and so
∂W (I1)

∂Fk`
= W ′(I1)

∂I1
∂Fk`

(iv)
= 2W ′(I1)Fk`. (v)

Thus

∂2W (I1)

∂Fij∂Fk`
=

∂

∂Fij

(
∂W (I1)

∂Fk`

)
(v)
=

∂

∂Fij
(2W ′(I1)Fk`)

(i)
= 2W ′′(I1)

∂I1
∂Fij

Fk` + 2W ′(I1)δkiδ`j =

(iv)
= 4W ′′(I1)FijFk` + 2W ′(I1)δkiδ`j , �

where a prime denotes differentiation with respect to the argument.

Problem 1.49. The scalar valued function Ŵ (F) is defined for all nonsingular tensors F, and the scalar

valued function W (C) is defined for all symmetric positive definite tensors C. Suppose that these two

functions are related by

Ŵ (F) = W (C) where C = FTF. (i)

Furthermore, suppose the tensors S, T and F are related by

S =
∂Ŵ

∂F
(F), T =

1

J
SFT where J = det F. (ii)

Derive an expression for T in terms of ∂W (C)/∂C and F. Specialize it to the case where

W (C) = tr C. (iii)
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Solution: From the chain rule and (i)1,

∂Ŵ

∂Fij
=

∂W

∂Cpq

∂Cpq
∂Fij

. (iv)

We now calculate the last term in (iv) by differentiating C = FTF with respect to F:

∂Cpq
∂Fij

=
∂

∂Fij
(FTpkFkq) =

∂

∂Fij
(FkpFkq) = δkiδpjFkq + Fkpδkiδqj = δpjFiq + Fipδqj .

Substituting this back into (iv) gives

∂Ŵ

∂Fij
= δpjFiq

∂W

∂Cpq
+ Fipδqj

∂W

∂Cpq
= Fiq

∂W

∂Cjq
+ Fip

∂W

∂Cpj

(∗)
= Fiq

∂W

∂Cqj
+ Fiq

∂W

∂Cqj
= 2Fiq

∂W

∂Cqj

where in step (∗), we used the symmetry of C to write Cqj = Cjq in the first term, and changed the dummy

subscript p to q in the second term. Thus we have

∂Ŵ

∂F
= 2F

∂W

∂C
. (v)

Substituting this into (ii)1 and the result into (ii)2 gives

T =
2

J
F
∂W

∂C
FT . � (vi)

Now suppose that W (C) = tr C. Then

∂

∂Cij
(tr C) =

∂

∂Cij
(Ckk) = δkiδkj = δij ⇒ ∂

∂C
(tr C) = I.

Substituting this into (vi) gives

T =
2

J
FIFT =

2

J
FFT . (vii)

Problem 1.50. Let C be a constant 4-tensor and suppose that the function Ŵ (E) is defined for all symmetric

2-tensors E by

Ŵ (E) = W (E11, E12, ....E33) =
1

2
Cijk`EijEk`,

where Cijkl and Eij are the components of C and E in some fixed basis. Calculate

∂W

∂Eij
and

∂2W

∂Eij∂Ekl
.

Following the discussion in Section 1.8.4, ensure that these derivative have the proper symmetries.

Remark: We will encounter this function W later in the linear theory of elasticity where it will correspond to

the strain energy density at a point in the body with E being the infinitesimal strain tensor and C a tensor

of elastic moduli.

7. Additional problems.
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Problem 1.51. (Ball and James, 1987, DOI:10.1007/BF00281246.) Show that necessary and sufficient for

a symmetric tensor C with eigenvalues λ1 ≤ λ2 ≤ λ3 to be expressible in the form

C = (I + m⊗ b)(I + b⊗m) (i)

for linearly independent vectors b and m are that

λ1 ≤ 1, λ2 = 1, λ3 ≥ 1. (ii)

Problem 1.52. Consider an N -dimensional Euclidean vector space. In this problem we consider an

N -dimensional vector space (rather than a 3-dimensional one) since we will use this result later for the

9-dimensional vector space Lin of all linear transformations. Let a1 and a2 be two non-null vectors. If a2 is

perpendicular to all vectors perpendicular to a1, show that a2 is parallel to a1.

Solution: Consider an orthonormal basis {e1, e2, . . . , eN} with a1 parallel to, say, the basis vector eN . Then

a1 = α1eN for some nonzero scalar α1. The set of all vectors perpendicular to a1 is now the set spanned

by {e1, e2, . . . , eN−1}. Since the vector a2 is perpendicular to all vectors perpendicular to a1, it must be

perpendicular to each of these N − 1 vectors and so it must be of the form a2 = α2eN . This shows that a2

is parallel to a1.

An alternative proof that doesn’t rely on a basis is the following where we proceed in three steps:

(a) First we show that corresponding to any two non-null vectors a1,a2 there is a scalar α and a vector

n perpendicular to a1 such that

a2 = αa1 + n, n · a1 = 0. (i)

(b) Then we show that the representation (i) is unique.

(c) Finally we use (a) and (b) to establish the desired result.

(a) Given any a1 6= o and a2, define α and n by

α =
a2 · a1

a1 · a1
, n = a2 − αa1. (ii)

Then n · a1 = a2 · a1 − αa1 · a1 = o which establishes (i).

(b) Suppose this representation is not unique. Then there exist a scalar β and vector m such that

a2 = βa1 + m, m · a1 = 0. (iii)

Subtracting (iii) from (i) gives

(α− β)a1 + (n−m) = o. (iv)

Taking the scalar product of this with a1, and then using (i)2 and (iii)2 shows that β = α. Then (iv) reduces

to m = n. Thus if both (i) and (iii) hold then necessarily β = α and m = n. Thus the representation (i) is

unique.

DOI:10.1007/BF00281246
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(c) By the result above

a2 = αa1 + n, a1 · n = 0. (v)

Now suppose that a2 ·x = 0 for all x for which a1 ·x = 0. By (v)2, one such x is x = n. Therefore it follows

that a2 · n = 0. Thus taking the scalar product of (v)1 with n yields n · n = 0. Consequently n = o and

hence a2 = αa1.

Problem 1.53. (Projection tensor.) The “projection tensor” P projects vectors onto a given plane P.

It takes any vector v ∈ V into the vector Pv ∈ P as illustrated geometrically in Figure 1.13. Determine P.

Show that P is singular.

O

A

BP

Figure 1.13: The projection Pv of a vector v onto the plane P.

Solution: Let v be an arbitrary vector:
−→
OA= v. Its image after projections is

−→
OB= Pv. Let n be a unit

vector normal to the plane P. Observe from Figure 1.13 that the vector
−→
BA has magnitude v · n and is in

the direction n. Thus
−→
BA= (v · n)n.

Consequently

Pv =
−→
OB =

−→
OA +

−→
AB =

−→
OA −

−→
BA= v − (v · n)n.

Thus

Pv = v − (v · n)n for all vectors v ∈ V. (1.209)

This completely defines P since it tells us how it operates on an arbitrary vector v.

Remark: Note that P is a linear operator since P(αx+βy) = αPx+βPy. Thus it is a linear transformation

(tensor).

Remark: Recall that the tensor product of two vectors a and b is the tensor, denoted by a⊗b, that has the

property (a ⊗ b)v = (b · v)a for all vectors v ∈ V. Therefore we can express the projection tensor defined

by (1.209) equivalently as

P = I− n⊗ n. (1.210)

Remark: Observe from (1.209) or (1.210) or geometrically from Figure 1.13 that Pn = o. Since n 6= o it

follows from (1.85) that P is singular.
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Remark: The components Pij of P in a basis will be calculated in Problem 1.54 .

Problem 1.54. (Projection tensor.) Determine the components in an arbitrary basis of the projection

tensor P introduced in Problem 1.53.

Solution: If Pij , xi, ni are the components of P,x and n in an arbitrary basis then (1.209) ⇔

Pijxj = xi − xjnjni = (δij − ninj)xj .

Since this must hold for all vectors x ∈ V it follows that

Pij = δij − ninj .

Alternatively: Since Px = x− (x · n)n for all vectors x ∈ V, it holds for the particular choice x = ej :

Pej = ej − (ej · n)n = ej − nj n.

Take the dot product of this equation with ei:

Pej · ei = ej · ei − nj n · ei = δij − njni.

By the definition (1.128) of the components of a tensor, Pij = Pej · ei.

Problem 1.55. (Skew-symmetric tensor. Axial vector.) Let W be a skew-symmetric tensor, i.e.

W = −WT . (i)

Show that there is a vector w such that

Wx = w × x for all vectors x ∈ V. (ii)

In terms of components in a basis, show that

wi = −1

2
eijkWjk. (iii)

Remark: Recall from the comment below (1.7) that any skew-symmetric matrix [W ] has only three indepen-

dent elements, e.g. W12,W23,W31. This is because the elements on the diagonal of a skew-symmetric matrix

[W ] are zero and W12 = −W21,W23 = −W32 and W31 = −W13. It is not surprising therefore that one can

associate a vector w (which has three independent components) with each skew-symmetric tensor W.

Problem 1.56. (Rotation tensor.) Consider the rotation tensor Q introduced in (1.192) (page 85).

(a) Determine the components of Q in an arbitrary basis.
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(b) Verify that Q is proper orthogonal.

(c) Show that

trace Q = 1 + 2 cos θ (i)

and

sin θ ni = −1

2
eipqQpq. (ii)

Therefore, given a proper orthogonal Q, one can find the rotation angle θ from (i) and thereafter the

rotation axis n from (ii).

(d) Suppose that the axis of rotation coincides with one of the basis vectors, say n = e3. Specialize your

answer to part (a) and display the matrix [Q].

Solution:

(a) If Qij , xi, ni are the components of Q,x and n in an arbitrary basis then in view of (1.58) and (1.61) we

can write (1.192) as

Qijxj = cos θ xi + (1− cos θ)(njxj)ni + sin θ eijknjxk =

=
(

cos θ δij + (1− cos θ)ninj + sin θ eikjnk
)
xj =

=
(

cos θ δij + (1− cos θ)ninj − sin θ eijknk
)
xj ,

where in going to the second line we used the substitution rule; and in going to the last line we used the fact

the alternator changes sign if any two adjacent subscripts are switched. If we take all of the terms to one

side this can be written in the form Aijxj = 0, which because it hold for all xi, implies Aij = 0. This leads

to

Qij = cos θ δij + (1− cos θ)ninj − sin θ eijknk, (iii)

which are the components of Q in a basis.

(b) Here we must show that Qij given in (iii) obeys the orthogonality condition QkiQkj = δij (i.e. [Q]T [Q] =

[I]). Exercise.

(c) To calculate the trace of Q we set i = j in (iii):

Qii = cos θ δii + (1− cos θ)nini − sin θ eiiknk = 3 cos θ + (1− cos θ) = 1 + 2 cos θ.

where in the second step we have used (a) δii = 3, (b) n is a unit vector whence nini = 1 and (c) eijk

vanishes if two subscripts are equal.

To get (ii) we multiply Qpq in (iii) by eipq:

eipqQpq = cos θ δpqeipq + (1− cos θ)npnqeipq − sin θ epqkeipqnk.

The first two groups of terms on the right-hand side vanish because of the result of Problem 1.2.3. We

simplify the last term using eijk = −ejik, the identity (1.43) and the substitution rule:

eipqQpq = − sin θepqkeipqnk = sin θepqkepiqnk = (δqiδkq − δqqδki) sin θnk = (ni − 3ni) sin θ = −2 sin θ,
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and so (ii) follows.

(d) Suppose that n = e3. Then nk = δk3 and so (iii) yields

Qij = cos θ δij + (1− cos θ)δi3δj3 − sin θ eij3.

If we evaluate each term Qij we find that

[Q] =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Problem 1.57. (Rotation tensor.) The tensor Q is proper orthogonal.

(a) Show that det(Q− I) = 0 and hence deduce that unity is an eigenvalue of Q.

(b) Let a be the eigenvector of Q corresponding to the eigenvalue λ = 1. Consider an orthonormal basis

{a,b, c}. Show that Qb and Qc are perpendicular to a and therefore lie in the plane spanned by b

and c. Hence deduce that for some angle θ,

Qb = cos θb + sin θc, Qc = − sin θb + cos θc.

(c) Show that Q has the representation

Q = a⊗ a + cos θ(b⊗ b + c⊗ c) + sin θ(c⊗ b− b⊗ c). (i)

Hence show that (same as (1.192))

Qx = cos θ x + (1− cos θ)(a · x)a + sin θ (a× x),

for any vector x.

(d) Calculate the principal scalar invariants of Q. Hint: use (1.90), (1.103) and (1.196).

(e) Show that Q has no real eigenvalues other than unity. Hint: use the result from (d).

Solution:

(a) Since QTQ = I it follows that QT (Q − I) = −(QT − I) and taking the determinant of both sides and

using det Q = 1 and det AT = det A, one finds

det(Q− I) = −det(QT − I) = −det(Q− I) ⇒ det(Q− I) = 0.

It follows that λ = 1 is an eigenvalue of Q (since the eigenvalues of Q are given by det(Q− λI) = 0).

(b) Let a be the eigenvector corresponding to the eigenvalue unity. Then

Qa = a. (ii)
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Note from (iii) that QTa = a. Thus

0 = b · a = b ·QTa = Qb · a,

and so Qb is perpendicular to a. Similarly Qc is also perpendicular to a. Therefore Qb and Qc lie in the

plane spanned by b and c and therefore they can be expressed as linear combinations of the vectors b and

c. Since Q is a rotation this representation is, for some angle θ,

Qb = cos θb + sin θc, Qc = − sin θb + cos θc. (iii)

(c) Since {a,b, c} forms an orthonormal basis, the three equations in (ii) and (iii) completely defines Q. In

particular, the coefficients on the right-hand sides of those equations are the components of Q in the basis

{a,b, c} and so (i) follows.

(d) The principal scalar invariants of Q can be determined from (i) and (1.90), (1.103), (1.196) to be

I1(Q) = trQ = 1 + 2 cos θ, I2(Q) =
1

2

[
(trQ)2 − trQ2

]
= 1 + 2 cos θ, I3(Q) = det Q = 1. (iv)

e) The eigenvalues of Q are given by the roots of the characteristic equation

λ3 − I1(Q)λ2 + I2(Q)λ− I3(Q) = 0 (v)

Substituting (iv) into (v) leads to

(λ− 1)(λ2 − 2 cos θλ+ 1) = 0,

the only real root of which is λ = 1.

Problem 1.58. (Trace of a tensor.) The trace of a tensor was defined in (1.103). Show that the right-hand

side of that formula, i.e.
Ax · (y × z) + x · (Ay × z) + x · (y ×Az)

x · (y × z)
, (i)

is independent of the choice of the linearly independent vectors x,y, z.

Solution: Let {e1, e2, e3} be an arbitrary orthonormal basis and let x,y, z be arbitrary linearly independent

vectors with x = xiei,y = yiei and z = ziei. Then

x · (y × z) = xiei · (yjej × zkek) = xiyjzk ei · (ej × ek)
(1.54)

= xiyjzk eijk (ii)

and
Ax · (y × z) + x · (Ay × z) + x · (y ×Az) =

= xiyjzkAei · (ej × ek) + xiyjzkei · (Aej × ek) + xiyjzkei · (ej ×Aek) =

= xiyjzk

[
Aei · (ej × ek) + ei · (Aej × ek) + ei · (ej ×Aek)

]
=

(1.38),(1.54)
= xiyjzk eijk

[
Ae1 · (e2 × e3) + e1 · (Ae2 × e3) + e1 · (e2 ×Ae3)

]
(iii)
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It follows from (ii) and (iii) that

Ax · (y × z) + x · (Ay × z) + x · (y ×Az)

x · (y × z)
= Ae1 · (e2 × e3) + e1 · (Ae2 × e3) + e1 · (e2 ×Ae3)

which is independent of the choice of the vectors x,y, z.

Problem 1.59. (Scalar (dot) product of two tensors.) Consider the scalar-valued function

f(A,B) = trace(ABT )

defined for all tensors A and B ∈ Lin. Show that this function f has the following properties for all tensors

A,B,C ∈ Lin and all scalars α:

(a) f(A,B) = f(B,A),

(b) f(αA,B) = αf(A,B),

(c) f(A + C,B) = f(A,B) + f(C,B) and

(d) f(A,A) > 0 provided A 6= 0 and f(0,0) = 0.

Solution: Let Aij and Bij be the components of A and B in an arbitrary basis. In terms of these components,

f(A,B) = trace(ABT ) = (ABT )ii = AijB
T
ji = AijBij .

It is now trivial to verify that all of the above hold. In confirming (d) we use the fact that f(A,A) = AijAij

is the sum of the squares of all the components Aij .

The statements (a)− (d) describe the requirements of a proper definition of a scalar product. See, e.g.

Knowles. Therefore for two tensors A and B, we may define their scalar-product, denoted by A ·B, to be

A ·B = trace(ABT ) = AijBij .

Problem 1.60. Show that

(I + a⊗ b)−1 = I− a⊗ b

1 + a · b (provided a · b 6= −1)

Remark: It is shown in Problem 1.19 that

det(I + a⊗ b) = 1 + a · b.
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Problem 1.61. (Cofactor.) Given any tensor A, there is a tensor called its cofactor and denoted by A∗

with the property

A∗(a× b) = Aa×Ab

for all vectors a and b; see section 2 of Chadwick [2]. If A is nonsingular show that

A∗ = (det A) A−T .

Solution: We can obtain the desired result if we can show that det A (a × b) = AT (Aa × Ab). This is

precisely the result established in Problem 1.13.

Problem 1.62. (Convex set of tensors.) Suppose S is a subset of the set of all tensors Lin. The set S is

said to be convex if all tensors on the line joining every pair of tensors in S lies in S, i.e. if every tensor

A(ξ) = ξA1 + (1− ξ)A2, 0 ≤ ξ ≤ 1, belongs to S whenever A1 ∈ S and A2 ∈ S.

(a) Show that the set Symm of all symmetric tensors is a convex set.

(b) Show that the set Lin+ of all tensors with positive determinant is not a convex set.

Solution

(a) Let A1 and A2 be two arbitrary symmetric tensors. Clearly, A(ξ) = ξA1 + (1 − ξ)A2 is necessarily

symmetric for all 0 ≤ ξ ≤ 1. Thus if A1 and A2 are in Symm, so is every tensor on the line joining them.

This proves that Symm is convex.

(b) (Steigmann) Take A1 = −3e1⊗ e1 + e2⊗ e2− e3⊗ e3 and A2 = e1⊗ e1− 3e2⊗ e2− e3⊗ e3. Note that

det A1 = det A2 = 3 and so A1 and A2 are both in Lin+. Consider the tensors on the line joining them:

A(ξ) = ξA1 + (1− ξ)A2 = (1− 4u)e1 ⊗ e1 + (4u− 3)e2 ⊗ e2 − e3 ⊗ e3, 0 ≤ ξ ≤ 1.

Then

det A(ξ) = −16(ξ − 1/4)(3/4− ξ),

which is < 0 for 1/4 < ξ < 3/4 and so all A(ξ) on this line are not in Lin+.

Problem 1.63. Let S be a tensor and u a vector. Show that u is an eigenvector of S if and only if

Su⊗ u = u⊗ Su.

Solution: Suppose that u is an eigenvector of S. Then

Su = λu, (i)

for some scalar (the eigenvalue) λ. Then

Su⊗ u
(i)
= λu⊗ u = u⊗ (λu)

(i)
= u⊗ Su.
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Conversely, suppose that

Su⊗ u = u⊗ Su, (ii)

for some non-zero vector u. Operating each side of (ii) on the vector u

(Su⊗ u)u = (u⊗ Su)u ⇒ (u · u)Su = (Su · u)u ⇒ Su =
(Su · u)

u · u︸ ︷︷ ︸
λ

u

and so u is an eigenvector of S (with eigenvalue λ = (Su · u)/(u · u)).

Problem 1.64. (4-tensors.) As before: vectors in the 1-dimensional Euclidean vector space V are denoted

by lowercase boldface latin letters; 2-tensors are denoted by uppercase boldface latin letters and a 2-tensor A

is a linear transformation that takes a vector x ∈ V into another vector in V that we denote by Ax (subject

to certain rules); the collection of all 2-tensors is itself a vector space that we denote by Lin; 4-tensors are

denoted with uppercase blackboard letters and a 4-tensor L is a linear transformation that takes a 2-tensor

A ∈ Lin into another 2-tensor in Lin that we denote by LA (subject to certain rules).

We shall denote the set of all 4-tensors by LinLin.

Reference: G. Del Piero [3].

– The identity 4-tensor I and null 4-tensor O obey

IA = A, OA = 0 for all 2-tensors A ∈ Lin.

– The product of two 4-tensors C and D is defined by

(CD)A = C(DA) for all 2-tensors A ∈ Lin

(a) Exercise: Let T be the particular 4-tensor that takes any 2-tensor A ∈ Lin into the 2-tensor AT ∈ Lin:

TA = AT for all 2-tensors A ∈ Lin.

It is called the transposition 4-tensor.

(a1) Show that T is invertible and its inverse is T:

TT = I;

(a2) Define the 4-tensor S by

S =
1

2
(I + T).

Show that ST = TS = S, SS = S and

SA =
1

2
(A + AT ) for all 2-tensors A ∈ Lin.
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– Define the transpose LT of the tensor L by

LTA ·B = A · LB for all 2-tensors A,B ∈ Lin.

(b) Exercise: Show that (CD)T = DTCT .

– Define the tensor product of two 2-tensors A and B to be the 4-tensor, denoted by A �B, for

which

(A�B)X = AXBT for all 2-tensors X ∈ Lin.

(c) Exercise: Show that

(c1) (A� I)X = AX

(c2) (I�AT )X = XA

(c3) (A�B)T = AT �BT .

(c4) AL(XB) = (A� I)L(I�BT )X

(c5) (A�B)(C�D) = AC�BD

(c6) T(A�B) = (B�A)T

(c7) (A�B)−1 = A−1 �B−1.

– We say that L has the first minor symmetry if

L = TL,

where T is the transposition tensor introduced earlier. We say that L has the second minor symmetry

if

L = LT

Verify that L has both minor symmetries if

L = SLS where S =
1

2
(I + T)

We say that L has the major symmetry (or simply we say that L is symmetric) if

L = LT .

(d) Exercise: Show that if L has the major symmetry and one of the minor symmetries, it necessarily has

the other minor symmetry.

– Components: Let {e1, e2, e3} be an orthonormal basis for the Euclidean vector space V. Define the

34 numbers Lijk` by

Lijk` =
(
L(ek ⊗ e`)

)
· (ei ⊗ ej)

Show that

L = Lijk`(ei ⊗ ek)� (ej ⊗ e`)(
LA
)
ij

= Lijk`Ak`, (A�B)ijk` = AikBj`.

If the components of L are Lijk` what are the components of LT ? If a tensor L has in turn (a) the

first minor symmetry, (b) the second minor symmetry, and (c) the major symmetry, what does this

imply about the components Lijk`?
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– Let F(X) be a 2-tensor valued function of all 2-tensors X. Assuming F(X) is differentiable at X, its

gradient is the 4-tensor denoted by ∇F for which

F(X + H) = F(X) + (∇F(X))H + o(|H|) with lim
|H|→0

o(|H|
|H| → 0.

(e) Exercise: Show that the components of this 4-tensor are

(∇F )ijk` =
∂Fij
∂Xk`

.
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Chapter 2

Kinematics: Finite Deformation

Several short videos on the material in Sections 2.3 - 2.6 can be found here.

In this chapter we shall consider purely geometric issues (“kinematics”) associated with

the deformation of a body. At this stage we will not address the causes of the deformation,

such as what the applied loading is, nor will we discuss the characteristics of the material of

which the body is composed, assuming only that it can be described as a continuum. Our

focus will be entirely on kinematic considerations1.

Problem 2.2 shows that the familiar notion of strain as defined in linear theories of

solid mechanics is deficient when considering finite (i.e. large) deformations. This is why

it is necessary that we devote some time to a careful analysis of the kinematics of large

deformations. An even more detailed discussion, especially of time dependent entities such

as strain-rate, can be found in the references [1, 3, 5, 6] listed at the end of this chapter.

A roadmap of this chapter is as follows: in Section 2.1 we introduce the notion of a

deformation: y = y(x). Some homogeneous deformations y(x) = Fx + b such as a pure

stretch, simple shear and a rigid deformation are discussed in Section 2.2. In Section 2.3 we

introduce the deformation gradient tensor F(x), the central ingredient needed to describe

the deformation in the neighborhood of a particle x. We then consider in Section 2.4 an

1It is worth mentioning that in developing a continuum theory for a material, the appropriate kinematic

description of the body is not entirely independent of the nature of the forces. For example, in describing

the interaction between particles in a dielectric material subjected to an electric field, one might allow for

internal forces and internal couples between every pair of points in the body. This in turn requires that the

kinematics allow for independent displacement and rotation fields in the body. In general, the kinematics

and the forces must be conjugate to each other in order to construct a self-consistent theory.
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infinitesimal material curve, material surface and material region in the reference configura-

tion and examine the geometric characteristics of their images in the deformed configuration.

The decomposition of a general deformation gradient tensor F into the product of a rigid

rotation R and pure stretches U,V is described in Section 2.5. Section 2.6 introduces the

notion of strain. In Section 2.7.1 we calculate the deformation gradient tensor F and the

left Cauchy-Green deformation tensor B in cylindrical and spherical polar coordinates. We

discuss material and spatial descriptions of a field in Section 2.8. Finally we linearize the

preceding results in Section 2.9. In the appendix, Section 2.11, we touch on the material

time derivative and a transport formula.

2.1 Deformation

In this chapter we examine how the geometric characteristics of one configuration of the

body (the “deformed” configuration) are related to those of a second configuration (the

“undeformed” or “reference” configuration). Thus we are necessarily concerned with two

configurations of the body2.

x
y

e1

e2

e3

O

u = u(x )

y = y (x ) = χ (χ − 1(x ))

y = y (x )

y = y (x ) = χ (χ − 1
ref (x ))

p

p

Figure 2.1: The respective regions RR and R are occupied by a body in the reference and deformed

configurations; the position vectors of a generic particle p in these two configurations are denoted by x and

y; the displacement of this particle is u.

In the deformed configuration the body occupies a region R of physical space while the

corresponding region in a reference configuration is RR. The position vector of a generic

2This is in contrast to the study of many fluids where only the current configuration needs to be considered.
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particle p in the reference configuration is denoted by x and the deformation takes this

particle to the position ŷ(x) in the deformed configuration. This is illustrated in Figure 2.1.

We write

y = ŷ(x), x ∈ RR, y ∈ R. (2.1)

We refer to ŷ(x) as the deformation. We use the “hat” over y in order to distinguish the

function ŷ(·) from its value y. As we progress through these notes, we will usually omit the

“hat” unless the context does not make clear whether we are referring to ŷ or y, or when

we wish to emphasize the distinction.

The reference configuration serves two main purposes. One, geometric changes, e.g. the

change in length of a fiber, are measured with respect to this configuration. Two, it provides

a convenient way in which to “label” particles of the body: since there is a one-to-one

correspondence between a particle p and its position x in the reference configuration3, we

can uniquely identify a particle by x. Whenever there is no confusion in doing so, we shall

speak of “the particle x” rather than “the particle located at x in the reference configuration”.

The reference configuration is an arbitrary conveniently chosen configuration, the only

requirement being that it be a “possible” configuration that the body can occupy. It need

not, for example, be the initial configuration of a body undergoing a motion. Unless explicitly

stated otherwise, we shall always consider one fixed reference configuration.

The displacement û(x) of the particle x is

û(x) = ŷ(x)− x, (2.2)

as shown in Figure 2.1. The functions ŷ (and û) are defined on RR, i.e. at every x ∈ RR.

For physical reasons we require that (a) a single particle x not split into two particles and

occupy two locations y(1) and y(2) in the deformed configuration, and (b) that two particles

x(1) and x(2) both not occupy the same location y in the deformed configuration. Therefore

we take the deformation x 7→ ŷ(x) to be one-to-one.

Unless explicitly stated otherwise, we will assume ŷ(x) to be “smooth”, i.e. that it

may be differentiated as many times as needed, and that these derivatives are continuous

on RR. There are situations in which this must be relaxed: for example, if we consider a

“dislocation” it will be necessary to allow the displacement field to be discontinuous across

a surface in the body; or if we consider the deformation of a “two-phase composite material”

3See Chapter 1 of Volume II for a more careful discussion of what we mean by “a particle” and “a

configuration” in the continuum theory.
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we must allow the gradient of the displacement field to be discontinuous across the interface

between the two phases.

Finally, we pick and fix (an arbitrary) right-handed orthonormal basis {e1, e2, e3}. When

referring to components of vector and tensor quantities, it will always be with respect to this

basis (unless explicitly stated otherwise). In particular, denoting the components of x and

y in this basis by xi = x · ei and yi = y · ei, we write the deformation (2.1) in component

form as

yi = ŷi(x1, x2, x3) = xi + ûi(x1, x2, x3). (2.3)

The rectangular cartesian coordinates of a particle in the reference and deformed configura-

tions are (x1, x2, x3) and (y1, y2, y3) respectively.

2.2 Some homogeneous deformations.

In a homogeneous deformation, the position y(x) of a particle in the deformed configura-

tion depends linearly on its position x in the reference configuration and so the deformation

has the form

y = y(x) = Fx + b, (2.4)

where F is a constant tensor with positive determinant and b is a constant vector representing

a rigid translation. In component form,

yi = Fikxk + bi.

Note that
∂yi
∂xj

= Fik
∂xk
∂xj

= Fikδkj = Fij.

Since y(x) is the deformation, we refer to ∂yi/∂xj as the components of the deformation

gradient tensor. In a homogeneous deformation, the deformation gradient tensor does not

depend on x.

Consider two identical cubic subregions of RR located at different places in the unde-

formed body. When the body undergoes a homogeneous deformation, their images in the

deformed configuration will also be identical (other than for their locations). This is not

true in general in an arbitrary deformation.
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Exercise: Show that the set of points lying on a straight line/plane/ellipsoid in the reference configuration

are mapped by a homogeneous deformation into a straight line/plane/ellipsoid in the deformed configuration.

2.2.1 Pure stretch.

R

R 0

R
e3

n0

n0

n

R 0

R
e3

n0

1

1

1

Figure 2.2: Pure homogeneous stretch of a cube. A unit cube in the reference configuration is carried into

an orthorhombic region of dimensions λ1 × λ2 × λ3.

The constant tensor F in a pure stretch y(x) = Fx is symmetric and positive definite.

We will see in Section 2.5 that this implies that such a deformation does not involve a rigid

rotational part.

Consider a body that occupies a unit cube in a reference configuration with its edges

aligned with the basis vectors {e1, e2, e3} as shown in Figure 2.2. The body is subjected to

the deformation

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, λi > 0, (2.5)

where the three λ′is are positive constants. This deformation maps the 1× 1× 1 undeformed

cube RR into a λ1 × λ2 × λ3 orthorhombic region R as shown in Figure 2.2. The positive

constants λ1, λ2 and λ3 represent the ratios by which the three edges of the cube stretch in

the respective directions e1, e2, e3. This deformation is called a pure stretch.

Observe that a material fiber parallel to an edge of the cube in the reference configuration

simply undergoes a stretch and no rotation under this deformation. However, this is not true

of all material fibers, e.g. a fiber oriented along a diagonal of a face of the cube will undergo

both a length change and a rotation.
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The deformation (2.5) can be written in matrix form as

{y} = [F ]{x} where [F ] =


λ1 0 0

0 λ2 0

0 0 λ3

 , (2.6)

and in tensor form as

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (2.7)

The 3 × 3 matrix [F ] in (2.6)2 is the matrix of components of the tensor F in (2.7). In

the special case where the deformed and reference configurations coincide, i.e. the body is

undeformed, then y(x) = x and so λ1 = λ2 = λ3 = 1 whence [F ] = [I], Fij = δij and F = I.

The deformation gradient tensor (2.7) in this example is symmetric and positive definite,

with principal directions e1, e2, e3 and corresponding principal stretches λ1, λ2, λ3.

We now consider some particular pure stretches:

– Pure dilatation: The special case λ1 = λ2 = λ3 = λ of (2.5) describes a pure

dilatation of the body. In this case

F = λ(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) = λI,

and so the deformation y = Fx specializes to y = λx. This shows that all dimensions

of the body are uniformly scaled by the factor λ.

– Isochoric pure stretch: A deformation is said to be isochoric if it is volume preserving

at each point of the body. In the case of the pure stretch (2.7) this requires

λ1λ2λ3 = 1. (2.8)

Note that this is a constraint on the three stretches in that their values cannot be

prescribed independently.

– Uniaxial stretch: The deformation

y1 = λx1, y2 = x2, y3 = x3, (2.9)

is illustrated in Figure 2.3. It describes a uniaxial stretch in the e1-direction. If

λ > 1 the stretch is an elongation, if λ < 1 a contraction. (The terms “tensile” and
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Figure 2.3: Uniaxial stretch in the e1-direction. A unit cube RR in the reference configuration is carried

into a λ1 × 1× 1 tetragonal region R in the deformed configuration.

“compressive” refer to stress not deformation.) This deformation can be written in

tensor form as y = Fx by taking

F = λe1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = I + (λ− 1)e1 ⊗ e1.

More generally, the deformation y = Fx with

F = I + (λ− 1)mR ⊗mR (2.10)

represents a uniaxial stretch in the direction of the unit vector mR. If the body is

composed of an incompressible material, its volume cannot change and so it cannot

undergo a uniaxial stretch of the form (2.9) (except for the trivial one where λ = 1).

– Isochoric uniaxial stretch with equal lateral stretch: If the body undergoes a

stretch λ in the x1-direction and equal lateral stretches λ2 in the x2- and x3-directions,

then y1 = λx1, y2 = λ2x2, y3 = λ2x3. If the deformation is isochoric, then λ1λ2λ3 =

λλ2
2 = 1 and so λ2 = λ−1/2 Therefore such a deformation is described by

y1 = λx1, y2 = λ−1/2x2, y3 = λ−1/2x3. (2.11)

2.2.2 Simple shear.

Consider the homogeneous deformation that carries the cube RR into the sheared region R
as shown in Figure 2.4. The displacement field associated with such a simple shearing

deformation has components

u1 = kx2, u2 = 0, u3 = 0,
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where k is a constant. Observe that the displacement (vector) of every particle has only an

e1-component and the magnitude of this displacement increases linearly with x2. One refers

to a plane x2 = constant as a shearing (or glide) plane, the x1-direction as the shearing

direction and the scalar k as the amount of shear.

R 0

e1

e2

R

e1

Figure 2.4: Simple shear of a cube. Each plane x2 = constant undergoes a displacement in the x1-direction

by the amount kx2.

The deformation y(x) = x + u(x) associated with a simple shear has components

y1 = x1 + kx2, y2 = x2, y3 = x3. (2.12)

The deformation (2.12) can be written in matrix form as

{y} = [F ]{x} where [F ] =


1 k 0

0 1 0

0 0 1

 , (2.13)

and tensor form as

y = Fx where F = I + k e1 ⊗ e2. (2.14)

Note that det F = 1 and therefore a simple shear preserves volume. (That det F is a

measure of volume change is discussed in Section 2.4.3.)

More generally, if nR and mR are arbitrary unit vectors that are orthogonal, |mR| =

|nR| = 1,mR · nR = 0, a simple shear whose glide plane normal is nR and shear direction is

mR is described by the deformation y = Fx where

F = I + kmR ⊗ nR. (2.15)

One can of course consider combinations of the preceding homogeneous deformations.

For example consider

y = F1F2x where F1 = I + αa⊗ a, F2 = I + km⊗ n,
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where the vectors a,m,n have unit length and m ·n = 0. We can examine this deformation

in two steps as y = F1(F2x): in the first step a particle goes from x 7→ F2x corresponding to

a simple shearing of the body. In the second step it goes from F2x 7→ F1(F2x), and the body

undergoes a uniaxial stretching. Figure 2.5 illustrates such a deformation in the particular

case a = n = e2,m = e1. It is worth pointing out that the individual tensors F1, F2 enter

the tensor F multiplicatively (not additively), i.e. as F = F1F2 not F = F1 + F2.

R

e1

Figure 2.5: A unit cube subjected to a simple shear (with glide plane normal e2) and a uniaxial stretch in

the direction e2.

2.2.3 Rigid deformation.

A deformation is said to be rigid if the distance between all pairs of particles remains un-

changed, i.e. if the distance |x1 − x2| between any two particles x1 and x2 in the reference

configuration equals the distance |y(x2)−y(x1)| between them in the deformed configuration:

|y(x2)− y(x1)|2 = |x2 − x1|2 for all x1,x2 ∈ RR. (2.16)

It can be shown (Problem 2.45) that a deformation is rigid if and only if it has the form

y(x) = Qx + b, (2.17)

where Q is a constant orthogonal tensor and b is a constant vector4. When the deformation

preserves orientation, it follows because of (2.25) below that det Q = +1 and therefore Q is

proper orthogonal and represents a rigid rotation. The vector b represents a rigid translation.

4Recall from Problem 1.4.17 that an orthogonal tensor Q preserves length, i.e. |Qx| = |x| for all vectors

x. Therefore it is immediately clear that the deformation (2.17) obeys (2.16). What requires proof is the

converse, that (2.16) implies (2.17).



132 CHAPTER 2. KINEMATICS: FINITE DEFORMATION

A rigid material (or rigid body) is a material that can only undergo rigid deformations.

All of the deformations considered in this section were homogeneous in the sense that

they were of the form (2.4) with F being a constant tensor. Most deformations are not of

this form, a simple example being

y1 = x1 cosαx3 − x2 sinαx3,

y2 = x1 sinαx3 + x2 cosαx3,

y3 = x3,


where α is a constant. It is readily seen that the deformation gradient tensor components

∂yi/∂xj depend on x. This deformation represents a torsional deformation about the x3-axis

in which each plane x3 = constant rotates by an angle αx3. [Exercise: show this.]

2.3 Deformation in the neighborhood of a particle. De-

formation gradient tensor.

We now return to a general deformation y = y(x). Questions such as “what is the state of

stress at a particle x?” depend not only on the deformation at x but also on the deformation

of all particles in a neighborhood of x. Thus we now turn to characterizing the deformation

in the neighborhood of a generic particle. Intuitively, we expect the deformation of a small

ball of material centered at x to consist of a combination of a rigid translation, a rigid

rotation and a “straining”, notions that we shall make precise in what follows.

dx

dy

P

Q
P

Q

x

x + dx
P

Q

:

:

Figure 2.6: An infinitesimal material fiber in the reference and deformed configurations.
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Consider two particles x and x + dx located in the reference configuration at P and Q

as depicted in Figure 2.6. The material fiber joining them is
−→
PQ= dx. In the deformed

configuration these particles are located at P ′ and Q′ with respective position vectors y(x)

and y(x + dx). The deformed image of this material fiber5 is

−→
P ′Q′= dy = y(x + dx)− y(x). (2.18)

From (1.163), we have y(x + dx) = y(x) +∇y(x) dx + o(|dx|) where the tensor ∇y is the

gradient of the deformation y(x). Thus when the two particles are close to each other we

can write

dy = ∇y dx + o(|dx|). (2.19)

We denote the deformation gradient tensor ∇y at particle x by

F(x) := ∇y(x) , (2.20)

and write (2.19) formally as

dy = F dx. (2.21)

Note that (2.21) does not assume the deformation or deformation gradient to be “small”;

only the two particles to be close to each other.

The deformation gradient tensor F carries an infinitesimal material fiber dx in the un-

deformed configuration into dy = F dx in the deformed configuration. It describes the

deformation of every infinitesimal material fiber through x, and therefore it describes the

deformation of the entire neighborhood of x. Thus one can calculate all local changes in

geometry at x in terms of F(x), e.g. the change in length of a material fiber, the change in

angle between two material fibers etc. We will carry out these calculations in Section 2.4.

The deformation gradient tensor is the principal entity used to study the deformation in

the neighborhood of a particle. It characterizes both the rigid rotation and the “strain” at

x.

The equation dy = F dx is the local version in the vicinity of the particle x of the equation

y = Fx that we had previously when examining homogeneous deformations in Section 2.2.

Given F(x), we can calculate the deformation of every material fiber (through x). Con-

versely, given the deformation of any three linearly independent material fibers, one can

5The fibers PQ and P ′Q′ being material fibers refers to the fact that they are comprised of the same set

of particles.
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calculate F, and therefore determine the deformation of all other material fibers (Problem

2.5).

The deformation gradient tensor F(x) is a 2-tensor field whose cartesian components6,

Fij(x) =
∂yi
∂xj

(x), (2.22)

correspond to the elements of a 3 × 3 matrix field [F (x)]. In terms of components, (2.21)

reads

dyi = Fij dxj. (2.23)

Problem 2.3.1. Consider two orthonormal bases {e1, e2, e3} and {e′1, e′2, e′3}, with the former used in

characterizing the reference configuration, and the latter, the deformed configuration. Thus in particular,

x = xi ei, y = yi e
′
i.

The deformation is described by yi = ŷi(x1, x2, x3). Show that the deformation gradient tensor has the

representation

F = Fij e′i ⊗ ej where Fij =
∂ŷi
∂xj

.

In physically realizable deformations we expect (a) a single fiber dx to not split into two

fibers dy(1) and dy(2), and (b) two fibers dx(1) and dx(2) not to coalesce into a single fiber

dy. This requires dy = Fdx to be a one-to-one relation between dx and dy whence F must

be nonsingular. The Jacobian determinant, J , therefore cannot vanish:

J := det F 6= 0. (2.24)

Without any further restrictions, a deformation might map a right-handed triplet of

vectors into a left-handed triplet of vectors (which would imply that the body has been

turned “inside out” like a sock). We say that the deformation preserves “orientation” if

every right-handed (linearly independent) triplet of material fibers {dx(1), dx(2), dx(3)} is

carried into a right-handed triplet of vectors {dy(1), dy(2), dy(3)}. According to Problem

2.46, orientation is preserved if and only if

J = det F > 0. (2.25)

6Given a function φ(x), the partial derivative ∂φ/∂xk is often denoted by φ,k. If we were to adopt this

notation we would write Fij = yi,j . However, since we have both referential coordinates x1, x2, x3 and

spatial coordinates y1, y2, y3, we will encounter both ∂/∂xi and ∂/∂yi. In order not to confuse one partial

derivative with the other, we shall write-out the partial derivatives explicitly and not adopt the subscript

comma notation.
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In these notes we will mostly be concerned with orientation-preserving deformations7 and

therefore, unless explicitly stated otherwise, assume (2.25) to hold.

Caution: In these notes we use the term “orientation-preserving” in two different ways.

In the sense of the preceding paragraph, it refers to the preservation of the right-handedness

(or left-handedness) of a triplet of vectors. When concerned with a particular material fiber,

if its direction (orientation) in the reference and deformed configurations is the same, we

shall say its orientation is preserved. The context should make clear the sense in which the

term is being used.

In the special case where the deformed and reference configurations coincide y(x) = x

and so

F(x) = I at all x ∈ RR. (2.26)

2.4 Change of length, orientation, angle, volume and

area.

The deformation gradient tensor F(x) characterizes the deformation of all (infinitesimal)

material fibers dx at the particle x. We can therefore calculate various geometric quantities

of interest (near x) in terms of F. In particular we now calculate the local 8 change in length

of a fiber, change in angle between two fibers, change in volume of an infinitesimal material

region and the change in area of an infinitesimal material surface, all in terms of F.

The change in length is related to the notion of fiber stretch (or normal strain), the

change in angle to the notion of shear strain and the change in volume to the notion of

volumetric (or dilatational) strain. The change in area is indispensable when calculating the

traction (force per unit area) on a surface.
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dy = Fdxdsx
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Figure 2.7: The infinitesimal material fiber
−→
PQ has length dsx and direction mR in the reference configu-

ration and length dsy and direction m in the deformed configuration.

2.4.1 Change of length and direction.

Consider a material fiber that has length dsx and direction mR in the reference configura-

tion. Then dx = (dsx)mR. If dsy and m denote its length and direction in the deformed

configuration, then dy = (dsy)m. Given dsx and mR we want to calculate dsy and m.

Since dy and dx are related by dy = Fdx, it follows that

(dsy)m = (dsx)FmR. (2.27)

On taking the magnitude of both sides of this vector equation we get dsy|m| = dsx|FmR|
and so the deformed length of the fiber is

dsy = dsx|FmR|. (2.28)

The stretch λ at the particle x in the direction mR is defined as the ratio

λ := lim
dsx→0

dsy
dsx

, (2.29)

and so

λ = λ(mR) = |FmR|. (2.30)

This is the stretch of the fiber with referential direction mR.

7Problem 2.19 concerns the eversion of a hollow cylinder where the body is turned “inside out”. Such

deformations do not preserve orientation. See also Problem 5.14.
8These are local changes in the sense that they refer to changes of infinitesimally small line, area and

volume elements at x.
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Exercise: among all fibers of all orientations at x, which has the maximum stretch? (Problem 2.22 )

The stretch λ is related to the relative change in length by

dsy − dsx
dsx

= λ− 1.

We will return to this later in (2.68).

The direction m of this fiber in the deformed configuration is found from (2.27) and

(2.28) to be

m =
FmR

|FmR|
. (2.31)

It is worth noting from (2.30) and (2.31) that

λm = FmR. (2.32)

Exercise: Determine all directions that remain unstretched in the simple shear deformation (2.14) with

shearing direction e1 and glide plane normal e2. Remark: Clearly, material fibers in the directions e1 and

e3 remain unstretched. In fact, since each glide plane simply translates rigidly, all material fibers in a glide

plane (i.e. fibers normal to e2) remain unstretched. There are additional directions that remain unstretched

– determine them.

2.4.2 Change of angle.

In order to calculate the change in angle between two fibers one can make use of the fact

that the angle between two vectors appears in the expression for the scalar product.

Consider two fibers dx(1) and dx(2) in the reference configuration (Figure 2.8) oriented in

the respective directions m
(1)
R and m

(2)
R . Let θx denote the angle between them. Then, by

the definition of the scalar product,

cos θx =
dx(1)

|dx(1)| ·
dx(2)

|dx(2)| = m
(1)
R ·m

(2)
R . (2.33)

In the deformed configuration these fibers are characterized by

dy(1) = Fdx(1), dy(2) = Fdx(2). (2.34)

Letting θy denote the angle between them, again by the definition of the scalar product, we

have

cos θy =
dy(1)

|dy(1)| ·
dy(2)

|dy(2)| =
Fm

(1)
R · Fm

(2)
R

|Fm
(1)
R ||Fm

(2)
R |

. (2.35)
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Figure 2.8: In the reference configuration two infinitesimal material fibers are oriented in the directions m
(1)
R

and m
(2)
R . The angle between them in the reference and deformed configurations are θx and θy respectively.

Thus, given the deformation gradient tensor F and the directions m
(1)
R and m

(2)
R of two

fibers in the reference configuration, (2.35) gives the angle between them in the deformed

configuration.

The decrease in angle, γ := θx− θy, is the shear associated with the directions m
(1)
R ,m

(2)
R :

γ = γ(m
(1)
R ,m

(2)
R ).

Exercise: among all pairs of fibers at x, which pair undergoes the maximum change in angle, i.e. maximum

shear? (Problem 2.10)

2.4.3 Change of volume.

Consider three linearly independent material fibers dx(1), dx(2), dx(3) in the reference config-

uration that form a tetrahedron of volume dVx as shown in Figure 2.9. The deformation

carries them into dy(1) = Fx(1), dy(2) = Fdx(2), dy(3) = Fdx(3). If dVy denotes the volume of

the tetrahedron formed by the deformed fibers, according to Problem 1.12,

dVy = J dVx where J = det F, (2.36)

having used det F > 0. This relates the volumes of an infinitesimal part of the body in the

reference and deformed configurations.
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dx(1)

dx(2)
dx(3)

dy(1)

dy(2)
dy(3)

P P

n
(1)
0

n
(2)
0

dy = ndsy

Figure 2.9: Three infinitesimal material fibers defining a tetrahedral region. The volumes of the tetrahe-

drons in the reference and deformed configurations are dVx and dVy respectively.

Observe from (2.36) that a deformation preserves the volume of every infinitesimal part

of the body if and only if

J(x) = 1 for all x ∈ RR. (2.37)

Such a deformation is said to be isochoric or locally volume preserving.

An incompressible material is a material that can only undergo isochoric deformations.

Keep in mind that a material that is not incompressible can undergo an isochoric deforma-

tion, e.g. a simple shear.

2.4.4 Change of area.

Finally we turn to the relationship between two area elements in the reference and deformed

configurations. Consider two linearly independent material fibers dx(1) and dx(2) in the

reference configuration that form a parallelogram as shown in Figure 2.10. Let dAx denote

its area and let nR be a unit vector normal to the plane of the parallelogram and oriented

such that (dx(1) × dx(2)) · nR > 0. The deformation carries these fibers into dy(1) = Fdx(1)

and dy(2) = Fdx(2). Let dAy and n be the area and unit normal vector respectively of the

parallelogram defined by dy(1) and dy(2) with (dy(1) × dy(2)) · n > 0. According to Problem
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Area dAx

Area dAy
dx(1)

dx(2)

dy(1)

dy(2)R

e1

e2

e3

n

Figure 2.10: The two infinitesimal material fibers dx(1) and dx(2) define a parallelogram of area dAx and

unit normal vector nR. The corresponding quantities in the deformed configuration are dy(1), dy(2), dAy

and n.

2.47 these two vector areas are related by

dAy n = dAx J F−T nR . (2.38)

Equation (2.38) is known as Nanson’s formula. The relation between the scalar areas dAy

and dAx is found by taking the magnitude of both sides of this vector equation which leads

to

dAy = dAx J |F−T nR|. (2.39)

The relation between the unit normal vectors nR and n is obtained by using (2.39) in (2.38):

n =
F−TnR

|F−TnR|
. (2.40)

It is worth noting that a material fiber in the direction nR in the reference configuration

maps into FnR, which in general is not the direction n given by (2.40). The vectors nR and

n are defined by the fact that they are normal to the particular material surface elements

being considered. These vectors are not attached to a material fiber. To see this clearly,

consider a simple shear as illustrated in Figure 2.11. Here P ′Q′ is the image of PQ and the

unit vectors nR and n are defined as being normal to PQ and P ′Q′ respectively. A material

fiber in the direction nR in the reference configuration (i.e. on the dashed line) remains on

the dashed line. Its direction in the deformed configuration is e1, not n.
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Figure 2.11: P ′Q′ is the image of PQ. The unit vectors nR and n are normal to PQ and P ′Q′ respectively.

A material fiber that is in the direction nR in the reference configuration (i.e. on the dashed line) remains

on the dashed line in the deformed configuration – its direction in the deformed configuration is e1, not n.

2.4.5 Worked examples.

Problem 2.4.1. The region RR occupied by a body in a reference configuration is a unit cube.

dy = nds

dy = nds

R 0

R

1

e1

e3

n0

e3

n0

n

PQ

R

T

S

O

Figure 2.12: Unit cube RR occupied by a body in its reference configuration. (Problem 2.4.1)

The body undergoes the pure stretch y = Fx described by

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, (i)

where the components have been taken with respect to an orthonormal basis {e1, e2, e3} aligned with the

edges of the cube, see Figure 2.12. Derive relationships between the λ’s in each of the following cases:

(a) The body is composed of an incompressible material.

(b) The length of the fiber
−→
OP remains unchanged by the deformation.

(c) The angle between the fibers
−→
OP and

−→
QR remains unchanged by the deformation.

(d) The area of the plane RSQT remains unchanged by the deformation.
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(e) The orientation of the plane RSQT remains unchanged by the deformation.

Solution: The deformation gradient tensor and its inverse are

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, F−1 = λ−1
1 e1 ⊗ e1 + λ−1

2 e2 ⊗ e2 + λ13e3 ⊗ e3. (ii)

(a) In general, the volumes of an infinitesimal part of the body in the reference and deformed configurations

are related by dVy = JdVx, J = det F. If the material is incompressible then dVy = dVx and so J = 1:

J = det F = λ1λ2λ3 = 1. �

(b) In general, the length dsy of a deformed material fiber is given by (2.28) where dsx and mR are the

length and direction of the fiber in the reference configuration. Thus if the fiber does not change length,

then dsx = dsy and so the stretch λ = 1:

|FmR| = 1. (iii)

The fiber of interest
−→
OP can be expressed as

−→
OP= e1 + e2 + e3 and therefore the unit vector mR in the

direction of
−→
OP is

mR =
e1 + e2 + e3√

3
. (iv)

Substituting (ii)1 and (iv) into (iii) and simplifying leads to

λ2
1

3
+
λ2

2

3
+
λ2

3

3
= 1. �

(c) In general, the angle θx between two material fibers that are in the directions of the unit vectors m
(1)
R

and m
(2)
R in the reference configuration is given by (2.33) and the corresponding angle θy in the deformed

configuration between these same two fibers is given by (2.35). Thus if the angle remains unchanged by the

deformation we must have

Fm
(1)
R

|Fm(1)| ·
Fm(2)

|Fm
(2)
R |

= m
(1)
R ·m

(2)
R . (v)

The unit vectors m
(1)
R and m

(2)
R in the directions of the material fibers

−→
OP and

−→
QR are

m
(1)
R = (e1 + e2 + e3)/

√
3, m

(2)
R = (e1 − e2 − e3)/

√
3. (vi)

Thus substituting (ii)1 and (vi) into (v) and simplifying leads to

2λ2
1 = λ2

2 + λ2
3. �

(d) In general, infinitesimal elements of area in the reference and deformed configurations are related by

dAy = J |F−TnR| dAx. If a particular area element remains unchanged, dAy = dAx, the deformation must

be much that

J |F−TnR| = 1, (vii)
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where J = det F and nR is a unit vector normal to the surface of interest in the reference configuration. The

unit vector normal to the plane RSQT is

nR =
1√
2

(
e1 + e2

)
. (viii)

Substituting (ii)2 and (viii) into (vii) and simplifying leads to

λ1λ2λ3

(
1

2λ2
1

+
1

2λ2
2

)1/2

= 1. �

(e) In general, the unit vectors nR and n normal to a surface in the reference and deformed configurations

are related by (2.40). If the orientation of this surface does not change, then nR = n in which case (2.40)

yields

nR = F−TnR/|F−TnR|. (ix)

Substituting (ii)2 and (viii) into (ix) and simplifying yields

λ1 = λ2, �

(which is precisely what one would expect intuitively).

Problem 2.4.2. (Spencer) A body undergoes an arbitrary homogeneous deformation y = Fx. Consider the

set of particles that lie on a sphere of radius b in the deformed configuration. Show that in the undeformed

configuration these particles lie on the surface of an ellipsoid and determine the lengths of the three major

axes of the ellipsoid. Under what condition on F is this ellipsoid a sphere of radius a?

Solution: Let S denote the spherical surface of interest in the deformed configuration, and let SR be its

image in the undeformed configuration. We pick the origin to be at the center of S. Then the position vector

y of a point on S and the radius b of S are related by

S : y · y = b2. (i)

Let x = x1e1 + x2e2 + x3e3 be a particle on SR and consider the deformation gradient tensor9

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3.

The deformation takes x 7→ y according to

y = Fx = (λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3)(x1e1 + x2e2 + x3e3) = x1λ1e1 + x2λ2e2 + x3λ3e3. (ii)

Substituting (ii) into (i) gives

(x1λ1e1 + x2λ2e2 + x3λ3e3) · (x1λ1e1 + x2λ2e2 + x3λ3e3) = b2

9Why did we take F to be a pure stretch?
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which when simplified leads to

SR :
x2

1

b2/λ2
1

+
x2

2

b2/λ2
2

+
x2

3

b2/λ2
3

= 1.

Therefore the surface SR is an ellipsoid and the lengths of its (semi)-major axes are b/λ1, b/λ2 and b/λ3.

The surface SR is a sphere of radius a if λ1 = λ2 = λ3 = b/a.

Problem 2.4.3. The region RR occupied by a body in a reference configuration is a hollow sphere. In

spherical polar coordinates, a general deformation takes the particle located at (R,Θ,Φ) in the reference

configuration into the location (r, θ, ϕ) in the deformed configuration. In a spherically symmetric deformation

one has

r = r(R), θ = Θ, ϕ = Φ. (o)

(a) In terms of r(R), calculate the stretch of a material fiber in the radial direction? What is the stretch

of a material fiber perpendicular to the radial direction?

(b) Determine the function r(R) (to the extent possible) in each of the following cases:

(b1) the material is incompressible,

(b2) the material is inextensible in the radial direction (perhaps there are very stiff fibers in the

radial direction),

(b3) the material is inextensible in circumferential directions (perhaps there are very stiff fibers in

the circumferential directions).

(c) Suppose that the inner and outer radii of the body are A and B in the reference configuration, and

the inner radius is a in the deformed configuration. Calculate the outer radius of the body in each of

the preceding cases?

Solution:

(a) In order to calculate the stretch of a radial fiber, consider two particles located in the reference configura-

tion at A : (R,Θ,Φ) and B : (R+dR,Θ,Φ) as shown in Figure 2.13. The spherically symmetric deformation

(o) maps them to A′ : (r(R),Θ,Φ) and B′ : (r(R + dR),Θ,Φ) in the deformed configuration. Thus the

deformation takes the infinitesimal radial material fiber

−→
AB = dx = dR eR 7→

−→
A′B′ = dy = (r(R+ dR)− r(R)) er,

and therefore the stretch of this fiber is

λR = lim
|AB|→0

|A′B′|
|AB| = lim

|dx|→0

|dy|
|dx| = lim

dR→0

r(R+ dR)− r(R)

dR
= r ′(R). � (i)

Next, in order to calculate the stretch of a fiber perpendicular to the radial direction consider two

particles located in the reference configuration at A : (R,Θ,Φ) and C : (R,Θ + dΘ,Φ) as shown in Figure
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Figure 2.13: The radial and circumferential material fibers
−→
AB and

−→
AC are mapped by the spherically

symmetric deformation into
−→
A′B′ and

−→
A′C ′ respectively. The spherical polar coordinates of the points

A,B,C,A′, B′ and C ′ are shown in the figure.

2.13. The spherically symmetric deformation (o) maps them to A′ : (r(R),Θ,Φ) and C ′ : (r(R),Θ + dΘ,Φ)

in the deformed configuration. The deformation takes the infinitesimal material fiber in the circumferential

Θ direction
−→
AC = dx = RdΘ eΘ 7→

−→
A′C ′ = dy = (r(R)dΘ) eθ,

and so the stretch of this fiber is

λΘ = lim
|AC|→0

|A′C ′|
|AC| = lim

|dx|→0

|dy|
|dx| = lim

dΘ→0

r(R)dΘ

RdΘ
=
r(R)

R
. � (ii)

By symmetry, the stretch of a fiber in the circumferential Φ direction is

λΦ = λΘ =
r(R)

R
.

(b1) Consider a spherical annulus of inner and outer radii R and R + dR respectively in the reference

configuration. Its volume is

4

3
π
[
(R+ dR)3 −R3

]
=

4

3
π
[
R3 + 3R2dR−R3

]
+ O(|dR|2) = 4πR2dR+ O(|dR|2).

The deformation maps this region into the spherical annulus between the radii r(R) and r(R + dR) in the

deformed configuration whose volume is

4

3
π
[(
r(R+ dR)

)3 − (r(R)
)3]

=
4

3
π
[(
r(R) + r′(R)dR

)3 − r3(R)
]

+ O(|dR|2) =

=
4

3
π
[
3r2(R)r′(R)dR

]
+ O(|dR|2) =

= 4πr2(R)r′(R)dR+ O(|dR|2).

When the material is incompressible, these volumes must be equal, and so equating the preceding expressions

and taking the limit dR→ 0 yields

r2(R)r′(R) = R2. (iii)
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Alternatively (iii) can be obtained directly from det F = λRλΘλΦ = 1 which follows from (2.46) below.

Solving the differential equation (iii) for r(R) gives

r(R) =
[
R3 + c1

]1/3
, (iv)

where c1 is an arbitrary constant.

Remark: Note that the angle between any pair of the three material fibers in the directions eR, eΘ and eΦ

is π/2 in both the reference and deformed configurations. Therefore if we jump ahead to the next section,

and in particular Problem 2.5.1, we conclude that the three stretches λR, λΘ and λΦ are in fact the principal

stretches and the radial and circumferential directions are the principal directions (for both the Lagrangian

and Eulerian stretch tensors U and V to be introduced in the next section). Moreover, incompressibility

requires det F = λRλΘλΦ = 1 which leads immediately to (iii).

(b2) Inextensibility in the radial direction requires λR = 1:

λR = r ′(R) = 1 ⇒ r(R) = R+ c2, � (v)

where c2 is an arbitrary constant.

(b3) Inextensibility in the circumferential direction requires λΘ = 1:

λΘ =
r(R)

R
= 1 ⇒ r(R) = R. � (vi)

(c) Let b denote the (unknown) outer radius of the body in the deformed configuration. Then

r(A) = a, r(B) = b. (vii)

In the incompressible case (iv) and (vii) give

b =
[
B3 −A3 + a3

]1/3
. �

In the radially inextensible case (v) and (vii) give

b = B −A+ a. �

In the circumferentially inextensible case (vi) and (vii) give

b = B (and in fact a = A). �

Remark: You could have deduced these values of b directly by physical considerations.

2.5 Stretch and rotation.

As mentioned previously, the deformation gradient tensor F(x) completely characterizes the

deformation in the vicinity of the particle x. Part of this deformation is a rigid rotation, the

rest a “distortion”, i.e. a “stretch/strain”. We now explore this decomposition and examine

various features of the rotation and stretch.
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2.5.1 Right (or Lagrangian) Stretch Tensor U.

– According to the polar decomposition theorem stated in Section 1.4, every nonsingular

tensor F can be written uniquely as the product of an orthogonal tensor R and a

symmetric positive definite tensor U as

F = R U. (2.41)

When det F > 0, R is proper orthogonal and therefore represents a rotation. Since the

tensor U is symmetric and positive definite, it describes a pure stretch; see the remarks

below (2.7). Since these tensors depend on the particle x in general, R(x) and U(x)

represent the rotation and stretch locally at the particle x.

– The stretch tensor U can be expressed it in terms of its three real positive eigenvalues

λ1, λ2 and λ3 and corresponding orthonormal eigenvectors r1, r2 and r3 as

U =
3∑
i=1

λiri ⊗ ri, λi > 0, i = 1, 2, 3; (2.42)

see (1.112). Equivalently, the matrix of components of U in its principal basis {r1, r2, r3}
is

[U ] =

 λ1 0 0

0 λ2 0

0 0 λ3

 , (2.43)

which may be compared with the matrix10 [F ] in (2.6) representing a pure stretch.

The tensor U is called the right stretch tensor11 and the λi’s are the principal

stretches, the ri’s the corresponding principal directions. As we shall see shortly,

U can be viewed as a Lagrangian stretch tensor.

– Let λ and r be one of the eigenvalues and corresponding eigenvectors of U and consider

a referential material fiber that is in the direction r: dx = dx r. When U operates on

this fiber it is carried into Udx = dxUr = λdx r = λ dx and so the stretch tensor U

simply stretches this fiber by λ without rotation.

Now consider an infinitesimal rectangular parallelepiped of dimensions dx1×dx2×dx3

with its edges aligned with the principal directions r1, r2, r3. The tensor U carries it

10In equation (2.6), the deformation was homogeneous and so the matrix of components of F had this

form at every point in the body. Here, (2.43) holds locally, at the point x under consideration.
11“Right” because U appears on the right-hand side of the expression RU.
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into a rectangular parallelepiped of dimensions λ1dx1×λ2dx2×λ3dx3 (without rotating

it). When R acts on it, this infinitesimal part of the body will rotate rigidly, and so

in particular, the angle between the edges remains π/2.

– The deformation of a generic material fiber dx can also be viewed in two-steps:

dx
stretch−→ Udx

rigid rotation−→ R(Udx) = dy (2.44)

In the first part of the deformation where dx 7→ Udx, the fiber dx is subjected to a

pure stretch in the directions of the eigenvectors of U, the amounts of stretch being

equal to the eigenvalues of U. Since dx will not be parallel to Udx in general, the fiber

will also rotate when it undergoes the stretching deformation dx 7→ Udx. However,

this is not a rigid rotation since the length of the fiber changes.

In the second step Udx 7→ R(Udx), the stretched fiber is rigidly rotated by R.

The stretch λ(mR) of a fiber in an arbitrary direction mR can be written in terms of

the principal stretches using (2.30) as

λ2(mR) = λ2
1m

2
1 + λ2

2m
2
2 + λ2

3m
2
3, (2.45)

where the mi’s are the components of mR in a principal basis for U, (Problem 2.22).

– Since the determinant of a proper orthogonal tensor is 1, it follows from det F =

det(RU) = det R det U = det U that

J = det F = λ1λ2λ3. (2.46)

– The right stretch tensor U is often referred to as the Lagrangian stretch tensor.

This is because expressions for the length of a fiber, the angle between two fibers, area

of a surface element etc. in the deformed configuration can be calculated in terms of

just U and the referential geometry. For example, given a referential material fiber dx,

its length in the deformed configuration is |dy| = |F dx| = |RU dx| = |Udx| which

shows that this length depends only on U and dx and not R.

Exercise: By using F = RU in (2.35), (2.36) and (2.39), show that changes in angle, volume and area

can be expressed in terms of U and the referential geometry without involving R.

On the other hand if we are given the fiber dy in the deformed configuration, we

cannot calculate its undeformed length without knowing both U and R. This follows

by taking the magnitude of the vector equation dx = U−1RTdy. In this sense, U is

not an Eulerian stretch tensor.
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The principal directions {r1, r2, r3} of U are known as the Lagrangian principal

directions of stretch.

– Principal scalar invariants. Looking ahead, in Chapter 4.3 we will encounter (scalar-

valued) functions12 of the Lagrangian stretch tensor, ϕ = ϕ(U), that have the property

ϕ(U) = ϕ(QUQT ) for all orthogonal tensors Q. Such functions are called scalar-valued

invariants (or isotropic functions). In Section 1.5 we saw that the principal scalar

invariants of U,

I1(U) = tr U, I2(U) =
1

2

[(
tr U

)2 − tr U2
]
, I3(U) = det U, (2.47)

have this invariance Ii(U) = Ii(QUQT ).

One can show using (2.42) and (2.47) that the principal scalar invariants of U can be

written in terms of the principal stretches as (Problem 1.17)

I1(U) = λ1 + λ2 + λ3, I2(U) = λ1λ2 + λ2λ3 + λ3λ1, I3(U) = λ1λ2λ3. (2.48)

– Finally we turn to the question of how, given F, one might go about calculating U

and R. From (2.41) we have FTF = (RU)TRU = URTRU = U2. The tensor FTF

is symmetric and positive definite and therefore U is its unique, symmetric, positive

definite square root (Problem 1.25):

U =
√

FTF. (2.49)

After determining the stretch U from (2.49) the rotation R can be found from

R = FU−1. (2.50)

In Problem 2.5.2 we shall work out the details of this calculation for a simple shear

deformation.

2.5.2 Left (or Eulerian) Stretch Tensor V.

– The alternative version of the polar decomposition theorem (Section 1.4) provides a

second representation for F. According to this part of the theorem, every tensor F

12representing the energy stored per unit volume in an isotropic elastic body.
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with det F > 0 can be written uniquely as the product of a symmetric positive definite

tensor V and a proper orthogonal tensor R as

F = VR. (2.51)

The rotation tensor R here is identical to that in the preceding representation and V

is the unique, symmetric, positive definite square root

V =
√

FFT . (2.52)

The tensor V is called the left stretch tensor13 and as we shall see shortly, can be

thought of as an Eulerian stretch tensor. The principal values of V are the same

as those of U. The stretch tensor V can be expressed as

V =
3∑
i=1

λi`i ⊗ `i, (2.53)

where {`1, `2, `3} are the principal directions of V. The principal directions of U and

V are related by

`i = Rri. (2.54)

The deformation of a generic fiber can now be written as

dy = V (R dx), (2.55)

and so interpreted as a rigid rotation, dx 7→ R dx, followed by stretching in the direc-

tions {`1, `2, `3} by λ1, λ2, λ3.

– The tensors F and R have the following representations (Problem 1.26):

F =
3∑
i=1

λi`i ⊗ ri, R =
3∑
i=1

`i ⊗ ri. (2.56)

Exercise: Show that

F−1 =

3∑
i=1

λ−1
i ri ⊗ `i. (2.57)

The left stretch tensor V is also called the Eulerian stretch tensor. Given a material

fiber dy in the deformed configuration, its length in the reference configuration can be

13“Left” because V appears on the left-hand side of the expression VR.
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expressed as |F−1 dy| = |(VR)−1 dy| = |RTV−1 dy| = |V−1dy| showing that it can be

calculated in terms of just V and dy without involving R.

The principal directions {`1, `2, `3} of V are known as the Eulerian principal direc-

tions of stretch. Since

Fri = RUri = λiRri = λi`i (no sum on i)

it follows that a referential material fiber in a Lagrangian principal direction is mapped

by the deformation into a fiber in an Eulerian principal direction.

– The principal scalar invariants of U and V coincide: Ii(U) = Ii(V).

2.5.3 Cauchy–Green deformation tensors.

– In Problem 2.5.2 where we calculate the Lagrangian stretch tensor U associated with

a simple shear deformation, we will see that this calculation is quite tedious, mainly

because of having to find the square root of FTF. However, since there is a one-to-one

relation between U and U2, and similarly between V and V2, we can just as well use

U2 and V2 as our measures of stretch and these are much easier to calculate. These

two tensors, usually denoted by C and B,

C := FTF = U2, B := FFT = V2, (2.58)

are referred to as the right and left Cauchy-Green deformation tensors re-

spectively14. They represent Lagrangian and Eulerian measures of the deformation.

Observe from (2.30) that

λ2 = FmR · FmR
(1.74)
= FTFmR ·mR = CmR ·mR, (2.59)

where mR is the direction of a material fiber in the reference configuration and λ is its

stretch. Likewise, from λF−1m = mR it follows that

1

λ2
= |F−1m|2 = (F−1m) · (F−1m)

(1.74)
= (F−TF−1m) ·m = B−1m ·m, (2.60)

where m is the direction of a material fiber in the deformed configuration and λ is its
stretch. Exercise: Equivalently, show that

|dy|2 − |dx|2 = (C− I)dx · dx, |dy|2 − |dx|2 = (I−B−1)dy · dy. (2.61)

14Truesdell and Toupin [9] attribute the tensor B−1 to Cauchy (1827) and the tensor C to Green (1841)

(and also Piola (1836)).
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Note that the eigenvalues of C and B are λ2
1, λ

2
2 and λ2

3, where the λi’s are the

principal stretches, and the eigenvectors of C and B are the same as those of U and V

respectively. Thus the two Cauchy-Green tensors admit the spectral representations

C =
3∑
i=1

λ2
i (ri ⊗ ri), B =

3∑
i=1

λ2
i (`i ⊗ `i). (2.62)

– The principal scalar invariants of C = U2 can be written in terms of the principal

stretches as

I1(C) = λ2
1 + λ2

2 + λ2
3, I2(C) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3(C) = λ2

1λ
2
2λ

2
3. (2.63)

The principal scalar invariants of B and C coincide: Ii(C) = Ii(B).

2.5.4 Worked examples.

Problem 2.5.1. Consider three referential material fibers oriented in mutually orthogonal directions m
(1)
R ,m

(2)
R ,m

(3)
R .

If the angle between each pair of these fibers remains π/2 in the deformed configuration, show that these

directions are principal directions of the Lagrangian stretch tensor U.

Solution: Since a fiber in the m
(1)
R direction remains orthogonal to fibers in the m

(2)
R and m

(3)
R directions it

follows from (2.35) that

Fm
(1)
R · Fm

(2)
R = 0, Fm

(1)
R · Fm

(3)
R = 0.

On using (1.74) and (2.58) this tells us that

Cm
(1)
R ·m

(2)
R = 0, Cm

(1)
R ·m

(3)
R = 0,

where C = FTF. Therefore the vector Cm
(1)
R is perpendicular to both m

(2)
R and m

(3)
R and so must be parallel

to m
(1)
R . Thus Cm

(1)
R = γm

(1)
R for some scalar γ from which it follows that m

(1)
R is an eigenvector of the

right Cauchy-Green tensor C = U2 and therefore of U.

That m
(2)
R and m

(3)
R are principal directions of U follows similarly.

Problem 2.5.2. (See also Problems 2.39 and 2.40.) Calculate the principal stretches λ1, λ2, λ3 and principal

Lagrangian stretch directions {r1, r2, r3} associated with the simple shear deformation

y1 = x1 + kx2, y2 = x2, y3 = x3; k > 0. (i)

Here the components have been taken with respect to a basis {e1, e2, e3}.

Graphically illustrate the simple shear deformation in the form y = Fx = R(Ux).



2.5. STRETCH AND ROTATION 153

Solution: Since15

U = λ1r1 ⊗ r2 + λ2r2 ⊗ r2 + λ3r3 ⊗ r3, C = λ2
1r1 ⊗ r2 + λ2

2r2 ⊗ r2 + λ2
3r3 ⊗ r3, (ii)

to find the λi ’s and ri’s we solve the eigenvalue problem for C = FTF = U2.

It follows from (i) and Fij = ∂yi/∂xj that the deformation gradient tensor is

F = I + ke1 ⊗ e2, (iii)

and therefore from C = FTF,

C = (I + ke2 ⊗ e1)(I + ke1 ⊗ e2) = e1 ⊗ e1 + k(e1 ⊗ e2 + e2 ⊗ e1) + (1 + k2)e2 ⊗ e2 + e3 ⊗ e3. (vi)

The eigenvalues of C are the roots λ of the equation det[C− λ2I] = 0:

det[C− λ2I] = det

 1− λ2 k 0

k 1 + k2 − λ2 0

0 0 1− λ2

 = (1− λ2)(λ4 − (2 + k2)λ2 + 1) = 0. (vii)

The roots of this equation are

λ2
1 =

2 + k2 + k
√
k2 + 4

2
(≥ 1), λ2

2 =
2 + k2 − k

√
k2 + 4

2
(≤ 1), λ2

3 = 1. (viii)

The eigenvector r = r1e1 + r2e2 + r3e3 corresponding to the eigenvalue λ2 is given by (C− λ2I)r = o: 1− λ2 k 0

k 1 + k2 − λ2 0

0 0 1− λ2


 r1

r2

r3

 =

 0

0

0

 . (ix)

For each λ = λi this can be solved for r1, r2, r3 thus leading to the eigenvectors

r1 = cos θr e1 + sin θr e2, r2 = − sin θr e1 + cos θr e2, r3 = e3, (x)

where we have set

tan 2θr = − 2

k
,

π

4
≤ θr <

π

2
. (xii)

The angle θr is depicted in Figure 2.14. For the reasons given in the footnote on page 153, we anticipated

λ3 = 1 and r3 = e3. To find the principal stretches we simply take the square roots of (viii):

λ1 =

√
k2 + 4 + k

2
(≥ 1), λ2 =

√
k2 + 4− k

2
(≤ 1), λ3 = 1. � (xiii)

We may now visualize the simple shear deformation y = Fx = R(Ux) in two steps as follows: First,

the deformation x 7→ Ux stretches the square OABC in Figure 2.15 by the amounts λ1, λ2 in the principal

directions r1, r2 leading to the region OA′B′C ′. This is then followed by the deformation Ux 7→ R(Ux)

which rigidly rotates OA′B′C ′ into the region OA∗B∗C which is the region occupied by the deformed body.

15Since this simple shear is a planar deformation in the x1, x2-plane with no stretch in the x3-direction,

one of the principal directions, say r3, will be e3 and the corresponding principal stretch λ3 = 1. Moreover,

since a simple shear is isochoric, det U = λ1λ2λ3 = λ1λ2 = 1. Therefore one knows a priori that U =

λ1r1 ⊗ r1 + λ−1
1 r2 ⊗ r2 + e3 ⊗ e3.
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Figure 2.14: Principal directions r1, r2, r3 of the (right) Lagrangian stretch tensor U. When k → 0, the

angle θr → π/4.

O

A
B

C

A′

B′

C′

A∗
B∗

Figure 2.15: Simple shear deformation viewed in two steps: y = Fx = R(Ux). The pure stretch x 7→ Ux

takes the regionOABC 7→ O′A′B′C ′ and the subsequent rotation Ux 7→ R(Ux) takesOA′B′C ′ 7→ OA∗B∗C.

Remark: The tensor U can be expressed with respect to the basis {e1, e2, e3} by substituting (x) into (ii)1

which leads to

U =
1√

4 + k2

(
2e1 ⊗ e1 + k(e1 ⊗ e2 + e2 ⊗ e1) + (2 + k2) e2 ⊗ e2

)
+ e3 ⊗ e3. (xvi)

The rotation tensor R can now be calculated using R = FU−1 which leads to

R =
1√

4 + k2

(
2e1 ⊗ e1 + ke1 ⊗ e2 − ke2 ⊗ e1 + 2 e2 ⊗ e2

)
+ e3 ⊗ e3. (xix)

Problem 2.5.3. The region RR occupied by a body in a reference configuration is the unit cube

RR = {(x1, x2, x3) : −1/2 ≤ x1 ≤ 1/2, −1/2 ≤ x2 ≤ 1/2, −1/2 ≤ x3 ≤ 1/2}.

The basis vectors {e1, e2, e3} are parallel to the edges of the cube and all components are taken with respect

to this basis. The body is subjected to the homogeneous deformation

{y} = [F ]{x} where [F ] =


−a 0 0

0 −b 0

0 0 1

 , a > 0, b > 0, (i)
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that takes the particle at (x1, x2, x3) ∈ RR to (y1, y2, y3) ∈ R. The negative signs are not typos.

(a) Calculate the components of the stretch tensors U,V and the rotation tensor R in the basis {e1, e2, e3}.

(b) Determine the principal stretches and principal directions of U.

(c) Sketch the region R occupied by the body in the deformed configuration.

Solution: Observe that [F ] = [F ]T and therefore [V ]2 = [B] = [F ][F ]T = [F ]2 and likewise [U ]2 = [C] =

[F ]T [F ] = [F ]2. Thus

[U ]2 = [V ]2 =

 a2 0 0

0 b2 0

0 0 1

 ⇒ [U ] = [V ] =

 a 0 0

0 b 0

0 0 1

 , � (ii)

having made use of a > 0 and b > 0. Observe that [U ] and [V ] are symmetric and positive definite. The

principal stretches are a > 0, b > 0 and 1 and the corresponding principal directions (of both U and V) are

e1, e2 and e3. �

The matrix of components of the rotation tensor is

[R] = [F ][U ]−1 =

 −a 0 0

0 −b 0

0 0 1


 1/a 0 0

0 1/b 0

0 0 1

 =

 −1 0 0

0 −1 0

0 0 1

 . � (iii)

The matrix [R] is proper orthogonal (det[R] = +1). It represents a rotation through an angle π with

the axis of rotation being e3 as shown in Figure 2.16.

In Figure 2.16, the points A, B, C and D in the reference configuration have the respective coordinates

(−1/2,−1/2, 0), (1/2,−1/2, 0), (1/2, 1/2, 0) and (−1/2, 1/2, 0). The deformation maps them into the points

A′, B′, C′ and D′ in the deformed configuration with coordinates (a/2, b/2, 0), (−a/2, b/2, 0), (−a/2,−b/2, 0)

and (a/2,−b/2, 0). Observe the stretches by a and b in the e1- and e2-directions and the rotation through

π about e3.

Problem 2.5.4. (See Chapter 3.3 for a continuation of this problem.) Bending of a block.

A body occupies the rectangular parallelepiped region RR = {(x1, x2, x3) | − A ≤ x1 ≤ A,−B ≤ x2 ≤
B,−C ≤ x3 ≤ C} in a reference configuration. The left-hand figure in Figure 2.17 shows a side view of this

block looking down the x3-axis. The block is subjected to a bending deformation in the x1, x2-plane that

carries a generic particle from (x1, x2, x3) to (y1, y2, y3) and the region RR 7→ R as shown in Figure 2.17.

Specifically, the deformation has the following characteristics:

– The body stretches uniformly in the x3-direction in the sense that y3 = Λx3 for some positive constant

Λ.

– Every plane x3 = constant in RR deforms identically.
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1

1

A B

CD

a

b

Figure 2.16: Figure for Problem 2.5.3: Mid-plane of the body looking down the x3-axis. The body has

been stretched by a, b and 1 in the e1-, e2- and e3-directions and rotated through an angle π about the

e3-direction.

– Each horizontal straight line x2 = constant is carried into a straight line in the deformed configura-

tion, e.g. MN 7→ M′N′. Moreover (on each plane x3 = constant) the family of such straight lines

corresponding to the various values of x2 all pass through the same point (y1, y2) = (0, 0) as depicted

in Figure 2.17.

– Each vertical straight line x1 = constant is deformed into a circular arc centered at (0, 0) as shown in

Figure 2.17, e.g. PQ 7→ P′Q′.

– The deformation is symmetric with respect to the x1, x3-plane.

(a) Given the shapes of the regions R and RR, and the nature of the bending deformation described, it is

natural to use rectangular cartesian coordinates (x1, x2, x3) and cylindrical polar coordinates (r, θ, z)

to describe the undeformed and deformed configurations respectively, with associated basis vectors

{e1, e2, e3} and {er, eθ, ez}. Thus express the deformation as

y1 = r(x1, x2, x3) cos θ(x1, x2, x3),

y2 = r(x1, x2, x3) sin θ(x1, x2, x3),

y3 = Λx3,

 Λ > 0, (i)

and determine the form of the functions r(x1, x2, x3) and θ(x1, x2, x3) to the extent possible.

(b) Calculate the deformation gradient tensor F. (Since {e1, e2, e3} and {er, eθ, ez} are the natural bases

to use when characterizing the reference and deformed configurations, you will find that the natural

representation for F is with respect to the tensor basis er ⊗ e1, er ⊗ e2, . . ..)

(c) By factoring F appropriately determine the stretch tensors U and V and the rotation tensor R.

(d) What are the principal stretches and the principal Eulerian and Lagrangian directions of stretch?

Solution:
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M N

P

Q

O

2A

2B

Figure 2.17: Left: In a reference configuration the body occupies the rectangular parallelepiped region

RR = {(x1, x2, x3) : −A ≤ x1 ≤ A,−B ≤ x2 ≤ B,−C ≤ x3 ≤ C}. Right: The region R in the deformed

configuration. A vertical straight line in the reference configuration, e.g. PQ, is mapped into a circular arc

in the deformed configuration, e.g. P′Q′. A horizontal straight line in the reference configuration, e.g. MN,

is carried into a radial straight line, e.g. M′N′.

(a) Since every plane x3 = constant deforms identically, it follows that r(x1, x2, x3) and θ(x1, x2, x3) must

be independent of x3 and so we can write the deformation as

y1 = r(x1, x2) cos θ(x1, x2), y2 = r(x1, x2) sin θ(x1, x2), y3 = Λx3. (ii)

− As one moves from M towards N along the horizontal straight line MN, the coordinate x2 remains constant

while x1 increases. Thus considering its image M′N′, (the particle label) x1 increases as one moves from

M′ towards N′. However the orientation of M′N′, i.e. the angle θ(x1, x2), does not change. It follows that

θ(x1, x2) cannot depend on x1 and so

θ = θ(x2). (iii)

In view of symmetry,

θ(x2) = −θ(−x2). (iv)

− Similarly, as one moves along the vertical straight line PQ, the coordinate x1 remains constant while x2

varies. Thus considering its image P′Q′, (the particle label) x2 varies along it while its radius r(x1, x2) does

not change. It follows that r(x1, x2) must be independent of x2 and so

r = r(x1). (v)

Thus the bending deformation described in the problem is characterized by

y1 = r(x1) cos θ(x2), y2 = r(x1) sin θ(x2), y3 = Λx3, � (vi)

where r(x1) > 0 and θ(x2) ∈ [−π, π] are arbitrary functions (with θ being an odd function).



158 CHAPTER 2. KINEMATICS: FINITE DEFORMATION

(b) Method 1: The components of F in the basis {e1, e2, e3} can be calculated by differentiating (vi) with

respect to x1, x2 and x3 and using Fij = ∂yi/∂xj . This yields

F = r′ cos θ e1 ⊗ e1 − rθ′ sin θ e1 ⊗ e2 + r′ sin θ e2 ⊗ e1 + rθ′ cos θ e2 ⊗ e2 + Λ e3 ⊗ e3, � (vii)

This representation of F does not provide much insight.

Method 2: Since it is natural to use the basis {e1, e2, e3} when describing the reference configuration and

the basis {er, eθ, ez} for the deformed configuration, see Figure 2.17, we now calculate the components of

the deformation gradient tensor with respect to the mixed basis er ⊗ e1, er ⊗ e2, . . . , ez ⊗ e3. We shall do

this using the basic relation dy = Fdx.

First note that the basis vectors {er, eθ, ez} are related to the basis vectors {e1, e2, e3} by

er(θ) = cos θ e1 + sin θ e2, eθ(θ) = − sin θ e1 + cos θ e2, ez = e3,

and therefore that
∂er
∂θ

= eθ,
∂eθ
∂θ

= −er. (viii)

Since the position vector of a particle in the reference configuration is

x = x(x1, x2, x3) = x1e1 + x2e2 + x3e3,

we have

dx =
∂x

∂x1
dx1 +

∂x

∂x2
dx2 +

∂x

∂x3
dx3 = e1 dx1 + e2 dx2 + e3 dx3. (ix)

We can write the position vector y = rer + zez of a particle in the deformed configuration in a little more

detail as

y = y(x1, x2, x3) = r(x1)er(θ(x2)) + Λx3ez. (x)

Therefore

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2 +

∂y

∂x3
dx3

(x)
= r′ er dx1 + rθ′ eθ dx2 + Λ ez dx3, (xi)

where we have used (viii)1 and let a prime denote differentiation with respect to the argument. We finally

replace dxi in (xi) by dx · ei which is a consequence of (ix). This leads to

dy = r′(dx · e1) er + rθ′(dx · e2) eθ + Λ(dx · e3) ez =

= r′(er ⊗ e1) dx + rθ′(eθ ⊗ e2) dx + Λ(ez ⊗ e3)dx

=
[
r′(er ⊗ e1) + rθ′(eθ ⊗ e2) + Λ(ez ⊗ e3)

]
dx

= F dx,

where

F = r′(x1) (er ⊗ e1) + rθ′(x2) (eθ ⊗ e2) + Λ (ez ⊗ e13). � (xii)

Remark: Observe that we can write (vii) as

F = r′(e1 cos θ + e2 sin θ )⊗ e1 + rθ′(− e1 sin θ + e2 cos θ )⊗ e2 + Λ e3 ⊗ e3.
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Substituting the expressions in the line above (viii) into this gives (xii).

(c) The expression (xii) for F can be factored in two ways16:

F = (er ⊗ e1 + eθ ⊗ e2 + ez ⊗ e3)(r′e1 ⊗ e1 + rθ′e2 ⊗ e2 + Λe3 ⊗ e3), (xiii)

F = (r′er ⊗ er + rθ′eθ ⊗ eθ + Λez ⊗ ez)(er ⊗ e1 + eθ ⊗ e2 + ez ⊗ e3). (xiv)

Since er⊗e1 +eθ⊗e2 +ez⊗e3 is a proper orthogonal tensor and the tensors multiplying them are symmetric

and positive definite, we recognize (xiii) and (xiv) as the respective polar decompositions F = RU and

F = VR. Therefore the rotation tensor R in the polar decomposition is

R = er ⊗ e1 + eθ ⊗ e2 + ez ⊗ e3, � (xv)

which is in fact the rotation that takes {e1, e2, e3} into {er, eθ, ez}. Then, from F = RU and (xiii) we find

U = r′e1 ⊗ e1 + rθ′e2 ⊗ e2 + Λe3 ⊗ e3, � (xvi)

and similarly from F = VR and (xiv) we obtain

V = r′er ⊗ er + rθ′eθ ⊗ eθ + Λez ⊗ ez. � (xvii)

Remark: Since the principal stretches are positive, we have assumed r′ > 0 and θ′ > 0. What would U and

V be if one or both of r′ and θ′ was negative?

(d) It follows from (xvi) and (xvii) that the principal stretches are

λ1 = r′(x1), λ2 = r(x1)θ′(x2), λ3 = Λ. � (xviii)

Moreover (xvi) shows that the principal directions of U are {e1, e2, e3}, while (xvii) gives the principal

directions of V to be {er, eθ, ez}. �

Remark: Observe that the principal stretches depend on both x1 and x2 and therefore vary in both the radial

and circumferential directions.

2.6 Strain.

It is clear that U (or V) is the essential ingredient that characterizes the non-rigid part of

the deformation gradient. “Strain” is simply an alternative measure of this part of the defor-

mation, the only essential distinction between strain and stretch being that (by convention)

the strain vanishes in a rigid deformation whereas the stretch equals the identity I. Thus for

example we might say that U− I is the strain where U is the stretch.

16Alternatively one can calculate C = FTF and B = FFT from (xii) and then calculate U and V from

the results.
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Various measures of strain are used in the literature, examples of which we shall describe

below. It should be pointed out that the continuum theory does not prefer17 one strain

measure over another; each is a one-to-one function of the stretch tensor and so all strain

measures are equivalent. In fact, one does not even have to introduce the notion of strain

and the theory could be based entirely on the stretch tensors U and V.

The various measures of Lagrangian strain used in the literature are all related to the

Lagrangian stretch U in a one-to-one manner. Examples include the Green Saint-Venant

strain tensor, the Biot strain tensor, the generalized Green Saint-Venant (Seth-Hill) strain

tensor and the Hencky (or logarithmic) strain tensor, defined by the respective expressions

Green Saint-Venant:
1

2
(U2 − I) =

3∑
i=1

1

2
(λ2

i − 1) ri ⊗ ri,

Biot : U− I =
3∑
i=1

(λi − 1) ri ⊗ ri,

1

m
(Um − I) =

3∑
i=1

1

m
(λmi − 1) ri ⊗ ri, m 6= 0,

Hencky : ln U =
3∑
i=1

ln λi ri ⊗ ri,

(2.64)

where m is a non-zero (positive or negative) integer; the generalized Green Saint-Venant

strain tensor can be extended to non-integer values of m by defining it to be the tensor on

the right-hand side of (2.64)3. Observe that all of these strain measures vanish in a rigid

deformation, i.e. when U = I. They are all symmetric and their principal directions are the

Lagrangian principal directions {r1, r2, r3}; the associated principal strains are

1
2
(λ2

i − 1), λi − 1, 1
m

(λmi − 1), and lnλi, (2.65)

respectively. In Section 2.6.1 (see also Problem 2.42) we will calculate the components of

the Green Saint-Venant strain tensor and specialize them to simple shear.

Similarly, various measures of Eulerian strain are used in the literature, all of them

being related to the Eulerian stretch V in a one-to-one manner. Examples include the

Almansi strain, the generalized Almansi strain and the logarithmic strain, defined by the

17It may happen that the constitutive relation for a particular material takes an especially simple form

when one particular strain measure is used in its characterization, while a different strain measure might

lead to a simple constitutive description for some other material. This might then lead to a preference for

one strain measure over another for a particular material.
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respective expressions

1

2
(I−V−2) =

3∑
i=1

1

2
(1− λ−2

i ) `i ⊗ `i

1

m
(Vm − I) =

3∑
i=1

1

m
(λmi − 1) `i ⊗ `i,

ln V =
3∑
i=1

ln λi `i ⊗ `i,

(2.66)

where m is a non-zero integer. The principal directions of all of these symmetric strain

tensors are the Eulerian principal directions {`1, `2, `3}.

The preceding examples may be unified and generalized as follows: Let e(λ) be an arbi-

trary (for the moment) scalar-valued function defined for 0 < λ <∞, and consider defining

the Lagrangian strain tensor E(U) to be the tensor with eigenvectors ri and corresponding

eigenvalues e(λi), i.e.

E(U) = e(λ1) r1 ⊗ r1 + e(λ2) r2 ⊗ r2 + e(λ3) r3 ⊗ r3. (2.67)

Note that the principal strains associated with this tensor are e(λ1), e(λ2) and e(λ3) and

the corresponding principal directions are r1, r2 and r3.

In the undeformed configuration the principal stretches are unity and we would like the

strain to vanish there. Thus we require e(1) = 0. Next consider a “small deformation” of

the body in which λ is close to unity. Then Taylor expansion of the function e(λ) about

λ = 1 leads to

e(λ) = e(1) + e′(1)(λ− 1) + . . . = e′(1)

(
dsy
dsx
− 1

)
+ . . . = e′(1)

dsy − dsx
dsx

+ . . . . (2.68)

In order that this coincide with the familiar definition of normal strain in an infinitesimal

deformation, i.e. in order that e ≈ (dsy − dsx)/dsx, we must have e′(1) = 1. Finally we

require the normal strain e(λ) to increase monotonically as the stretch λ increases and so we

impose e′(λ) > 0. Note then that the principal strain e(λ) is positive for extensions (λ > 1)

and negative for contractions (λ < 1).

Thus we define a Lagrangian strain E(U) by (2.67) where the function e(λ) is required

to have the properties

a) e(1) = 0,

b) e′(1) = 1,

c) e′(λ) > 0 for all λ > 0.

(2.69)
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Exercise: Is 1
2n

(
Un −U−n

)
, n 6= 0, an acceptable Lagrangian strain measure? Note that it is not a special

case of (2.64)3.

Observe that all Lagrangian strain tensors defined by (2.67) are symmetric. Their di-

agonal components E11, E22 and E33 are known as the normal components of strain, while

the off-diagonal components E12, E23 and E31 are the shear components of strain. In the

principal basis {r1, r2, r3}, the matrix [E] of strain components is diagonal and so the shear

strains vanish in this basis, the normal components being the principal strains.

A generalized Eulerian strain tensor can be defined analogously by

E(V) = e(λ1) `1 ⊗ `1 + e(λ2) `2 ⊗ `2 + e(λ3) `3 ⊗ `3, (2.70)

where `1, `2, `3 are the principal directions of the Eulerian stretch tensor V and e(λ) obeys

(2.69).

2.6.1 Remarks on the Green Saint-Venant strain tensor.

While, as noted already, the theory does not prefer one strain measure over another, the Green Saint-Venant

strain tensor has been used frequently in the (especially older) literature. It is therefore worth devoting some

attention to it. From (2.58) and (2.64) the Green Saint-Venant strain tensor is

E =
1

2
(U2 − I) =

1

2
(C− I) =

1

2
(FTF− I). (2.71)

– First we wish to express E in terms of the displacement gradient tensor ∇u. Since y = x+u it follows

that

F = ∇y = ∇(x + u) = I +∇u.

Substituting this into (2.71) yields

E =
1

2

(
(I +∇u)T (I +∇u)− I

)
=

1

2

(
∇u + (∇u)T + (∇u)T∇u

)
. (2.72)

Since ∇u is the tensor with cartesian components ∂ui/∂xj , this can be written in terms of cartesian

components as

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
, (2.73)

where the summation convention is being used on the repeated index k.

– Second we wish to interpret the components of the Green Saint-Venant strain tensor in terms of

changes in length and changes in angle. Recall that the stretch of a material fiber in the direction

mR in the reference configuration is

λ(mR)
(2.30)

= |FmR| =
√

FmR · FmR =

√
FTFmR ·mR

(2.71)
=

√
(2EmR ·mR + 1). (i)
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Now consider a fiber oriented in the direction mR = e1. Its stretch is

λ(e1) = |Fe1| =
√

(2Ee1 · e1 + 1)
(1.128)

=
√

(2E11 + 1). (ii)

Since the stretch λ represents the ratio of the deformed and undeformed lengths of the fiber, i.e.

λ = dsy/dsx, it now follows that

dsy − dsx
dsx

= λ(e1)− 1 =
√

(2E11 + 1)− 1. (2.74)

Thus we conclude that the change in length relative to the original length of a fiber in the direction

e1 depends only on the normal strain E11. It is not equal to E11 but is fully determined by E11. If

the normal strain |E11| � 1, this approximates to the familiar expression

dsy − dsx
dsx

≈ E11. (iii)

Analogous calculations may be carried out for fibers in the directions e2 and e3.

Now consider the change in angle between two fibers in the directions e1 and e2. From (2.35),

cos θy =
Fe1 · Fe2

|Fe1| |Fe2|
=

FTFe1 · e2

|Fe1| |Fe2|
(ii)
=

FTFe1 · e2√
(2E11 + 1)

√
(2E22 + 1)

(2.71)
=

2Ee1 · e2√
(2E11 + 1)

√
(2E22 + 1)

,

(2.75)

where θy is the angle between the two fibers in the deformed configuration. In view of (1.128) this

yields

cos θy =
2E12√

(2E11 + 1)
√

(2E22 + 1)
, (2.76)

which shows that the angle between these two fibers in the deformed configuration depends on the

shear strain E12 and the normal strains E11 and E22. If the strains are small, i.e. |E11| � 1, |E22| � 1

and |E12| � 1, this approximates to leading order to the familiar expression

θx − θy ≈ 2E12,

where θx = π/2.

– It is illuminating to calculate the components of E in a simple shear deformation

y1 = x1 + kx2, y2 = x2, y3 = x3.

Differentiating this with respect to xj and using Fij = ∂yi/∂xj leads to

F = I + ke1 ⊗ e2, C = I + k(e1 ⊗ e2 + e2 ⊗ e1) + k2e2 ⊗ e2,

and so the components of the Green Saint-Venant strain tensor are

[E] =
1

2

(
[C]− [I]

)
=


0 k/2 0

k/2 k2/2 0

0 0 0

 .

Observe that the normal strain E22 6= 0. This is related to the fact that the line OP in Figure 2.4

increases in length when it deforms into OP ′. Note that E22 = O(k2) so that in a linearized theory

with a small amount of shear, |k| � 1, this term would be neglected, leading to a strain tensor whose

only nonzero components are the shear strains E12 and E21.
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2.7 Some other coordinate systems.

2.7.1 Cylindrical polar coordinates.

In this section we illustrate working in other coordinate systems by calculating expressions for

the deformation gradient tensor and the left Cauchy-Green deformation tensor in cylindrical

polar coordinates.

In rectangular cartesian coordinates, a deformation is characterized by the mapping

y1 = ŷ1(x1, x2, x3), y2 = ŷ2(x1, x2, x3) y3 = ŷ3(x1, x2, x3), (i)

that takes the particle with coordinates (x1, x2, x3) in the reference configuration to the point

(y1, y2, y3) in the deformed configurations. Let (R,Θ, Z) be the cylindrical polar coordinates

of this particle in the undeformed configuration so that (see Figure 2.18)

x1 = R cos Θ, x2 = R sin Θ, x3 = Z, (ii)

and let (r, θ, z) be its cylindrical polar coordinates in the deformed configuration so that

y1 = r cos θ, y2 = r sin θ, y3 = z. (iii)

By combining (i) with (ii) and (iii) we can characterize the deformation in the form,

r = r̂(R,Θ, Z), θ = θ̂(R,Θ, Z), z = θ̂(R,Θ, Z). (iv)

The basis {eR, eΘ, eZ} associated with the cylindrical polar coordinates (R,Θ, Z) is shown

in Figure 2.18 and is related to the fixed cartesian basis {e1, e2, e3} by

eR(Θ) = cos Θ e1 + sin Θ e2,

eΘ(Θ) = − sin Θ e1 + cos Θ e2,

eZ = e3,

 (v)
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x1

x2

x3

Figure 2.18: Cylindrical polar coordinates (R,Θ, Z) and the associated basis vectors eR, eΘ, eZ .

while the corresponding relation for the basis {er, eθ, ez} associated with the coordinates in

the deformed configuration is

er(θ) = cos θ e1 + sin θ e2,

eθ(θ) = − sin θ e1 + cos θ e2,

ez = e3.

 (vi)

Observe that in general, the basis {eR, eΘ, eZ} differs from the basis {er, eθ, ez}.

The position vectors of a particle in the undeformed and deformed configurations are,

see Figure 2.18, x = R eR + Z eZ and y = rer + zez, or in a little more detail,

x = x̂(R,Θ, Z) = R eR + Z eZ , (vii)

y = ŷ(R,Θ, Z) =
(
rer + zez

)∣∣∣
r=r̂, θ=θ̂, z=ẑ

, (viii)

respectively. We wish to calculate the deformation gradient tensor using (iv), (vii) and

(viii). The general approach involves calculating the vectors dy and dx independently and

then recognizing that they are related by dy = F dx. A general treatment of orthogonal

curvilinear coordinates can be found in Chapter 6 of Volume I.

We now proceed to calculate dy. First, from (viii) and the chain rule

dy =
∂ŷ

∂R
dR +

∂ŷ

∂Θ
dΘ +

∂ŷ

∂Z
dZ. (ix)

Next, we calculate each term on the right-hand side of (ix):

∂ŷ

∂R

(viii)
=

∂

∂R
(rer + zez) =

∂r

∂R
er + r

∂er
∂R

+
∂z

∂R
ez =

∂r

∂R
er + r

∂er
∂θ

∂θ

∂R
+
∂z

∂R
ez,
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where in getting to the second equality we used the fact that ez does not depend on R, and

in getting to the last equality we used the fact that according to (vi) the unit vector er

depends on θ but not on r or z. Observe from (vi) that ∂er/∂θ = eθ. Thus we can write

the preceding equation as
∂ŷ

∂R
=

∂r

∂R
er + r

∂θ

∂R
eθ +

∂z

∂R
ez. (x)

The other terms in (ix) can be calculated similarly leading to

∂ŷ

∂Θ
=

∂r

∂Θ
er + r

∂θ

∂Θ
eθ +

∂z

∂Θ
ez, (xi)

∂ŷ

∂Z
=

∂r

∂Z
er + r

∂θ

∂Z
eθ +

∂z

∂Z
ez. (xii)

Substituting (x), (xi), (xii) into (ix) now leads to

dy =
∂r

∂R
dR er + r

∂θ

∂R
dR eθ +

∂z

∂R
dR ez+

+
∂r

∂Θ
dΘ er + r

∂θ

∂Θ
dΘ eθ +

∂z

∂Θ
dΘ ez+

+
∂r

∂Z
dZ er + r

∂θ

∂Z
dZ eθ +

∂z

∂Z
dZ ez.

(xiii)

The next step is to express dR, dΘ and dZ in (xiii) in terms of dx. From (vii)

dx =
∂x̂

∂R
dR +

∂x̂

∂Θ
dΘ +

∂x̂

∂Z
dZ, (xiv)

where
∂x̂

∂R
=

∂

∂R
(ReR + ZeZ)

(v)
=

∂R

∂R
eR = eR,

∂x̂

∂Θ
=

∂

∂Θ
(ReR + ZeZ)

(v)
= R

∂eR
∂Θ

(v)
= ReΘ,

∂x̂

∂Z
=

∂

∂Z
(ReR + ZeZ)

(v)
= eZ .

Therefore (xiv) can be written as

dx = dR eR +RdΘ eΘ + dZ eZ , (xv)

from which we obtain

dR = dx · eR, dΘ = R−1 dx · eΘ, dZ = dx · eZ . (xvi)
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Substituting (xvi) into (xiii) gives

dy =
∂r

∂R
(dx · eR) er + r

∂θ

∂R
(dx · eR) eθ +

∂z

∂R
(dx · eR) ez+

+
∂r

∂Θ
(R−1 dx · eΘ) er + r

∂θ

∂Θ
(R−1 dx · eΘ) eθ +

∂z

∂Θ
(R−1 dx · eΘ) ez

+
∂r

∂Z
(dx · eZ) er + r

∂θ

∂Z
(dx · eZ) eθ +

∂z

∂Z
(dx · eZ) ez,

which can be written as

dy =
∂r

∂R
(er ⊗ eR) dx + r

∂θ

∂R
(eθ ⊗ eR) dx +

∂z

∂R
(ez ⊗ eR) dx+

+
1

R

∂r

∂Θ
(er ⊗ eΘ) dx +

r

R

∂θ

∂Θ
(eθ ⊗ eΘ) dx +

1

R

∂z

∂Θ
(ez ⊗ eΘ) dx+

+
∂r

∂Z
(er ⊗ eZ) dx + r

∂θ

∂Z
(eθ ⊗ eZ) dx +

∂z

∂Z
(ez ⊗ eZ) dx.

Since dy = Fdx we can now read off the deformation gradient tensor F to be

F =
∂r

∂R
(er ⊗ eR) +

1

R

∂r

∂Θ
(er ⊗ eΘ) +

∂r

∂Z
(er ⊗ eZ)+

+r
∂θ

∂R
(eθ ⊗ eR) +

r

R

∂θ

∂Θ
(eθ ⊗ eΘ) + r

∂θ

∂Z
(eθ ⊗ eZ)+

+
∂z

∂R
(ez ⊗ eR) +

1

R

∂z

∂Θ
(ez ⊗ eΘ) +

∂z

∂Z
(ez ⊗ eZ) .

(2.77)

Observe that the representation (2.77) involves both bases {eR, eΘ, eZ} and {er, eθ, ez}. The

scalar coefficients are not the components of F in either basis. See Problem 1.6.5.

The left and right Cauchy Green deformation tensors B and C can now be readily

calculated. We will see below that when (2.77) is used to calculate B = FFT the result

comes out in terms of the components of B in the basis er ⊗ er, er ⊗ eθ, . . . ez ⊗ ez. On the

other hand when C = FTF is calculated the result emerges in terms of the components of C

in the basis eR ⊗ eR, eR ⊗ eΘ, . . . eZ ⊗ eZ . This is consistent with our previous reference to

B as an Eulerian deformation tensor and C as a Lagrangian deformation tensor. Of course

one can express either tensor in any basis of one’s choice.

Turning to the left Cauchy-Green tensor B = FFT , it is straightforward to use (2.77) to

show that as

B = Brrer ⊗ er + Bθθeθ ⊗ eθ + Bzzez ⊗ ez +

+Brθ(er ⊗ eθ + eθ ⊗ er) + Brz(er ⊗ ez + ez ⊗ er) +

+Bθz(ez ⊗ eθ + eθ ⊗ ez),

(2.78)
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where

Brr =

(
∂r

∂R

)2

+
1

R2

(
∂r

∂Θ

)2

+

(
∂r

∂Z

)2

,

Bθθ = r2

[(
∂θ

∂R

)2

+
1

R2

(
∂θ

∂Θ

)2

+

(
∂θ

∂Z

)2
]
,

Bzz =

(
∂z

∂R

)2

+
1

R2

(
∂z

∂Θ

)2

+

(
∂z

∂Z

)2

,

Brθ = Bθr = r

[
∂r

∂R

∂θ

∂R
+

1

R2

∂r

∂Θ

∂θ

∂Θ
+
∂r

∂Z

∂θ

∂Z

]
,

Brz = Bzr =
∂r

∂R

∂z

∂R
+

1

R2

∂r

∂Θ

∂z

∂Θ
+
∂r

∂Z

∂z

∂Z
,

Bθz = Bzθ = r

[
∂θ

∂R

∂z

∂R
+

1

R2

∂z

∂Θ

∂θ

∂Θ
+
∂θ

∂Z

∂z

∂Z

]
.
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2.7.2 Spherical polar coordinates.

x1

x2

x3

Figure 2.19: Spherical polar coordinates (R,Θ,Φ) and the associated basis vectors eR, eΘ, eΦ.

Let (x1, x2, x3) denote the rectangular cartesian coordinates of a particle in the reference

configuration, and let (R,Θ,Φ) be its spherical polar coordinates; (see Figure 2.19) Then

x1 = R sin Θ cos Φ, x2 = R sin Θ sin Φ, x3 = R cos Θ. (2.80)
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The associated basis vectors {e1, e2, e3} and {eR, eΘ, eΦ} are related by

eR = (sin Θ cos Φ) e1 + (sin Θ sin Φ) e2 + cos Θ e3,

eΘ = (cos Θ cos Φ) e1 + (cos Θ sin Φ) e2 − sin Θ e3,

eΦ = − sin Φ e1 + cos Φ e2.

 (2.81)

Let (y1, y2, y3) denote the rectangular cartesian coordinates of a particle in the deformed

configuration, and let (r, ϑ, ϕ) be its spherical polar coordinates. Then

y1 = r sinϑ cosϕ, y2 = r sinϑ sinϕ, y3 = r cosϑ. (2.82)

The associated basis vectors {e1, e2, e3} and {er, eϑ, eϕ} are related by

er = (sinϑ cosϕ) e1 + (sinϑ sinϕ) e2 + cosϑ e3,

eϑ = (cosϑ cosϕ) e1 + (cosϑ sinϕ) e2 − sinϑ e3,

eϕ = − sinϕ e1 + cosϕ e2.

 (2.83)

The deformation can be characterized by

r = r(R,Θ,Φ), ϑ = ϑ(R,Θ,Φ), ϕ = ϕ(R,Θ,Φ), (2.84)

A calculation similar to that in the preceding section gives the deformation gradient

tensor with respect to the mixed bases {eR, eΘ, eΦ} and {er, eθ, eϕ} to be

F =
∂r

∂R
(er ⊗ eR) +

1

R

∂r

∂Θ
(er ⊗ eΘ) +

1

R sin Θ

∂r

∂Φ
(er ⊗ eΦ)+

+r
∂θ

∂R
(eθ ⊗ eR) +

r

R

∂θ

∂Θ
(eθ ⊗ eΘ) +

r

R sin Θ

∂θ

∂Φ
(eθ ⊗ eΦ)+

+r sin θ
∂ϕ

∂R
(eϕ ⊗ eR) +

r sin θ

R

∂ϕ

∂Θ
(eϕ ⊗ eΘ) +

r sin θ

R sin Θ

∂ϕ

∂Φ
(eϕ ⊗ eΦ) .

(2.85)

The corresponding representation for the left Cauchy-Green tensor B = FFT is

B = Brrer ⊗ er + Bϑϑeϑ ⊗ eϑ + Bϕϕeϕ ⊗ eϕ +

+Brϑ(er ⊗ eϑ + eϑ ⊗ er) + Brϕ(er ⊗ eϕ + eϕ ⊗ er) +

+Bϑϕ(eϕ ⊗ eϑ + eϑ ⊗ eϕ),

(2.86)
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where

Brr =

(
∂r

∂R

)2

+
1

R2

(
∂r

∂Θ

)2

+
1

R2sin2Θ

(
∂r

∂Φ

)2

,

Bϑϑ = r2

[(
∂ϑ

∂R

)2

+
1

R2

(
∂ϑ

∂Θ

)2

+
1

R2sin2Θ

(
∂ϑ

∂Φ

)2
]
,

Bϕϕ = r2 sin2 ϑ

[(
∂ϕ

∂R

)2

+
1

R2

(
∂ϕ

∂Θ

)2

+
1

R2sin2Θ

(
∂ϕ

∂Φ

)2
]

Brϑ = Bϑr = r

[
∂r

∂R

∂ϑ

∂R
+

1

R2

∂r

∂Θ

∂ϑ

∂Θ
+

1

R2sin2Θ

∂r

∂Φ

∂ϑ

∂Φ

]
,

Brϕ = Bϕr = r sin ϑ

[
∂r

∂R

∂ϕ

∂R
+

1

R2

∂r

∂Θ

∂ϕ

∂Θ
+

1

R2sin2Θ

∂r

∂Φ

∂ϕ

∂Φ

]
,

Bϑϕ = Bϕϑ = r2 sin ϑ

[
∂ϑ

∂R

∂ϕ

∂R
+

1

R2

∂ϕ

∂Θ

∂ϑ

∂Θ
+

1

R2sin2Θ

∂ϑ

∂Φ

∂ϕ

∂Φ

]
.
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2.7.3 Worked examples.

Problem 2.8.1. (Ogden) (Extension and torsion of a solid circular cylinder.) Let (R,Θ, Z) and (r, θ, z) be

cylindrical polar coordinates of a particle in the reference and deformed configurations respectively with asso-

ciated bases {eR, eΘ, eZ} and {er, eθ, ez}. The region RR occupied by the body in a reference configuration

is a circular cylinder of radius A and length L.

The body is uniformly stretched axially to a length ` = ΛL (with an accompanying transverse contrac-

tion), and the stretched cylinder in then subjected to a torsional deformation. Thus the cross section at Z

in the reference configuration, displaces to ΛZ and then rotates through an angle αΛZ. In particular, one

end of the cylinder is held fixed while the other rotates through an angle α`. This deformation has the form

r = r(R), θ = Θ + αΛZ, z = ΛZ. (i)

(a) Calculate the deformation gradient tensor.

(b) Determine r(R) assuming the material to be incompressible,

(c) By factoring the deformation gradient tensor, show that locally, at each point of the body, the defor-

mation is comprised of a rigid rotation, followed by a pure stretch, followed be a simple shear with

shearing direction eθ and glide plane normal ez.

(d) Calculate the right Cauchy Green deformation tensor C.
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e) Calculate the principal stretches and the principal Lagrangian stretch directions.

Solution:

(a) The deformation gradient tensor is found by specializing (2.77) to the deformation (i) which leads to

F = r′(R)(er ⊗ eR) +
r

R
(eθ ⊗ eΘ) + αΛr(eθ ⊗ eZ) + Λ(ez ⊗ eZ) . �

(b) When the material is incompressible

det F = 1 ⇒ Λ
r

R

dr

dR
= 1 ⇒ r(R) =

√
c+R2/Λ,

where c is a constant of integration. However, since particles on the axis of the cylinder undergo no radial

displacement it is necessary that r(0) = 0. This implies that c = 0 and therefore

r(R) = Λ−1/2R. � (ii)

It is convenient to set

λ := Λ−1/2

so that r′(R) = r(R)/R = λ and so

F = λ(er ⊗ eR + eθ ⊗ eΘ) + αΛr(eθ ⊗ eZ) + Λ(ez ⊗ eZ) . (iii)

(c) It can be readily verified that we can factor the deformation gradient tensor (iii) and write it as

F = F1F2F3, (iv)

where

F3 = er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ , (v)

F2 = λer ⊗ er + λeθ ⊗ eθ + Λez ⊗ ez, (vi)

F1 = I + αr eθ ⊗ ez. (vii)

Comparing (v) with (1.160) shows that F3 describes the rigid rotation that takes {eR, eΘ, eZ} into {er, eθ, ez}.
Comparing (vi) with (2.7) shows that F2 describes a pure stretch with extension Λ in the z-direction and

lateral contraction λ in the plane normal to it. Comparing (vii) with (2.15) shows that F1 describes a simple

shear of amount αr in the shearing direction eθ with glide plane normal ez.

(d) The left Cauchy-Green tensor is

C = FTF
(ii)
= λ2(eR ⊗ eR) + λ2(eΘ ⊗ eΘ) + αλΛr(eΘ ⊗ eZ + eZ ⊗ eΘ) + Λ2(1 + α2r2)(eZ ⊗ eZ). (viii)

(e) To find the principal stretches and principal directions of Lagrangian stretch, we can solve the eigenvalue

problem for C. However because of the special nature of the deformation under consideration, one can find

the eigenvalues more easily. From the form of C in (viii) (specifically since there are no shear components

associated with eR) we conclude immediately that one principal value and principal direction are

λ1 = λ = Λ−1/2, r1 = eR. (ix)
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In a principal basis,

C = λ2
1(r1 ⊗ r1) + λ2

2(r2 ⊗ r2) + λ2
3(r3 ⊗ r3). (x)

Calculating tr C from (viii) and (x) and equating the results gives

λ2
1 + λ2

2 + λ2
3 = 2λ2 + Λ2(1 + α2r2) ⇒ λ2

2 + λ2
3 = λ2 + Λ2(1 + α2r2). (xi)

Next calculating det F from (iii) and equating the result to λ1λ2λ3 yields

λ1λ2λ3 = λ2Λ ⇒ λ2λ3 = λΛ. (xii)

Equations (xi) and (xii) can be solved for the principal stretches λ2 and λ3. (Note that in general λ2 6= λ

and λ3 6= Λ.)

Let the corresponding principal directions be

r2 = cosψ eΘ + sinψ eZ , r3 = − sinψ eΘ + cosψ eZ , (xiii)

for some to-be-determined angle ψ. Substituting (ix)2 and (xiii) into (x) and comparing the resulting

expression with (viii) leads to

λ2
2 cos2 ψ + λ2

3 sin2 ψ = λ2, λ2
2 sin2 ψ + λ2

3 cos2 ψ = Λ2(1 + α2r2), (λ2
2 − λ2

3) sinψ cosψ = αλΛr.

These are three equations for λ2, λ3 and ψ. We do not need to solve them for the two principal stretches

since we found them above in (xi) and (xii). By eliminating λ2
2 and λ2

3 from the three preceding equations

we find

tan 2ψ =
2αλΛr

λ2 − Λ2(1 + α2r2)
. (xiv)

Thus the other two principal directions of C are given by (xiii), (xiv).

2.8 Spatial and referential descriptions of a field.

Consider a scalar field φ(y) defined on the region R occupied by the body in the deformed

configuration. For example it might represent the temperature field in the deformed body,

with φ(y) being the temperature at the particle whose position in the deformed configuration

is y. This function φ(y), defined on R, can be expressed as a function of x defined on RR

by “changing variables” from y→ x:

φ̂(x) := φ(y)
∣∣∣
y=ŷ(x)

for all x ∈ RR, (2.88)

where y = ŷ(x) is the deformation. Note that φ̂(x) is not the temperature of the undeformed

body. The functions φ(y) and φ̂(x) both give the temperature at the same particle p in
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the deformed body, the particle having been identified in two different ways – in the former

by its location y in the deformed configuration and in the latter by its position x in the

reference configuration. One refers to the representation φ̂(x) as the referential or material

description of the field under consideration, and φ(y) as its spatial description.

Since the deformation y = ŷ(x) is one-to-one, there exists an inverse deformation

x = x(y) (2.89)

that carries R → RR. Therefore any function φ̂(x) defined on RR can be written as a

function φ(y) defined on R by “changing variables” from x→ y:

φ(y) = φ̂(x)
∣∣∣
x=x(y)

for all y ∈ R. (2.90)

If one takes the gradient of φ̂(x) with respect to x one gets a certain gradient vector

that we will denote by Gradφ. It has cartesian components ∂φ̂/∂xi. On the other hand if

one takes the gradient of φ(y) with respect to y one gets a different gradient vector denoted

by gradφ with cartesian components ∂φ/∂yi. Since we use two different symbols “Grad”

and “grad” to denote these two gradients, it is not necessary to write, for example, Grad φ̂,

it being understood that “Grad” applies on the referential field (and “grad” on the spatial

field). The relation between Gradφ and gradφ can be determined by differentiating both

sides of (2.88) with respect to x, or both sides of (2.90) with respect to y, and using the

chain rule. (Problem 2.8.1)

In general, for arbitrary scalar fields φ(y) and ψ(x), grad φ and Grad ψ denote the

respective vector fields with Cartesian components ∂φ/∂yi and ∂ψ/∂xi:

grad φ =
∂φ

∂yi
ei, Grad ψ =

∂ψ

∂xi
ei. (2.91)

For arbitrary vector fields a(y) and b(x), grad a and Grad b denote the respective tensor

fields with Cartesian components ∂ai/∂yj and ∂bi/∂xj:

grad a =
∂ai
∂yj

ei ⊗ ej, Grad b =
∂bi
∂xj

ei ⊗ ej, (2.92)

and

div a =
∂ai
∂yi

, Div b =
∂bi
∂xi

. (2.93)

For arbitrary tensor fields A(y) and B(x), div A and Div B denote the respective vector

fields with Cartesian components ∂Aij/∂yj and ∂Bij/∂xj:

div A =
∂Aij
∂yj

ei, Div B =
∂Bij

∂xj
ei. (2.94)
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Let u(y) and û(x) be spatial and material descriptions of a vector-valued field:

û(x) = u(y)
∣∣∣
y=ŷ(x)

, u(y) = û(x)
∣∣∣
x=x(y)

. (i)

Suppose that u(y) satisfies the differential equation

div u(y) = 0 at each y ∈ R. (ii)

Then by mapping y→ x (“changing variables from y to x”) we have

div u =
∂ui
∂yi

=
∂ûi
∂xj

∂xj
∂yi

=
∂ûi
∂xj

F−1
ji =

∂ûi
∂xj

F−Tij = Grad û · F−T , (iii)

where the dot in the last expression denotes the scalar product between the tensors Grad û

and F−T . Thus the referential version of the differential equation (ii) is

Grad û(x) · F−T (x) = 0 at each x ∈ RR. (iv)

Observe that the differential equation (iv) holds on RR.

2.8.1 Worked examples.

Problem 2.8.1. Let φ(y) and v(y) be a scalar and vector field defined on R and let φ̂(x) and v̂(x) be the

corresponding scalar and vector fields defined on RR through the deformation y = ŷ(x):

φ̂(x) = φ(ŷ(x)), v̂(x) = v(ŷ(x)).

Show that

Grad φ̂ = FT gradφ, Grad v̂ = grad v F, (2.95)

Here, in cartesian coordinates,

(
Grad φ̂

)
i

=
∂φ̂

∂xi
,

(
gradφ

)
i

=
∂φ

∂yi
,

(
Grad v̂

)
ij

=
∂v̂i
∂xj

,
(

grad v
)
ij

=
∂vi
∂yj

.

Remark: It is not necessary to include the “hats” in (2.95) and the line below it since we use two different

symbols, Grad and grad, for the two gradients. It is understood that φ is expressed referentially in Gradφ

and spatially in gradφ.
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Problem 2.8.2. Let a(y) and b(x) be spatial and referential representations of two vector fields. Suppose

they are related by

b = JF−1a, (i)

where F = ∇y is the deformation gradient tensor and J = det F is the Jacobian determinant. Show that

Div b = J div a. (ii)

Solution: The result follows from

Div b =
∂bi
∂xi

(i)
=

∂

∂xi
(JF−1

ij aj) =
∂

∂xi
(JF−Tji aj) =

∂

∂xi
(JF−Tji )aj + JF−Tji

∂aj
∂xi

=

(2.123)
= JF−Tji

∂aj
∂xi

= JF−1
ij

∂aj
∂yk

∂yk
∂xi

= JF−1
ij

∂aj
∂yk

Fki = Jδkj
∂aj
∂yk

= J
∂aj
∂yj

= J div a

where we used the Piola identity (2.123) (page 217) in getting to the second line.

Problem 2.8.3. Let A(y) and B(x) be spatial and referential representations of two tensor fields. Suppose

they are related by

B = JAF−T . (i)

Show that

Div B = J div A, (ii)

where the divergence of a tensor field is given in (2.94).

Solution: The result follows from

(Div B)k =
∂Bki
∂xi

(i)
=

∂

∂xi
(JAkjF

−T
ji ) =

∂

∂xi
(JF−Tji Akj) =

∂

∂xi
(JF−Tji )Akj + JF−Tji

∂Akj
∂xi

=

(2.123)
= JF−Tji

∂Akj
∂xi

= JF−1
ij

∂Akj
∂yp

∂yp
∂xi

= JF−1
ij

∂Akj
∂yp

Fpi = Jδpj
∂Akj
∂yp

= J
∂Akj
∂yj

= J div A

where we used the Piola identity (2.123) (page 217) in getting to the second line.

Problem 2.8.4. A rigid motion of a body is described by

y(x, t) = d(t) + Q(t)x. (2.96)

where the time-dependent vector d(t) describes the translation and the time-dependent proper orthogonal

tensor Q(t) describes the rotation. Show that the velocity field, in spatial form, associated with a rigid

motion can be expressed in the form

v(y, t) = c(t) + ω(t)× y, (2.97)

for some vectors c(t) and ω(t).
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Solution: The velocity of a particle x during the rigid motion (2.96) is

v(x, t) = ḋ(t) + Q̇(t)x, (i)

where the superior dot denotes differentiation with respect to time. This velocity field can be described in

spatial (Eulerian) form by using the inverse of the motion, x = QT (y − d), to swap x for y:

v(y, t) = ḋ + Q̇ QT (y − d) = c(t) + W(t)y, (ii)

where we have set

W(t) := Q̇(t)QT (t), c(t) := ḋ(t)− Q̇(t)QT (t)d(t). (iii)

Since Q(t) is proper orthogonal at each instant we have Q(t)QT (t) = I. Differentiating this with respect to

time gives

Q̇QT + QQ̇T = 0 ⇒ W(t) = −WT (t). (iv)

Therefore W(t) is skew-symmetric and so we can write the velocity field as

v(y, t) = c(t) + ω(t)× y

where ω(t) is the axial vector associated with W(t); see (1.83).

2.9 Linearization.

The displacement field u(x) is related to the deformation by

u(x) = y(x)− x. (2.98)

The associated displacement gradient tensor

H := ∇u, (2.99)

has cartesian components

Hij =
∂ui
∂xj

. (2.100)

Since F = ∇y, it follows from (2.98) and (2.99) that the displacement gradient tensor H

and the deformation gradient tensor F are related by

F = I + H. (2.101)

The various kinematic quantities encountered previously, such as the stretches U,V, the

rotation R and the strain E, were all expressed in terms of the deformation gradient tensor
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F, and so they can all be represented instead in terms of the displacement gradient tensor

H.

In the reference configuration we have F = I and so H = 0 by (2.101). If, in some sense

(to be made precise), the body is deformed by a “small” amount, then F is close to I and

H is close to 0. This is indeed the case in many physical circumstances and our goal in this

section is to derive approximations for U,V,R,E etc. in this particular setting. Note that

when F is close to I, both the stretch U and rotation R are close to I, and so the setting we

are considering involves small amounts of both stretching and rotation.

Before proceeding to derive suitable approximations, we first recall what we mean by the

magnitude of a tensor and what it means when that magnitude is small. We note three

preliminary algebraic results:

– First, recall from (1.121) that the norm (or magnitude) of a tensor A is defined as

|A| =
√

A ·A =

√
tr (ATA). (2.102)

In terms of the components Aij this reads

|A| = (A2
11 + A2

12 + A2
13 + A2

21 + · · ·+ A2
33)1/2. (2.103)

Observe that |A| > 0 for all A 6= 0. Moreover if |A| → 0 then each component Aij → 0

as well.

– Second, let Z(H) be a function that is defined for all 2-tensors H and whose values

are also 2-tensors. We say that Z(H) = O(|H|n) as |H| → 0 if there exists a number

α > 0 such that |Z(H)| < α|H|n as |H| → 0.

– And third, for a symmetric tensor A and real number m,

(I + A)m = I +mA + O(|A|2) as |A| → 0 (2.104)

which can be readily established in a principal basis of A.

We are now in a position to linearize our preceding kinematic quantities in the special

case of an infinitesimal deformation, defined as a deformation in which H = ∇u = F− I

is small. To this end we set

ε = |H| (2.105)
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and conclude that as ε→ 0,

C = U2 = FTF
(2.101)

= I + H + HT + O(ε2),

B = V2 = FFT (2.101)
= I + H + HT + O(ε2),

U =
√

U2 =
√

C
(2.104)

= I + 1
2
(H + HT ) + O(ε2),

V =
√

V2 =
√

B
(2.104)

= I + 1
2
(H + HT ) + O(ε2),

R = FU−1 (2.101),(2.104)
= I + 1

2
(H−HT ) + O(ε2),

(2.106)

where the first two equations follow immediately by using F = I + H, and we have used

(2.104) in deriving the last three equations. By (2.106)1 the Green Saint-Venant strain tensor

can be written as

E =
1

2
(C− I) =

1

2
(H + HT ) + O(ε2). (2.107)

More generally the Lagrangian strain tensor (2.67) can be linearized by Taylor expanding

e(λ) about λ = 1 giving

E(U) =
3∑
i=1

e(λi)ri⊗ri =
3∑
i=1

(λi−1)ri⊗ri+O
(
ε2
)

= U− I+O
(
ε2
)

=
1

2
(H+HT )+O(ε2),

(2.108)

where we have used the properties e(1) = 0, e′(1) = 1.

One can also show that

J = det F = 1 + tr H + O
(
ε2
)

= 1 + Div u + O
(
ε2
)
, (2.109)

where in terms of its cartesian components, Div u = tr (∇u) = ∂ui/∂xi.

Observe from (2.106)3,4 and (2.108) that the stretch and strain tensors depend on H

through only its symmetric part. Therefore we define a tensor ε by

ε := 1
2
(H + HT ), (2.110)

with cartesian components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.111)

Note that the stretch tensors U and V and a general Lagrangian strain tensor E can be

approximated as

U = I + ε+ O
(
ε2
)
, V = I + ε+ O

(
ε2
)
, E = ε+ O

(
ε2
)
. (2.112)
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The symmetric tensor ε is known as the infinitesimal strain tensor and plays a central role

in the theory of solids undergoing infinitesimal deformations. It is worth comparing the ex-

pression (2.111) for the components of the infinitesimal strain tensor with the corresponding

expression (2.73) for those of the Green Saint-Venant strain tensor.

Remark: In Problem 2.2 it is shown that ε does not vanish in a rigid rotation y = Qx and

therefore is not a suitable measure of strain in a finite deformation. However it is shown

there (and below) that ε does vanish to leading order in an infinitesimal rigid rotation and

therefore is appropriate in the study of infinitesimal deformations.

Remark: An eigenvalue εi of ε is related to the corresponding principal stretch λi by

λi = 1 + εi + O(ε2). (2.113)

Remark: Upon linearization, equations (2.74) and (2.76) read

ε11 ≈
dsy − dsx

dsx
, ε12 ≈

1

2
cos θy ≈

1

2
(π/2− θy). (2.114)

It follows from this that when the deformation is infinitesimal, the normal strain component

ε11 represents the change in length per reference length of a fiber that was in the x1-direction

in the reference configuration; and that the shear strain component ε12 represents one half

the decrease in angle between two fibers that were in the x1- and x2-directions in the reference

configuration.

Remark: The stretch of a material fiber in the direction m is

λ =
(
Fm · Fm

)1/2
=
(
(I + H)m · (I + H)m

)1/2 .
= 1 +

1

2
(H + HT )m ·m = 1 + εm ·m.

If the material is inextensible in the fiber direction m, the only (infinitesimal) deformations

it can undergo are those with

εm ·m = εijmimj = 0. (2.115)

Remark: Note from (2.109), (2.118) and (2.36) that

dVy − dVx
dVx

= J−1 = Div u+O(ε2) = tr (∇u)+O(ε2) =
∂ui
∂xi

+O(ε2) = tr ε+O(ε2). (2.116)

Thus the volumetric strain is measured by tr ε in the infinitesimal deformation theory. If the

material is incompressible, the only (infinitesimal) deformations it can undergo are those

with

tr ε = εkk = 0. (2.117)
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Next, observe from (2.106)5 that the rotation tensor R depends only on the skew-

symmetric part of H. Therefore we define a 2-tensor ω by

ω := 1
2
(H−HT ), (2.118)

whose cartesian components are

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.119)

Observe that the rotation tensor R can be approximated as

R = I + ω + O
(
ε2
)
. (2.120)

The tensor ω is known as the infinitesimal rotation tensor and it is skew-symmetric (not

orthogonal!)

Consider the particular displacement field

u(x) = Wx + b (2.121)

where W is a constant skew-symmetric tensor and b is a constant vector. It is readily seen

by substituting this into (2.110) that the associated infinitesimal strain field vanishes. Thus

(2.121) describes an infinitesimal rigid displacement.

Remark: It is useful to observe from (2.21), (2.101) and (2.118) that a fiber dx in the reference

configuration and its image dy in the deformed configuration are related by

dy = dx + ε dx + ω dx + O(ε2), (2.122)

which shows that in the linearized theory the local deformation can be additively decomposed

into a strain and a rotation. This is in contrast to the multiplicative decomposition dy =

RUdx for a finite deformation.

Remark: As noted previously, when |H| is small, both the strain and rotation are small.

There are certain physical circumstances in which one wants to carry out a different lin-

earization, i.e., linearization based on the smallness of some quantity other than ∇u. For

example, consider rolling up a sheet of paper. If the rolled-up configuration is the deformed

configuration and the flat one the reference configuration, in this situation one has large ro-

tations R but small strains U−I. Thus one might wish to linearize based on the assumption

that |U− I| is small (but leave R arbitrary). Note that under these conditions |H| will not

be small.
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2.10 Exercises.

Problem 2.1. Bending of a block.

Figure 2.20: Left: Region RR = {(x1, x2, x3) : 0 ≤ x1 ≤ L,−h ≤ x2 ≤ h,−b ≤ x3 ≤ b} occupied by a

body in a reference configuration. Right: The region R occupied by the body in the deformed configuration.

The points P′, Q′, M′, N′, etc. are the images in the deformed configuration of the points P, Q, M, N, etc.

in the reference configuration. Vertical straight lines, e.g. MN, in the reference configuration are mapped

into straight lines, e.g. M′N′, that pass through the point (0, γL). Horizontal straight lines in the reference

configuration, e.g. PQ, are carried into circular arcs, e.g. P′Q′. (Figure for Problem 2.1)

A body occupies the region RR = {(x1, x2, x3) : 0 ≤ x1 ≤ L,−h ≤ x2 ≤ h,−b ≤ x3 ≤ b} in a reference

configuration. Figure 2.20 shows a side view of this block looking down the x3-axis. The body is subjected

to (some loading that leads to) a bending deformation that carries RR into the region R shown. The

deformation has the features described in the figure caption and is therefore analogous to that in Problem

2.5.4. An analysis like that in Problem 2.5.4 shows that the deformation must have the form (Exercise)

y1 = r(x2) sin θ(x1), y2 = γL− r(x2) cos θ(x1), y3 = x3, (i)

where the functions r(x2) and θ(x1) are subject to

r(0) = γL, θ(0) = 0, (ii)

and

r(x2) > 0, r′(x2) < 0, θ′(x1) > 0. (iii)

(a) Consider the (undeformed) material fiber dx = dsx e1 at an arbitrary point (x1, x2, 0) in the body.

Calculate its stretch λ1(x1, x2). Similarly consider the undeformed material fiber dx = dsx e2 and
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calculate its stretch λ2(x1, x2). Caution: we do not know that these are the principal stretches so the

use of the symbols λ1, λ2 is probably not ideal.

(b) Suppose that a material fiber that lies on the x2-axis in the undeformed configuration remains un-

stretched by the deformation. What additional information can you infer about r(x2) and θ(x1)?

(c) Specialize the stretch λ1(x1, x2) to the case where the material is incompressible. Show that λ1(x1, x2)

varies nonlinearly with x2. In addition, show that λ1(x1, 0) = 1, λ1(x1, x2) < 1 for x2 > 0 and

λ1(x1, x2) > 1 for x2 < 0. Do not assume the material to be incompressible from here on.

(d) Calculate the components of the Green Saint-Venant and infinitesimal strain tensors E and ε. Com-

ment on the distinction.

(e) Under what conditions is the deformation infinitesimal? Specialize your preceding expressions for

ε(x) and u(x) to this case. Make use of the fact that λ1 = λ2 = 1 in the reference configuration and

therefore that in an infinitesimal deformation |λ1 − 1| � 1 and |λ2 − 1| � 1.

Solution:

(a) First calculate the deformation gradient tensor. Differentiating (i) with respect to xj and using Fij =

∂yi/∂xj gives the components of the deformation gradient tensor:

[F ] =

 rθ′ cos θ r′ sin θ 0

rθ′ sin θ −r′ cos θ 0

0 0 1

 , (iv)

where a prime denotes differentiation with respect to the argument. Tensorially,

F = rθ′ cos θ e1 ⊗ e1 + r′ sin θ e1 ⊗ e2 + rθ′ sin θ e2 ⊗ e1 − r′ cos θ e2 ⊗ e2 + e3 ⊗ e3. (v)

Remark: On calculating J = det F, one obtains J = det F = −rr′θ′. Thus J > 0 requires r′θ′ < 0.

Consider the undeformed fiber dx = dsx e1. Substituting this into dy = Fdx and using (v) leads to

dy = (rθ′ cos θ dsx)e1 + (rθ′ sin θ dsx)e2.

Therefore

dsy = |dy| =
√

(rθ′ cos θ dsx)2 + (rθ′ sin θ dsx)2 = |rθ′| dsx
(iii)
= rθ′ dsx,

and so the stretch λ1 = dsy/dsx of such a fiber is

λ1(x1, x2) = r(x2)θ′(x1). � (vi)

A similar calculation for an undeformed fiber dx = dsx e2 leads to the stretch

λ2(x1, x2) = |r′(x2)| = −r′(x2). � (vii)

(b) We are told that fibers lying on the x1-axis remain unstretched. Thus from (vi)

λ1(x1, 0) = r(0)θ′(x1) = 1
(ii)1⇒ θ′(x1) = 1/(γL).
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Integrating this equation and using (ii)2 leads to

θ(x1) =
x1

γL
. � (viii)

(c) : If the material is incompressible we must have det F = 1. Calculating det F from (iv) gives

det F = −r(x2)r′(x2)θ′(x1) = 1.

Since θ(x1) = x1/(γL) this simplifies to

r(x2)r′(x2) = −γL.

Integrating this and using (ii)1 yields

r(x2) = γL

√
1− 2x2

γL
. (ix)

The stretch λ1 is therefore given by (vi), (viii), (ix) to be

λ1(x1, x2) =

√
1− 2x2

γL
, � (x)

from which we see that λ1(x1, x2) varies nonlinearly with x2. Moreover we see that λ1(x1, 0) = 1, λ1(x1, x2) <

1 for x2 > 0 and λ1(x1, x2) > 1 for x2 < 0.

(d) The right Cauchy-Green tensor is

C = FTF
(v)
= (rθ′)2 e1 ⊗ e1 + (r′)2 e2 ⊗ e2 + e3 ⊗ e3. (xi)

We see that C is diagonal in the basis {e1, e2, e3} and therefore the three scalar factors appearing in (xi)

are the squares of the principal stretches. It now follows from (vi), (vii) and (xi) that the quantities λ1 and

λ2 that we found earlier are in fact the principal stretches. We can write C as

C = λ2
1 e1 ⊗ e1 + λ2

2 e2 ⊗ e2 + e3 ⊗ e3. (xii)

From (xi) we find that the Green Saint-Venant strain tensor E = 1
2 (C− I) has components

[E] =


1
2 (λ2

1 − 1) 0 0

0 1
2 (λ2

2 − 1) 0

0 0 0

 , � (xiii)

where λ1, λ2 are given by (vi), (vii). Observe that E is diagonal in the basis {e1, e2, e3}. On the other hand

the matrix of components of the displacement gradient tensor H = F− I, using by (iv), (vi), (vii), is

[H] =


λ1 cos θ − 1 −λ2 sin θ 0

λ1 sin θ λ2 cos θ − 1 0

0 0 0

 . (xiv)



184 CHAPTER 2. KINEMATICS: FINITE DEFORMATION

Therefore the infinitesimal strain tensor ε = 1
2 (H + HT ) has components

[ε] =


λ1 cos θ − 1 1

2 (λ1 − λ2) sin θ 0

1
2 (λ1 − λ2) sin θ λ2 cos θ − 1 0

0 0 0

 . � (xv)

Observe that the shear strain component E12 = 0 but ε12 6= 0. Observe from Figure 2.20 that the angle

between two lines such as PQ and MN does not change due to the deformation. This shows that ε is not

an appropriate strain measure in general (for large deformations).

(e) : Substituting (viii) into (xiv) gives

[H] =


λ1 cos x1

γL − 1 −λ2 sin x1

γL 0

λ1 sin x1

γL λ2 cos x1

γL − 1 0

0 0 0

 . (xvi)

All elements of this matrix must be small for the deformation to be infinitesimal. First consider the require-

ment |H12| � 1. Since λ2 ≈ 1 for infinitesimal deformations we must have sinx1/(γL) � 1 which requires

x1/(γL)� 1 which in turn requires γ � x1/L for all x1 whence

γ � 1. (xvii)

This says that the deformation is infinitesimal when the radius γL of the centerline in the deformed config-

uration is much larger than the length L of the undeformed beam (which is what we would expect). Thus

with 1/γ as a small parameter, we want to approximate each term Hij for small 1/γ dropping any terms

that are quadratic or smaller. With this enforced H11 ≈ λ1 − 1, H12 ≈ −λ2x1/(γL), H21 ≈ λ2x1/(γL) and

H22 ≈ λ2 − 1 as γ →∞. Thus

[H] ≈


λ1 − 1 −λ2

x1

γL 0

λ1
x1

γL λ2 − 1 0

0 0 0

 ≈


λ1 − 1 − x1

γL 0

x1

γL λ2 − 1 0

0 0 0

 , (xviii)

where in getting to the second expression we used the fact that x1/(γL) is small and therefore replaced the

stretches λ1 and λ2 in the two off-diagonal terms by their leading order approximations, i.e. unity. On using

(xviii),

[ε] =
1

2
([H] + [H]T ) =


λ1 − 1 0 0

0 λ2 − 1 0

0 0 0

 . � (xix)

Observe that now ε12 = 0.

Remark: One can linearize the expression (xiii) for the Green Saint Venant strain tensor directly. Note that

for small deformations one has |λi − 1| � 1 and so

1

2
(λ2
i − 1) =

1

2
(λi + 1)(λi − 1) ≈ 1

2
(2)(λi − 1) = λi − 1.
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Therefore based on (xiii), the infinitesimal strain tensor must have terms λ1 − 1 and λ2 − 1 on the diagonal

and zero off the diagonal, which is precisely (xix).

Exercise: Linearize the stretch λ1 given by (x) and derive a familiar equation for the strain λ1 − 1.

Problem 2.2. A rigid rotation of a body is described by the deformation y = Qx where Q is proper

orthogonal. Consider the particular rigid rotation

Q = cos θ(e1 ⊗ e1 + e2 ⊗ e2) + sin θ(e1 ⊗ e2 − e2 ⊗ e1) + e3 ⊗ e3 (i)

that describes a rotation through an angle θ about the e3-axis; see Problem 1.4.14. The deformation y = Qx

when written out explicitly in component form reads

y1 = x1 cos θ + x2 sin θ,

y2 = −x1 sin θ + x2 cos θ,

y3 = x3.

 (ii)

Use (2.111) to calculate the components of the infinitesimal strain tensor ε associated with the deformation

(ii). Explain why this strain tensor does not vanish even though the deformation is rigid.

Suppose that the deformation is infinitesimal in the sense that |θ| � 1. Show that ε does vanish to

leading order in this case. Moreover, show that the deformation (ii) reduces to the form (2.121) of an

infinitesimal rigid rotation. This shows that the infinitesimal strain tensor ε is not a good measure of strain

for finite deformations but is appropriate for the study of infinitesimal deformations.

Homogeneous deformations

Problem 2.3. (Based on Chadwick) (This problem will be revisited in Chapter 6 when we discuss the

constitutive relation of an anisotropic material.) An incompressible body is reinforced by embedding two

families of straight inextensible fibers in it as depicted in Figure 2.21. The fiber directions m±R in the reference

configuration are

m±R = cos Θ e1 ± sin Θ e2, 0 < Θ < π/2.

The body is subjected to the homogeneous deformation

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, (o)

where λi > 0, i = 1, 2, 3.

(a) Show that in view of the kinematic constraints used in modeling the material, i.e. inextensibility and

incompressibility, the only deformations (of the above form) that this body can sustain are those that

obey

λ2
1 cos2 Θ + λ2

2 sin2 Θ = 1, λ1λ2λ3 = 1.
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Figure 2.21: A cubic block reinforced with two families of inextensible fibers making angles ±Θ with the

x1-axis in the reference configuration. (Figure for Problem 2.3)

(b) Show that the value of the stretch λ1 is restricted to the range 0 < λ1 < 1/ cos Θ. Why do you think

λ1 cannot be increased beyond a certain value?

(c) Let ±θ be the angles that the fibers make with the y1-axis in the deformed configuration. Analyze

how θ varies as a function of λ1. What value does θ approach when λ1 → 1/ cos Θ? Now explain why

the value of λ1 cannot be increased beyond 1/ cos Θ.

(d) Analyze the variation of λ2 as a function of λ1. In particular, show that λ2 decreases monotonically

as λ1 increases and that λ2 → 0 when λ1 → 1/ cos Θ.

(e) Analyze the variation of λ3 as a function of λ1. In particular, show that as λ1 increases, the body first

contracts in the x3-direction until λ3 reaches the value sin 2Θ and expands thereafter with λ3 → ∞
when λ1 → 1/ cos Θ.

(f) Calculate the value of the angle between the two families of fibers in the deformed configuration when

the body has contracted to its minimum value λ3 = sin 2Θ (corresponding to λ1 = 1/(
√

2 cos Θ)).

(g) Calculate the “Poisson’s ratios” −dλ2/dλ1 at λ1 = 1 and −dλ3/dλ1 at λ1 = 1. Under what conditions

(if any) do they take the value 1/2?

Solution:

(a) The deformation gradient tensor associated with the given deformation (o) is

F = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λ3 e3 ⊗ e3.

In the undeformed configuration the fibers are oriented in the directions m±R = cos Θ e1 ± sin Θ e2 and

therefore the deformed images of m±R are

Fm±R = λ1 cos Θe1 ± λ2 sin Θe2. (i)

Since the fibers are inextensible we must have |Fm±R | = |m±R | = 1, i.e.

λ2
1 cos2 Θ + λ2

2 sin2 Θ = 1. � (ii)
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In addition, since the material is incompressible we must have det F = 1:

λ1λ2λ3 = 1. � (iii)

(b) On rearranging (ii) we have 1− λ2
1 cos2 Θ = λ2

2 sin2 Θ > 0 where the inequality follows from λ2 > 0 and

sin Θ > 0. Thus

1− λ2
1 cos2 Θ > 0 ⇒ 1 > λ1 cos Θ ⇒ 0 < λ1 < 1/ cos Θ, �

having used the fact that λ1 and cos Θ are positive.

The two equations (ii) and (iii) constrain the values of the stretches. In particular, one can solve them

for the stretches λ2 and λ3 in terms of λ1 leading to

λ2 =
(1− λ2

1 cos2 Θ)1/2

sin Θ
, 0 < λ1 < 1/ cos Θ, (iv)

λ3 =
sin Θ

λ1(1− λ2
1 cos2 Θ)1/2

, 0 < λ1 < 1/ cos Θ, (v)

where we have taken the positive square roots since λ1, λ2, λ3 and sin Θ are all positive. Thus the values of

λ2 and λ3 are fully determined by λ1 (and Θ).

(c) Consider a material fiber dx = ds(cos Θ e1+sin Θ e2) in the reference configuration. Since in the deformed

configuration it makes an angle θ with the y1-direction (and its length remains ds), the deformation maps it

into dy = ds(cos θ e1 + sin θ e2). Substituting dx and dy into dy = Fdx and simplifying gives

cos θ e1 + sin θ e2 = (λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3)(cos Θ e1 + sin Θ e2) = λ1 cos Θ e1 + λ2 sin Θ e2,

and so

cos θ = λ1 cos Θ, � (vii)

(and sin θ = λ2 sin Θ). This gives the angle in the deformed configuration as a function of the stretch λ1

(and the angle Θ). Figure 2.22 shows the variation of θ with λ1 according to (vii). Observe that the fiber

angle θ decreases monotonically as the stretch λ1 increases. Moreover,

θ → 0 as λ1 → 1/cos Θ,

(and θ → π/2 as λ1 → 0). Thus the fibers are aligned with the y1-axis when λ1 → 1/cos Θ and (since they

are inextensible) the block cannot be stretched any further.

(d) Based on (iv), λ2 decreases monotonically as λ1 increases. Figure 2.23 shows the variation of λ2 with

λ1 according to (iv). In particular λ2 → 0 as λ1 → 1/ cos Θ. (Note: Since λ2 → 0 in this limit, the

incompressibility constraint λ1λ2λ3 = 1 requires that λ3 →∞ and therefore in particular, λ3 must increase

with λ1, at least for large values of stretch!)

(e) Differentiating (v) with respect to λ1 yields

dλ3

dλ1
= − sin Θ(1− 2λ2

1 cos2 Θ)

λ2
1(1− λ2

1 cos2 Θ)3/2
, (viii)
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θ

Figure 2.22: Angle θ in the deformed configuration versus stretch λ1. In the reference configuration:

λ1 = 1, θ = Θ.

,

Figure 2.23: Variation of λ2 and λ3 versus λ1 according to (iv) and (v). The figure has been drawn for

Θ = 3π/8.

from which we see that

dλ3

dλ1


< 0 for 0 < λ1 < 1/(

√
2 cos Θ),

= 0 for λ1 = 1/(
√

2 cos Θ),

> 0 for 1/(
√

2 cos Θ) < λ1 < 1/ cos Θ.

Moreover

λ3 = sin 2Θ when λ1 = 1/(
√

2 cos Θ). (ix)

Therefore as λ1 increases from 0, the value of λ3 first decreases until it reaches its minimum value sin 2Θ

when λ1 = 1/(
√

2 cos Θ) and increases thereafter. Therefore

λ3 ≥ sin 2Θ. (x)

Observe that λ3 → ∞ as λ1 → 1/ cos Θ. Figure 2.23 shows the variation of λ3 with λ1 according to (v).

(The figure has been drawn for Θ = 3π/8.)
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Note that the value of λ1 at which the minimum occurs, i.e. λ1 = 1/(
√

2 cos Θ), is < 1 when Θ < π/4

and > 1 when Θ > π/4. Imagine increasing λ1 from λ1 = 1. If Θ < π/4 then λ3 increases monotonically

as λ1 increases. However if Θ > π/4 then λ3 first decreases until it reaches its minimum value and then

increases.

(f) Observe from (vii) that

θ = π/4 when λ1 =
1√

2 cos Θ
.

When θ = π/4 (i.e. when λ1 = 1/(
√

2 cos Θ) or λ3 = sin 2Θ) the two families of fibers are orthogonal in the

deformed configuration. This can be seen in Figure 2.22.

(g) Differentiating (iv) respect to λ1 and evaluating the result at λ1 = 1, and also evaluating (viii) at λ1 = 1,

gives

− dλ2

dλ1

∣∣∣∣
λ1=1

= cot2 Θ, − dλ3

dλ1

∣∣∣∣
λ1=1

=
1− 2 cos2 Θ

sin2 Θ
.

If the block was in a state of uniaxial stress in the x1-direction (of course we are told nothing about stress

here) then we would call the two quantities above the Poisson’s ratios at infinitesimal deformations with

respect to the two transverse directions x2 and x3. Note that (a) the values of the “Poisson ratios” depend

on the angle Θ, (b) the “Poisson ratio” with respect to the x2- direction is different to that with respect

to the x3-direction, and (c) the value associated with the x3-direction will be either positive or negative

depending on the angle Θ. It is readily shown from the preceding equation that if

− dλ2

dλ1

∣∣∣∣
λ1=1

= − dλ3

dλ1

∣∣∣∣
λ1=1

=
1

2
,

the fiber direction in the reference configuration must have the special value ≈ 54.74o corresponding to

tan Θ =
√

2.

Problem 2.4. A body occupies a unit cube in a reference configuration:

RR = {(x1, x2, x3) : −1/2 < x1 < 1/2, −1/2 < x2 < 1/2, −1/2 < x3 < 1/2}.

It is subjected to the deformation

y1 = ax1 + bx2, y2 = bx1 + ax2, y3 = cx3, (i)

where a, b and c are constants with c > 0 and a > b > 0.

(a) Consider a plane SR defined by x1 + x2 = constant in the reference configuration. Under what

conditions on a, b, c does the area of a patch on this surface not change due to the deformation (i)?

(b) Under what conditions on a, b, c does every material fiber on the plane SR remain unstretched by the

deformation?

Solution: From (i) and Fij = ∂yi/∂xj the matrix of components of the deformation gradient tensor is

[F ] =

 a b 0

b a 0

0 0 c

 . (ii)
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Therefore

J = det[F ] = c(a2 − b2) > 0, (iii)

since c > 0, a > b > 0 (given).

(a) By Nanson’s formula (with J > 0) the area transforms according to dAy n = dAx JF−TnR whence

dAy = dAx J |F−TnR|. When the area does not change, dAx = dAy and so

J |F−TnR| = 1. (iv)

A unit vector normal to the surface SR is

nR =
1√
2
e1 +

1√
2
e2. (v)

One readily finds from (ii) that

[F ]−1 = (a2 − b2)−1

 a −b 0

−b a 0

0 0 (a2 − b2)/c

 . (vi)

Substituting (iii), (v) and (vi) into (iv) and simplifying (and using c > 0, a > b) leads to

c2(a− b)2 = 1 ⇒ c(a− b) = 1. (vii)

(b) Let ` = `iei be an arbitrary vector. If it lies in the plane SR it is perpendicular to nR and so nR · ` = 0:

nR · ` =

(
1√
2
e1 +

1√
2
e2

)
· `iei =

`1√
2

+
`2√

2
= 0 ⇒ `2 = −`1,

and so such a vector has the form

` = `1e1 − `1e2 + `3e3, (viii)

where `1 and `3 are arbitrary. The deformed image of ` is F` and so every such fiber does not stretch if

|F`| = |`|, (ix)

for all vectors ` of the form (viii). Substituting (ii) and (viii) into (ix) and simplifying leads to

2
[
(a− b)2 − 1

]
`21 +

[
c2 − 1

]
`23 = 0 for all `1, `3.

This requires (a− b)2 − 1 = 0 and c2 − 1 = 0:

a− b = 1, c = 1, (x)

where we have used c > 0, a > b > 0.

Remark: As one would expect, (x) implies (vii) but the converse is not true.
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Problem 2.5. (P. Rosakis) In this problem you are to show that if you know the deformation of any three

linearly independent material fibers, then you can calculate F and therefore determine the deformation of

all material fibers.

Consider three distinct non-coplanar material fibers identified by the three linearly independent vectors

a1,a2,a3. (These fibers need not be perpendicular to each other and need not have the same lengths.) The

body is subjected to a homogeneous deformation that carries these fibers into b1,b2,b3 respectively. You

are given a1,a2,a3,b1,b2 and b3. Derive a formula for the deformation gradient tensor in terms of these

six vectors (alone) which then establishes the desired result.

Solution: We want to find a tensor F such that Fai = bi, i = 1, 2, 3. If we can find 3 vectors c1, c2, c3 such that

ci ·aj = δij (keep in mind that in this problem ai ·aj 6= δij) then, since (bj⊗cj)ai = (cj ·ai)bj = δijbj = bi

it would follow that F = bi ⊗ ci. Thus our task is to determine three such vectors c1, c2, c3.

Since a1,a2,a3 are linearly independent, it follows from Problem 1.7 that ai×aj 6= o and (ai×aj)·ak 6= 0

for distinct i, j, k. Therefore we can define three non-zero vectors c1, c2, c3 related to a1,a2,a3 by18

c1 =
a2 × a3

(a2 × a3) · a1
, c2 =

a3 × a1

(a3 × a1) · a2
, c3 =

a1 × a2

(a1 × a2) · a3
. (i)

Observe that the vector c1 is perpendicular to the vectors a2 and a3 and its length is such that c1 · a1 = 1,

i.e.

c1 · a1 = 1, c1 · a2 = c1 · a3 = 0. (ii)

The vectors c2 and c3 are related analogously to a1,a2,a3. Therefore

ci · aj = δij . (iii)

It now follows from the remarks in the first paragraph that

F = bj ⊗ cj . �

Remark: In the special case where each vector of the set {a1,a2,a3} is perpendicular to the other two, one

sees from (i) that ci = ai/|ai|2 and therefore that ci is parallel to ai and its length is 1/|ai|. If in addition,

ai is a unit vector, then ci = ai.

Problem 2.6. (Ogden) A body undergoes a simple shear deformation y = Fx, F = I + k a⊗ b, where a is

the shearing direction and b is the glide plane normal. Consider a plane SR in the reference configuration

that is perpendicular to the unit vector nR = cos θ a + sin θ b. Calculate the ratio (∆Ay/∆Ax)2 where ∆Ax

is the area of a surface element on SR and ∆Ay is the area of its image in the deformed configuration; express

your answer in terms of sin 2θ and cos 2θ. Considering all such planes SR, on which do the maximum and

minimum values of (∆Ay/∆Ax)2 occur? Calculate those values.

18The vectors {c1, c2, c3} are said to be reciprocal to the vectors {a1,a2,a3}.
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Solution: The deformation gradient tensor associated with the simple shear is F = I+ka⊗b, its determinant

is J = det F = 1 and its inverse is

F−1 = I− ka⊗ b. (i)

Therefore F−T = I− kb⊗ a. We are interested in a plane perpendicular to

nR = cos θ a + sin θ b. (ii)

Therefore from (2.39),(
∆Ay
∆Ax

)2

= J2|F−TnR|2 =
∣∣(I− kb⊗ a)(cos θa + sin θb)

∣∣2 =
∣∣ cos θa + (sin θ − k cos θ)b

∣∣2 =

= (cos θ)2 + (sin θ − k cos θ)2 = 1 + k2

2 (1 + cos 2θ)− k sin 2θ =

= 1 + k2

2 + k
√
k2/4 + 1

[
cos θ∗ cos 2θ + sin θ∗ sin 2θ

]
=

= 1 + k2

2 + k
√
k2/4 + 1 cos(2θ − θ∗) (iii)

where

tan θ∗ = −2/k, θ∗ ∈ (π/4, π/2). (iv)

Therefore from (iii) we see that the maximum value of (∆Ay/∆Ax)2 is(
∆Ay
∆Ax

)2

= 1 +
k2

2
+ k
√
k2/4 + 1

which is associated with the plane defined by

2θ = θ∗. (v)

Likewise from (iii) we see that the minimum value of (∆Ay/∆Ax)2 is(
∆Ay
∆Ax

)2

= 1 +
k2

2
− k
√
k2/4 + 1

which is associated with the plane defined by

2θ = π + θ∗. (vi)

The plane defined by (vi) is perpendicular to that defined by (v).

Problem 2.7. Let y = F1x and y = F2x be two arbitrary homogeneous deformations. Suppose that the

deformation y = F1F2x is a simple shear. Is the deformation y = F2F1x also a simple shear? If it is, (either

in general or under special circumstances), what is the associated amount of shear, glide plane normal and

direction of shear?

Solution: Since F1F2 describes a simple shear it can be expressed as

F1F2 = I + km⊗ n where |m| = |n| = 1, m · n = 0. (i)
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Post-multiplying (i) by F−1
2 gives

F1 = F−1
2 + k(m⊗ n)F−1

2

(1.78)
= F−1

2 + k
[
m⊗ (F−T2 n)

]
, (ii)

and pre-multiplying (ii) by F2 leads to

F2F1 = I + kF2

[
m⊗ (F−T2 n)

] (1.78)
= I + k

[
(F2m)⊗ (F−T2 n)

]
. (iii)

Therefore the deformation corresponding to F2F1 is a simple shear provided F2m is perpendicular to F−T2 n.

That this is true can be verified by

(F2m) · (F−T2 n)
(1.74)

= m · FT2 (F−T2 n) = m · n (i)
= 0. (iv)

Therefore F2m is perpendicular to F−T2 n and so F2F1 describes a simple shear. We can write (iii) in

standard form as I + κa⊗ b with a and b being unit vectors:

F2F1 = I + κa⊗ b where a =
F2m

|F2m|
, b =

F−T2 n

|F−T2 n|
, κ = k |F2m| |F−T2 n|. �

The shearing direction is b, the normal to the glide plane is a and the amount of shear is κ.

Problem 2.8. (Ogden) Show that a simple shear with amount of shear k1, shear direction m1 and glide

plane normal n1 is commutative with a simple shear with amount of shear k2, shear direction m2 and glide

plane normal n2 if and only if

either (a) m1 = ±m2 or (b) n1 = ±n2. (i)

In case (a) show that the composite deformation is a simple shear with shear direction m1, glide plane

normal k1n1 ± k2n2 and amount of shear (k2
1 + k2

2 ± 2k1k2n1 · n2)1/2. In case (b) show that the composite

deformation is a simple shear with shear direction k1m1 ± k2m2, glide plane normal n and amount of shear

(k2
1 + k2

2 ± 2k1k2m1 ·m2)1/2.

Solution: We are asked to show that F1F2 = F2F1 for the two deformation gradient tensors

F1 = I + k1m1 ⊗ n1, F2 = I + k2m2 ⊗ n2, (ii)

if and only if (i) holds.

From (ii) we find

F1F2 = I + k1m1 ⊗ n1 + k2m2 ⊗ n2 + k1k2(m2 · n1)m1 ⊗ n2,

F2F1 = I + k1m1 ⊗ n1 + k2m2 ⊗ n2 + k1k2(m1 · n2)m2 ⊗ n1,

and so

F1F2 = F2F1 (iii)

if and only if

(m2 · n1)m1 ⊗ n2 = (m1 · n2)m2 ⊗ n1. (iv)
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Operating (iv) on the unit vector n1 yields

(m2 · n1)(n2 · n1)m1 = (m1 · n2)m2. (v)

Operating (iv) on the unit vector n2 gives

(m2 · n1)m1 = (m1 · n2)(n1 · n2)m2. (vi)

Operating (iv) on m1 and using m1 · n1 = 0 leads to

(m2 · n1)(n2 ·m1)m1 = 0. (vii)

Since |m1| = 1 we know m1 6= o and so (vii)⇒

(m2 · n1)(n2 ·m1) = 0. (viii)

Therefore either m2 · n1 = 0 or n2 · m1 = 0 or both are zero. Suppose m2 · n1 = 0. Then (v) yields

(m1 · n2)m2 = 0 and since m2 6= o it follows that

m1 · n2 = 0. (ix)

Suppose instead that n2 ·m1 = 0. Then (vi) yields (m2 · n1)m1 = 0 and since m1 6= o it follows that

m2 · n1 = 0. (x)

Thus both cases imply that necessarily

m1 · n2 = 0 and m2 · n1 = 0. (xi)

Conversely, if (xi) holds we see that (iv) holds. Thus (xi) is necessary and sufficient in order that F1F2 =

F2F1.

Finally, from the result in Problem 1.3.4 it follows that (xi) holds if and only if

either m1 = ±m2 or n1 = ±n2.

Problem 2.9.

(a) Under what conditions does the direction of a material fiber remain unchanged (invariant) in a given

deformation?

(b) The region RR occupied by a body in a reference configuration is a unit cube. Consider the following

isochoric homogeneous deformation:

y =
(
λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3

)(
I + k e1 ⊗ e2

)
x, λ1 6= 1, λ2 6= 1, k 6= 0, (i)

where the orthonormal basis vectors {e1, e2, e3} are aligned with the edges of the cube. Describe the physical

nature of this deformation and list as many invariant directions as you can based on your intuition.

(c) Now show mathematically that there are exactly three directions that remain invariant in this deformation

and determine them.
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Solution:

(a) Consider a referential material fiber in the direction mR. The direction of this fiber in the deformed

configuration is parallel to FmR. Thus if the direction of this fiber remains unchanged, mR will be parallel

to FmR and so for some scalar µ we must have

FmR = µmR.

Remark: This states that mR is an eigenvector of F. Since F is not symmetric in general, it may not

have a full complement of real eigenvalues and eigenvectors. In a three-dimensional vector space, F has

three eigenvalues. If one of them is complex, its complex conjugate is also an eigenvalue, and so complex

eigenvalues occur in pairs. Therefore in three dimensions, F has either one or three real eigenvalues. Thus

an arbitrary deformation gradient tensor F will have (in general) either one or three directions that remain

invariant. There maybe more if the real eigenvalues are repeated.

(b) The given deformation has the form y = F2F1x and so it can be viewed in two steps. First x→ F1x and

then F1x → F2(F1x). The tensor F1 =
(
I + k e1 ⊗ e2

)
represents a simple shear in the x1, x2-plane with

the direction of shearing being e1. The tensor F2 =
(
λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3

)
represents a biaxial

stretching in the e1- and e2-directions. (Note that λ3 = 1.) Thus the given deformation is the composition

of these two deformations both of which are entirely in the e1, e2-plane.

Since particles have zero displacement in the e3-direction, we see geometrically that any referential

material fiber in the e3-direction will remain in the e3-direction in the deformed configuration. Thus e3 is

an invariant direction.

Next consider a referential fiber in the e1-direction. The simple shear will simply slide this fiber in the

e1-direction. The biaxial stretch will stretch and translate this fiber without rotation. Thus any referential

material fiber in the e1-direction will remain in the e1-direction in the deformed configuration. Thus e1 is

also an invariant direction.

Since e1 and e3 are two distinct invariant directions (eigenvectors) of F, with two corresponding real

eigenvalues, it follows that F necessarily has a third real eigenvalue. The corresponding eigenvector will be

a third invariant direction. It is not easy to determine this direction intuitively.

(c) We now proceed to calculate the invariant directions of F mathematically. First we note by differentiating

(i) that

F = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + e3 ⊗ e3 + kλ1e1 ⊗ e2.

We are told that this deformation is volume preserving whence det F = 1. Since det F = det F2 det F1 =

(λ1λ2)(1), this implies λ1λ2 = 1. It is convenient to set λ1 = λ and λ2 = λ−1 whence

F = λ e1 ⊗ e1 + λ−1 e2 ⊗ e2 + e3 ⊗ e3 + kλe1 ⊗ e2.

In order to find the invariant directions we find the eigenvalues of F by solving det(F − µI) = 0 for µ,

and then finding the associated eigenvectors mR from FmR = µmR. Thus we first solve

det(F− µI) = det

 λ− µ kλ 0

0 λ−1 − µ 0

0 0 1− µ

 = (1− µ)(λ− µ)(λ−1 − µ) = 0,
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which yields the three eigenvalues µ1 = 1, µ2 = λ and µ3 = λ−1. The corresponding eigenvectors are then

found from Fm
(i)
R = µim

(i)
R , i = 1, 2, 3, leading to

m
(1)
R = e3, m

(2)
R = e1, m

(3)
R = −kλe1 + (λ− λ−1)e2.

The previous geometric discussion had already told us that the fiber directions m
(1)
R and m

(2)
R are invariant.

We now know that fibers in the direction m
(3)
R also preserve their direction.

Problem 2.10. (Ogden) Consider a planar, pure stretch

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3. (i)

Let

m
(1)
R = cos Φ e1 + sin Φ e2, m

(2)
R = − sin Φ e1 + cos Φ e2, 0 < Φ < π/2, (ii)

be the directions of two (mutually orthogonal) material fibers in the reference configuration.

(a) Calculate the shear γ := θx − θy ∈ [−π/2, π/2] associated with this pair of fibers (Section 2.4.2).

(b) Show that γ > 0 for λ1 < λ2 and γ < 0 for λ1 > λ2.

(c) Show that the maximum absolute value of the shear |γ| from among all such pairs of fibers is

sin−1

( |λ2
1 − λ2

2|
λ2

1 + λ2
2

)
. (iii)

Solution:

(a) Using the notation in Section 2.4.2, let θx = π/2 and θy denote the angles between this pair of fibers in

the reference and deformed configurations respectively. The associated shear γ ∈ [−π/2, π/2] is defined as

γ := θx − θy = π/2− θy. Therefore

sin γ = cos θy. (iv)

From (i) and (ii),

Fm
(1)
R = λ1 cos Φ e1 + λ2 sin Φ e2, Fm

(2)
R = −λ1 sin Φ e1 + λ2 cos Φ e2. (v)

Substituting (v) into (2.35) gives

cos θy =
−(λ2

1 − λ2
2) sin Φ cos Φ[

λ2
1 cos2 Φ + λ2

2 sin2 Φ
]1/2[

λ2
1 sin2 Φ + λ2

2 cos2 Φ
]1/2 ,

which after simplification and using (iv) yields

sin γ =
−(λ2

1 − λ2
2) sin 2Φ[

4λ2
1λ

2
2 + (λ2

1 − λ2
2)2 sin2 2Φ

]1/2 . (vi)

Thus the shear is

γ = sin−1

[
−(λ2

1 − λ2
2) sin 2Φ[

4λ2
1λ

2
2 + (λ2

1 − λ2
2)2 sin2 2Φ

]1/2
]
. � (vii)
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(b) We are told that 0 < Φ < π/2 whence sin 2Φ > 0. Therefore from (vi) we see that sin γ > 0 for λ1 < λ2

and sin γ < 0 for λ1 > λ2 from which the desired result follows.

(c) With γ ∈ [−π/2, π/2] we can write sin |γ| = | sin γ|, so that on dividing the numerator and denominator

of the right-hand side of (vi) by sin 2Φ we get

sin |γ| = |(λ2
1 − λ2

2)|[
4λ2

1λ
2
2/ sin2 2Φ + (λ2

1 − λ2
2)2
]1/2 . (viii)

Thus the largest value of |γ| corresponds to the smallest value of the denominator of (viii) which in turn

corresponds to the largest value of sin2 2Φ which is unity (at Φ = π/4). Thus setting Φ = π/4 in (viii) and

simplifying gives

|γ|max = sin−1

[ |λ2
1 − λ2

2|
λ2

1 + λ2
2

]
. �

Problem 2.11. Calculate the components of the Lagrangian logarithmic strain tensor E = ln U associated

with a simple shear deformation

y1 = x1 + kx2, y2 = x2, y3 = x3.

Solution: In Problem 2.5.2 we worked out the details of the polar decomposition of the deformation gradient

tensor F for a simple shear. From those results, the eigenvalues of the right stretch tensor U were

λ1 =

√
k2 + 4 + k

2
, λ2 =

√
k2 + 4− k

2
, λ3 = 1, (i)

and the corresponding eigenvectors were

r1 = cos θr e1 + sin θr e2, r2 = − sin θr e1 + cos θr e2, r3 = e3, (ii)

where

cos θr =
1√

1 + λ2
1

, sin θr =
λ1√

1 + λ2
1

. (iii)

Since the Lagrangian logarithmic strain tensor is given by

ln U = lnλ1 r1 ⊗ r1 + lnλ2 r2 ⊗ r2 + lnλ3 r3 ⊗ r3,

we substitute (ii) into this and expand the result to get

ln U = (cos2 θr lnλ1 + sin2 θr lnλ2)e1 ⊗ e1 + (lnλ1 − lnλ2) sin θr cos θr (e1 ⊗ e2 + e2 ⊗ e1)

+(sin2 θr lnλ1 + cos2 θr lnλ2)e2 ⊗ e2.

The coefficient of ei ⊗ ej in this equation is the i, j-component of the tensor ln U in the basis {e1, e2, e3}.
Expressions for the λ’s and θr in terms of the amount of shear k are given above in (i) and (iii).
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Problem 2.12. (Chadwick) Consider an isochoric homogeneous deformation y = Fx. Let nR be a unit

vector (in the reference configuration) such that (a) the area of the surface normal to nR does not change

and (b) a material fiber in the direction nR remains unstretched. Determine the requirements on F and

nR for this to be possible. For mathematical simplicity restrict attention to the case where the principal

stretches are distinct:

λ1 > λ2 > λ3 > 0. (i)

Solution: Since both the surface and material fiber of interest are given in the reference configuration, we

know that the area and length constraints can be written in terms of the Lagrangian stretch tensor U alone,

or possibly more simply in terms of the Lagrangian Cauchy-Green tensor C = U2.

Since the area of the surface normal to nR does not change, it follows from Nanson’s formula with

det F = 1 and dAy = dAx that

|F−TnR| = 1 ⇒ F−TnR · F−TnR = 1 ⇒ F−1F−TnR · nR = 1 ⇒ C−1nR · nR = 1, (ii)

where C = FTF. We are told that material fibers in the direction nR remain unstretched whence

|FnR| = 1 ⇒ FnR · FnR = 1 ⇒ FTFnR · nR = 1 ⇒ CnR · nR = 1. (iii)

Let λ1, λ2, λ3 be the principal stretches and let n1, n2, n3 be the components of nR in the associated principal

basis (of the Lagrangian stretch). The eigenvalues of C are λ2
1, λ

2
2, λ

2
3 and so

CnR · nR = 1 ⇒ λ2
1n

2
1 + λ2

2n
2
2 + λ2

3n
2
3 = 1, (iv)

C−1nR · nR = 1 ⇒ λ−2
1 n2

1 + λ−2
2 n2

2 + λ−2
3 n2

3 = 1. (v)

Since nR is a unit vector,

n2
1 + n2

2 + n2
3 = 1. (vi)

Solving the three algebraic equations (iv), (v), (vi) for the components of the normal vector leads to

n2
1 =

(1− λ2
3)(1− λ2

2)λ2
1

(λ2
1 − λ2

2)(λ2
1 − λ2

3)
, n2

2 =
(1− λ2

3)(λ2
1 − 1)λ2

2

(λ2
1 − λ2

2)(λ2
2 − λ2

3)
n2

3 =
(λ2

1 − 1)(λ2
2 − 1)λ2

3

(λ2
1 − λ2

3)(λ2
2 − λ2

3)
. (vii)

We now analyze the three expressions in (vii) keeping in mind that λ1λ2λ3 = 1. We will show that the

value of at least one of the λs must equal 1, and so we start by assuming that no λ equals 1. It then follows

from (vii) that ni 6= 0 for each i = 1, 2, 3 and therefore that n2
i > 0 for each i.

First consider consider n2
1 and note that in view of (i) the denominator in (vii)1 is positive. Thus in order

to ensure that n2
1 > 0 one must have either λ3 > 1, λ2 > 1 or λ3 < 1, λ2 < 1. However, since λ1λ2λ3 = 1,

in the former case we will have λ1 < 1 in which event λ1 < 1 < λ3 contradicting (i). Thus only the second

possibility can hold:

λ3 < 1, λ2 < 1. (viii)

Second consider n2
2 and note that in view of (i) the denominator in (vii)2 is positive. Thus n2

2 > 0 requires

that either λ1 > 1, λ3 < 1 or λ1 < 1, λ3 > 1. In the latter case we have λ1 < 1 < λ3 contradicting (i). Thus

only the first possibility can hold:

λ1 > 1, λ3 < 1. (ix)
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Finally consider n2
3 and note again that the denominator in (vii)3 is positive in view of (i). Thus n2

3 > 0

requires that either λ1 < 1, λ2 < 1 or λ1 > 1, λ2 > 1. Since λ1λ2λ3 = 1, in the former case we must have

λ3 > 1 and so again λ1 < 1 < λ3 contradicting (i). Thus only the second possibility can hold:

λ1 > 1, λ2 > 1. (x)

All inequalities in (viii), (ix), (x) must all hold. However (viii)2 contradicts (x)2. Therefore we conclude

that the assumption that none of the λs has the value 1 cannot hold.

Two (or three) of the λs cannot equal 1 because of (i), and so one need only consider the possibility that

one of the λs equals 1. However, if λ1 = 1 it follows from (i) that λ3 < λ2 < 1 and so λ1λ2λ3 6= 1. Similarly

if λ3 = 1 it follows from (i) that λ1 > λ2 > 1 and so again, λ1λ2λ3 6= 1. Thus the only possibility is that

the middle principal stretch λ2 = 1.

In this case it is readily seen from (vii) that λ2 = 1, n2 = ±1, n1 = 0, n3 = 0. Note that equations

(iv), (v), (vi) are satisfied by this solution.

Summary: We have shown that (in the case where (i) holds), for there to exist a direction that both does not

elongate and the area on the surface normal to it remains unchanged, it is necessary and sufficient that the

middle principal stretch have the value 1 and that the direction of interest be the corresponding eigenvector.

Problem 2.13. (This generalizes Problem 2.4(c). It is also related to Problem 2.32.) A body occupies

a region RR in a reference configuration and is subjected to a homogeneous deformation y = Fx. Show

that necessary and sufficient for there to exist a plane SR in RR such that all material fibers on SR remain

unstretched is that C = FTF have the representation

C = I + a⊗ nR + nR ⊗ a (i)

for an arbitrary vector a with nR being a unit vector normal to SR.

Solution: We first show sufficiency. Suppose that (i) holds. Then for any vector v on SR

|Fv|2 = Fv · Fv = FTFv · v = Cv · v =

(i)
= (I + a⊗ nR + nR ⊗ a)v · v =

[
v + (nR · v)a + (a · v)nR

]
· v =

= v · v + (nR · v)(a · v) + (a · v)(nR · v) = v · v

having used nR · v = 0 in the last step. This establishes sufficiency.

Turning to necessity, we first establish a preliminary result. Let u and v be two vectors in the plane SR.

Then u− v also lies on SR. Since these three vectors are unstretched by F,

|F(u− v)|2 = |u− v|2, |Fu|2 = |u|2, |Fv|2 = |v|2. (ii)

From this and

|F(u− v)|2 = F(u− v) · F(u− v) = Fu · Fu + Fv · Fv − 2Fu · Fv = |Fu|2 + |Fv|2 − 2Fu · Fv
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we conclude that

Fu · Fv = u · v. (iii)

Now pick an orthonormal basis {e1, e2, e3} with e3 = nR. Thus e1 and e2 lie in the plane perpendicular

to nR, i.e. on SR, and so it follows from (iii) that

|Fe1| = 1, |Fe2| = 1, Fe1 · Fe2 = 0;

and since Fu · Fv = FTFu · v = Cu · v it tells us further that

Ce1 · e1 = 1, Ce2 · e2 = 1, Ce1 · e2 = Ce2 · e1 = 0. (iv)

Let Cij denote the components of (the symmetric tensor) C in this basis, i.e.

C = Cijei ⊗ ej . (v)

It now follows from (iv) that C11 = C22 = 1, C12 = C21 = 0. Thus (v) simplifies to

C = e1 ⊗ e1 + e2 ⊗ e2 + C13(e1 ⊗ e3 + e3 ⊗ e1) + C23(e2 ⊗ e3 + e3 ⊗ e2) + C33e3 ⊗ e3,

which we can rewrite as

C = I +
[
C13e1 + C23e2 +

1

2
(C33 − 1)e3

]
⊗ e3 + e3 ⊗

[
C13e1 + C23e2) +

1

2
(C33 − 1)e3

]
(vi)

having used e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = I.

Let a denote the vector

a := C13e1 + C23e2 +
1

2
(C33 − 1)e3. (vii)

Then we can write (vi) as C = I + a⊗ e3 + e3 ⊗ a, or, since e3 = nR,

C = I + a⊗ nR + nR ⊗ a. (viii)

Since C13, C23, C33 are arbitrary, so is the vector a. This shows that the representation (viii) is necessary

as well.

Cylindrical and spherical bodies.

Problem 2.14. (Deformation of a hollow circular tube) A body occupies a hollow circular cylindrical region

RR in a reference configuration with inner radius A, outer radius B and length L:

RR = {(x1, x2, x3) : A < (x2
1 + x2

2)1/2 < B, 0 < x3 < L}.

All components of vectors and tensors are taken with respect to the right-handed orthonormal basis {e1, e2, e3}
shown in Figure 2.24. A particle located at (x1, x2, x3) in the reference configuration is carried to (y1, y2, y3)

by the deformation

y1 = f(R)
[
x1 cosφ(x3)− x2 sinφ(x3)

]
,

y2 = f(R)
[
x2 cosφ(x3) + x1 sinφ(x3)

]
,

y3 = Λx3,

 , R = (x2
1 + x2

2)1/2. (i)
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Here f(R) and φ(x3) are smooth functions defined for A ≤ R ≤ B and 0 ≤ x3 ≤ L respectively and Λ > 0

is a constant. Describe the physical nature of this deformation: in particular, consider the particles that, in

the undeformed configuration, lie on a circle x2
1 +x2

2 = c2 (on the cross section at some fixed x3). Determine

(and describe) the curve on which these particles lie in the deformed configuration. Do the same for the

particles on a radial straight line x2 = cx1. Determine the region R occupied by the body in the deformed

configuration.

Figure 2.24: Cross-section of the region RR occupied by the body in a reference configuration: a hollow

circular cylinder of inner radius A, outer radius B (and length L). (Figure for Problem 2.14)

Solution: First, from (i)3 it is clear that this deformation involves a uniform stretching of the cylinder in the

x3-direction. Thus, in particular, the deformed length of the cylinder is ΛL.

The cylindrical polar coordinates (R,Θ, Z) of a particle in the reference configuration are related to the

rectangular cartesian coordinates (x1, x2, x3) by

x1 = R cos Θ, x2 = R sin Θ, x3 = Z. (ii)

By substituting (ii) into (i) one finds

y1 = Rf(R) cos
(
Θ + φ(Z)

)
, y2 = Rf(R) sin

(
Θ + φ(Z)

)
, y3 = λZ. (iii)

It follows from (iii) that

y2
1 + y2

2 =
(
Rf(R))

)2
. �

Therefore particles that lie on any circle R = c in the reference configuration are carried by the deformation

onto a circle of radius cf(c) in the deformed configuration. Thus the cylinder undergoes a radial expansion

(if f(c) > 1) or radial contraction (if f(c) < 1). The function f(R) characterizes the radial deformation of

the cylinder. Particles on the inner and outer surfaces R = A and R = B lie on cylindrical surfaces of radii

a = Af(A) and b = Bf(B) in the deformed configuration.

Next observe from (iii) that
y2

y1
= tan

(
Θ + φ(Z)

)
. � (iv)
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Therefore the particles that lie on any radial straight line Θ = constant (i.e. x2/x1 = constant) on the cross

section Z = constant in the reference configuration are carried by the deformation onto the radial straight

line defined by (iv). Therefore radial straight lines remain straight but are rotated about the x3-axis by φ(Z).

Thus cross-sections of the cylinder are twisted by this deformation. According to (iv), the cross-section at

Z = constant rotates by φ(Z).

Thus the deformation (i) describes an axial stretching in the x3-direction, an expansion (or contraction)

in the radial directions and a twisting about the x3-axis. The region R occupied by the body in the deformed

configuration is

R = {(y1, y2, y3) : Af(A) < (y2
1 + y2

2)1/2 < Bf(B), 0 < x3 < ΛL}. �

Problem 2.15. (Spencer) (Deformation of a solid circular cylinder) The region occupied by a body in a

reference configuration is a solid circular cylinder of radius A. Coordinate axes are chosen such that the

axis of the cylinder coincides with the x3-axis. The body undergoes the following deformation (x1, x2, x3) 7→
(y1, y2, y3):

y1 = λ[x1 cos (αx3) + x2 sin (αx3)],

y2 = λ[−x1 sin (αx3) + x2 cos (αx3)],

y3 = Λx3,

 (i)

where α, λ and Λ are positive constants.

(a) Describe this deformation.

(b) Consider a material fiber on the outer surface of the cylinder that, in the reference configuration is

parallel to the axis of the cylinder. Calculate the stretch of this material fiber due to the deformation.

Observe from your answer that though this referential fiber lies in the x3-direction, it is not Λ alone

that contributes to its stretch. Can you derive your answer by “physical” (elementary geometric)

arguments alone?

(c) Consider a material fiber on the outer surface of the cylinder that, in the deformed configuration,

is parallel to the axis of the cylinder. Calculate the stretch of this fiber. You may find useful the

result in Problem 1.32, regarding the inverse of a tensor expressed in a mixed basis. An alternative

way in which to calculate F−1 is to realize that it is the deformation gradient tensor for the inverse

deformation R = R(r, θ, z),Θ = Θ(r, θ, z), Z = Z(r, θ, z).

Solution:

(a) Observe that the deformation (i) is not a homogeneous deformation and so cannot be written as y = Fx

with F = ∇y. It is in fact a special case of the deformation in Problem 2.14. Since it involves 3 parameters

λ,Λ and α we expect there to be 3 “types” of deformation.

While one can analyze (i) using cartesian coordinates, we shall use cylindrical polar coordinates instead.

Let (R,Θ, Z) and (r, θ, z) be the cylindrical polar coordinates of a particle in the undeformed and deformed
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configurations respectively:

x1 = R cos Θ, x2 = R sin Θ, x3 = Z and y1 = r cos θ, y2 = r sin θ, y3 = z. (ii)

On using (ii)1,2,3 we can rewrite (i) as

y1 = λR cos(Θ− αZ), y2 = λR sin(Θ− αZ), y3 = ΛZ,

which because of (ii)4,5,6 can be written as

r = λR, θ = Θ− αZ, z = ΛZ. (iii)

Thus we see that the deformation involves a stretch Λ in the axial direction, a stretch λ in the radial direction

and a twisting where each cross section Z = constant rotates through an angle −αZ about the axis of the

cylinder.

The associated deformation gradient tensor is found by specializing (2.77) to the deformation (iii):

F = λ(er ⊗ eR) + λ(eθ ⊗ eΘ)− αλR(eθ ⊗ eZ) + Λ(ez ⊗ eZ) . (iv)

(b) The material fiber of interest is in the direction eZ in the reference configuration, i.e. dx = dsxeZ .

Therefore from (iv) we find its deformed image to be

dy = F dx = F(dsxeZ) = dsxFeZ =

= dsx

(
λ(er ⊗ eR) + λ(eθ ⊗ eΘ)− αλA(eθ ⊗ eZ) + Λ(ez ⊗ eZ)

)
eZ =

= dsx

(
− αλA eθ + Λ ez

)
,

where we have also set R = A since the fiber is on the outer surface. Therefore the length of this fiber in

the deformed configuration is

dsy = |dy| = dsx
√
α2λ2A2 + Λ2 ⇒ dsy

dsx
=
√
α2λ2A2 + Λ2. �

Observe that the stretch is not equal to Λ, the additional term being the stretch due to the torsion. If there

was no torsional deformation, i.e. if α = 0, this gives dsy/dsx = Λ.

(c) We now consider a fiber whose direction in the deformed configuration is ez, i.e. dy = dsyez. Its image

in the reference configuration is

dx = F−1dy = dsy F−1ez. (vi)

The inverse of the deformation gradient tensor F given in (iv), using the result in Problem 1.32, is

F−1 = λ−1(eR ⊗ er) + λ−1(eΘ ⊗ eθ) + αΛ−1R(eΘ ⊗ ez) + Λ−1(eZ ⊗ ez) . (vii)

Alternatively, from (iii), the inverse mapping from (R,Θ, Z) 7→ (r, θ, z) is

R = λ−1r, Θ = θ + αΛ−1z, Z = Λ−1z. (viii)
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We can now use the formula (2.77) to calculate F−1 provided we swap (R,Θ, Z) for (r, θ, z) throughout the

formula:

F−1 =
∂R

∂r
eR ⊗ er +

1

r

∂R

∂θ
eR ⊗ eθ + . . .+

R

r

∂Θ

∂θ
eΘ ⊗ eθ +R

∂Θ

∂z
eΘ ⊗ ez + . . .+

∂Z

∂z
eZ ⊗ ez. (ix)

Substituting (viii) into (ix) gives (vii).

We can now substitute (vii) and R = A into (vi) which leads to

dx = dsy

(
αΛ−1A eΘ + Λ−1 eZ

)
,

and thus the length of the fiber in the reference configuration is

dsx = |dx| = dsyΛ−1
√
α2A2 + 1.

Thus its stretch is
dsy
dsx

=
Λ√

1 +A2α2
. �

Observe that the stretch of this fiber is different to that of the fiber in part (b). For small amounts of torsion,

|α| � 1, both stretches are dsy/dsx ≈ Λ.

Problem 2.16. (Inflation and extension of a hollow circular tube) The region RR occupied by a body in

a reference configuration is a hollow circular cylinder of inner radius A, outer radius B and length L. It is

subjected to the radially symmetric deformation

r = r(R), θ = Θ, z = ΛZ, (i)

where (R,Θ, Z) and (r, θ, z) are the respective cylindrical polar coordinates of a particle in the reference and

deformed configurations, where Λ > 0 is a constant and r(R) > 0.

Figure 2.25: The region RR occupied by a body in a reference configuration is a hollow circular cylinder

of inner radius A and outer radius B. (Figure for Problem 2.16)



2.10. EXERCISES. 205

(a) Calculate the principal stretches.

(b) Determine r(R) (to the extent possible) if the material is incompressible. Assume that r′(R) > 0.

(c) Denote the stretch in the circumferential direction by λ(R):

λ(R) = r(R)/R. (ii)

Show that

A2(λ2
aΛ− 1) = B2(λ2

bΛ− 1) = R2(λ2(R)Λ− 1), (iii)

where λa = λ(A), λb = Λ(B).

Solution:

(a) The deformation gradient tensor is found by specializing (2.77) to the deformation (i):

F = r′(R)(er ⊗ eR) +
r(R)

R
(eθ ⊗ eΘ) + Λ(ez ⊗ eZ) . (iv)

In view of the cylindrical symmetry of the deformation, the basis vectors {eR, eΘ, eZ} and {er, eθ, ez}
coincide. Clearly, the polar decomposition of (iv) is R = I and

U = |r′(R)|(eR ⊗ eR) +
r(R)

R
(eΘ ⊗ eΘ) + Λ(eZ ⊗ eZ),

having using the given facts that r(R) > 0 and Λ > 0. The principal stretches are therefore

λR = |r′(R)|, λΘ =
r(R)

R
, λZ = Λ. � (v)

(b) For an incompressible material

λRλΘλZ = 1 ⇒ Λr(R)r′(R) = R, (vi)

having used the fact that r′(R) > 0 (additional information given to us). Writing this as

1

2

d

dR

(
r2(R)

)
= R/Λ,

allows us to integrate to get

r(R) =
√
c+R2/Λ, � (vii)

where c is a constant.

(c) Using (ii) and (vii) gives

λ(R) =

√
c+R2/Λ

R
. (viii)

Since λa = λ(A) and λb = λ(B) we have

λa =

√
c+A2/Λ

A
, λb =

√
c+B2/Λ

B
. (ix)

Solving (viii) and each of (ix) for c gives

c = R2λ2(R)−R2/Λ = A2λ2
a −A2/Λ = B2λ2

b −B2/Λ ,
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which shows that

R2(Λλ2(R)− 1) = A2(Λλ2
a − 1) = B2(Λλ2

b − 1). �

Problem 2.17. (Ogden) (Combined axial and azimuthal shear of a tube) Let (R,Θ, Z) and (r, θ, z) be cylin-

drical polar coordinates of a particle in the reference and deformed configurations respectively with associated

bases {eR, eΘ, eZ} and {er, eθ, ez}. The region RR occupied by the body in a reference configuration is a

hollow circular cylinder of inner radius A, outer radius B and length L.

Consider a deformation of the form

r = R, θ = Θ + φ(R), z = Z + w(R). (i)

In the special case φ ≡ 0 this describes an “axial (telescopic) shearing” of the tube while the special case

w ≡ 0 describes an “azimuthal shearing”. Note that neither of these particular deformations, nor (i), is a

torsional deformation.

We will study the stress in this tube in Problem 3.10.1 of Chapter 3.

(a) Calculate the deformation gradient tensor F.

(b) By factoring F into the product of three tensors, show that locally, at each point of the body, the

deformation is comprised of a rigid rotation, followed by a simple shear with glide plane normal er

and shear direction eθ, followed be a simple shear with glide plane normal er and shear direction ez.

Determine the associated amounts of shear.

(c) If the material is incompressible, what does this tell you (if anything) about φ(R) and w(R)?

(d) Show that the composition of the two simple shears in part (b) corresponds to a simple shear with

shearing direction a, glide plane normal er and amount of shear k where

a = sinβ eθ + cosβ ez, tan β =
k1

k2
, k = k =

[
k2

1 + k2
2

]1/2
, k1 = Rφ′(R), k2 = w′(R). (ii)

Remark: Note that you now have the deformation gradient tensor factored as F = KQ where Q is a

rotation and K a simple shear. Keep in mind that this is not the polar decomposition of F and that

K 6= V.

(e) Calculate the matrix of components of the left Cauchy Green deformation tensor B in the basis

{er, eθ, ez}. (Express your answer in terms of k1 and k2.)

(f) Calculate the principal stretches and principal Eulerian stretch directions. Hint: You can make use

the results of Problem 2.40. (Express your answer in terms of k,a, er, eθ and ez.)

Solution:

(a) From (2.77) and (i),

F = er ⊗ eR +Rφ′eθ ⊗ eR + eθ ⊗ eΘ + w′ez ⊗ eR + ez ⊗ eZ . � (iii)
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(b) A simple shear with shearing direction eθ and glide plane normal er has the form

F1 = I + k1eθ ⊗ er; (iv)

a simple shear with shearing direction ez and glide plane normal er has the form

F2 = I + k2ez ⊗ er; (v)

and the rotation of the basis {eR, eΘ, eZ} into the basis {er, eθ, ez} is described by the rotation tensor

Q = er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ . (vi)

On calculating F2F1Q we get

F2F1Q = (I + k2ez ⊗ er)(I + k1eθ ⊗ er)(er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ) =

= (I + k2ez ⊗ er)(er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ + k1eθ ⊗ eR) =

= er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ + k1eθ ⊗ eR + k2ez ⊗ eR. (vii)

Equation (vii) is identical to (iii) provided

k1 = Rφ′(R), k2 = w′(R). (viii)

Therefore the deformation can be decomposed into the orthogonal Q that rotates {eR, eΘ, eZ} into {er, eθ, ez};
followed by the simple shear F1 with shearing direction eθ, glide plane normal er and amount of shear

k1 = Rφ′(R); followed by the simple shear F2 with shearing direction ez, glide plane normal er and amount

of shear k2 = w′(R). �

(c) If the material is incompressible we must have det F = 1. Since a rotation and a simple shear are each

isochoric, the composite deformation will be automatically isochoric. This can be confirmed from

det F = (det F2)(det F1)(det Q) = (1 + k2ez · er)(1 + k1eθ · er)(1) = 1.

Therefore incompressibility imposes no restrictions on the functions φ(R( and w(R).

(d) Calculating F2F1,

F2F1 = (I + k2ez ⊗ er)(I + k1eθ ⊗ er) = I + (k1eθ + k2ez)⊗ er, (ix)

which we can write as

F2F1 = I + ka⊗ er, (x)

where

k =
√
k2

1 + k2
2, a = sinβ eθ + cosβ ez, sinβ = k1/k, cosβ = k2/k. (xi)

Note that a is a unit vector. Thus F2F1 is a simple shear with shearing direction a, glide plane normal er

and amount of shear k. �
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(e) The left Cauchy Green tensor is given by

B = FFT = (F2F1Q)(F2F1Q)T = (F2F1Q)(QTFT1 FT2 ) = F2F1F
T
1 FT2 =

= (I + k2ez ⊗ er)(I + k1eθ ⊗ er)(I + k1er ⊗ eθ)(I + k2er ⊗ ez) =

= I + k1(er ⊗ eθ + eθ ⊗ er) + k2(ez ⊗ er + er ⊗ ez)+

+k1k2(eθ ⊗ ez + ez ⊗ eθ) + k2
1eθ ⊗ eθ + k2

2ez ⊗ ez

and so the matrix of components of B in the basis {er, eθ, ez} is

[B] =


1 k1 k2

k1 1 + k2
1 k1k2

k2 k1k2 1 + k2
2

 .

(f) Since the deformation is a simple shear I + ka ⊗ er (plus a rotation), we can determine the principal

stretches and principal directions of the Eulerian stretch directly from Problem 2.40. From equation (iii) of

Problem 2.40 the principal stretches are

λ1 = λ, λ2 = λ−1, λ3 = 1 where λ =
1

2

[√
k2 + 4 + k

]
, �

where k is given by (xi)1 and (viii). By identifying e1, e2, e3 in equation (i) of Problem 2.40 with a, er and

a× er here, we find the corresponding principal directions to be

`1 = cos θ`a + sin θ`er, `2 = − sin θ`a + cos θ`er, `3 = a× er = cosβeθ − sinβez, �

where

tan 2θ` = 2/k. �

Problem 2.18. (Ogden) (Inflation of a hollow spherical shell) Let (R,Θ,Φ) and (r, θ, ϕ) be spherical polar

coordinates in the reference and deformed configurations respectively with associated bases {eR, eΘ, eΦ} and

{er, eθ, eϕ}. The hollow spherical region RR occupied by an incompressible body in a reference configuration

is described by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ 2π. (i)

The body is subjected to a spherically symmetric deformation

r = r(R), θ = Θ, ϕ = Φ, (ii)

and its inner and outer radii in the deformed configuration are a and b respectively.

(a) Calculate the principal stretches.

(b) Let

λ(R) = r(R)/R, λa = r(A)/A, λb = r(B)/B; (iii)
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these are the stretches in the circumferential direction at R,R = A and R = B respectively. Show

that

A3(λ3
a − 1) = R3(λ3 − 1) = B3(λ3

b − 1), (iv)

and hence show that either λa ≥ λb ≥ 1 or λa ≤ λb ≤ 1.

(c) Now suppose that the sphere is thin-walled in the sense that

ε := T/R� 1, (v)

where T = B−A and R = (A+B)/2 are the wall-thickness and mean radius of the sphere respectively

in the reference configuration. Let λa and λb be the stretch at the inner and outer wall as in (iii)

above, and let λ = r/R be the mean stretch where r is the mean radius of the deformed sphere. Derive

approximate expressions for the stretches λa and λb keeping terms of order ε. Your results will be of

the form

λa = λ+ ∆λa ε+ O(ε2), λb = λ+ ∆λb ε+ O(ε2). (vi)

Solution:

(a) (See Problem 2.4.3 for an alternative calculation of the principal stretches that doesn’t rely on (2.87).)

It is readily seen from (ii) and (2.87) that

Brr = (r′(R))
2
, Bϑϑ = Bϕϕ =

r2

R2
, Brϑ = Brϕ = Bϑϕ = 0. (vii)

Therefore (assuming r′(R) > 0) the principal stretches are

λ1 = r′(R), λ2 = λ3 =
r

R
. (viii)

Since the material is incompressible,

λ1λ2λ3 = λ1λ
2
2 = 1 ⇒ λ1 = λ−2

2 .

Therefore the principal stretches can be expressed as

λ1 = λ−2, λ2 = λ3 = λ where λ =
r

R
. �

(b) On substituting (viii) into λ1λ2λ3 = 1 we get the differential equation

r2 dr

dR
= R2 ⇒ r3 = R3 + c.

Enforcing r(A) = a and r(B) = b yields c = a3 −A3 = b3 −B3 and so we have

r3 = R3 + a3 −A3 = R3 + b3 −B3. (ix)

Substituting

λ =
r

R
, λa =

a

A
, λb =

b

B
,

into (ix) in order to eliminate r, a and b leads to

λ3R3 = R3 + λ3
aA

3 −A3 = R3 + λ3
bB

3 −B3,
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which can be rewritten as

A3(λ3
a − 1) = B3(λ3

b − 1) = R3(λ3 − 1). � (x)

Consider the case λb 6= 1. The first equation in (x) then leads to

λ3
a − 1

λ3
b − 1

=
B3

A3
⇒ λ3

a − 1

λ3
b − 1

> 1, (xi)

since B > A. Therefore if λ3
b − 1 > 0 equation (xi) yields

λ3
a − 1 > λ3

b − 1 ⇒ λa > λb > 1. �

On the other hand if λ3
b − 1 < 0 equation (xi) yields

λ3
a − 1 < λ3

b − 1 ⇒ λa < λb < 1. �

In the case λb = 1 we see from (x) that λa = 1.

(c) Let R and T denote the mean radius and wall-thickness of the undeformed shell. We now turn to the

case when the body is thin-walled in the sense that

ε = T/R where T = B −A, R =
1

2
(A+B).

We can write the inner and outer undeformed radii of the body as

A = R− T/2 = R(1− ε/2), B = R+ T/2 = R(1 + ε/2), (xii)

First consider λa. From (iv) and (xii):

λa =

[
1 +

R3

A3
(λ3 − 1)

]1/3

=

[
1 +

λ3 − 1

(1− ε/2)3

]1/3

. (xiii)

We now approximate (xiii) for small ε dropping terms of O(ε2):

λa =

[
1 +

λ3 − 1

(1− ε/2)3

]1/3

=
[
1 + (1− ε/2)−3(λ3 − 1)

]1/3 ≈ [1 + (1 + 3ε/2)(λ3 − 1)
]1/3

=

=

[
λ3 +

3ε

2
(λ3 − 1)

]1/3

= λ

[
1 +

3ε

2

(λ3 − 1)

λ3

]1/3

≈ λ
[
1 +

ε

2

(λ3 − 1)

λ3

]
= λ+ ε

(λ3 − 1)

2λ2
,

�

where in two steps of the preceding calculation we have used the binomial expansion (1+ε)n = 1+nε+O(ε2).

Similarly approximating λb gives

λb = λ− ε λ
3 − 1

2λ2
+ O(ε2). �

Problem 2.19. (Eversion of a circular cylindrical tube) (See Problem 5.15 for a complete analysis of this

problem.) A hollow circular cylindrical tube has inner and outer radii A and B and length L in a reference

configuration. Choose rectangular cartesian coordinates such that the region occupied by the body in this

configuration is

RR = {(x1, x2, x3) : A2 < x2
1 + x2

2 < B2, −L/2 < x3 < L/2}.
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Consider “everting” the tube by turning it inside out – imagine a sock being turned inside out. In particular,

this deformation maps the inner surface in the reference configuration into the outer surface in the deformed

configuration and the outer surface in the reference configuration into the inner surface in the deformed

configuration. Assume that the everted shape of the body is a hollow circular cylinder of inner and outer

radii a and b and length `. (In order to maintain the body in this particular deformed configuration one

may have to apply a suitable loading on the tube. Otherwise the everted body may not be a hollow circular

cylinder with flat ends.) If (r, θ, z) and (R,Θ, Z) denote the cylindrical polar coordinates of a particle in the

deformed and reference configurations, take the deformation to have the form

r = r(R), θ = Θ, z = z(Z), (i)

where

r(A) = b, r(B) = a, z(L/2) = −`/2, z(−L/2) = `/2. (ii)

(a) Determine the deformation, i.e. r(R) and z(Z), assuming

(a1) that radial and axial fibers do not stretch, and alternatively

(a2) that the deformation is isochoric. Calculate C,U and R.

(b) Verify that if you repeat this deformation, i.e. you evert the deformed configuration, you recover the

reference configuration.

Problem 2.20. Calculate explicit expressions for the deformation gradient tensor F and the left and right

Cauchy-Green tensors B and C using spherical polar coordinates (R,Θ,Φ) in the undeformed configuration

and (r, θ, ϕ) in the deformed configuration.

Problem 2.21. Consider a body that, in a reference configuration, is identified with the surface SR depicted

on the left-hand side of Figure 2.26. The cross-section of SR at each Z is a circle of radius R(Z), with the

radius increasing monotonically from R(Z0) to R(Z1). Note that this is a two-dimensional body (a surface)

in three-dimensional physical space. If (x1, x2, x3) and (R,Θ, Z) are the rectangular cartesian and cylindrical

polar coordinates of a point on SR, then

x1 = R(Z) cos Θ, x2 = R(Z) sin Θ, x3 = Z, Z0 ≤ Z ≤ Z1, 0 ≤ Θ < 2π. (i)

A particle on SR is located at x = R(Z) eR + Z eZ .

A deformation “flattens” the surface SR into the (two-dimensional) planar annular region S shown on

the right-hand side of Figure 2.26, taking each meridional curve on SR into a radial line on S. (A meridional

curve on SR is a curve at constant Θ as depicted in Figure 2.27.) If (y1, y2) and (r, θ) are the rectangular

cartesian and polar coordinates of a particle in S, then

y1 = r cos θ, y2 = r sin θ, r0 ≤ r ≤ r1, 0 ≤ θ < 2π. (ii)
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The position vector of a particle on S can be written as y = rer.

The axially symmetric deformation that takes SR → S can be described in the form r = r̂(Z), θ = Θ.

It is more natural however to use coordinates on the body (i.e. on each surface) and therefore, for the

reference configuration, to use arc length S along a meridional curve instead of the vertical coordinate Z.

The corresponding orthonormal basis is comprised of the unit vectors eS (see Figure 2.27) and eΘ. Thus we

express the deformation in the form

r = r(S), θ = Θ. (iii)

Figure 2.26: Reference configuration (left): A sheet SR with an axially varying circular cross-section of

radius R(Z) at a height Z. Deformed configuration (right): After flattening, planar circular annulus S.

Figure 2.27: Arc length S and associated unit vector eS along a meridional curve.

(a) Use dy = Fdx to calculate the deformation gradient tensor F and express your answer in the mixed

orthonormal bases {eS , eΘ} and {er, eθ}.

(b) Suppose that the deformation preserves area in the sense that the area of any part of SR equals the area

of its image on S. Calculate the deformation r(S). (Since the undeformed surface SR is given, the function

R(S) is known.)
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Solution:

(a) First consider the reference configuration: if the body had been three dimensional we would have used

cylindrical polar coordinates (R,Θ, Z) with associated basis {eR, eΘ, eZ} and written the position vector of

a particle in RR as x = x(R,Θ, Z) = ReR(Θ) + ZeZ . Since the body here is two dimensional and x ∈ SR,

the R and Z coordinates are related by (the given function) R = R(Z) and so we write the position vector

of a point on SR as

x = x(Θ, Z) = R(Z)eR(Θ) + ZeZ . (ii)

Thus

dx =
∂x

∂Θ
dΘ +

∂x

∂Z
dZ =

=
∂

∂Θ

(
R(Z)eR(Θ) + ZeZ

)
dΘ +

∂

∂Z

(
R(Z)eR(Θ) + ZeZ

)
dZ =

= R
∂

∂Θ

(
eR(Θ)

)
dΘ +

(
dR

dZ
eR + eZ

)
dZ =

= ReΘdΘ +

(
dR

dZ
eR + eZ

)
dZ.

(iii)

In the expressions above we have displayed the argument of a function if it is to be differentiated, e.g.

R(Z) in the second line, but suppressed the argument otherwise, e.g. R in the third line. In getting to

the fourth line we have used ∂eR(Θ)/∂Θ = eΘ(Θ) which follows from eR(Θ) = cos Θe1 + sin Θe2 and

eΘ(Θ) = − sin Θe1 + cos Θe2.

Even though a material fiber dx in the reference body lies in the surface SR, the particular representation

(iii) involves three unit vectors, two of which don’t lie in SR. As mentioned in the problem statement it is

more natural to use orthogonal coordinates (S,Θ) on the surface SR where S is arc length along a meridional

curve; see Figure 2.27. The associated orthonormal basis is {eS , eΘ} where eS is a unit tangent vector along

a meridional curve in the direction of increasing arc length.

We see from Figure 2.27 that

dS eZ = dZ eZ + dR eR =

(
eZ +

dR

dZ
eR

)
dZ

and so we can write (iii) as

dx = ReΘ dΘ + eS dS. (iv)

It follows from this that

dS = eS · dx, dΘ =
1

R
eΘ · dx. (v)

The following will be useful shortly: From Figure 2.27, the arc length as a function of height, S(Z), is

related to the radius as a function of height, R(Z), by dS2 = dR2 + dZ2, i.e.

dS

dZ
=

√
1 +

(
dR

dZ

)2

. (vi)

Integrating this gives

S(Z) =

∫ Z

Z0

√
1 +

(
R′(ξ)

)2
dξ, (vii)
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where we have taken S = 0 at Z = Z0, ξ is a dummy variable, and a prime denotes differentiation with

respect to Z. This gives a relation between the functions S(Z) and R(Z). Since R(Z) is given, we can

consider S(Z) to be known.

Second, consider the deformed configuration: The axially symmetric deformation that takes SR → S is

described by19

r = r(S), θ = Θ. (viii)

The position vector y = r er(θ) of a particle on S can now be written in more detail as

y = y(Θ, S) = r(S)er(Θ).

Therefore

dy =
∂y

∂S
dS +

∂y

∂Θ
dΘ =

∂

∂S

(
r(S)er(Θ)

)
dS +

∂

∂Θ

(
r(S)er(Θ)

)
dΘ =

=
dr

dS
er dS + r

∂

∂Θ

(
er(Θ)

)
dΘ =

dr

dS
er dS + reθ dΘ.

(ix)

Third, combine the preceding analyses by substituting (v) into (ix):

dy =
dr

dS
er(eS · dx) + (reθ)

(
1

R
eΘ · dx

)
=

=
dr

dS
(er ⊗ eS)dx +

r

R
(eθ ⊗ eΘ)dx =

=

[
dr

dS
(er ⊗ eS) +

r

R
(eθ ⊗ eΘ)

]
dx

and so we have

dy = Fdx where F =
dr

dS
(er ⊗ eS) +

r

R
(eθ ⊗ eΘ). �

(b) Consider a circular strip on SR of radius R and width dS, its area being 2πRdS. The corresponding

annular region on S has radius r and width dr, its area being 2πrdr. Thus the conservation of area requires

2πr dr = 2πRdS which can be written as the differential equation

r(S)
dr

dS
(S) = R(S); (x)

recall that the function R(S) is obtained from the given function R(Z) by changing variables from Z to S

using equation (vii). Observe that equation (xi) can alternatively be obtained from λ1λ2 = 1 (i.e. det F = 1)

where F = λ1(er ⊗ eS) + λ2(eθ ⊗ eΘ). Integrating (x) from the lower end S = 0 to some arbitrary S yields

1

2
r 2(S)− 1

2
r 2(0) =

∫ S

0

R(σ)dσ ⇒ r(S) =

[
r 2(0) + 2

∫ S

0

R(σ)dσ

]1/2

, � (xi)

where σ is a dummy variable.

19We can use the relation (vii) to convert a function of S into a function of Z and vice versa. We ought

to use different symbols for such functions, e.g. r̂(S) and r(Z). For simplicity we shall not do this but we

will avoid any confusion by displaying the arguments of the functions when important.
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Alternatively, in terms of Z, we have from (x) and (vi),

r
dr

dZ

dZ

dS
= R(Z) and

dS

dZ
=

√
1 +

(
R′(Z)

)2
,

whence

r(Z)
dr

dZ
(Z) = R(Z)

√
1 +

(
R′(Z)

)2
.

Integrating this gives the deformation in the form r = r(Z):

r(Z) =

[
r2(Z0) + 2

∫ Z

Z0

R(ξ)

√
1 +

(
R′(ξ)

)2
dξ

]1/2

,

where ξ is a dummy variable.

Some general considerations.

Problem 2.22. The stretch λ(mR) of a fiber oriented (in the reference configuration) in the direction mR

is

λ(mR) = |FmR|. (i)

(a) Maximize λ(mR) over all fiber directions mR.

(b) Show that λ(mR) can be written in terms of the principal stretches as

λ(mR) =
√
λ2

1m
2
1 + λ2

2m
2
2 + λ2

3m
2
3, (ii)

where the mk’s are the components of mR in the principal basis of the right stretch tensor U.

Solution: We write the square of the stretch as

λ2(mR) = FmR · FmR = FTFmR ·mR = CmR ·mR. (iii)

When maximizing this over all unit vectors mR, we must respect the constraint mR ·mR = 1. Thus we

maximize the function

φ(m) = Cm ·m− µ(m ·m− 1),

over all vectors m where µ is a Lagrange multiplier. This yields:

∂φ

∂mj
=

∂

∂mj
(Cpqmqmp − µmpmp + µ) = Cpqδjqmp + Cpqmqδjp − 2µδjpmp = 2(Cijmj − µmj) = 0

which tells us that a particular direction mR that maximizes λ2(m) obeys CmR = µmR, i.e. it is an

eigenvector of C. Substituting CmR = µmR into (iii) yields λ2(mR) = µ and so the extrema of λ2(mR)

are the eigenvalues of C. The maximum value of λ(mR) is therefore the largest of the principal stretches.

In a principal basis C = λ2
1r1 ⊗ r1 + λ2

2r2 ⊗ r2 + λ2
3r3 ⊗ r3. If we write mR = m1r1 +m2r2 +m3r3 then

λ2(mR) = CmR ·mR = (λ2
1r1 ⊗ r1 + λ2

2r2 ⊗ r2 + λ2
3r3 ⊗ r3)(m1r1 +m2r2 +m3r3) · (m1r1 +m2r2 +m3r3)
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which simplifies to (ii). Note that we can carry out the preceding maximization equivalently by maximizing

λ2
1m

2
1 + λ2

2m
2
2 + λ2

3m
2
3 over all m1,m2,m3 subject to the constraint m2

1 +m2
2 +m2

3 = 1.

Problem 2.23. Show for any isochoric deformation that

I1(C) ≥ 3, (i)

where I1(C) = λ2
1 + λ2

2 + λ2
3 is the first principal invariant of C. Moreover, show that I1 = 3 if and only if

λ1 = λ2 = λ3 = 1.

Likewise show for isochoric deformations that

I2(C) ≥ 3, (ii)

where I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 is the second principal invariant of C, and that I2 = 3 if and only if

λ1 = λ2 = λ3 = 1.

Solution: Since the deformations considered are isochoric,

λ1λ2λ3 = 1. (iii)

Recall the inequality between the arithmetic and geometric means of a set of positive real numbers:

α1 + α2 + . . . αn
n

≥
[
α1α2 . . . αn

]1/n
,

and further, that the two means are equal if and only if α1 = α2 = . . . = αn. Apply this to the squares of

the three principal stretches λ2
i :

λ2
1 + λ2

2 + λ2
3

3
≥
[
λ2

1λ
2
2λ

2
3

]1/3
.

Therefore after using (iii) we get

I1(C) = λ2
1 + λ2

2 + λ2
3 ≥ 3. �

By the second part of the result quoted above, the inequality is strict unless λ2
1 = λ2

2 = λ2
3 which by (iii)

and the positivity of the the principal stretches shows that I1(C) > 3 unless λ1 = λ2 = λ3 = 1.

Alternatively, Rosakis has pointed out that one can establish this result by showing that the only

extremum of the function I1(λ1, λ2) = λ2
1 + λ2

2 + λ−2
1 λ−2

2 in the first quadrant of the λ1, λ2-plane occurs at

(λ1, λ2) = (1, 1) and that it is a minimum.

By using (iii) we can write the second principal invariant I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 as

I2(C) = λ−2
1 + λ−2

2 + λ−2
3 ,

and the result follows by a calculation exactly as above.
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Problem 2.24. (Piola identity) Show that ∫
D

n dAy = o

where D is an arbitrary subregion of R and n is the outward pointing unit vector normal to its boundary

∂D.

By using the relation ndAy = JF−TnRdAx or otherwise, show that

Div(JF−T ) = o, (2.123)

where for any tensor field A(x), Div A denotes the vector field with cartesian components ∂Aij/∂xj .

Similarly show that

div(J−1FT ) = o, (2.124)

where for any tensor field A(y), div A denotes the vector field with cartesian components ∂Aij/∂yj .

Solution: Recall that for any tensor field A(y) the divergence theorem states∫
∂D

An dA =

∫
D

divA dV, (iii)

where D is an arbitrary subregion of R and n is the outward pointing unit vector normal to its boundary

∂D. When applied to the choice A = I we get∫
∂D

n dAy = 0. � (iv)

Let DR be the image of D in the reference configuration and let nR denote the outward pointing unit

vector normal of its boundary ∂DR. By using the relation n dAy = JF−TnR dAx

0
(iv)
=

∫
∂D

n dAy=

∫
∂DR

JF−TnR dAx=

∫
∂DR

(
JF−T

)
nR dAx =

∫
DR

Div(JF−T ) dVx

where in the last step we used the divergence theorem in the reference configuration. Since this holds for

all choices of DR, localization tells us that the integrand vanishes at each point in the body and so we get

(2.123).

Likewise by using the relation J−1FTn dAy = nR dAx we have

0 =

∫
∂DR

nR dAx =

∫
∂D

J−1FTn dAy =

∫
∂D

(J−1FT )n dAy =

∫
DR

div(J−1FT ) dVx

which when localized yields (2.124).

Problem 2.25. Show that

∂λi
∂C

=
1

2λi
ri ⊗ ri and

∂λi
∂F

= `i ⊗ ri, (i)

where the summation convention for repeated subscript is suspended.
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Solution: We shall follow the method for differentiation used in Problem 1.8.4. Consider a one-parameter

family of right Cauchy-Green deformation tensors C(t) that depend smoothly on a parameter t.

Since ri(t) is a unit vector,

ri(t) · ri(t) = 1. (ii)

Differentiating (ii) with respect to t gives

ṙi · ri = 0. (iii)

Next, since λ2
i is an eigenvalue of C and ri is the corresponding eigenvector,

Cri = λ2
i ri. (iv)

Differentiating this with respect to t yields

Ċri + Cṙi = 2λi

(
∂λi
∂C
· Ċ
)

ri + λ2
i ṙi.

Taking the scalar product of both sides of this equation with ri and using (ii), (iii) leads to

Ċri · ri + Cṙi · ri = 2λi

(
∂λi
∂C
· Ċ
)
.

However Cṙi · ri = ṙi ·Cri
(iv)
= ṙi · λ2

i ri
(iii)
= 0. Therefore the second term on the left-hand of the preceding

equation drops out and we can write that equation as(
ri ⊗ ri − 2λi

∂λi
∂C

)
· Ċ = 0.

Since this must hold for all Ċ, and the terms in the parenthesis do not depend on Ċ, by the argument used

in Problem 1.8.4 we conclude that the terms inside the parenthesis must vanish:

ri ⊗ ri − 2λi
∂λi
∂C

= 0.

This leads to (i)1.

By writing out in terms of components and using indicial notation it is readily seen that

∂λi
∂F

= 2F
∂λi
∂C

.

Thus the result (i)2 follows upon using F(ri ⊗ ri) = (RUri)⊗ ri = λi(Rri)⊗ ri = λi`i ⊗ ri.

Problem 2.26. Let i1(E), i2(E), i3(E) be the principal scalar invariants of the Green Saint-Venant strain

tensor E = 1
2 (C− I):

i1 = tr E, i2 =
1

2
(i21 − tr E2), i3 = det E. (i)

Show that a deformation is isochoric if

i1 + 2i2 + 4i3 = 0. (ii)
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Problem 2.27. Show that the cartesian components Fij(x) of the deformation gradient tensor field must

necessarily obey the following system of partial differential equations (compatibility equations)

∂Fij
∂xk

=
∂Fik
∂xj

; (2.125)

furthermore, show that this can be written as Curl F = 0.

Solution: Given the 3 components yi(x) of the deformation field, one can calculate the 9 components Fij(x)

of the deformation gradient field by differentiating yi(x):

Fij(x) =
∂yi
∂xj

(x).

Conversely, given the 9 components Fij(x) of the deformation gradient field, in order to determine the

associated components yi(x) of the deformation field, one has the integrate the system of equations

∂yi
∂xj

(x) = Fij(x). (i)

However, (i) is a system of 9 scalar differential equations for determining the 3 unknown scalar functions

yi(x). It is therefore overdetermined and so can only be solved if the Fij(x)’s satisfy suitable “integrability

conditions”. Differentiating (i) with respect to xk gives

∂2yi
∂xk∂xj

(x) =
∂Fij
∂xk

(x). (ii)

On the other hand differentiating
∂yi
∂xk

(x) = Fik(x) (iii)

with respect to xj gives
∂2yi

∂xj∂xk
(x) =

∂Fik
∂xj

(x). (iv)

Changing the order of partial differentiation on the left-hand side of (iv) shows that the left-hand sides of

(ii) and (iv) are the same. Thus we may equate their right-hand sides to get:

∂Fij
∂xk

=
∂Fik
∂xj

. �

This is a system of equations that the given fields Fij(x) must necessarily satisfy if there is to exist a

corresponding set of yi(x)’s.

We can write (2.125) as

0 =
∂Fij
∂xk

− ∂Fik
∂xj

= (δkpδjq − δkqδjp)
∂Fiq
∂xp

= e`kje`pq
∂Fiq
∂xp

⇒ e`pq
∂Fiq
∂xp

= 0,

which by (1.169) is the cartesian representation of Curl F = 0.

Remark: A more challenging (and possibly more important) task is determining the compatibility equations

to be satisfied by the components Eij(x) of a strain tensor field in order that there exist a corresponding

deformation field.
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Problem 2.28. Suppose that some Lagrangian strain tensor field vanishes at every point in the body:

E(x) = I for all x ∈ RR. In this event, the Lagrangian stretch tensor field and the the right Cauchy-Green

tensor field equal the identity at every point in the body: U(x) = C(x) = I for all x ∈ RR. Show that

the deformation gradient tensor field F(x) is orthogonal at each x ∈ RR. Moreover, show that F(x) is

independent of x and therefore is a constant orthogonal tensor.

Solution: Since C(x) = I it follows that U(x) = I and therefore from the polar decomposition theorem that

F(x) is orthogonal at each x ∈ RR.

Since F is orthogonal, FTF = I or in cartesian components

FkiFkj = δij . (i)

Since this holds at each x we may differentiate it respect to x` to get

∂Fki
∂x`

Fkj +
∂Fkj
∂x`

Fki = 0. (ii)

Equivalently, writing (i) as Fk`Fki = δ`i and differentiating with respect to xj gives

∂Fk`
∂xj

Fki +
∂Fki
∂xj

Fk` = 0, (iii)

and likewise writing (i) as FkjFk` = δj` and differentiating with respect to xi leads to

∂Fkj
∂xi

Fk` +
∂Fk`
∂xi

Fkj = 0. (iv)

The compatibility equations (2.125) tell us that ∂Fk`/∂xj = ∂Fkj/∂x` and ∂Fki/∂xj = ∂Fkj/∂xi and so we

can write (iii) as
∂Fkj
∂x`

Fki +
∂Fkj
∂xi

Fk` = 0. (v)

Similarly since ∂Fk`/∂xi = ∂Fki/∂x` by the compatibility equations we can write (iv) as

∂Fkj
∂xi

Fk` +
∂Fki
∂x`

Fkj = 0. (vi)

Adding (v) and (vi) and subtracting (ii) from the result yields

∂Fkj
∂xi

Fk` = 0.

Multiplying this by F−1
`p leads to

∂Fkj
∂xi

= 0.

Thus all partial derivatives of Fij vanish, which therefore implies that F(x) is constant.

Problem 2.29. Suppose that the deformation gradient tensor field has the form F(x) = ∇y(x) = φ(x)A

where φ(x) is a positive scalar-valued function defined for x ∈ RR and A is a constant tensor with det A > 0.

Show that necessarily φ(x) must be independent of x and therefore a constant.
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Solution: We are told that Fij(x) = φ(x)Aij . Substituting this into the compatibility equations (2.125)

(page 219) yields
∂φ

∂xk
Aij =

∂φ

∂xj
Aik. (ii)

Since the result we want to prove involves φ and not A, it is natural to first eliminate A which we can readily

do since A is nonsingular and so its inverse exists. In order to simultaneously eliminate A from both sides

of (ii) we multiply it by A−1
pi to obtain

∂φ

∂xk
A−1
pi Aij =

∂φ

∂xj
A−1
pi Aik ⇒ ∂φ

∂xk
δpj =

∂φ

∂xj
δpk.

This holds for all choices of the free indices p, j, k. Therefore it necessarily must hold with p = j:

∂φ

∂xk
δjj =

∂φ

∂xj
δjk ⇒ 3

∂φ

∂xk
=

∂φ

∂xk
,

where we have used δjj = 3 and the substitution rule. Therefore

∂φ

∂xk
= 0 for k = 1, 2, 3,

which says that all partial derivatives of φ(x) necessarily vanish and so φ(x) cannot depend on x. Conversely,

if φ(x) is independent of x the compatibility equations (ii) hold automatically.

Problem 2.30. Consider two deformations y = y1(x) and y = y2(x) related by a rigid deformation, i.e. the

deformations are such that y2(x) = Qy1(x) + b where Q is a constant rotation tensor and b is a constant

vector. Show that the right Cauchy-Green tensors C1 and C2 associated with these two deformations

coincide: C1 = C2.

What is the corresponding relation between the left Cauchy-Green tensors B1 and B2?

Conversely, is it true that if C1(x) = C2(x) at each x ∈ RR then the two deformations differ by a rigid

deformation?

Problem 2.31. Among the various experiments on rubber that Rivlin and Saunders [7] carried out are

some where they subjected a thin incompressible rubber sheet to a pure stretch

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3. (i)

They varied the in-plane stretches λ1, λ2 keeping the value of the invariant I1 = λ2
1 + λ2

2 + λ2
3 fixed20; see

Section 4.6.1. Show that

λ2
2 =

1

2

[
I1 − λ2

1 ±
√

(I1 − λ2
1)2 − 4/λ2

1

]
, (ii)

and sketch the contours of the closed curves defined by (ii) in the λ1, λ2-plane corresponding to different

fixed values of I1.

20They also did experiments keeping I2 fixed.
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Solution: In view of incompressibility,

λ3 = λ−1
1 λ−1

2 . (iii)

and therefore the principal scalar invariants can be written as

I1 = λ2
1 + λ2

2 + λ2
3

(iii)
= λ2

1 + λ2
2 + λ−2

1 λ−2
2 ,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

(iii)
= λ2

1λ
2
2 + λ−2

1 + λ−2
2 .

 (iv)

Equation (iv)1 can be written as the bi-quadratic equation

λ4
2 + (λ2

1 − I1)λ2
2 + λ−2

1 = 0,

from which (ii) follows.

Problem 2.32. (See also Problem 2.33.) Consider a planar surface SR that passes through the region RR

occupied by a body in the reference configuration. Let nR be a unit vector normal to SR and let R+
R denote

the side into which nR points, R−R the other side. Thus SR is a planar interface between two parts of the

body.

p
p

Figure 2.28: Problem 2.32: A piecewise homogeneous deformation. The deformation is continuous across

SR but the deformation gradient tensor is not. This it depicted by the small grey and blue quadrilaterals.

Consider the piecewise homogeneous deformation

y = y(x) =

 F+x for x ∈ R+
R,

F−x for x ∈ R−R ,
(i)

where F± are constant non-singular tensors. Show that this deformation y(x) is continuous across SR if and

only if there is a constant vector a for which

F+ − F− = a⊗ nR. (2.126)

This is known as the Hadamard jump (compatibility) condition. It plays an important role in studying

interfaces between two material phases.

Interpret (2.126) geometrically. Specifically, with S being the image of SR in the deformed configuration,

show that F+ differs from F− by a simple shear with shearing direction e and glide plane normal n and a

uniaxial extension in the direction n. (Here the unit vectors e and n are in the plane S and normal to S
respectively).
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Solution: Since the deformation is continuous across SR, it follows from (i) that

F+x = F−x for all vectors x in the plane SR. (ii)

Set

G = F+ − F−, (iii)

so that because of (ii)

Gx = o for all vectors x in the plane SR. (iv)

Now pick an orthonormal basis {e1, e2, e3} with e3 = nR. Since e3 = nR is perpendicular to the plane SR
it follows that the unit vectors e1 and e2 lie in the plane SR. Thus by taking x = e1 and x = e2 in (iv),

Ge1 = o, Ge2 = o. (v)

Solution 1: Let Gij be the i, j component of G in the basis {e1, e2, e3} above:

G = Gijei ⊗ ej . (vi)

The equations in (v) imply that certain components of G vanish that we identify as follows: From (vi),

Ge1 =
(
Gijei ⊗ ej

)
e1 = Gij(ej · e1)ei = Gijδ1jei = Gi1ei.

Since Ge1 = o it follows that Gi1 = 0, i.e. G11 = G21 = G31 = 0. Similarly from Ge2 = o we find that

G12 = G23 = G33 = 0. Therefore the only non-zero components are G13, G23 and G33 and so (vi) simplifies

to

G = G13e1 ⊗ e3 +G23e2 ⊗ e3 +G33e3 ⊗ e3 = (G13e1 +G23e2 +G33e3)︸ ︷︷ ︸
a

⊗e3 = a⊗ nR. �

Solution 2:

Lemma: If Aei = o for i = 1, 2, 3 where {e1, e2, e3} is an orthonormal basis then A = 0.

Now observe that[
G−G(e3 ⊗ e3)

]
eα = Geα − (e3 · eα)Ge3 = Geα

(v)
= o for α = 1, 2,[

G−G(e3 ⊗ e3)
]
e3 = Ge3 − (e3 · e3)Ge3 = Ge3 −Ge3 = o.

It therefore follows from the lemma above that G−G(e3 ⊗ e3) = 0 and so

G = G(e3 ⊗ e3) = (Ge3)︸ ︷︷ ︸
a

⊗e3 = a⊗ nR. �

To interpret the relation (2.126) between F+ and F− we proceed as follows:

F+ = F− + a⊗ nR =
(
I + (a⊗ nR)

−
F −1

)
F−

(1.78)
=

(
I + (a⊗

−
F −TnR)

)
F− =

(∗)
=
(
I + b⊗ n

)
F− =

(∗∗)
=
(
I +

[
(b1e + b2n)⊗ n

])
F− =

(
I + b1e⊗ n + b2n⊗ n

)
F− =

=
(
I + b1

1+b2
e⊗ n

)(
I + b2n⊗ n

)
F−
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In step (∗) we used n =
−
F−TnR/|

−
F−TnR| which follows from Nanson’s formula and set b = |

−
F−TnR|a; in

step (∗∗) we wrote b = b1e + b2n where b1e is the projection of b onto the plane S and b2n is its projection

onto the normal to S where e is a unit vector in the plane S. Therefore the deformation on R+
R can be

obtained by first subjecting it to the same deformation as that on R−R , followed by a uniaxial extension by

b1 in the direction of the normal n, followed by a simple shear with glide plane S, shearing direction e and

amount of shear b1/(b1 + b2).

Problem 2.33. (See also Problem 2.32.) Now consider the time-dependent version of Problem 2.32. Con-

sider a planar surface St that passes through the regionRR occupied by a body in the reference configuration.

The surface propagates through the reference configuration with velocity VnnR where Vn is the constant prop-

agation speed and nR is the constant unit vector that is normal to St at all times. Note that since this

surface propagates through the reference configuration, different particles lie on it at different times, and

therefore it is not a material surface. (This is in contrast to the interface between two materials in a com-

posite material.) Let R+
Rt denote the side into which nR points, R−Rt the other side. Consider the piecewise

homogeneous motion

y(x, t) =

 F+x + v+t for x ∈ R+
Rt, t > t0,

F−x + v−t for x ∈ R−Rt, t > t0,

where F± are constant non-singular tensors and v± are constant vectors. Show that this motion is continuous

across St at all times if and only if there is a constant vector a for which

F+ − F− = a⊗ nR, (2.127)

and

v+ − v− = −Vn(F+ − F−)nR. (2.128)

These Hadamard jump (compatibility) conditions generalize the special one in Problem 2.32. They play an

important role in studying interfaces between two material phases.

Problem 2.34. This is a toy model of Problem 2.35 concerning a twinning deformation. Here we consider

a 2-dimensional crystalline solid that in a reference configuration has a square lattice as shown in Figure

2.29.

A unit cell of the reference lattice is depicted by the grey square in Figure 2.30. The respective stretch

tensors

U1 = βe1 ⊗ e1 + αe2 ⊗ e2, U2 = αe1 ⊗ e1 + βe2 ⊗ e2, α > β > 0, (i)

take the grey 1× 1 unit cell into the blue β×α rectangle and the pink α× β rectangle as depicted in Figure

2.30. Remark: Note that one cannot rigidly rotate the pink rectangle into the blue rectangle in such a way

that a 7→ a, b 7→ b etc. (Imagine that “atoms” a, b, c, d sit at each vertex. One cannot rotate the pink

rectangle into the blue rectangle in such a way that the positions of the atoms a, b, c and d align.) Therefore

the blue and pink deformed configurations do not simply differ by a rigid rotation; they are called variants

of each other.
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1 2 3

4 5 6

7 8 9

Figure 2.29: In a reference configuration the crystalline solid has a square lattice.

a b

cd

a b

cd

a b

cd

Figure 2.30: The grey square unit cell abcd is taken by the pure stretch x 7→ U1x into the blue rectangle

abcd, while the pure stretch x 7→ U2x takes it into the pink rectangle abcd. Observe that one cannot rigidly

rotate the pink rectangle into the blue rectangle in such a way that a 7→ a, b 7→ b etc.

We are interested in the co-existence of the two variants, i.e. in the existence of a piecewise homogeneous,

continuous, deformation that connects the two variants, specifically U1 to QU2, across a planar interface

SR (a straight line in two-dimensions); and if such a deformation does exist, to determine this interface

and the rotation tensor Q. Thus we consider the following piecewise homogeneous deformation, illustrated

schematically in Figure 2.31:

y =

 F1x = U1x for x ∈ R1,

F2x = QU2x for x ∈ R2.
(ii)

(a) Show that the continuity of the piecewise homogeneous deformation (ii) requires F2−F1 = a⊗nR where

the unit vector nR is normal to SR and a is an arbitrary vector; in Problem 2.32 you are asked to establish

this result in three-dimensions. When F1 = U1 and F2 = QU2, the preceding requirement reads

QU2 −U1 = a⊗ nR. (iii)

(b) Show by construction, i.e. by determining Q,a and nR, that such a deformation does exist when U1 and

U2 are given by (ii). Sketch a figure that interprets the deformation (ii).
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p
p

Figure 2.31: A piecewise homogeneous deformation. The deformation is continuous across SR but the

deformation gradient tensor is not. This is illustrated schematically by the yellow square that undergoes

a simple shear and the green square that undergoes a pure stretch such that their deformed images fit

continuously in the deformed configuration.

(c) Show that

QU2 = (I + kb⊗ n)U1, (iv)

for some scalar k and orthogonal unit vectors b and n,

n · b = 0, |n| = 1, |b| = 1. (v)

Note that the tensor I + kb ⊗ n describes a simple shear. Sketch a figure that provides an alternative

interpretation of the deformation (ii) in light of (iv).

Solution:

(a) Continuity of the deformation at points x ∈ SR requires

F2x = F1x for all x ∈ SR.

Let

G := F2 − F1

so that

Gx = o for all x ∈ SR.

Pick a basis {f1, f2} (for our two-dimensional vector space) where f2 = nR is normal to SR. The unit vector

f1 is then on the line SR and so the preceding equation is equivalent to

Gf1 = o.

In terms of components in the basis {f1, f2},

Gf1 = o ⇒ Gξηδη1 = 0 ⇒ Gξ1 = 0 ⇒ G11 = G21 = 0,

where the subscripts ξ, η range over the values 1 and 2. Thus we can write the tensor G as

G =��G11f1 ⊗ f1 +G12f1 ⊗ f2 +��G21f2 ⊗ f1 +G22f2 ⊗ f2 = (G12f1 +G22f2)︸ ︷︷ ︸
a

⊗ f2︸︷︷︸
nR

= a⊗ nR,
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and thus

F2 − F1 = a⊗ nR. �

(b) To determine Q,a and nR we express (iii) in terms of components in the cubic basis, i.e. the basis

{e1, e2} where the basis vectors are aligned with the edges of the square lattice:

(
cos θ sin θ

− sin θ cos θ

)(
α 0

0 β

)
−
(
β 0

0 α

)
=

(
a1n1 a1n2

a2n1 a2n2

)
. (vi)

This gives

α cos θ − β = a1n1,

β sin θ = a1n2,

−α sin θ = a2n1,

β cos θ − α = a2n2,


We can solve these, together with n2

1 + n2
2 = 1, to find n1, n2, θ, a1 and a2:

nR =
1√
2
e1 +

1√
2
e2, (vii)

cos θ =
2αβ

α2 + β2
, sin θ =

α2 − β2

α2 + β2
, (viii)

a =
√

2

(
α2 − β2

α2 + β2

)(
βe1 − αe2

)
. (ix)

Observe from (vii) that the interface SR in the reference configuration between R1 and R2 is inclined as

depicted by the dashed line in Figure 2.32 (left-hand side). The lattice in the right-hand figure is the image

of the reference lattice under the deformation (ii).

Observe that the deformation x 7→ U1x takes a unit cell such as 4587 in R1 into a blue rectangle 4587

in the deformed configuration; and likewise the deformation x 7→ QU2x takes a unit cell such as 2365 in R2

into a pink rectangle 2365 in the deformed configuration. On the other hand considering a unit cell such as

1254 that straddles the line SR, part of it is taken by x 7→ U1x into the triangle 154 and the other part is

taken by x 7→ QU2x into the triangle 125. Details of this are shown in Figure 2.33.
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Reference lattice
Twinned lattice

1 2 3

4 5 6

7 8 9

1 2
3

4 5
6

7 8
9

Figure 2.32: Left: Reference configuration with a square lattice. Right: Twinned configuration. The blue

square 4587 has been deformed by U1; the pink square 2365 has been deformed by U2 and then rotated by

Q. The deformation is continuous.
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Figure 2.33: Geometric interpretation of equation (ii): The blue isosceles triangle 154 is taken by the

pure stretch x 7→ U1x into the elongated blue triangle 154. The pink isosceles triangle is first taken by

the pure stretch x 7→ U2x into the elongated pink triangle 125 (top) and then taken by the rigid rotation

U2x 7→ QU2x into the rotated pink triangle (right).

Geometric interpretation of the deformation (ii): This is described by Figure 2.33 as follows: the blue

isosceles triangle 154 is taken by the pure stretch x 7→ U1x into the elongated blue triangle 154. The pink

isosceles triangle is first taken by the pure stretch x 7→ U2x into the elongated pink triangle 125 (top) and

then taken by the rigid rotation U2x 7→ QU2x into the rotated pink triangle (right).

We can determine the rotation tensor Q geometrically using Figure 2.34. As depicted there, let φ be the

angle between a diagonal and the long side of either variant:

tanφ =
α

β
, sinφ =

α√
α2 + β2

, cosφ =
β√

α2 + β2
. (x)



2.10. EXERCISES. 229

1

5

1

1

4
4

2

5

2

5

Figure 2.34: The rotation Q: The angle between the dashed lines on the pink and blue triangles is π/2−2φ,

and so that is the angle by which the pink triangle must be rotated clockwise in order to make the dashed

lines parallel.

By geometry, the angle by which the pink triangle on the left has to be rotated clockwise in order to make it

similar to the pink triangle on the right is π/2−2φ, and so the counter clockwise rotation is θ = −(π/2−2φ).

Thus

cos θ = sin 2φ = 2 sinφ cosφ =
2αβ

α2 + β2
, sin θ = − cos 2φ = sin2 φ− cos2 φ =

α2 − β2

α2 + β2
, (xi)

which coincides with (viii).

(c) We write (iii) as

QU2 = U1 + a⊗ nR = (I + a⊗U−1
1 nR)U1. (xii)

The tensor I + a ⊗U−1
1 nR represents a simple shear if (and only if) the vector a is perpendicular to the

vector U−1
1 nR. In order to investigate whether this is true or not we take the determinant of both sides of

(xii) and use det Q = 1 and det(I + a⊗ b) = 1 + a · b. This gives

det(QU2) = det U2 = det
[
(I + a⊗U−1

1 nR)U1

]
= (1 + a ·U−1

1 nR) det U1.

From (i) we know that det U1 = det U2 and so this yields

a ·U−1
1 nR = 0. (xiii)

Thus U−1
1 nR is orthogonal to a and so I + a⊗U−1

1 nR is a simple shear. To write this in the standard form

we divide a and U−1
1 nR by their respective magnitudes so that they can then be expressed as unit vectors.

Thus we write (xii) as

QU2 =

(
I + |a| |U−1

1 nR|
a

|a| ⊗
U−1

1 nR

|U−1
1 nR|

)
U1, (xiv)

and introduce

k = |a| |U−1
1 nR|, b =

a

|a| , n =
U−1

1 nR

|U−1
1 nR|

. (xv)
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and note that

n · b = 0, |n| = 1, |b| = 1. (xvi)

We can now write (xiv) as

QU2 = (I + kb⊗ n)U1. (xvii)

Since b and n are orthogonal unit vectors it follows that I+kb⊗n is a simple shear with glide plane normal

n, shearing direction b and amount of shear k.

To determine k,n and b (having previously found Q) we simply substitute (i), (vii), (ix) into (xv) to

find

k = −α
2 − β2

αβ
, (xiii)

n = cosφ e1 + sinφ e2, b = − sinφ e1 + cosφ e2, (xv)

where the angle φ is given by (x).

Alternative geometric interpretation of the deformation (ii): According to the representation (ii) of the

deformation, we deform the part R1 of the body by U1 while the part R2 is first deformed by U2 and then

rotated by Q. On the other hand by using (iv) we can represent this same deformation as

y =

 U1x for x ∈ R1,

(I + kb⊗ n)U1x for x ∈ R2.
?

Thus an alternative way in which to view this same deformation is to deform the entire body R1 ∪ R2 by

U1 and to then subject the part R2 only to the simple shear I + kb⊗ n. This is illustrated in Figure 2.35

1 2

54

Figure 2.35: Geometric interpretation of equation ?. The deformation x 7→ U1x takes the grey square

unit cell 1254 into the rectangle abcd. The triangle abc is now subjected to a simple shear as shown in the

rightmost figure that takes abc into ab′c. The latter deformation is described by z 7→ (I + kb⊗ n)z where z

is the position vector of a point in abc in the middle configuration.

Remark: One can calculate the various parameters involved in the deformation in Figure 2.35 geometrically.

The vector n is perpendicular to the solid dark line in Figure 2.32 from which (xv)1 follows. The vector b
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is perpendicular to n. One can calculate geometrically from Figure 2.35 that the distance `1 that b moves

during the shear, when b 7→ b′, is

`1 = |bb′| =
√
α2 + β2 − 2β sinφ =

α2 − β2√
α2 + β2

;

and the distance `2 from the line bb′ on which b slides to the line ac is

`2 = β cosφ =
αβ√
α2 + β2

.

Therefore the amount of shear is
`1
`2

=
α2 − β2

αβ
.

which recovers (xviii) except for the sign. (Question: why the sign difference?)

Problem 2.35. (See also Problems 2.34.) This problem arises when studying the microstructure of a certain

two-phase material. In one phase, the crystallographic lattice underlying the material is cubic and this is

called the austenite phase. In the other, the lattice is tetragonal and this phase is called the martensite phase.

There are three variants of the martensite phase. Suppose that the reference configuration F = I corresponds

to the austenite phase. The three stretch tensors Uk given below in (i), (ii) describe the deformation from

the austenite phase into the three martensite variants.

The answer to question (a) below is yes and therefore an interface, oriented in a specific way, separating

one martensite variant from another can exist. The answer to question (b) is no and therefore an interface

separating one martensite variant from austenite cannot exist. Reference: K. Bhattacharya, Microstructure

of Martensite, Oxford, 2003.

Let {r1, r2, r3} be an orthonormal basis. Consider the 3 symmetric positive definite tensors U1,U2 and

U3 defined by

Uk = αI + (β − α)rk ⊗ rk, α 6= 1, β 6= 1, α 6= β, α > 0, β > 0, k = 1, 2, 3. (i)

Here α and β are constant (lattice) parameters. The components of these three tensors in the basis {r1, r2, r3}
are

[U1] =

 β 0 0

0 α 0

0 0 α

 , [U2] =

 α 0 0

0 β 0

0 0 α

 , [U3] =

 α 0 0

0 α 0

0 0 β

 . (ii)

Therefore the deformation y = U1x takes a 1 × 1 × 1 cube and stretches it in the r1, r2, r3 directions by

stretches β, α, α and maps the cube into a β × α × α tetragon. The deformations y = U2x and y = U3x

are similar with the stretch by β being in the r2 and r3 directions respectively. Consider the Hadamard

compatibility condition (2.127):

F+ − F− = a⊗ nR. (iii)

(a) Here you want to study the possibility of a piecewise homogeneous (two-phase) deformation that

involves two variants of martensite, one on each side of the interface. Accordingly take F+ =

R+U2, F− = U1 in (iii). Do there exist a proper orthogonal tensor R+, a unit vector nR and

a vector a such that (iii) holds? If yes, find R+,nR and a.
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(b) Here you want to study the possibility of a two-phase deformation that involves austenite on one side

of the interface and one variant of martensite on the other. Accordingly take F+ = R+U2, F− = I.

Do there exist a proper orthogonal tensor R+, a unit vector nR and a vector a such that (iii) holds?

If yes, find R+,nR and a.

Problem 2.36. (Average deformation gradient tensor.) Define the average value of the deformation

gradient tensor field in a body to be

F :=
1

vol

∫
RR

F(x) dVx,

where vol is the volume of the region RR. Show that

F =
1

vol

∫
∂RR

y(x)⊗ nR dAx

and therefore that the average value of the deformation gradient tensor field in a body depends only on the

deformation of the boundary ∂RR. Show this

– first in the case where F(x) is continuous on RR, and

– second in the case where F(x) is piecewise continuous on RR. Specifically, suppose there is a surface

SR ⊂ RR with F(x) being continuous on either side of SR but discontinuous at SR but with the

deformation y(x) being continuous on RR including on SR.

Problem 2.37. Decomposition of an arbitrary isochoric planar deformation gradient tensor: Show that any

planar isochoric deformation deformation gradient tensor F is equivalent to a suitable simple shear followed

by a rotation, i.e. show that one can express such a tensor F as

F = Q K,

where Q is proper orthogonal and K = I + ka⊗b for some scalar k and mutually orthogonal unit vectors a

and b. Note: if the deformation is planar in the plane spanned by r1 and r2 then a and b are in that same

plane and the rotation Q is about r3.

Solution: Let U be the Lagrangian stretch tensor associated with an arbitrary planar isochoric deformation

gradient tensor F = RU. It can be expressed in spectral form as

U = λ r1 ⊗ r1 + λ−1r2 ⊗ r2, λ > 1, (ii)

where without loss of generality we have taken λ > 1 and it is sufficient to work in two-dimensions. Let

{e1, e2} be a second basis and let θ be the angle between r1 and e1:

r1 = cos θ e1 + sin θ e2, r2 = − sin θ e1 + cos θ e2. (iii)
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Motivated by the results of Problem 2.5.2 we take θ to be the angle defined by

tan θ = λ, θ ∈ (π/4, π/2). (iv)

Then

sin θ =
λ√

1 + λ2
, cos θ =

1√
1 + λ2

, tan 2θ = − 2

λ− λ−1
. (v)

Substituting (iii) and (v) into (ii) allows us to write U with respect to the basis {e1, e2} as

U =
2λ

λ2 + 1
e1 ⊗ e1 +

λ2 − 1

λ2 + 1
(e1 ⊗ e2 + e2 ⊗ e1) +

λ(λ2 + λ−2)

λ2 + 1
e2 ⊗ e2. (vi)

Let Q be an orthogonal tensor:

Q = cosψ e1 ⊗ e1 − sinψ e1 ⊗ e2 + sinψ e2 ⊗ e1 + cosψ e2 ⊗ e2, (vii)

where the angle of rotation ψ ∈ (0, π/2) is to be determined suitably. If we calculate QTU and set the

coefficient of e2 ⊗ e1 equal to zero we get

λ2 − 1

λ2 + 1
cosψ − 2λ

λ2 + 1
sinψ = 0 ⇒ tanψ =

λ− λ−1

2
, (viii)

from which we get

cosψ =
2

λ+ λ−1
, sinψ =

λ− λ−1

λ+ λ−1
. (ix)

Taking this choice for ψ and calculating QTU from (vi) and (vii) leads to

QTU = I + ke1 ⊗ e2 where k := λ− λ−1.

Thus letting K denote the simple shear

K := I + ke1 ⊗ e2, k := λ− λ−1,

we have QTU = K and therefore

U = QK ⇒ F = RU = RQ K �

where Q = RQ is proper orthogonal.

Problem 2.38. Decomposition of an arbitrary isochoric deformation gradient tensor: Show that an arbi-

trary isochoric homogeneous deformation can be viewed as a uniaxial extension with accompanying lateral

contraction, a simple shear in the plane normal to the direction of extension, and a rigid rotation.

Solution: The deformation gradient tensor F can be written by the polar decomposition theorem as

F = RU = R(λ1r1 ⊗ r1 + λ2r2 ⊗ r2 + λ3r3 ⊗ r3). (i)

Since the deformation is isochoric,

λ1λ2λ3 = 1. (ii)
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The stretch tensor U can therefore be written as

U = λ1r1 ⊗ r1 + λ2r2 ⊗ r2 + λ3r3 ⊗ r3 =

= λ1λ
1/2
3 λ

−1/2
3 r1 ⊗ r1 + λ2λ

1/2
3 λ

−1/2
3 r2 ⊗ r2 + λ3r3 ⊗ r3 =

(?)
= Λλ

−1/2
3 r1 ⊗ r1 + Λ−1λ

−1/2
3 r2 ⊗ r2 + λ3r3 ⊗ r3 =

= (Λr1 ⊗ r1 + Λ−1r2 ⊗ r2 + r3 ⊗ r3)(λ
−1/2
3 r1 ⊗ r1 + λ

−1/2
3 r2 ⊗ r2 + λ3r3 ⊗ r3) =

(??)
= (Λr1 ⊗ r1 + Λ−1r2 ⊗ r2 + r3 ⊗ r3) E =

= QKE, �

in step (?) we set

Λ = λ1λ
1/2
3 , Λ−1 = λ2λ

1/2
3 ,

in step (??) we set

E := λ
−1/2
3 r1 ⊗ r1 + λ

−1/2
3 r2 ⊗ r2 + λ3r3 ⊗ r3,

and in the last step we used the result of Problem 2.37 with Q being a rotation and K a simple shear in the

plane spanned by r1, r2.

Observe that the tensor E describes an isochoric uniaxial extension in the direction r3 with accompanied

lateral contraction.

Problem 2.39. (See also Problem 2.5.2 .) Calculate the principal stretches associated with the simple shear

y1 = x1 + kx2, y2 = x2, y3 = x3, k > 0. (i)

In Problem 2.5.2 we used a direct (but tedious) way by calculating F, then C = FTF, determining its

eigenvalues, and taking their square roots. Instead, carry out your calculations by getting two different

expressions for the first invariant I1(C) and equating them, keeping in mind that the deformation is planar

and isochoric.

Solution: Differentiating (i) and using Fij = ∂yi/∂xj gives

F = I + ke1 ⊗ e2. (ii)

The deformation (i) is planar in the x1, x2-plane and so one principal stretch is unity with corresponding

principal direction e3:

λ3 = 1. (iii)

The deformation (i) is isochoric since det F = 1 and therefore

λ1λ2λ3 = 1
(iii)⇒ λ2 = λ−1

1 . (iv)

Next, the right Cauchy-Green deformation tensor is

C = FTF = I + k2e2 ⊗ e2 + k(e1 ⊗ e2 + e2 ⊗ e1),



2.10. EXERCISES. 235

and so its first invariant is

I1 = tr C = 3 + k2. (v)

However the first invariant can be written in terms of the principal stretches as

I1 = λ2
1 + λ2

2 + λ2
3

(iii),(iv)
= λ2

1 + λ−2
1 + 1. (vi)

Equating (v) and (vi) gives

λ2
1 + λ−2

1 = 2 + k2 ⇒ (λ1 − λ−1
1 )2 = k2.

We take the positive square root of this equation (letting λ1 ≥ λ2 whence λ1 − λ−1
1 > 0):

λ1 − λ−1
1 = k ⇒ λ2

1 − kλ1 − 1 = 0 ⇒ λ1 =
k +
√
k2 + 4

2
, �

where we took the positive sign of the square root since the negative sign gives a negative value for λ1.

Problem 2.40. In Problem 2.5.2 we determined the rotation R and Lagrangian stretch tensor U associated

with a simple shear y = Fx, F = I + ke1⊗ e2, and then graphically interpreted that deformation viewed as

y = R(Ux). Carry out a corresponding graphical interpretation of a simple shear deformation represented

as y = V(Rx).

Solution: According to y = V(Rx) we first rigidly rotate the square using the mapping x→ Rx where the

rotation tensor R is the same as that in the decomposition F = RU. We then stretch the square by the

amounts λ1 and λ2 in the directions `1 and `2 to get the region occupied by the deformed body. This is

depicted in Figure 2.36. Since we have already found R and the λi’s, it remains to find `1 and `2, the third

principal direction being `3 = r3 = e3.

The principal directions `1, `2, `3 of the left stretch tensor V are related to the principal directions

r1, r2, r3 of the right stretch tensor U by `i = Rri. Since we found R and ri in Problem 2.5.2, the principal

directions `i can be readily shown to be

`1 = Rr1 = cos θ` e1 + sin θ` e2, `2 = Rr2 = − sin θ` e1 + cos θ` e2, `3 = e3, (i)

where

tan 2θ` = 2/k. (ii)

(Note that θr = π/2− θ` where θr is the corresponding angle in the right polar decomposition; see Problem

2.5.2.) The corresponding principal stretches are

λ1 = λ, λ2 = λ−1, λ3 = 1 where λ =
1

2

[√
k2 + 4 + k

]
, (iii)

which are the common eigenvalues of V and U.

Remark: The tensor V can be readily expressed with respect to the basis {e1, e2, e3} by using V = FRT

together with the results of Problem 2.5.2. This leads to

V =
1√

4 + k2

(
(2 + k2)e1 ⊗ e1 + k(e1 ⊗ e2 + e2 ⊗ e1) + 2 e2 ⊗ e2

)
+ e3 ⊗ e3. (ii)
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Figure 2.36: Problem 2.40: Simple shear deformation y = (I + ke1 ⊗ e2)x = V(Rx) viewed in two steps:

The rotation x → Rx takes the region OABC → OA′′B′′C ′′ and the pure stretch Rx → V(Rx) takes

OA′′B′′C ′′ → OA∗B∗C.

Problem 2.41. Two material fibers AB and AC in the reference configuration have equal length s0 and

are oriented in the respective directions e1 and e2. A homogeneous deformation

y = Fx, F = constant,

maps these fibers into A′B′ and A′C ′ that have lengths s1, s2 with the angle between them being π/2− φ.

The quantities s0, s1, s2 and φ have been measured.

Calculate the strain components E11, E22 and E12 in terms of s0, s1, s2 and φ where E is the Green

Saint-Venant strain tensor. Linearize your answer to the case of an infinitesimal deformation.

Solution:

Set dsx = s0 and dsy = s1 in (2.74) to get

s1 − s0

s0
=
√

1 + 2E11 ⇒ E11 =
1

2

[(
s1

s0

)2

− 1

]
. (i)

Similarly setting dsx = s0, dsy = s2 in the analogous formula involving E22 yields

E22 =
1

2

[(
s2

s0

)2

− 1

]
. (ii)

Next, set θy = π/2− φ in (2.76) and use the values of E11 and E22 from above to get

sinφ =
2E12√

1 + 2E11

√
1 + 2E22

whence

E12 =
1

2

s1

s0

s2

s0
sinφ. (iii)
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For an infinitesimal deformation, we set s1 = s0+∆s1,∆s1 � s0, substitute this into (i) and approximate

the result for small ∆s1/s0. This leads to

E11 =
s1 − s0

s0

with the error being quadratic. Similarly one finds

E22 =
s2 − s0

s0

to linear accuracy. Substituting s1 = s0 + ∆s1 and s2 = s0 + ∆s2 into (iii) and approximating the result

for small φ,∆s1/s0 and ∆s2/s0 leads to

E12 =
1

2
φ

where the error is quadratic.

Problem 2.42. In Problem 2.5.2 we calculated the stretch tensor U and rotation tensor R associated

with a simple shear. Linearize those results for small amounts of shear k and thus derive the specializations

of (2.112)1 and (2.120) to simple shear. Calculate also the infinitesimal strain tensor ε and compare and

contrast your result with the expression you derived for the Green Saint-Venant strain tensor in Section

2.6.1.

Problem 2.43. This problem involves a planar deformation and for convenience we shall display only the

in-plane equations. As shown in Figure 2.37, the body occupies a rectangular strip of width W and height

H in a reference configuration. Coordinate axes are chosen such that

RR = {(x1, x2) : 0 ≤ x1 ≤W, 0 ≤ x2 ≤ H}.

The deformation takes the point (x1, x2) → (y1, y2) and the region RR → R. Let (r, θ) be the polar

coordinates in the deformed configuration,

y1 = r cos θ, y2 = r sin θ, (i)

with associated basis vectors

er(θ) = cos θ e1 + sin θ e2, eθ(θ) = − sin θ e1 + cos θ e2. (ii)

The deformation can be characterized by

r = r(x1, x2), θ = θ(x1, x2), (x1, x2) ∈ RR. (iii)

(a) Though the figure shows the region in the deformed configuration to be a circular annulus, in this part

of the problem do not assume the deformation (iii) to possess any form of symmetry. (You would have

to consider such non-symmetric deformations if, for example, your goal was to study the stability of the

cylindrically symmetric one.) Calculate the deformation gradient tensor F and the left Cauchy-Green tensor
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(a) Reference configuration (b) Deformed configuration

Figure 2.37: The body occupying a rectangular strip in the reference configuration, is rolled up into its

deformed configuration. The deformation takes (x1, x2)→ (y1, y2) and RR → R. Despite the figure on the

right, in part (a) of this problem do not assume the region R to be a circular annulus. Figure for Problem

2.43.

B using the bases {e1, e2} and {er, eθ} in the reference and deformed configurations respectively. Derive a

condition on r(x1, x2), θ(x1, x2) and their partial derivatives if the material is incompressible.

(b) Now consider the special case where the deformation carries each vertical line x1 = constant in RR into

a circle r = constant in R, and each horizontal line x2 = constant in RR into a radial line θ = constant

in R. This is illustrated by the dashed curves in Figure 2.38. The left- and right-hand boundaries x1 = 0

and x1 = W map into circles of radii r0 and r1 respectively. The bottom edge of the strip x2 = 0 and the

top edge of the strip x2 = H map into the respective radial lines θ = 0 and θ = 2π. What form do the

functions r(x1, x2) and θ(x1, x2) have in this case? Specialize your expressions for F and B from part (a)

to this case. Moreover, use the incompressibility condition to find r(x1, x2) and θ(x1, x2). What are the

principal stretches λr and λθ?

(c) Finally, suppose that the boundary Γ0 (see Figure 2.38) is not stretched by this deformation. Specialize

the deformation and the principal stretches from part (b) to this case.

Solution:

(a) To calculate the deformation gradient tensor F we use

x = x1e1 + x2e2, y = r(x1, x2) er(θ(x1, x2)),
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(a) Reference configuration (b) Deformed configuration

Figure 2.38: The body, occupying a rectangular strip in the reference configuration, is rolled up into a

circular annulus in its deformed configuration. As shown by the dashed curves, every vertical line maps into

a circle and every horizontal line maps into a radial line. The boundaries Γi → γi, i = 0, 1, 2, 3.

and (ii) and proceed as follows using the chain rule:

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2 =

=
∂

∂x1

[
r(x1, x2) er(θ(x1, x2))

]
dx1 +

∂

∂x2

[
r(x1, x2) er(θ(x1, x2))

]
dx2 =

=
∂r

∂x1
dx1 er + r

∂θ

∂x1
dx1 eθ +

∂r

∂x2
dx2 er + r

∂θ

∂x2
dx2 er,

where we have used the fact that ∂er/∂θ = eθ. From dx = dx1e1 + dx2e2 we have

dx1 = dx · e1, dx2 = dx · e2.

Substituting this into the preceding equation gives

dy =
∂r

∂x1
(dx · e1) er + r

∂θ

∂x1
(dx · e1) eθ +

∂r

∂x2
(dx · e2) er + r

∂θ

∂x2
(dx · e2) er =

=
∂r

∂x1
(er ⊗ e1) dx + r

∂θ

∂x1
(eθ ⊗ e1) dx +

∂r

∂x2
(er ⊗ e2) dx + r

∂θ

∂x2
(er ⊗ e2) dx

= F dx

where

F =
∂r

∂x1
(er ⊗ e1) + r

∂θ

∂x1
(eθ ⊗ e1) +

∂r

∂x2
(er ⊗ e2) + r

∂θ

∂x2
(er ⊗ e2). (iv)

The associated left Cauchy-Green tensor B = FFT is

B = FFT = Brrer ⊗ er +Brθ(er ⊗ eθ + eθ ⊗ er) +Bθθeθ ⊗ eθ, (v)
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where

Brr =

(
∂r

∂x1

)2

+

(
∂r

∂x2

)2

, Bθθ = r2

(
∂θ

∂x1

)2

+ r2

(
∂θ

∂x2

)2

,

Brθ = Bθr = r
∂r

∂x1

∂θ

∂x1
+ r

∂r

∂x2

∂θ

∂x2
,

(vi)

If the material is incompressible then the deformation has to be locally volume preserving and so det F =

r

(
∂r

∂x1

∂θ

∂x2
− ∂r

∂x2

∂θ

∂x1

)
= 1. (vii)

(b) Since each vertical line x1 = constant maps into a circle of radius r = constant it follows that r(x1, x2)

has to be independent of x2. Furthermore, since the left- and right-hand boundaries x1 = 0 and x1 = W

map into circles of radius r0 and r1 respectively, one must have r(0) = r0, r(W ) = r1. Similarly since

each horizontal line x2 = constant maps into a radial line θ = constant it follows that θ(x1, x2) has to be

independent of x1. Since the bottom edge of the strip x2 = 0 maps into the radial line θ = 0 and the top

edge of the strip x2 = H maps into the radial line θ = 2π we must have θ(0) = 0, θ(H) = 2π. Thus the

deformation (iii) specializes to

r = r(x1), θ = θ(x2). (viii)

with

r(0) = r0, r(W ) = r1, θ(0) = 0, θ(H) = 2π. (ix)

In this case the preceding results (iv), (v) specialize to

F = r′er ⊗ e1 + rθ′eθ ⊗ e2, (x)

B = FFT = (r′)
2
er ⊗ er + r2 (θ′)

2
eθ ⊗ eθ. (xi)

Since B = λ2
rer ⊗ er + λ2

θeθ ⊗ eθ, we conclude that the principal stretches are

λr = r′, λθ = rθ′, (xii)

where we have assumed r′ > 0, θ′ > 0. Otherwise the principal stretches would be λr = |r′|, λθ = r|θ′|.
Observe that

F = λrer ⊗ e1 + λθeθ ⊗ e2, B = λ2
rer ⊗ er + λ2

θeθ ⊗ eθ.

The consequence (vii) of incompressibility now specializes to

det F = rr′θ′ = 1 ⇒ r(x1)r′(x1)θ′(x2) = 1

By separating variables in this equation we conclude that

r(x1)r′(x1) =
1

θ′(x2)
= c1 (constant),

which when integrated yields

r(x1) =
√

2c1x1 + c2, θ(x2) =
x2

c 1
+ c4,
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where all the c’s are constants. The boundary conditions θ(0) = 0, θ(H) = 2π require c4 = 0, c1 = H/(2π),

while the boundary conditions r(0) = r0, r(W ) = r1 yield c2 = r2
0, r2

1 = r2
0 +HW/π. Thus the deformation

(viii) specializes to

r(x1) =
√
Hx1/π + r2

0, θ(x2) =
2πx2

H
, (xiii)

with the radius r1 of the outer boundary being

r1 =
√
r2
0 +HW/π. (xiv)

We could have written (xiv) immediately by equating the areas πr2
1 − πr2

0 = HW .

Observe from (xii)2 and (xiii) that λθ = 2πr/H. Again we could have written this down directly since a

vertical line of length H maps into a circle of radius r. By incompressibility, λr = 1/λθ. Thus the principal

stretches can be written as

λr =
H

2πr
, λθ =

2πr

H
. (xv)

(c) Since Γ0 and γ0 have the same lengths, 2πr0 = H and so the inner radius of the annulus is

r0 = H/2π. (xvi)

Substituting (xvi) into (xiii) and (xiv) allows the deformation to be written as

r(x1) = r0

√
1 + 2x1/(πr0), θ(x2) =

x2

r0
, (xvii)

and the radius r1 of the outer boundary as

r1 = r0

√
1 + 2W/r0. (xviii)

From (xv) and (xvi) the principal stretches can be expressed as

λr =
r0

r
, λθ =

r

r0
. (xix)

Problem 2.44. (Measures of volumetric and shape change.)

(a) Multiplicatively decompose an arbitrary deformation gradient tensor F into the product of a tensor

αI that captures the entire volume change associated with F and a tensor F that involves no volume

change, i.e. given F, find α and F such that

F = (αI)F = αF where det F = 1. (i)

One speaks of the part αI as the volumetric part of the deformation gradient tensor F while the part

F is the “shape change” (plus rotation) part of F.

(b) Define the “modified left Cauchy-Green deformation tensor” B and its principal scalar invariants

I1, I2, I3 by

B := F F
T
, I1 := tr B, I2 :=

1

2

[
(tr B)2 − tr B

2]
, I3 := det B. (2.129)
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Derive expressions for B, I1, I2, J in terms of B, I1, I2, I3 where, as usual

B = F FT , I1 = tr B, I2 =
1

2

[
(tr B)2 − tr B2

]
, J =

√
I3 =

√
det B, (ii)

and show that there is a one-to-one relation between {I1, I2, J} and {I1, I2, J}.

(c) Derive linearized expressions for the volumetric and shape change measures

αI− I and E :=
1

2

[
F F

T − I
]

when the displacement gradient is small. Express your answers in terms of the infinitesimal strain

and rotation tensors ε and ω.

Solution:

(a) We are told that det F = det(αI). It therefore follows from J = det F = det(αI) = α3 that α = J1/3

whence from (i):

F = J−1/3F, F = J1/3F. (2.130)

Given F, its factors J−1/3I and F are given by J = det F and (2.130)1. Conversely, given J and F, (2.130)2

gives F. Thus there is a one-to-one relation between F and the pair J,F.

(b) Starting from (ii)1,

B = FFT
(2.130)2= (J1/3F)(J1/3F

T
) = J2/3FF

T (2.129)1= J2/3B. � (2.131)

From (ii)2,

I1 = tr B
(2.131)

= J2/3tr B
(2.129)2= J2/3I1. (iii)

Since

tr B2 (2.131)
= tr (J2/3B)2 = J4/3tr B

2
, (iv)

it follows from (2.129)3, (ii)3, (iii) and (iv) that

I2 = J4/3I2. (v)

Thus, given I1, I2, J one can determine I1, I2, J from

I1 = J2/3I1, I2 = J4/3I2, (2.132)

and conversely, given I1, I2, J one can determine I1, I2, J from

I1 = J−2/3I1, I2 = J−4/3I2. (2.133)

(c) The right Cauchy Green tensor can be expressed as

C = FTF = (J1/3F)T (J1/3F) = J2/3FTF. (v)
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To linearize the preceding results we first note that

J = det F = det(I + H) = 1 + tr H +O(|H|2),

where

H = ∇u.

Therefore by the binomial expansion

Jn = [1 + tr H + . . .]
n

= 1 + n tr H +O(|H|2).

Therefore

J1/3I− I =

[
1 +

1

3
tr H + . . .

]
I− I =

1

3

(
tr H

)
I + . . . . (vi)

Similarly,

F = J−1/3F =

[
1− 1

3
tr H + . . .

]
(I + H) = I +

[
H− 1

3

(
tr H

)
I

]
+ . . .

and so

FF
T − I = H + HT − 2

3

(
tr H

)
+ . . . (vii)

Recall that the infinitesimal strain tensor ε is defined by

ε =
1

2
(∇u +∇uT ) =

1

2
(H + HT ). (viii)

It now follows from (vi), (vii), (viii) that

J1/3I− I =
1

3

(
tr ε
)
I, � (ix)

E :=
1

2

[
F F

T − I
]

= ε− 1

3

(
tr ε
)
I � (x)

The term on the right-hand side of (x) is known as the deviatoric (infinitesimal) strain; it is a measure of

shape change. Observe from (x) that ε is the sum of a volumetric term and shape change term (whereas in

the finite deformation theory we have a multiplicative decomposition).

Problem 2.45. Rigid deformation. A deformation y(x) is said to be rigid if it preserves the distance

between all pairs of particles, i.e. if (2.16) holds. Show that a deformation is rigid if and only if it has the

form

y(x) = Qx + b (i)

where Q is a constant orthogonal tensor and b is a constant vector.

Solution: A deformation is rigid if the distance |z − x| between any two particles x and z in the reference

configuration equals the distance |y(z)− y(x)| between them in the deformed configuration:

|y(z)− y(x)|2 = |z− x|2 for all x, z ∈ RR,
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which can write in component form as[
yi(z)− yi(x)

][
yi(z)− yi(x)

]
= (zi − xi)(zi − xi) for all x, z ∈ RR. (ii)

Since (ii) holds for all x, we may take its derivative with respect to xj to get

−2Fij(x) (yi(z)− yi(x)) = −2(zj − xj) for all x, z ∈ RR, (iii)

where Fij(x) = ∂yi(x)/∂xj are the components of the deformation gradient tensor. Since (iii) holds for all

z we may take its derivative with respect to zk to obtain Fij(x)Fik(z) = δjk, i.e.

FT (x)F(z) = 1 for all x, z ∈ RR. (iv)

Finally, since (iv) holds for all x and all z, we can take x = z in (iv) to get

FT (x)F(x) = I for all x ∈ RR.

Thus we conclude that F(x) is an orthogonal tensor at each x. In fact, since detF > 0, it is proper orthogonal

and therefore represents a rotation.

The (possible) dependence of F on x implies that F might be a different proper orthogonal tensor at

different points x in the body. However, returning to (iv), multiplying both sides of it by F(x) and recalling

that F is orthogonal gives

F(z) = F(x) at all x, z ∈ RR,

which implies that F(x) is a constant tensor.

Therefore (a) since we have shown that F(x) is a constant tensor, it follows by integrating ∇y = F that

the deformation necessarily has the form y(x) = Fx + b for a constant tensor F and a constant vector b;

and (b) since we have shown that F is proper orthogonal, this now leads to (i).

Conversely it is easy to verify that (i) satisfies (ii).

Problem 2.46. “Orientation” preserving deformation. A triplet of vectors {dx(1), dx(2), dx(3)} is right-

handed if

(dx(1) × dx(2)) · dx(3) > 0.

A deformation is said to preserve orientation if every right-handed linearly-independent triplet of material

fibers {dx(1), dx(2), dx(3)} is carried into a right-handed triplet of fibers {dy(1), dy(2), dy(3)}. Show that a

deformation y(x) is orientation preserving if and only if

det F > 0 where F = ∇y. (i)

Solution: Consider a triplet of linearly independent material fibers {dx(1), dx(2), dx(3)}. We are told it is

right-handed and so

(dx(1) × dx(2)) · dx(3) > 0. (ii)
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The deformation carries these fibers into the three fibers dy(1) = Fdx(1), dy(2) = Fdx(2), dy(3) = Fdx(3).

We what to find the condition under which this second triplet of vectors is also right-handed, i.e. (dy(1) ×
dy(2)) · dy(3) > 0. We proceed as follows:

(dy(1) × dy(2)) · dy(3) = (Fdx(1) × Fdx(2)) · Fdx(3),

= det F (dx(1) × dx(2)) · dx(3),

where is the second step we have used the vector identity (Ta×Tb) ·Tc = det T (a× b) · c that holds for

any three linearly independent vectors a,b, c and nonsingular tensor T; see Problem 1.4.15. Therefore given

(ii),

(dy(1) × dy(2)) · dy(3) > 0. (iii)

if and only if (i) holds. This establishes the result.

Problem 2.47. (Change of Area). Derive Nanson’s formula, i.e. calculate the relationship between two

material area elements dAxnR and dAyn in the reference and deformed configurations respectively; see

Figure 2.10.

Solution: Consider the parallelogram in the reference configuration defined by the fibers dx(1) and dx(2) as

shown in Figure 2.10. Let dAx denote its area and let nR be a unit vector normal to this plane. Then, from

the definition of the vector product between the vectors dx(1) and dx(2) we have

dx(1) × dx(2) = |dx(1)| |dx(2)| sin θ nR

where θ is the angle between dx(1) and dx(2). However it is readily seen by geometry that |dx(1)| is the

length of the base of the parallelogram and |dx(2)| sin θ is its height. Therefore

|dx(1)| |dx(2)| sin θ = dAx,

and so

dx(1) × dx(2) = dAx nR. (i)

Similarly if dAy and n are the area and unit normal vector, respectively, to the surface in the deformed

configuration defined by dy(1) and dy(2), then

dy(1) × dy(2) = dAy n. (ii)

Note that the surfaces under consideration (shown shaded in Figure 2.10) are “material” surfaces in the

sense that they composed of the same particles. The unit vectors nR and n are defined by the fact that they

are normal to these material surface elements.

It now follows that

dAy n = dy(1) × dy(2) = Fdx(1) × Fdx(2) =

= det F F−T (dx(1) × dx(2)) =

(i)
= det F F−T (dAxnR) = dAx det F F−TnR,
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where in getting to the second line we have used the vector identity Ta×Tb = det T T−T (a×b) that holds

for any pair of linearly independent vectors a,b and nonsingular 2-tensor T; see (1.194) on page 88. We are

thus led to the desired result

dAy n = dAx J F−T nR . (iii)

that relates the vector areas dAyn and dAxnR. By taking the magnitude of this vector equation we find

that the areas dAy and dAx are related by

dAy = dAx J |F−T nR|; (iv)

On substituting (iv) into (iii) we find that the unit normal vectors nR and n are related by

n =
F−TnR

|F−TnR|
. (v)



2.10. EXERCISES. 247

References:

1. R. Abeyaratne, Chapters 2 and 3 of Continuum Mechanics, Volume II in the series Lec-

ture Notes on The Mechanics of Solids, http://web.mit.edu/abeyaratne/lecture_

notes.html.

2. R. J. Atkin and N. Fox, Chapter 1 of An Introduction to the Theory of Elasticity,

Longman, 1980.

3. P. Chadwick, Chapter 2 of Continuum Mechanics: Concise Theory and Problems,

Dover, 1999.

4. A. Goriely, A. Erlich and C. Goodbrake, C5.1 Solid Mechanics: Online problem

sheets, https://courses.maths.ox.ac.uk/node/36846/materials, Oxford Univer-

sity, 2018.

5. M.E. Gurtin, E. Fried and L. Anand, Part III of The Mechanics and Thermodynamics

of Continua, Cambridge University Press, 2010.

6. R. W. Ogden, Chapter 2 of Non-linear Elastic Deformations, Dover, 1997.

7. R. S. Rivlin and D. W. Saunders, Large elastic deformations of isotropic materials. VII

Experiments on the deformation of rubber, Philosophical Transactions of the Royal

Society of London. Series A., Volume 243, 1951, pp. 34 - 288.

8. A.J.M. Spencer, Continuum Mechanics, Chapters 4 and 6, Longman, 1980.

9. C. Truesdell and R.A. Toupin, The Classical Field Theories, in Handbuch der Physik,
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2.11 Appendix

2.11.1 The material time derivative.

Next consider a time-dependent motion of the body on some time interval [t0, t1]. The

motion takes the particle located at x in the reference configuration to the location ŷ(x, t)

at time t:

y = ŷ(x, t), x ∈ RR, y ∈ Rt, t ∈ [t0, t1], (2.134)

Rt being the region of space occupied by the body at time t. Note that Rt evolves with

time. Since there is a one-to-one relation between x and y at each time, there is an inverse

mapping

x = x(y, t)

that takes Rt 7→ RR.

Keep in mind that the location of a particle in the reference configuration serves as a

convenient tag by which to identify the particle and so x serves as a proxy for a particle

label. Thus when we want to consider the rate of change of some field at a fixed particle, we

consider its rate of change at fixed x.

Now consider a field φ(y, t) defined on Rt. Though this represents φ spatially, suppose

we want to calculate its time rate of change at a fixed particle – the so-called material

time derivative of φ. We shall use a superior dot to denote this time rate of change of φ

by writing φ̇. In order to calculate φ̇ we first use the motion y = ŷ(x, t) to map φ into the

reference configuration thus obtaining its material representation φ̂(x, t) where

φ̂(x, t) = φ(ŷ(x, t), t). (2.135)

Then by φ̇ we mean

φ̇ =
∂φ̂

∂t
(x, t).

In particular, the velocity of a particle at time t is the time rate of change of position at

a fixed particle:

v̂(x, t) := ẏ =
∂ŷ

∂t
(x, t). (2.136)

Following the discussion in Section 2.8, we can express the velocity field spatially in the form

v(y, t) or referentially in the form v̂(x, t) where these two representations are related by

v(y, t) = v̂(x(y, t), t), v̂(x, t) = v(ŷ(x, t), t).
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Returning to a generic function φ(y, t), we can calculate its material time derivative by

differentiating (2.135) with respect to time (keeping x fixed) and using the chain rule:

φ̇ =
∂φ̂

∂t
(x, t) =

∂φ

∂yi
(y, t)

∂ŷi
∂t

(x, t) +
∂φ

∂t
(y, t) =

∂φ

∂yi
vi +

∂φ

∂t

which we can write as

φ̇ = v · gradφ+
∂φ

∂t
, (2.137)

where gradφ is the vector field with cartesian components ∂φ/∂yi.

Exercise: Show that

J̇ = J div v (2.138)

where J = det F. In cartesian components, div v = ∂vi/∂yi.

Exercise: The velocity gradient tensor L is the tensor with cartesian components ∂vi/∂yj :

L := grad v, Lij =
∂vi
∂yj

(y, t). (2.139)

Show that

Ḟ = LF and div v = tr L. (2.140)

2.11.2 A transport theorem.

In subsequent chapters we will need to calculate the rate of change of energy associated with some part of

the body. Suppose that this part occupies a subregion Dt ⊂ Rt at time t, keeping in mind that even though

Dt moves through space, the same material particles are associated with it at all times. We will therefore

have to evaluate a term of the form
d

dt

∫
Dt
φ(y, t) dVy.

If Dt did not depend on t we would simply take the derivative inside the integral but here we must pay

attention to the fact that Dt is time-dependent. In order to get around the time dependency of Dt, we map

Dt into the (time-independent) region DR that it occupies in the reference configuration using the motion

y = ŷ(x, t). Under this mapping Dt 7→ DR, φ(y, t) 7→ φ̂(x, t) and dVy 7→ JdVx. Accordingly

d

dt

∫
Dt
φ(y, t) dVy =

d

dt

∫
DR

φ̂(x, t) J dVx.

We can now take the derivative inside the integral since DR is time independent:

d

dt

∫
Dt
φ(y, t) dVy =

d

dt

∫
DR

φ̂(x, t) J(x, t) dVx =

∫
DR

∂

∂t

(
φ̂(x, t) J(x, t)

)
dVx =

=

∫
DR

(φ̇J + φJ̇) dVx
(2.138)

=

∫
DR

(φ̇J + φJ div v) dVx =

=

∫
DR

(φ̇+ φ div v) J dVx =

∫
Dt

(φ̇+ φ div v) dVy,
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where in getting to the very last expression we reverted from DR 7→ Dt and JdVx 7→ dVy. Therefore we have

the transport formula
d

dt

∫
Dt
φdVy =

∫
Dt

(φ̇+ φ div v) dVy (2.141)

for the function φ(y, t). Similar transport formulae can be written for vector and tensor fields, as well as for

fields defined on a moving surface St or a moving curve Lt; see Volume II.

Finally we note an illuminating alternative form of (2.141). First, we can rewrite (2.137) as

φ̇ = gradφ · v +
∂φ

∂t
(y, t) = div (φv)− φdiv v +

∂φ

∂t
(y, t),

where div v is the scalar field ∂vi/∂yi. Substituting this into (2.141) yields

d

dt

∫
Dt
φdVy =

∫
Dt

(
∂φ

∂t
+ div (φv)

)
dVy. (2.142)

Finally we use the divergence theorem (1.173) to rewrite the last term thus obtaining the following alternate

form of the transport formula:

d

dt

∫
Dt
φdVy =

∫
Dt

∂φ

∂t
dVy +

∫
∂Dt

φv · n dAy. (2.143)

In this representation, the last term characterizes the flux of φ across the boundary ∂Dt.

2.11.3 Exercises.

Problem 2.11.1. Consider the particular (time-dependent) motion y = ŷ(x, t) :

y1 = a(t)x1 + b(t)x2, y2 = c(t)x2, y3 = d(t)x3. (i)

Calculate the particle velocity field and express it in both referential (material) form and spatial form.

Calculate the particle acceleration field and express it in spatial form.

Calculate the components of Grad v, the tensor with cartesian components ∂vi(x, t)/∂xj .

Calculate the components of the velocity gradient tensor L = grad v where grad v is the tensor with cartesian

components ∂vi(y, t)/∂yj .

Calculate also the stretching tensor field D(y, t):

D :=
1

2
(L + LT ). (2.144)

Solution: Differentiating (i) at a fixed particle, i.e. with x held fixed, gives the particle velocity field

v1(x, t) = ȧx1 + ḃx2, v2(x, t) = ċx2, v3(x, t) = ḋx3. (ii)
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In order to express the velocity field spatially, i.e. as a function of y and t, we must first solve (i) to get

x = x(y, t):

x1 =
1

a

(
y1 −

b

c
y2

)
, x2 =

1

c
y2, x3 =

1

d
y3. (iii)

We can now find the spatial representation v(y, t) of the velocity by substituting (iii) into (ii):

v1(y, t) =
ȧ

a

(
y1 −

b

c
y2

)
+
ḃ

c
y2, v2(y, t) =

ċ

c
y2, v3(y, t) =

ḋ

d
y3. (iv)

The velocity gradient tensor L(y, t) has components Lij = ∂vi/∂yj which we find by differentiating (iv) with

respect to the yj ’s:

L(y, t) =
ȧ

a
e1 ⊗ e1 +

(
ḃ

c
− bȧ

ac

)
e1 ⊗ e2 +

ċ

c
e2 ⊗ e2 +

ḋ

d
e3 ⊗ e3. (v)

The rate of deformation tensor D is therefore

D =
1

2
(L + LT ) =

ȧ

a
e1 ⊗ e1 +

1

2

(
ḃ

c
− bȧ

ac

)
(e1 ⊗ e2 + e2 ⊗ e1) +

ċ

c
e2 ⊗ e2 +

ḋ

d
e3 ⊗ e3. (vi)

Problem 2.11.2. A body undergoes a motion y = ŷ(x, t) and occupies a region Rt at time t. Calculate

the rate of change of the surface area of the outer boundary of the body:

d

dt

∫
∂Rt

dAy. (i)

Solution: The following preliminary results will be useful. Recall from (2.39) and (2.40) that

dAy = J |F−TnR| dAx, n =
F−TnR

|F−TnR|
, (ii)

from (2.140) that

Ḟ = LF, (iii)

and from (1.207) that

Ḟ−1 = −F−1ḞF−1. (iv)

It follows from (iv) that

Ḟ
−T

= −F−T Ḟ
T
F−T

(iii)
= LTF−T . (v)

Next,
∂

∂t
|F−TnR|2 = 2|F−TnR|

∂

∂t
|F−TnR|, (vi)

and alternatively

∂

∂t
|F−TnR|2 =

∂

∂t
(F−TnR · F−TnR) = 2Ḟ

−T
nR · F−TnR =

(ii)2
= 2|F−TnR| Ḟ

−T
nR · n

(v)
= 2|F−TnR|LTF−TnR · n =

(ii)2
= 2|F−TnR|2 LTn · n = 2|F−TnR|2 Ln · n.

(vii)
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Combining (vi) and (vii)
∂

∂t
|F−TnR| = |F−TnR| Ln · n. (viii)

We can now calculate the rate of change of surface area as follows:

d

dt

∫
∂Rt

dAy
(ii)1
=

d

dt

∫
∂RR

J |F−TnR| dAx =

∫
∂RR

[
J̇ |F−TnR|+ J

∂

∂t
|F−TnR|

]
dAx =

(viii),(2.138)
=

∫
∂RR

[
J div v |F−TnR|+ J |F−TnR|Ln · n

]
dAx =

=

∫
∂RR

[div v + Ln · n] J |F−TnR|dAx =

(ii)1
=

∫
∂Rt

[div v − Ln · n] dAy =

∫
∂Rt

[tr L− Ln · n] dAy =

=

∫
∂Rt

L · [I− n⊗ n] dAy. �

Problem 2.11.3. (A transport theorem.) A body undergoes a motion y = ŷ(x, t) and occupies a region

Rt at time t. Let St be an evolving material surface in the interior of Rt – by a material surface we mean

that the same material particles lie on St at all times even though St moves through space. Let g(y, t) be a

smooth vector field defined for all y ∈ Rt at each t. Show that

d

dt

∫
St

g · n dAy =

∫
St

(ġ + (tr L) g − Lg) · n dAy, (2.145)

where ġ is the material time derivative of g as defined just above (2.138) and L = grad v is the velocity

gradient tensor defined in (2.139).



Chapter 3

Force, Equilibrium Principles and

Stress

In this chapter we consider the equilibrium principles of force and moment balance and their

consequences. The analysis holds no matter what the constitutive characteristics of the

material, provided only that it can be modeled as a continuum. Our focus will be on purely

mechanical issues. A more complete discussion (including inertial effects) can be found in

the references listed at the end of this chapter

A roadmap of this chapter is as follows: in Section 3.1 we introduce the notion of force,

more specifically body force and traction, and discuss their various attributes. The global

balance laws for force and moment equilibrium are stated in Section 3.2, and from them

we deduce the notion of stress and discuss it in Section 3.3. Section 3.4 is devoted to

deriving the field equations associated with the balance laws. Principal stresses and principal

directions are discussed in Section 3.5. The analysis and discussion up to this point are

carried out entirely using the geometric characteristics of the deformed configuration without

any mention of a reference configuration or the deformation. It is often useful however to

work with an (equivalent) formulation with respect to a reference configuration. Accordingly

in Section 3.7 we reformulate the geometric aspects of the preceding analysis to be those

associated with a reference configuration and the Piola stress tensor is introduced. Section

3.8 considers the rate at which stress does work – the stress power – , and the notion of

work-conjugate stress-strain pairs is discussed in Section 3.8.1. The preceding results are

linearized in Section 3.9. Finally in Section 3.10 we examine the equilibrium equations in

cylindrical and spherical polar coordinates.

253
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All fields encountered in this chapter will be assumed to be smooth. That is, we assume

them to be differentiable as many times as needed, and that these derivatives are continuous.

This must be relaxed when, for example, we consider a two-phase material where the stress

field will be discontinuous at an interface between two phases (Problem 3.28).

3.1 Force.

We are concerned with the deformed configuration of the body. In this configuration the

body occupies a region R, and an arbitrary part of the body1 occupies a region D that is a

subregion of R. It is convenient to refer to D as a part of the body (rather than to use the

more cumbersome but precise phrase “the region occupied by a part of the body”). In this

configuration, a generic particle is located at y ∈ R. Inertial effects are not considered and

when we refer to time t, we only use it to discuss a one-parameter family of configurations

– a so-called “quasi-static motion”.

t dAy

R t

dAy

area A

n

R

dAy

area A

n

ρb dVy

t dAy

R t

dAy

area A

D

dVy

D t

dVy

ρb dVy

t dAy

dVy

b dVy

t dAy

R t

dAy

Figure 3.1: Forces acting on a part D of the body: the traction t is a force per unit area acting at points

on the boundary ∂D due to contact between D and the rest of the body across the surface ∂D. The body

force density b is a force per unit volume acting at points in the interior of D applied by agents outside the

body.

We now turn our attention to the forces acting on an arbitrary part D of the deformed

body. As depicted in Figure 3.1 we assume there are two types of forces: body forces that act

at each point in the interior of D and are applied by agents outside of the body, and contact

1A part of a body involves the same set of particles in all configurations. For a more careful discussion,

see Volume II.
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forces or tractions2 that act at points on the boundary ∂D of D and represent forces due to

contact between D and the rest of the body3 across the surface ∂D. The body force density

b is a force per unit (deformed) volume4, while the contact force density t is a force per unit

(deformed) surface area; see Figure 3.1.

In order to characterize a force, we must specify how it contributes to (a) the resultant

force, (b) the resultant moment about an arbitrary fixed (pivot) point, and (c) how it does

work.

Since b is a force per unit volume distributed over D, its resultant is its volume integral

over D. Similarly since t is a force per unit area distributed over the boundary ∂D, its

resultant is its surface integral over ∂D. The resultant external force on the part D under

consideration is thus taken to be ∫
D

b dVy +

∫
∂D

t dAy ; (3.1)

the resultant moment of the external forces acting on D about an arbitrary fixed point O is

taken to be ∫
D

y × b dVy +

∫
∂D

y × t dAy (3.2)

where y is position with respect to O; and the rate of working of the external forces acting

on D is taken to be ∫
D

b · v dVy +

∫
∂D

t · v dAy , (3.3)

where v is particle velocity. Note that t represents a force per unit deformed area and b a

force per unit deformed volume.

In order for the formulae (3.1) - (3.3) to be useful, we must specify the variables on which

b and t depend. We expect that the body force density may depend on position y and so

we assume that

b = b(y). (3.4)

We now turn to the traction t. It too will depend on the position y but it cannot depend

only on y. To see this consider Figure 3.2. The two figures there both show the same region

D; the point A in both is the same and its position vector is yA. In the left-hand figure, D1

2Some authors call this the stress vector.
3If part of ∂D coincides with a part of ∂R, the contact force on that part of the surface is applied by an

outside agent.
4One can alternatively characterize the body force as a force per unit mass.
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and D2 are two parts of the body and A lies on the interface between them. The right-hand

figure shows two different parts, D3 and D4, and A lies on the interface between these two

parts as well. The interface between D3 and D4 is different to that between D1 and D2

though A lies on both interfaces. If the traction t depended only on y, then the traction at

A would be t(yA) and the force per unit area applied by5 D1 on D2 at A and the force per

unit area applied by D3 on D4 at A would both be t(yA). However we do not expect the

force applied by D1 on D2 to be the same as that applied by D3 on D4.

AA

Figure 3.2: Traction depends on the surface on which it acts: Regions D1 and D2 are occupied by two

parts of a body, while D3 and D4 are occupied by a different pair of parts. Planar interfaces separate these

parts while the point A is common to both interfaces. The traction t1 in the figure on the left is applied

at A by the material in D1 on that in D2. The traction t2 in the figure on the right is applied at A by the

material in D3 on that in D4. Even though both tractions are associated with the same point yA there is

no reason to expect that t1 = t2.

Therefore the traction must depend on the specific surface at y on which it acts. To first

order, a surface is defined by its unit normal vector n, and so we shall assume that

t = t(y,n). (3.5)

Of course n would vary along ∂D and so it too is a function of y: n = n(y). According

to (3.5) the dependence of the traction on the surface is only through the normal vector

and not, for example, the curvature of the surface. The ansatz (3.5) is known as Cauchy’s

hypothesis.

It is worth emphasizing that according to (3.3) the traction t(y,n) denotes the force

per unit area applied by the part outside D on the material inside D. Now consider a (not-

necessarily closed) surface S in the body and let y be a point on this surface and let n be a

5Question: Is this the force applied by D2 on D1 or by D1 on D2?
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IdA

Figure 3.3: The force vector t(n) dAy acting on an infinitesimal surface element. This force is applied by

the material on the positive side of the surface on the material on the negative side. The positive side is the

one into which the unit normal vector n points.

unit vector that is normal to S as shown in Figure 3.3. The side of S into which n points

is referred to as the positive side of S and the other is the negative side. By convention, the

traction vector t(y,n) denotes the force per unit area applied by the material on the positive

side on the material on the negative side.

Is this consistent with our earlier discussion of the traction on the closed surface ∂D? If

the unit normal vector n on ∂D is taken so it points out of D, then the positive side of the

surface is the outside of D and so t(y,n) is the traction applied by the part outside of D on

D. This is exactly what we had earlier, the point being that the unit normal vector should

be pointing outwards.

A

A

Figure 3.4: The unit outward normal vector to D1 is n1 and so the traction that is applied by D2 on D1 is

t(n1). The unit outward normal vector to D2 is n2 and so the traction applied by D1 on D2 is t(n2). While

n1 = −n2 we do not know (yet) whether t(n1) = −t(n2).
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Continuing to focus on the dependence of the traction on the normal vector, consider the

body shown in Figure 3.4. In order to calculate the traction acting on D1 at A, we draw the

unit normal vector to the interface that points outward from D1. This is denoted by n1 in

the figure. Thus the traction acting on D1 is t(yA,n1); this is applied by D2. On the other

hand if we want to calculate the traction acting on D2 at A, we draw the unit normal vector

n2 that points outward from D2. Thus the traction acting on D2 is t(yA,n2); this is applied

by D1. We do not (yet) know how t(yA,n1) relates to t(yA,n2) though n1 = −n2, i.e. how

t(y,n) relates to t(y,−n).

Dt

t

Tn

n

D1

Tn

D

Figure 3.5: Components of the traction t: normal stress Tnormal and resultant shear stress Tshear .

Finally we emphasize that the traction acts in a direction that need not be normal to the

surface; i.e., as depicted in Figure 3.5, t(n) is not in general parallel to n (where here and

the rest of this paragraph we suppress the dependency on y). The component of traction

that is normal to the surface is called the normal stress and we denote it by Tnormal:

Tnormal(n) := t(n) · n ; (3.6)

the associated normal traction vector is Tnormal n = (t · n) n. When Tnormal > 0 we say it is

tensile, compressive when Tnormal < 0. The resultant shear traction vector is t − (t · n)n =

(I−n⊗n)t. Its magnitude, the resultant shear stress Tshear, by the Pythagorean theorem is

Tshear(n) :=
√
|t|2 − T 2

normal =

√[
t(n) · t(n)

]
−
[
t(n) · n

]2
. (3.7)

A natural (and important) question to ask is: “from among all planes through a given

point, on which is Tnormal(n) largest? And on which is it smallest?” This requires one to

consider Tnormal(n) as a function of the unit vector n and to find the specific vector(s) n at

which it has its extrema. One can ask a similar question for the shear stress Tshear(n). We

shall revisit these questions once we have more information on how t(n) depends on n.
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3.2 Force and moment equilibrium.

The equilibrium principle for force balance postulates that the resultant force on every part

of the body vanishes: ∫
D

b dVy +

∫
∂D

t dAy = o for all D ⊂ R. (3.8)

Similarly, the equilibrium principle of moment balance postulates that the resultant moment

(about a fixed point O) on every part of the body vanishes:∫
D

y × b dVy +

∫
∂D

y × t dAy = o for all D ⊂ R. (3.9)

Both (3.8) and (3.9) must hold for every part of the body.

An equation that holds at each point y is said to be “local” while one that holds for each

part D is said to be “global”. Global statements such as (3.8) and (3.9) are convenient when

formulating the basic balance principles. When solving a specific boundary-value problem

however it is more useful to have a local version of that principle. The local statement

corresponding to a balance law is said to be the associated field equation.

From the discussion in Section 3.1 we know that the integrand of the surface integral

term in (3.8) depends on the unit normal vector n. If this dependence is linear, and we do

not yet know if this is true, then the integrand would have the form An where A is some

2-tensor. In this event we can use the divergence theorem to rewrite the surface integral as

a volume integral, and the equation would have the form of a single volume integral over D
that is to vanish. Since this balance law is to hold for all parts D of the body, then provided

the integrand is continuous, we conclude by localization (Section 1.8.3) that the integrand

itself must vanish at each point y ∈ R. This leads to the field equation associated with (3.8).

We could simplify (3.9) similarly. This is what we shall carry out in Section 3.4 below, but

before we do that we must show that the traction t(y,n) depends linearly on n.

Example: Show that force and moment balance, (3.8) and (3.9), hold if and only if the rate of working of

the tractions and body forces vanishes in all steady rigid motions.

Solution The rate of working (power) of the tractions and body forces is given by (3.3) where v is particle

velocity. In the special case of a steady rigid motion, the velocity is given by equation (2.97) of Problem

2.8.4:

v(y) = c + ω × y, (i)
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where the constant vectors ω and c represent the angular and translational velocities respectively. Substi-

tuting (i) into (3.3) gives the rate of working in a steady rigid motion to be

Prigid =

∫
∂D

t · (c + ω × y) dAy +

∫
D

b · (c + ω × y) dVy,

which we can write as

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+

[∫
∂D

t · (ω × y) dAy +

∫
D

b · (ω × y) dVy

]
.

This can be rewritten using the vector identity p · (q× r) = q · (r× p) as

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+

[∫
∂D
ω · (y × t) dAy +

∫
D
ω · (y × b) dVy

]
,

from which we conclude that

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+ ω ·

[∫
∂D

y × t dAy +

∫
D

y × b dVy

]
. (ii)

Therefore when force and moment balance, (3.8) and (3.9), hold, it follows from (ii) that the rate of working

vanishes: Prigid = 0. Conversely if the rate of working vanishes is every steady rigid motion, i.e. if Prigid = 0

for all vectors c and ω, it follows from (ii) that force and moment balance necessarily hold.

3.3 Consequences of force balance. Stress.

D = D1 ∪ D2

Dt = D1 ∪ D2

S

D1

D2

S

D1

D2

n

Dt = D1 ∪ D2

S

D1

D

D2

n

Figure 3.6: A surface S∗ contained within R intersects the sub-region D and separates it into two parts

D1 and D2.

We now explore several implications of force balance. The focus in this section is on how

the traction vector t(y,n) depends on the unit vector n. The position y will play no central
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role in our discussion and so it will be convenient to suppress y and write t(n) instead of

t(y,n).

Consequence (1): The “equal and opposite” property t(n) = −t(−n).

Let S∗ be an arbitrary surface contained within the region R occupied by the deformed

body as shown in Figure 3.6. Pick a sub-region D that is intersected by S∗ and is thus

separated into regions D1 and D2: D = D1 ∪ D2. S is the portion of S∗ that is contained

within D and is therefore the interface between D1 and D2. Note that the unit normal vector

n on S shown in the figure is outward to D1 whereas −n is outward to D2. Thus when force

balance (3.8) is applied to D1, the traction term will involve the integral of t(n) over S,

whereas when it is applied to D2, it will involve the integral of t(−n) over S. We now apply

(3.8) to each of the regions D1, D2 and D individually, and then subtract the first two of the

resulting equations from the third. This leads to (Exercise)∫
S

[t(n) + t(−n)] dAy = 0. (3.10)

Since this must hold for arbitrary choices of D, and therefore for arbitrary choices of S, it

follows by localization6 that the integrand must vanish at each point on S. Thus we conclude

that

t(−n) = −t(n) (3.11)

for all unit vectors n.

Observe that this is the analog for a continuum of Newton’s third law for particles. It

says that the traction exerted on the positive side of a surface by the negative side, is equal

in magnitude and opposite in direction to the traction exerted on the negative side by the

positive side. While this appears to be a consequence of force balance and not a separate

postulate, it is in fact implicitly buried within the assumption that the force on D is given

by (3.1).

Consequence (2): The traction t(n) is a linear function of n.

We now derive an expression for the traction on a plane oriented in an arbitrary direction

n in terms of the tractions on three mutually orthogonal planes, e.g. planes normal to the

basis vectors e1, e2 and e3. This leads to a second, critically important, consequence of force

balance, namely that the traction vector t(n) depends linearly on the normal vector n. This

is called Cauchy’s Theorem.

6See Section 1.8.3 for the volume integral version of localization.
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Figure 3.7: Tetrahedral subregion D of the body.

In order to establish this, consider the tetrahedral subregion D shown in Figure 3.7 with

three of its faces parallel to the coordinate planes. Observe that the unit outward normal

vectors to the four faces of D are n, −e1, −e2 and −e3. Moreover, if the area of the shaded

face is A, one can readily show from geometry that the area, Ak, of the face normal to ek

is nkA. Next we apply force balance to this tetrahedron, and take the limit of the resulting

equation as the height h → 0 keeping the orientations of all faces fixed. In this limit the

volumetric term (which involves the body force) approaches zero like h3 whereas the area

terms (which involve the traction) approach zero like h2. Therefore the volumetric term goes

to zero faster than the area terms and so only the area terms survive in this limit leading to

lim
h→0

At(n) + A1t(−e1) + A2t(−e2) + A3t(−e3) = 0. (3.12)

Because of (3.11) and Ak = nkA, this leads to

t(n) = n1t(e1) + n2t(e2) + n3t(e3) = t(ek)nk. (3.13)

Equation (3.13) tells us that if we know the tractions on three mutually orthogonal planes,

for example the planes normal to the basis vectors e1, e2 and e3, we can calculate the traction

on any other plane from that information alone. Observe by writing (3.13) as

t(n1e1 +n2e2 +n3e3) = n1t(e1)+n2t(e2)+n3t(e3) for all n1, n2, n3 with n2
1 +n2

2 +n2
3 = 1,

that t(n) is a linear function of n on the set of all unit vectors.

Consequence (3): The stress tensor T.

As observed above, in order to calculate the traction on an arbitrary plane we only need

know the tractions t(e1), t(e2), t(e3) on the three coordinate planes. It is natural therefore

to “label” the components of these three traction vectors. Since each traction vector has

three components, we have a total of nine components to label.
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Accordingly let Tij, i, j = 1, 2, 3, be the ith component of the traction t(ej):

Tij := ti(ej) = t(ej) · ei.

This is illustrated in Figure 3.8(a). Note that the second subscript of Tij identifies the surface

on which the traction acts and the first identifies the direction of that traction component.

Thus each Tij represents a force per unit deformed area acting on a particular coordinate

plane in a particular direction. An equivalent way in which to write the preceding equation

is t(ej) = Tijei. Thus we have

Tij := ti(ej) = t(ej) · ei, t(ej) = Tijei. (3.14)
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Figure 3.8: The figure shows two views of the same cubic region and the same basis vectors {e1, e2, e3}.
Figure (a) shows the stress components Tij acting on the three faces with outward normals +e1, +e2 and

+e3. Observe how the figure is consistent with Tij = t(ej) · (ei). Figure (b) shows the stress components Tij

acting on the three faces with outward normals −e1, −e2 and −e3. Note in this case the consistency with

Tij = t(−ej) · (−ei).

In order to determine the traction components on a face whose outward normal is in the

negative jth-direction we observe from (3.11), (3.14)2 that

t(−ej) = −t(ej) = −Tijei = Tij(−ei). (3.15)

Therefore the force/area acting on a surface with unit normal −ej, in the direction −ei, is

Tij. This is illustrated in Figure 3.8(b).
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The 9 elements Tij may be assembled into a matrix [T ]. The elements T11, T22 and T33

on the diagonal of [T ] are known as the normal stress components; the off-diagonal terms

Tij, i 6= j, are the shear stress components.

We now return to the expression (3.13) for the traction on an arbitrary surface and

substitute (3.14) and nj = ej · n into it:

t(n)
(3.13)
= t(ej)nj

(3.14)
= (Tijei)nj = Tijnjei = Tij(ej · n)ei = Tij(ei ⊗ ej)n =

(
Tij ei ⊗ ej

)
n .

(3.16)

Let T be the second-order tensor whose components in the basis {e1, e2, e3} are Tij, i.e7.

T = Tijei ⊗ ej. (3.17)

It now follows that (3.16) can be written as t(n) = Tn, or by writing out all the arguments:

t(y,n) = T(y)n. (3.18)

In terms of components,

ti(n) = Tijnj, {t} = [T ]{n}. (3.19)

The tensor T(y) is known as the Cauchy stress tensor. Observe that T does not

depend on the normal vector n. Therefore we may speak of the stress at a point. In contrast,

when speaking of traction, we must speak of the traction on a surface through a point. When

T(y) is known, equation (3.18) can be used to calculate the traction t(y,n) on any plane

through y. The equilibrium principle of moment balance will show that T is symmetric.

As noted earlier, the component Tij of the stress tensor represents the ith component

of the force per unit area acting on a surface whose normal is in the jth direction. It is

worth reiterating that we have been concerned with the region occupied by the deformed

body and therefore (a) the surface referenced above must be normal to the jth direction in

the deformed configuration, and (b) the area referenced above refers to area in the deformed

configuration. The middle figure in Figure 3.16 illustrates this in a special case.

The normal stress and the magnitude of the resultant shear stress introduced in (3.6)

and (3.7) can now be written in the following respective forms with the dependence on n

made explicit:

Tnormal(n) = Tn · n , (3.20)

7See Section 1.4.3, in particular (1.200).
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Tshear(n) =

√(
Tn ·Tn

)
−
(
Tn · n

)2
. (3.21)

In Section 3.5 we shall discuss the maximum values of these two quantities (over all unit

vectors n).

In cylindrical polar coordinates (for example) we have

T = Trrer ⊗ er + Trθer ⊗ eθ + Trzer ⊗ ez+

+ Tθr eθ ⊗ er + Tθθ eθ ⊗ eθ + Tθz eθ ⊗ ez+

+ Tzr ez ⊗ er + Tzθ ez ⊗ eθ + Tzz ez ⊗ ez.

(3.22)

Consider for example a circular cylindrical body, the outward unit normal vector on the

curved surface being er. The traction on this surface is

t(er) = Ter
(3.22)
= Trrer + Tθr eθ + Tzr ez,

and we see (again) that the first subscript tells us the direction of a traction component and

the second indicates the surface on which it acts.

3.3.1 Some particular stress tensors.

Consider the stress tensor T(y) at a particular point y. Let Tij be the components of T in

an orthonormal basis {e1, e2, e3}.

– Uniaxial stress. The particular case where the only nonzero component of stress is

T11 = T , i.e.

T = T e1 ⊗ e1, [T ] =

 T 0 0

0 0 0

0 0 0

 ,

describes a uniaxial stress in the e1-direction. Observe that the traction on an arbitrary

plane is t(n) = Tn = T (e1⊗ e1)n = T (n · e1) e1 = Tn1 e1. Thus the traction on every

plane acts in the e1-direction, though its value depends on the plane (through n1). A

uniaxial stress of magnitude T in some direction m is described by

T = T m⊗m.
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– Hydrostatic stress. The special case where T has the form

T = T I, [T ] =

 T 0 0

0 T 0

0 0 T

 ,

describes a hydrostatic stress (a pure pressure −T ). Observe that the traction on an

arbitrary plane is t(n) = Tn = T n. Thus the traction on every plane acts in the

direction normal to that plane and has magnitude T .

– Pure shear. Finally,

T = τ(e1 ⊗ e2 + e2 ⊗ e1), [T ] =

 0 τ 0

τ 0 0

0 0 0

 ,

describes a pure shear stress state with respect to the e1, e2 directions. A pure shear

with respect to an arbitrary pair of orthogonal directions a and b is described by

T = τ(a⊗ b + b⊗ a).

3.3.2 Worked examples.

Problem 3.3.1. The surface S in Figure 3.9 with unit outward normal vector e2 is traction-free. Therefore

t(e2) = o
(3.14)1⇒ Tk2 = 0 ⇒ T12 = T22 = T32 = 0 on S.

Therefore the three components of stress T12, T22, T32 must vanish on S. Note that it is not necessary that

the remaining stress components vanish. The surface S is traction-free but that does not mean a point on

the surface has to be stress-free. That is, t(n) = o for some n does not imply T = 0.

Problem 3.3.2. The region R occupied by a body in the deformed configuration is a prismatic cylinder

whose cross section is an equilateral triangle as shown in Figure 3.10. Determine the normal and shear

traction components that must be applied (as shown in the left-hand figure) such that the Cauchy stress

tensor is a pure shear

T = τ(e1 ⊗ e2 + e2 ⊗ e1). (i)
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R

1
e1

e2

Figure 3.9: The surface S, perpendicular to e2, is traction-free, and so the stress components T12 = T22 =

T32 = 0 on S. However the remaining stress components need not vanish on S: the surface is traction-free

but a point on the surface might not be stress-free.

Figure 3.10: Left: Traction components to be determined.

Solution: First consider the bottom surface. The unit outward normal is n = −e2 and so the traction vector

on this surface is

t = Tn =
[
τ(e1 ⊗ e2 + e2 ⊗ e1)

]
(−e2) = −τe1. (ii)

In the figure, this traction is shown as t = −T6e1−T5e2 which when compared with (ii) gives T5 = 0, T6 = τ .

Next consider the upper right-hand surface. The unit outward normal vector is

n = (
√

3/2)e1 + (1/2)e2, (iii)

and so the traction on this surface is

t = Tn
(i),(iii)

=
[
τ(e1 ⊗ e2 + e2 ⊗ e1)

](√3

2
e1 +

1

2
e2

)
=
τ

2
e1 +

τ
√

3

2
e2. (iv)

The traction component T1 in the figure is in the direction n and so

T1 = t · n (iv),(iii)
=

(
τ

2
e1 +

τ
√

3

2
e2

)(
(
√

3/2)e1 + (1/2)e2

)
=
τ
√

3

2
. (v)
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The traction component T2 in the figure is in the direction

(1/2)e1 − (
√

3/2)e2, (vi)

(that is perpendicular to n) and so

T2 = t ·
(

1

2
e1 −

√
3

2
e2

)
(iv),(vi)

=

(
τ

2
e1 +

τ
√

3

2
e2

)
·
(

1

2
e1 −

√
3

2
e2

)
= −τ

2
.

A similar calculation gives

T3 = −τ
√

3/2, T4 = τ/2.

The right-hand figure in Figure 3.10 displays these results. As an exercise you may wish to confirm force

and moment equilibrium.

Problem 3.3.3. The stress tensor T at a particular point in a certain body corresponds to a state of pure

shear of magnitude τ with respect to the directions e′1, e
′
2. As shown in Figure 3.11, the vectors {e′1, e′2, e′3} are

obtained by rotating the basis vectors {e1, e2, e3} through an angle π/4 about e3. Calculate the components

of T in the basis {e1, e2, e3}.

Solution: Since {e′1, e′2, e′3} is obtained by rotating {e1, e2, e3} through an angle π/4 about e3,

e′1 =
1√
2
e1 +

1√
2
e2, e′2 = − 1√

2
e1 +

1√
2
e2, e′3 = e3. (i)

We are told that

T = τ(e′1 ⊗ e′2 + e′2 ⊗ e′1). (ii)

Substituting (i) into (ii) and simplifying, for example

e′1 ⊗ e′2 =

(
1√
2
e1 +

1√
2
e2

)
⊗
(
− 1√

2
e1 +

1√
2
e2

)
= −1

2
e1 ⊗ e1 −

1

2
e2 ⊗ e1 +

1

2
e1 ⊗ e2 +

1

2
e2 ⊗ e2,

leads to

T = −τe1 ⊗ e1 + τe1 ⊗ e1. (iii)

Thus the matrix of components of T in the basis {e1, e2, e3} is

[T ] =

 −τ 0 0

0 τ 0

0 0 0

 . (iv)

Observe from (iv) that T can be viewed as the superposition of a uniaxial compressive stress τ in the e1-

direction and a uniaxial tensile stress τ in the e2-direction (when τ > 0). We also know that (this same

stress tensor) T can be viewed as a pure shear with respect to e′1, e
′
2. This is depicted in Figure 3.11. This

example illustrates how the components of T depend on the basis.
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Figure 3.11: Left: The stress tensor T is a simple shear of magnitude τ with respect to the directions

e′1, e
′
2. Right: Equivalently it is the superposition of a uniaxial compressive stress τ in the e1-direction and

a uniaxial tensile stress τ in the e2-direction. (Problem 3.3.3)

Problem 3.3.4. (Continued in Problem 3.24.) Consider a body that in the deformed configuration occupies

the annular sector a ≤ r ≤ b,−β ≤ θ ≤ β,−1/2 ≤ z ≤ 1/2 shown in Figure 3.12. We are using cylindrical

polar coordinates (r, θ, z) in the deformed configuration with associated basis vectors {er, eθ, ez}. Assume

that the Cauchy stress tensor is symmetric and that the components Tzr = Tzθ = Tzz = 0 so that

T = Trrer ⊗ er + Trθ(er ⊗ eθ + eθ ⊗ er) + Tθθ eθ ⊗ eθ. (i)

Assume further that the remaining stress components depend on r and θ (but not z).

O

Figure 3.12: In the deformed configuration the body occupies the annular sector R = {(r, θ, z) : a ≤ r ≤
b,−β ≤ θ ≤ β,−1/2 ≤ z ≤ 1/2}. (Figure for Problem 3.3.4 .)

Determine the restrictions on the stress components Trr(r, θ), Trθ(r, θ) and Tθθ(r, θ) arising from the

following requirements: (a) the outer curved boundary r = b is traction-free; (b) the inner curved boundary

r = a is also traction-free; (c) the resultant force on the top inclined surface S vanishes; and (d) the resultant

moment on S about O is mez.
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Later, in Problem 3.24, after we have developed the equilibrium equations, we will explore the conse-

quences of equilibrium.

The kinematics of the bending of a rectangular block into a shape like the one shown in Figure 3.12 was

examined previously in Problem 2.5.4. Here we are not told what the undeformed configuration of the body

is.

Solution: First consider the outer curved surface r = b. Since the outward pointing unit normal vector

to it is er, the traction Ter acting on this surface has radial and circumferential components Trr and Tθr

respectively. Since (each point on) this surface is traction-free, it follows that

Trr(b, θ) = Tθr(b, θ) = 0 for all − β ≤ θ ≤ β. (ii)

Likewise, at the traction-free inner curved surface r = a we have

Trr(a, θ) = Tθr(a, θ) = 0 for all − β ≤ θ ≤ β. (iii)

Next consider the flat inclined surface S on which θ = β. Keep in mind that, in general, er = er(θ), eθ =

eθ(θ). The outward pointing unit vector on it is eθ, or more precisely eθ(β), and so from (i), the traction

on S is

t = Teθ

∣∣∣
θ=β

=
(
Trθ er + Tθθ eθ

)∣∣∣
θ=β

= Trθ(r, β) er(β) + Tθθ(r, β) eθ(β). (iv)

The resultant force on this surface is therefore∫
S

t dAy =

∫ b

a

∫ 1/2

−1/2

t dzdr =

∫ b

a

t dr =

∫ b

a

[
Trθ(r, β) er(β) + Tθθ(r, β) eθ(β)

]
dr =

=

[∫ b

a

Trθ(r, β) dr

]
er(β) +

[∫ b

a

Tθθ(r, β) dr

]
eθ(β).

Since the resultant force on this surface vanishes it follows that∫ b

a

Trθ(r, β) dr = 0,

∫ b

a

Tθθ(r, β) dr = 0. (v)

The resultant moment on S about O is∫
S

y × t dAy =

∫ b

a

∫ 1/2

−1/2

y × t dzdr =

∫ b

a

y × t dr =

∫ b

a

r er(β)×
[
Trθ(r, β) er(β) + Tθθ(r, β) eθ(β)

]
dr =

=

[∫ b

a

rTθθ(r, β) dr

]
ez, (vi)

where we have used er × er = o and er × eθ = ez. (Please derive (vi) using physical arguments, without

using the vector cross-product.) We are told that the resultant moment on this surface is mez and so[∫ b

a

rTθθ(r, β) dr

]
= m. (vii)
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3.4 Field equations.

We are now in a position to derive the local versions – the field equations – of the global

equilibrium principles for force and moment balance (3.8) and (3.9).

Consequence (4): Equilibrium equations.

Consider force balance (3.8), which in component form reads∫
∂D
ti dAy +

∫
D
bi dVy = 0 . (3.23)

Considering the first term, we first trade traction for stress using (3.18), and then convert

the surface integral into a volume integral by using the divergence theorem:∫
∂D
ti dAy =

∫
∂D
Tijnj dAy =

∫
D

∂Tij
∂yj

dVy, (3.24)

and so (3.23) yields ∫
D

(
∂Tij
∂yj

+ bi

)
dVy = 0 . (3.25)

Since this must hold for all parts D of the body, and assuming the integrand to be continuous,

it follows by localization (Section 1.8.3) that the integrand itself must vanish at each point

in R. We thus conclude that

∂Tij
∂yj

+ bi = 0 at each y ∈ R, (3.26)

which can be written in basis-free form by using (1.168) (page 69) as

div T + b = 0 at each y ∈ R. (3.27)

The equilibrium equation (3.27) is the field equations corresponding to force balance. It must

hold at each point in the body.

Conversely, when the equilibrium equation (3.27) and the traction-stress relation (3.18)

hold, then the global force balance law (3.8) holds. (Show this.)

See also Problem 10.4.1.

Consequence (5): Symmetry of the stress tensor8.

8Problem 3.17 derives this result without using components in a basis.
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We turn next to moment balance (3.9). Recall that for any two vectors a and b, the ith

component of the vector a× b is eijkajbk where eijk is the Levi-Civita symbol introduced in

(1.38). Thus we can write (3.9) in component form as∫
∂D

(y × t)i dAy +

∫
D

(y × b)i dVy =

∫
∂D
eijk yj tk dAy +

∫
D
eijk yjbk dVy = 0 . (3.28)

The term involving the traction can be simplified by first using the traction-stress relation

(3.19), then using the divergence theorem and finally expanding the result. This leads to∫
∂D
eijk yj tk dAy =

∫
∂D

eijk yj Tkmnm dAy =

∫
D
eijk

∂

∂ym
(yj Tkm) dVy

=

∫
D
eijk

(
δjm Tkm + yj

∂Tkm
∂ym

)
dVy .

(3.29)

Substituting (3.29) into (3.28) and making use of the equilibrium equation (3.26) now yields∫
D
eijk Tkj dVy = 0 . (3.30)

Since (3.30) must hold for all choices of D, it follows by localization that

eijk Tkj = 0 at each y ∈ R. (3.31)

One way in which to see what the three scalar equations (3.31) imply is to write them

out explicitly. For example for i = 1 we have e1jk Tkj = e123 T32 + e132 T23 because all of the

other eijk terms have at least two repeated subscripts and thus vanish. Since e123 = 1 and

e132 = −1 it now follows that e1jk Tkj = T32−T23 and therefore (3.31) implies that T23 = T32.

The cases i = 2 and i = 3 can be dealt with similarly. Thus we conclude that

T12 = T21, T23 = T32, T31 = T13,

which we can write as

Tij = Tji at each y ∈ R. (3.32)

Thus the stress tensor T is symmetric:

T = TT at each y ∈ R. (3.33)

This is equivalent to (3.31) and is a local consequence of moment balance.

Exercise: To show the symmetry of the stress tensor without explicitly writing out the terms in (3.31) (as

we did above) multiply (3.31) by eipq and use of the identity eijk eipq = δjpδkq − δjqδkp.

Conversely, when the symmetry condition (3.33), the equilibrium equation (3.27), and the

traction-stress relation (3.18) all hold, then the global moment balance (3.9) holds. (Show

this.)
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3.4.1 Summary

In summary, the global equilibrium principles of force and moment balance hold if and only

if the Cauchy stress tensor field T(y) obeys

div T + b = o,

T = TT ,
at each y ∈ R, (3.34)

with the traction on a surface related to the stress through

t(y,n) = T(y)n. (3.35)

In cartesian components,

∂Tij
∂yj

+ bi = 0, Tij = Tji, ti = Tijnj. (3.36)

3.5 Principal stresses.

Since the Cauchy stress tensor T is symmetric, it has three real eigenvalues, τ1, τ2, τ3, and a

set of three corresponding orthonormal eigenvectors, t1, t2, t3:

Tti = τi ti (no sum on i). (3.37)

The eigenvalues τi are called the principal stresses and the eigenvectors ti define the principal

directions of Cauchy stress. (Caution: Please note the distinction between the two lowercase

boldface t’s: t and ti denoting the traction and the principal stress directions respectively.)

The triplet of vectors {t1, t2, t3} defines an orthonormal basis referred to as a principal basis

for stress. The matrix of stress components in this basis is diagonal and is given by

[T ] =

 τ1 0 0

0 τ2 0

0 0 τ3

 . (3.38)

We can express T as

T = τ1 t1 ⊗ t1 + τ2 t2 ⊗ t2 + τ3 t3 ⊗ t3 =
3∑
i=1

τi ti ⊗ ti. (3.39)
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Figure 3.13: Principal stresses τ1, τ2, τ3 and corresponding principal directions t1, t2, t3.

When the components of T and n are taken with respect to a principal basis for T, one

can show that the normal stress (3.6) and the magnitude of the resultant shear stress (3.7)

can be written as (Problems 3.4 and 3.5)

Tnormal(n) = t(n) · n = Tn · n = Tijninj = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3, (3.40)

T 2
shear = |t(n)|2 − T 2

normal = τ 2
1n

2
1 + τ 2

2n
2
2 + τ 2

3n
2
3 − (τ1n

2
1 + τ2n

2
2 + τ3n

2
3)2. (3.41)

An important characteristic of the principal stresses and principal directions can be seen

by asking the question “from among all planes passing through a given point, on which is

Tnormal(n) largest? And on which is it smallest?” This requires one to consider Tnormal(n)

as a function of the unit vector n and to find the specific vector(s) n at which it has its

extrema. One can show (Problem 3.4) that the maximum value of Tnormal(n) over all unit

vectors n is the largest of the principal stresses:

Tnormal(n)
∣∣∣
max overn

= maximum of {τ1, τ2, τ3}, (3.42)

and that the smallest value of Tnormal(n) is the smallest principal stress.

The maximum value of Tshear(n) over all unit vectors n is (Problem 3.5)

Tshear(n)
∣∣∣
max overn

= maximum of

{
1

2
|τ1 − τ2|,

1

2
|τ2 − τ3|,

1

2
|τ3 − τ1|

}
. (3.43)

One can also show that there is always a plane (through each point of a body) on which

Tshear(n) vanishes, but in general, there is no plane on which Tnormal(n) vanishes (though

there might be in special cases) (Problem 3.6).
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Finally it is worth emphasizing that the principal directions of the stress tensor T have no

relationship, in general, to the principal directions of the stretch tensors U or V. There may

be a relationship between them for particular materials, but this depends on the constitutive

law. In particular, we will find that for an isotropic elastic material, the principal directions

{t1, t2, t3} of T coincide with the principal directions {`1, `2, `3} of the Eulerian stretch tensor

V. See also Problem 3.30.

3.6 Mean pressure and deviatoric stress.

It is sometimes convenient to decompose the stress additively into the sum of two parts, a

hydrostatic part and a deviatoric part. By definition, the mean pressure is the (negative of

the) average normal stress

= −1

3
Tkk = −1

3
tr T,

and so the hydrostatic part of stress is 1
3

(tr T) I. The remaining part of the stress is called

the deviatoric part which we denote by

T(dev) := T− 1

3
(tr T)I, T

(dev)
ij = Tij −

1

3
Tkkδij. (3.44)

Note that the trace of the deviatoric stress vanishes. Thus we have the decomposition

T = T(dev) +
1

3
(tr T)I. (3.45)

3.7 Formulation of mechanical principles with respect

to a reference configuration.

A few videos on some of the material in this section can be found here.

Thus far, our discussion of traction, stress, balance laws and field equations, did not allude

to a reference configuration. Though not conceptually necessary, it is frequently convenient

to refer the kinematic quantities entering the discussion of traction and stress, i.e. the

area and surface normal vector, to the corresponding quantities in a reference configuration.

Often, the reference configuration can be chosen in a convenient manner while the deformed

configuration is not known a priori.

https://www.dropbox.com/sh/haoxjas9y7af7uv/AACexitxr2HE7QuYL27WsMGka?dl=0
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First consider an infinitesimal part of the body whose volume in the deformed configura-

tion is dVy. The body force on this part is b dVy where b is the body force per unit deformed

volume. Let dVx denote the volume of this part in a reference configuration. Then we can

introduce the body force per unit reference volume, bR, in terms of which the body force on

this part can equivalently be expressed as bR dVx. Therefore we have

Body force on infinitesimal part = b dVy = bR dVx. (3.46)

Keep in mind that the force bR dVx acts on the deformed body. We know from Section 2.4.3

that these volumes are related by dVy = J dVx where J = det F. Thus

bR = J b. (3.47)
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= s × Area of(∆S )

Figure 3.14: The surface S and a surface element ∆S in the deformed configuration, and their images

SR and ∆SR in the reference configuration. The vectors n and nR are normal to these respective surfaces.

Different (equivalent) ways for characterizing the contact force on ∆S are noted in the figure. Keep in mind

that the contact force acts on the deformed surface.

Next we turn to traction. Recall that the Cauchy traction t(n) represents the contact

force per unit deformed area and that it acts on the surface whose normal in the deformed

configuration is n. Let ∆S be an infinitesimal surface in R of area dAy with unit normal

n. The contact force on this surface is therefore t(n) dAy. Let ∆SR be the image of this

surface in a reference configuration with area dAx and unit normal nR; see Figure 3.14. We
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now introduce the contact force per unit reference area, s(nR), in terms of which the contact

force on ∆S can be equivalently written as s(nR) dAx. Thus we have

Contact force on ∆S = t(n) dAy = s(nR) dAx. (3.48)

Keep in mind that the force s(nR) dAx acts on the deformed surface as illustrated in the

right-hand figure in Figure 3.14. We can rewrite this using t = Tn and Nanson’s formula

dAy n = dAx J F−T nR as

Contact force on ∆S = s(nR) dAx =

= t(n) dAy = Tn dAy = T (J F−T nR dAx) =

= (J T F−T ) nR dAx.

(3.49)

It is natural therefore to introduce a tensor S defined by

S = J T F−T , (3.50)

so that

s = S nR . (3.51)

The contact force on ∆S can now be written in the equivalent forms

Contact force on ∆S = t dAy = s dAx, (3.52)

and

Contact force on ∆S = Tn dAy = SnR dAx . (3.53)

This is described by the text in Figure 3.14. The contact force per unit referential area,

s(nR), is called the Piola traction vector and the associated tensor S is the Piola stress

tensor. These are sometimes referred to as9 the first Piola-Kirchhoff traction and first

Piola-Kirchhoff stress respectively.

The physical significance of the components of S, can be deduced as follows. Let

S = Sij ei ⊗ ej.

Consider a surface parallel to one of the coordinate planes, say nR = ej. According to

s(nR) = SnR, the traction on this surface is s(ej) = Sej. The ith-component of this traction

is therefore si(ej) = s(ej) · ei = Sej · ei = Sij. Thus

Sij = si(ej). (3.54)

9Our terminology is based on the historical notes in Section 210 of [8].
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Figure 3.15: Physical significance of the components of the stress tensor S: the shaded surface in the

reference configuration is normal to e2 and has area dAx. The ith component of force acting on the image

of this surface in the deformed configuration is Si2 × dAx.

Therefore Sij is the ith component of force per unit referential area acting on the surface

that is normal to the jth direction in the reference configuration.

For example consider a surface ∆S that is normal to e2 in the reference configuration as

shown in Figure 3.15. Then by taking nR = e2 in (3.51), the contact force on ∆S can be

written as

Contact force on ∆S = t dAy = s dAx = S e2 dAx = (S12 e1 + S22 e2 + S32 e3) dAx =

= (S12 dAx) e1 + (S22 dAx) e2 + (S32 dAx) e3 .

(3.55)

This is illustrated in Figure 3.15.

To illustrate this further, consider a simple shear deformation of a block as shown in

Figure 3.16. The leftmost figure shows the region RR, while both the middle and rightmost

figures show the region R. The unit outward normal vector to the face C ′D′ is n and

therefore the

Contact force on C ′D′ = Tn×|C ′D′| = [(T1jnj)e1 + (T2jnj)e2 + (T3jnj)e3]×|C ′D′| ; (3.56)

this is illustrated in the middle figure. Since the face CD, which is the pre-image of C ′D′,

has a unit outward normal e1, we can equivalently write

Contact force on C ′D′ = SnR × |CD| = Se1 × |CD| = [S11e1 + S21e2 + S31e3]× |CD|;
(3.57)

this is illustrated in the rightmost figure. Similarly the unit outward normal vectors to the
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Figure 3.16: Simple shear. The middle and rightmost figures both show the region R occupied by the

body in the deformed configuration. They show the tractions on the faces B′C ′ and C ′D′ in two different,

but equivalent, ways: the middle figure describes the traction in terms of the components of the stress T

while the rightmost figure describes them in terms of the components of S. The corresponding forces are

found by multiplying each traction by the area of the relevant surface in either the deformed or reference

configuration as appropriate.

face B′C ′ and its pre-image BC are both e2, and therefore we can write

Contact force on B′C ′ = Te2 × |B′C ′| = [T12e1 + T22e2 + T32e3]× |B′C ′|,

= Se2 × |BC| = [S12e1 + S22e2 + S32e3]× |BC|;
(3.58)

these are also displayed in Figure 3.16.

Suppose we use different bases {e1, e2, e3} and {e′1, e′2, e′3} in the reference and deformed

configurations respectively so that y = yie
′
i and x = xiei, with the deformation described

by y1 = y1(x1, x2, x3), y2 = y2(x1, x2, x3), y3 = y3(x1, x2, x3). The associated deformation

gradient tensor can be expressed in the mixed bases as

F = Fij e′i ⊗ ej. (3.59)

If the basis vectors do not depend on the coordinates then Fij = ∂yi/∂xj, but even otherwise,

F has the representation (3.59). It follows from (1.77) that

FT = Fij ej ⊗ e′i.

Next on using the result in Problem 1.32 we find

F−T = F−1
ij e′j ⊗ ei
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where [F ]−1 is the matrix inverse of [F ]. Thus with the Cauchy stress represented as

T = Tij e′i ⊗ e′j,

we find

S = JTF−T = J
(
Tij e′i ⊗ e′j

) (
F−1
k` e′` ⊗ ek

)
= Sij e′i ⊗ ej where [S] = J [T ][F ]−T . (3.60)

Thus S, like F, is most naturally expressed in the mixed bases.

We now turn to the equilibrium equations. Before proceeding further, you might wish

to review the discussion in Section 2.8 of the material and spatial descriptions of a field.

As mentioned there, any field defined on R and described spatially as a function of y can

be converted to a field defined on RR that is described referentially as a function of the

reference position x. We do this by using the deformation y = ŷ(x) to change y → x. It

turns out that it is convenient to express the Piola stress tensor field referentially as S(x),

so that (3.50), (3.51) would read (with more detail)

S(x) = J(x) T(ŷ(x)) F−T (x) , (3.61)

s(x,nR) = S(x) nR . (3.62)

Substituting T = J−1SFT into div T and using (2.124) from page 217 shows that

div T = J−1Div S,

where div T and Div S are the vector fields whose ith cartesian components are(
div T

)
i

=
∂Tij
∂yj

,
(

Div S
)
i

=
∂Sij
∂xj

,

respectively10. Therefore div T + b = J−1Div S + J−1 bR and so the equilibrium equation

(3.34)1 can be written in the equivalent form

Div S + bR=0 for all x ∈ RR. (3.63)

The moment balance equation (3.34)2, in view of T = J−1SFT , yields

SFT=FST for all x ∈ RR. (3.64)

10Note the distinction between Div and div. For any tensor field A(x), the vector field DivA has cartesian

components ∂Aij/∂xj : (
Div A

)
i

=
∂Aij
∂xj

, Div A =
∂Aij
∂xj

ei.

There is a parallel distinction between Grad/grad, and Curl/curl.
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The field equations (3.63) and (3.64) hold at every point x ∈ RR. In cartesian components,

equations (3.63), (3.64) and s = SnR read

∂Sij
∂xj

+ bR
i = 0, SikFjk = FikSjk, si = Sijn

R
j . (3.65)

Note that the Piola stress tensor is not symmetric in general. This implies in particular that

S may not have three real eigenvalues and so we will not (usually) speak of its principal

values.

Before leaving this section it is instructive to express the various terms of the global

balance laws for force and moment equilibrium in terms of these referential quantities. Let

DR and D be the regions occupied by a part of the body in the reference and deformed

configurations respectively. By integrating (3.52) over the body and using (3.51) we see that

the resultant contact force on this part is

=

∫
∂D

t dAy
(3.52)
=

∫
∂DR

s dAx
(3.51)
=

∫
∂DR

SnR dAx.

By integrating (3.46) over the body we see that the resultant body force on this part is

=

∫
D

b dVy =

∫
DR

bR dVx.

Consequently, the balance law (3.8) for force equilibrium can be written equivalently as∫
∂DR

s dAx +

∫
DR

bR dVx = 0, (3.66)

which must hold for all DR ⊂ RR. An alternative derivation of the field equation (3.64)1

involves using s = SnR and the divergence theorem on (3.66) and then localizing the result.

Similarly, the resultant moment of the contact force is given by

=

∫
∂D

y × t dAy
(3.52)
=

∫
∂DR

y(x)× s dAx
(3.51)
=

∫
∂DR

y(x)× SnR dAx.

In this way one finds that the balance law for moment equilibrium (3.9) can be written

equivalently as ∫
∂DR

y(x)× SnR dAx +

∫
DR

y(x)× bR dVx = 0 . (3.67)

It is worth emphasizing that it is not x × SnR but rather y(x) × SnR that appears here.

(Had it been x× SnR this would have led to S = ST .)
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3.7.1 Worked examples.

Problem 3.7.1. Bending of a block.

Consider a block undergoing a bending deformation as depicted in Figure 3.17, the kinematics of which

were analyzed previously in Problem 2.5.4. We found there that the deformation from (x1, x2, x3) to

(y1, y2, y3) is characterized by

y1 = r(x1) cos θ(x2), y2 = r(x1) sin θ(x2), y3 = Λx3, (i)

where

r(x1) > 0, r′(x1) > 0, θ′(x2) > 0, θ(x2) = −θ(−x2), Λ = constant. (ii)

Moreover, we showed that the principal stretches were

λ1 = r′(x1), λ2 = r(x1)θ′(x2), λ3 = Λ, (iii)

and the deformation gradient tensor was

F = λ1(er ⊗ e1) + λ2(eθ ⊗ e2) + λ3(ez ⊗ e3). (iv)

Here {er, eθ, ez} are the basis vectors associated with cylindrical polar coordinates (r, θ, z) in the deformed

configuration, i.e.

er = cos θ e1 + sin θ e2, eθ = − sin θ e1 + cos θ e2, ez = e3. (v)

M N

P

Q

O

2A

2B

Figure 3.17: In a reference configuration the body occupies the rectangular parallelepiped region RR =

{(x1, x2, x3) : −A ≤ x1 ≤ A,−B ≤ x2 ≤ B,−C ≤ x3 ≤ C} (left). The body undergoes a bending

deformation in the x1, x2-plane . In the deformed configuration it occupies the region R (right).

Assume that the Piola stress tensor field is given by (recall (3.59), (3.60) and cf. (iv))

S = σ1(er ⊗ e1) + σ2(eθ ⊗ e2) + σ3(ez ⊗ e3); (vi)
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moreover, since the principal stretches are independent of x3, assume that the same is true of the σi’s:

σi = σi(x1, x2), i = 1, 2, 3. (vii)

Keep in mind that since we do not have a constitutive relation, equation (vi) does not follow from (iv).

Exercise: Calculate the corresponding form of the Cauchy stress tensor.

Determine the restrictions on the functions σi(x1, x2) arising from the following requirements: (a) the

two curved boundaries of R are traction free, (b) the resultant force on the top inclined flat face S of R
vanishes, (c) the resultant moment about the origin of the traction distribution on S is m = me3, and (d)

the body is in equilibrium with no body forces.

Remark: At the end of the solution, we will make some further simplifications by using a constitutive relation

(though we have not yet talked about constitutive relations!)

Solution:

(a) The outer curved boundary of R is the image of the flat boundary x1 = A of RR. The Piola traction on

this surface is given by s = SnR together with nR = e1, x1 = A and (vi):

s = SnR = σ1er = σ1(A, x2)er. (viii)

Similarly, the inner curved boundary of R corresponds to the flat surface x1 = −A of RR. The Piola traction

on this surface is given by s = SnR,nR = −e1, x1 = −A and (vi):

s = SnR = −σ1(−A, x2)er. (ix)

Observe that the traction s on these surfaces acts in the radial direction er. Since s dAx = t dAy, so does

the traction t. Since these curved surfaces are traction-free, we must have

σ1(±A, x2) = 0 for −B ≤ x2 ≤ B. � (x)

(b) The top inclined flat boundary S of R is the image of the top horizontal surface x2 = B of RR. The

Piola traction on this surface can be calculated from s = SnR with nR = e2, x2 = B and (vi):

s = SnR = σ2(x1, B)eθ. (xi)

Observe that the traction s on x2 = B acts in the circumferential direction eθ, and therefore so does the

traction t on the corresponding surface of R.

Remark: The unit vector eθ = eθ(θ) depends in general on θ, and since θ = θ(x2) by (i), it depends on x2:

eθ = eθ(θ(x2)). However, it is constant on the surface x2 = B since the angle θ = θ(B) is constant there.

Keeping in mind that S denotes the top inclined surface of R and SR is its pre-image in the reference

configuration, the resultant force on S is

=

∫
S

t dAy
(3.52)

=

∫
SR

s dAx =

∫ A

−A

∫ C

−C
s dx3dx1 = 2C

∫ A

−A
s dx1

(xi)
= 2C

∫ A

−A
σ2(x1, B)eθ dx1 =

=

(
2C

∫ A

−A
σ2(x1, B) dx1

)
eθ.
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Observe that we were able to take eθ out of the integral since eθ here is eθ(θ(B)) and so did not depend on

x1. Therefore, the resultant force on S vanishes when∫ A

−A
σ2(x1, B) dx1 = 0. � (xii)

We will be able to further simplify this boundary condition after deriving the equilibrium equations in part

(d) below and using (x) and a certain constitutive relation.

(c) The position vector of a generic particle in R is y = rer. The resultant moment about O due to the

traction distribution on S is therefore

m =

∫
S

y × t dAy
(3.52)

=

∫
SR

y × s dAx
(xi)
=

∫
SR

y × σ2eθ dAx =

∫
SR
rer × σ2eθ dAx =

= ez

∫
SR
rσ2 dAx = ez

∫ A

−A
rσ2 2Cdx1 =

(
2C

∫ A

−A
r(x1)σ2(x1, B) dx1

)
ez.

We are told that to moment on this surface is mez, whence

m = 2C

∫ A

−A
r(x1)σ2(x1, B) dx1. � (xiii)

(d) Next we enforce the equilibrium equation Div S = o. We will do this in rectangular cartesian coordinates

as ∂Sij/∂xj = 0, and for this we must first determine the components Sij of S in the basis {e1, e2, e3}.
Substituting (v) into (vi) and simplifying leads to

S = σ1 cos θ(e1 ⊗ e1) + σ1 sin θ(e2 ⊗ e1)− σ2 sin θ(e1 ⊗ e2) + σ2 cos θ(e2 ⊗ e2) + σ3(e3 ⊗ e3). (xiv)

From this and S = Sijei ⊗ ej we can read off the cartesian components of Piola stress:

S11 = σ1 cos θ, S12 = −σ2 sin θ, S21 = σ1 sin θ, S22 = σ2 cos θ, S33 = σ3,

S13 = S31 = S23 = S32 = 0.
(xv)

We now substitute the stress components (xv) into the equilibrium equations ∂Sij/∂xj = 0 keeping in mind

that θ = θ(x2), σi = σi(x1, x2):

∂S11

∂x1
+
∂S12

∂x2
+
∂S13

∂x3
= 0 ⇒ ∂σ1

∂x1
cos θ − ∂σ2

∂x2
sin θ − σ2 cos θ θ′ = 0,

∂S21

∂x1
+
∂S22

∂x2
+
∂S23

∂x3
= 0 ⇒ ∂σ1

∂x1
sin θ +

∂σ2

∂x2
cos θ − σ2 sin θ θ′ = 0,

∂S31

∂x1
+
∂S32

∂x2
+
∂S33

∂x3
= 0 ⇒ 0 = 0,

These can be combined and simplified as follows: Multiplying the first equation by sin θ, the second by

cos θ and adding, and similarly multiplying the first equation by cos θ, the second by sin θ and subtracting

leads to the following pair of partial differential equations to be obeyed by σ1(x1, x2), σ2(x1, x2), θ(x2):

∂σ1

∂x1
− σ2θ

′ = 0,

∂σ2

∂x2
= 0,

 for−A ≤ x1 ≤ A, −B ≤ x2 ≤ B. � (xvi)
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Remark: We now simplify the preceding results further by assuming a specific form of the constitutive

relation. Suppose that the constitutive relation tells us that each stress component σi is a function of the

three principal stretches:

σi = σ̂i(λ1, λ2, λ3), i = 1, 2, 3.

The specific functions σ̂i here will depend on the material. For our present purposes we shall assume (only)

that σ̂2 does depend on λ2, or said differently, σ2 is not independent of λ2, i.e.

∂σ̂2

∂λ2
6= 0.

Equation (xvi)2 can now be simplified as follows using the constitutive relation σ2 = σ̂2(λ1, λ2, λ3):

∂σ2

∂x2
=
∂σ̂2

∂λ1 �
��

∂λ1

∂x2
+
∂σ̂2

∂λ2

∂λ2

∂x2
+
∂σ̂2

∂λ3 �
��

∂λ3

∂x2
=
∂σ̂2

∂λ2

∂λ2

∂x2
= 0

where we have used the fact that according to (iii), λ1 and λ3 do not depend on x2. Since we assumed

∂σ̂2/∂λ2 6= 0, this gives

∂λ2

∂x2
= 0

(iii)⇒ r(x1)θ′′(x2) = 0
(ii)1⇒ θ′′(x2) = 0 ⇒ θ(x2)

(ii)4
=

βx2

B
, (xvii)

where β is a to-be-determined constant of integration with the geometric meaning: θ(±B) = ±β.

From (xvii) and (iii) we see that all three stretches are independent of x2, and so by the constitutive

relation σi = σ̂i(λ1, λ2, λ3), so are the stress components σi:

σi = σi(x1), i = 1, 2, 3. (xviii)

The remaining equilibrium equation (xvi)1 can now be written as

σ′1(x1)− β

B
σ2(x1) = 0. � (xvi)

(b) (continued) The boundary condition (xii) on the top inclined surface S can be now be shown to be

automatic since ∫ A

−A
σ2(x1) dx1

(xvi)
=

B

β

∫ A

−A
σ′1 dx1 =

B

β

(
σ1(A)− σ1(−A)

)
(x)
= 0.

Please revisit the last part of this solution once we have discussed constitutive relations.

3.8 Rate of working. Stress power.

We now derive a relation between the rate of external working on a part of the body and

the rate of internal working within that part. This analysis, like everything else so far, is

independent of the constitutive relation and is valid for all materials. It is worth emphasizing
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that the relation to be derived is not the first law of thermodynamics – it is a relation that

is entirely mechanical in character and relates internal and external working.

Since we want to calculate the rate of working, we have to consider particle velocity,

and for this we must admit time t into our analysis. Accordingly we now consider a time-

dependent quasi-static motion: a family of deformations11 y(x, t) with time t being a pa-

rameter. By saying the motion is quasi-static we mean that the equilibrium equations hold

at each instant t, inertial effects being omitted.

The velocity of a particle x is the rate of change of the position of that particle with

respect to time:

v(x, t) =
∂y

∂t
(x, t). (3.68)

Since Fij = ∂yi/∂xj we can write

Ḟij :=
∂

∂t
Fij(x, t) =

∂

∂t

∂yi
∂xj

(x, t) =
∂

∂xj

∂yi
∂t

(x, t) =
∂vi
∂xj

(x, t) ⇔ Ḟ = Grad v, (3.69)

where Ḟ is the time rate of change of F(x, t) at a fixed particle x and Grad v is the 2-tensor

with cartesian components ∂vi/∂xj.

Consider a part of the body that occupies a region Dt at time t. Let p(Dt) denote the

rate at which the external forces on Dt do work:

p(Dt) =

∫
∂Dt

t · v dAy +

∫
Dt

b · v dVy ; (3.70)

see (3.3). By using (3.46) and (3.52), we can express p(Dt) in referential form as

p(Dt) =

∫
∂DR

s · v dAx +

∫
DR

bR · v dVx , (3.71)

where DR is the region occupied by the part being considered in the reference configuration.

Note that Dt evolves with time but DR does not (because we are concerned with a fixed set of

particles). It is now convenient to work in terms of components (in some fixed orthonormal

11a one-parameter family of deformations,
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basis). Then we have

p(Dt) =

∫
∂DR

sivi dAx +

∫
DR

bRi vi dVx
(3.51)
=

∫
∂DR

Sijn
R
j vi dAx +

∫
DR

bRi vi dVx =

(1.177)
=

∫
DR

∂

∂xj

(
Sijvi

)
dVx +

∫
DR

bRi vi dVx =

=

∫
DR

[
∂Sij
∂xj

vi + Sij
∂vi
∂xj

+ bRi vi

]
dVx =

∫
DR

[(
∂Sij
∂xj

+ bRi

)
vi + Sij

∂vi
∂xj

]
dVx

(3.65)1=

∫
DR

Sij
∂vi
∂xj

dVx
(3.69)
=

∫
DR

SijḞijdVx=

∫
DR

S · Ḟ dVx.

(3.72)

Thus from (3.71) and (3.72) we have the following rate of working identity:∫
∂DR

s · v dAx +

∫
DR

bR · v dVx =

∫
DR

S · Ḟ dVx. (3.73)

Equation (3.73) states that the rate of external work on a part of the body (the left-hand

side) equals the rate of internal work within that part (the right-hand side). The rate of

working by the internal stresses per unit reference volume, i.e. S · Ḟ, is called the stress

power:

Stress power = S · Ḟ. (3.74)

The stress power accounts for both stored and dissipated energy. The integral involving

the stress power on the right-hand side of (3.73) cannot in general be written as the time

derivative of the volume integral of some scalar field.

Problem 3.8.1. Evaluate the stress power S · Ḟ for (a) a simple shear deformation y1 = x1 + kx2, y2 =

x2, y3 = x3; and (b) a uniaxial stress state S = S11 e1 ⊗ e1.

Solution:

(a) S · Ḟ =
(
Sij ei ⊗ ej

)
·
(
k̇ e1 ⊗ e2

)
= Sij k̇(ei · e1)(ej · e2) = Sij k̇ δi1δ2j = S12 k̇,

(b) S · Ḟ =
(
S11 e1 ⊗ e1

)
·
(
Ḟij ei ⊗ ej

)
= S11Ḟij(e1 · ei)(e1 · ej) = S11Ḟij δi1δ2j = S11Ḟ11,

having used F = I + k e1 ⊗ e2 in (a).
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Problem 3.8.2. Establish the following spatial form of the rate of working identity:∫
∂Dt

t · v dAy +

∫
Dt

b · v dVy =

∫
Dt

T ·D dVy , (3.75)

where D is defined by

D :=
1

2
(L + LT ) where L := grad v. (3.76)

In cartesian components

Dij =
1

2

(
∂vi
∂yj

+
∂vj
∂yi

)
, Lij =

∂vi
∂yj

. (3.77)

The (kinematic) tensors D and L are known as the stretching tensor and the velocity gradient tensor respec-

tively. Note that the gradient here is with respect to the spatial position y and it is understood that the

velocity field has been expressed in spatial form as v(y, t); see Section 2.8. It follows from the right-hand

side of (3.75) that the stress power, the rate of internal working per unit reference volume, can be written as

Stress power = J T ·D. (3.78)

Solution: Since the relation between x and y is one-to-one, the relation y = ŷ(x, t) can be inverted at each

instant t to give x = x(y, t). Thus the referential and spatial descriptions of the velocity field, v̂(x, t) and

v(y, t), are related by

v(y, t) = v̂(x(y, t), t), v̂(x, t) = v(ŷ(x, t), t).

Recall from (3.69) the relation Ḟij = ∂v̂i
∂xj

. and so by using the chain rule

Ḟij =
∂v̂i
∂xj

=
∂vi
∂yk

∂yk
∂xj

(3.77)1= LikFkj ⇔ Ḟ = LF. (3.79)

This is a relation between the time rate of change of the deformation gradient tensor (at a fixed particle x)

and the velocity gradient tensor.

It now follows that

S · Ḟ (3.79)
= S · LF

(3.50)
= J T F−T · LF

(1.123)
= JT · L.

However,

T · L = T ·
[

1

2
(L + LT ) +

1

2
(L− LT )

]
= T ·D +

1

2
T · (L− LT ) = T ·D,

where in getting to the last equality we used the result from (1.141) since T is symmetric and 1
2 (L−LT ) is

skew symmetric. Thus from the two preceding equations we have

S · Ḟ = JT ·D.

Using this in (3.73), together with J dVx = dVy, (3.70) and (3.71) yields (3.75)
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3.8.1 Work Conjugate Stress-Strain Pairs.

Consider a body undergoing an arbitrary quasi-static motion. Suppose that the stress power

S · Ḟ can be expressed in the form Σ · Ė where E is some strain measure in the sense of

Section 2.6:

S · Ḟ = Σ · Ė. (3.80)

The components of Σ will necessarily have the dimension of stress. We say that the stress Σ

and the strain E are work-conjugate12. This conjugacy reflects a special relationship between

the stress Σ and strain E. As we shall see when studying the constitutive behavior of an

elastic material, the constitutive relation for the stress Σ is most naturally written in terms

of the strain E.

For example, consider the family of Lagrangian strain tensors

E(0) = ln U, E(n) =
1

n

(
Un − I

)
, n 6= 0.

Can one find a family of corresponding stress tensors S(n) such that the stress power =

S(n) · Ė(n)
?

Consider the case n = 2, i.e. the Green Saint-Venant strain tensor E(2). We want to find

a tensor S(2) such that the

Stress power = S · Ḟ = S(2) · Ė(2). (i)

Since E(2) is symmetric, there is no loss of generality in assuming S(2) to be symmetric.

(Why?) Differentiating E(2) = 1
2
(FTF− I) with respect to t gives

Ė(2) =
1

2
Ḟ
T
F +

1

2
FT Ḟ. (ii)

Now substitute (ii) into (i) and simplify:

S · Ḟ = S(2) · Ė(2)
= 1

2
S(2) · ḞT

F + 1
2
S(2) · FT Ḟ

(1.123)
= 1

2
S(2)FT · ḞT

+ 1
2
FS(2) · Ḟ =

= 1
2
F(S(2))T · Ḟ + 1

2
FS(2) · Ḟ = FS(2) · Ḟ,

where in getting to the second line we used A · B = AT · BT and in the last step we used

the symmetry of S(2). Thus S · Ḟ = FS(2) · Ḟ and so

S(2) = F−1S. (3.81)

12Note that F is not a strain. Thus one usually does not refer to the pair S, Ḟ as being work conjugate.
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The symmetric tensor S(2) is known as the second Piola-Kirchhoff stress tensor. It is conju-

gate to the Green Saint-Venant strain tensor.

The case of general n is discussed in Chapter 3.5 of Ogden [5].

Exercises: Problems 3.32, 3.33, 3.34 and 3.35.

3.8.2 Some other stress tensors.

In addition to the Cauchy and Piola stress tensors, various other stress measures are used

in the literature. Some examples are

T Cauchy stress tensor,

JT Kirchhoff stress tensor,

S = JTF−T Piola stress tensor,

S(2) = JF−1TF−T = F−1S 2nd Piola−Kirchhoff stress tensor,

ST = JF−1T Nominal stress tensor,

S(1) = 1
2

(
STR + RTS

)
Biot stress tensor.

(3.82)

Even though many of these stress tensors have no simple physical significance, they are

sometimes useful in, say, carrying out computations.

Exercise: Show that S(1) ·U = S · F. Note that this equation involves U and F not U̇ and Ḟ.

3.9 Linearization.

We now specialize the preceding analyses to the case where the deformed configuration

is close to the reference configuration in the sense that the displacement gradient tensor

H = F − I = ∇u is small: |H| = |∇u| � 1. It is natural therefore to work with the

formulation with respect to the (fixed) reference configuration:

Div S + bR=0, SFT=FST for all x ∈ RR. (3.83)

Since F = I + H we see immediately that to leading order the moment equilibrium equation

(3.83)2 reduces to S
.
= ST and so the Piola stress tensor is symmetric to leading order
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at an infinitesimal deformation. In fact, by using F = I + H and J = det(I + H) =

1 + tr H + O(|H|2), it follows from T = J−1SFT that

S = T + O(|H|). (3.84)

Thus to leading order, the Piola stress tensor and the Cauchy stress tensor do not differ in

infinitesimal deformations. Similarly the body force density b = bR + O(|H|).

For clarity we shall use the symbol σ for the stress tensor in the linearized theory. The

stress component σij is the ith component of force per unit area on the surface normal to ej

where we do not need to distinguish between the deformed and reference configurations.

The (force) equilibrium equation now reads

Div σ + bR = 0 for x ∈ RR, (3.85)

and the moment equilibrium equation tells us that

σ = σT for x ∈ RR. (3.86)

Note that these field equations hold on the region RR occupied by the body in the reference

configuration. Similarly the traction-stress relation is

t = σ nR. (3.87)

Thus in conclusion, for infinitesimal deformations we will work with the stress tensor

field σ(x) and do not need to consider the deformed configuration in formulating any of

the fundamental principles for stress. Reviewing the preceding material in this chapter we

see, for example, that we can interpret the stress components σij as in Figure 3.8 with Tij

replaced by σij and we do not need to address whether the planes shown in the figure are

in the reference or deformed configurations. Similarly in Problem 3.3.2 we can take the

prismatic region there to be the region the body occupies in the reference configuration.

3.10 Some other coordinate systems.

3.10.1 Cylindrical polar coordinates.

In this section we express the equilibrium equation div T + b = o in terms of cylindrical

polar coordinates:
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– Let (y1, y2, y3) denote the rectangular cartesian coordinates of a particle in the deformed

configuration and let (r, θ, z) be its corresponding cylindrical polar coordinates. Then

y1 = r cos θ, y2 = r sin θ, y3 = z, (3.88)

and the associated basis vectors {e1, e2, e3} and {er, eθ, ez} are related by

er = e1 cos θ + e2 sin θ , eθ = −e1 sin θ + e2 cos θ , ez = e3. (3.89)

– The stress tensor T(y) can be written in terms of its cylindrical polar components as

T = Trrer ⊗ er + Trθer ⊗ eθ + Trzer ⊗ ez+

+Tθreθ ⊗ er + Tθθeθ ⊗ eθ + Tθzeθ ⊗ ez+

+Tzrez ⊗ er + Tzθez ⊗ eθ + Tzzez ⊗ ez.

(3.90)

For reasons that we will explain shortly, we have not enforced the symmetry of T in writing

(3.90).

–The three scalar equilibrium equations we want to derive are the er, eθ and ez components

of the vector equilibrium equation div T + b = o. The three components of the vector div T

are

er · div T, eθ · div T, ez · div T, (3.91)

and so div T itself can be expressed in terms of these components and the basis vectors er, eθ

and ez as

div T =
(
er · div T

)
er +

(
eθ · div T

)
eθ +

(
ez · div T

)
ez. (3.92)

Our goal therefore is to calculate the three terms in (3.91). We shall do this using the

vector identity established in Problem 1.8.1, viz.

v · div T = div(TTv)−T · grad v, (3.93)

that holds for any vector field v(y) and tensor field T(y). Observe that the right-hand side of

(3.93) involves the divergence and gradient of two vector fields, and we previously calculated

expressions for these (in cylindrical polar coordinates) in Section 1.8.6; see equations (1.190)

and (1.189).

First take v = er in the identity (3.93) and calculate the two terms on its right-hand side.

By taking u = er in (1.189) (together with the obvious change of notation from (R,Θ, Z) to

(r, θ, z)) we get

grad er =
1

r
eθ ⊗ eθ

(3.90)⇒ T · grad er =
Tθθ
r
, (i)
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which is the second term on the right-hand side of (3.93). The first term can be evaluated

as follows:

div (TTer)
(3.90)
= div (Trrer + Trθeθ + Trzez)

(1.190)
=

∂Trr
∂r

+
1

r
Trr +

1

r

∂Trθ
∂θ

+
∂Trz
∂z

. (ii)

Substituting (i) and (ii) into (3.93) yields

er · div T = div TTer −T · grad er =
∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
∂Trz
∂z

+
Trr − Tθθ

r
. (iii)

A parallel calculation with v = eθ yields

grad eθ = −1

r
er ⊗ eθ

(3.90)⇒ T · grad eθ = −Trθ
r
, (iv)

div (TTeθ)
(3.90)
= div (Tθrer + Tθθeθ + Tθzez)

(1.190)
=

∂Tθr
∂r

+
1

r
Tθr +

1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

, (v)

eθ · div T = div TTeθ −T · grad eθ =
∂Tθr
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

+
Trθ + Tθr

r
. (vi)

And v = ez leads to

grad ez = o
(3.90)⇒ T · grad eθ = 0, (vii)

div (TTez)
(3.90)
= div (Tzrer + Tzθeθ + Tzzez)

(1.190)
=

∂Tzr
∂r

+
1

r
Tzr +

1

r

∂Tzθ
∂θ

+
∂Tzz
∂z

, (viii)

ez · div T = div TTez −T · grad ez =
∂Tzr
∂r

+
1

r

∂Tzθ
∂θ

+
∂Tzz
∂z

+
Tzr
r
. (ix)

Finally we substitute (iii), (vi) and (ix) into (3.92) to get

div T =

(
∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
∂Trz
∂z

+
Trr − Tθθ

r

)
er+

+

(
∂Tθr
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

+
Trθ + Tθr

r

)
eθ+

+

(
∂Tzr
∂r

+
1

r

∂Tzθ
∂θ

+
∂Tzz
∂z

+
Tzr
r

)
ez, �

(3.94)

which gives us the divergence of a tensor field T(y) in cylindrical polar coordinates.

– Remark: We have (deliberately) not used the symmetry of T in the preceding calculations

and formulae. As a result we can appropriate (3.94) (with the appropriate change of notation)

to evaluate Div S.
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– The equilibrium equation div T+b = o obeyed by the Cauchy stress tensor field T(y) can

now be written in cylindrical polar coordinates as

∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
∂Trz
∂z

+
Trr − Tθθ

r
+ br = 0,

∂Tθr
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tθz
∂z

+
Trθ + Tθr

r
+ bθ = 0,

∂Tzr
∂r

+
1

r

∂Tzθ
∂θ

+
∂Tzz
∂z

+
Tzr
r

+ bz = 0 ,

(3.95)

where b = brer + bθeθ + bzez.

Exercise: Problem 3.26, Problem 3.27.

3.10.2 Spherical polar coordinates.

– Let (y1, y2, y3) denote the rectangular cartesian coordinates of a particle in the deformed

configuration and let (r, θ, φ) be its spherical polar coordinates. Then

y1 = r sin θ cosφ, y2 = r sin θ sinφ, y3 = r cos θ. (3.96)

0 ≤ r <∞, 0 ≤ θ ≤ 2π, 0 ≤ φ < π.

The associated basis vectors {e1, e2, e3} and {er, eθ, eφ} are related by

er = (sin θ cosφ) e1 + (sin θ sinφ) e2 + cos θ e3,

eθ = (cos θ cosφ) e1 + (cos θ sinφ) e2 − sin θ e3,

eφ = − sinφ e1 + cosφ e2,

 (3.97)

– Let Trr, Trθ, Trφ, . . . be the components of the Cauchy stress tensor T in the basis {er, eθ, eφ}:

T = Trrer ⊗ er + Trθer ⊗ eθ + Trφer ⊗ eφ + Tθreθ ⊗ er + Tθθeθ ⊗ eθ . . . .

– The equilibrium equation div T+b = o obeyed by the Cauchy stress tensor field T(y) can

be shown to be

∂Trr
∂r

+
1

r

∂Trφ
∂φ

+
1

r sinφ

∂Trθ
∂θ

+
2Trr − Tφφ − Tθθ + Trφ cotφ

r
+ br = 0,

∂Trθ
∂r

+
1

r

∂Tφθ
∂φ

+
1

r sinφ

∂Tθθ
∂θ

+
3Trθ + 2Tθφ cotφ

r
+ bθ = 0,

∂Trφ
∂r

+
1

r

∂Tφφ
∂φ

+
1

r sinφ

∂Tφθ
∂θ

+
3Trφ + (Tφφ − Tθθ) cotφ

r
+ bφ = 0.

(3.98)
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3.10.3 Worked examples

Problem 3.10.1. (Combined axial and azimuthal shear of a tube) An elastic body in a reference configuration

occupies a hollow circular cylindrical region of unit length and inner and outer radii A and B respectively.

Its outer surface R = B is held fixed. A rigid solid cylinder of radius A is inserted into the cavity, and

firmly bonded to the hollow elastic cylinder on their common interface R = A. A force Fez in the axial

direction and a torque Tez about the axis are applied on the rigid cylinder. Assume that the resulting traction

between the cylinders is uniformly distributed on their common interface. The resulting deformation involves

axial and azimuthal shear, the kinematics of which were analyzed in Problem 2.17. The deformation was

r = R, θ = Θ + φ(R), z = Z + w(R). Here we analyze the stress field.

In view of symmetry, assume that the Cauchy stress components in cylindrical coordinates (as given

by a suitable isotropic constitutive relation) depend only on the r coordinate. (a) Simplify and solve the

equilibrium equations to the extent possible. (b) Determine the boundary conditions on stress at r = A. (c)

Using your answers from (a) and (b), determine the stress fields Trz(r) and Trθ(r) in the elastic body.

Solution:

(a) We are told that the Cauchy stress components in cylindrical polar coordinates depend only of r (and

not θ and z). The equilibrium equations (3.95) (in the absence of body force) then specialize to

dTrr
dr

+
Trr − Tθθ

r
= 0.

dTrθ
dr

+ 2
Trθ
r

= 0,
dTrz
dr

+
Trz
r

= 0. (i)

The second and third of these equations can be written as

d

dr
(r2Trθ) = 0,

d

dr
(rTrz) = 0, (ii)

which can be integrated to obtain

Trθ(r) =
c1
r2
, Trz(r) =

c2
r
, A ≤ r ≤ B, � (iii)

where c1 and c2 are constants of integration (to be found using the boundary conditions).

(b) We now consider the equilibrium of the rigid cylinder. We shall proceed vectorially but strongly encourage

the reader to derive the results (x) and (xi) below using physical arguments. Force balance requires

Fez +

∫
S

t dAy = o, (iv)

where S is the interface r = A between the cylinders. The traction (on the rigid cylinder) at this surface

can be calculated using t = Tn, n = er and r = A:

t = Trr(A)er + Trθ(A)eθ + Trz(A)ez. (v)
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Substituting (v) into (iv) and using dAy = Adθ gives

Fez +

∫ 2π

0

[
Trr(A)er + Trθ(A)eθ + Trz(A)ez

]
Adθ = o.

Keeping in mind that the unit vectors er and eθ depend on θ but ez does not, we rewrite this as

Fez +ATrr(A)

∫ 2π

0

er(θ)dθ +ATrθ(A)

∫ 2π

0

eθ(θ)dθ +ATrz(A)ez

∫ 2π

0

dθ = o.

Since

er(θ) = cos θe1 + sin θe2, eθ(θ) = − sin θe1 + cos θe2,

the first and second integrals vanish and we are left with

Fez +ATrz(A)ez

∫ 2π

0

dθ = o ⇒ Fez + 2πATrz(A)ez = o.

This leads to the boundary condition

Trz(A) = − F

2πA
. � (vi)

We next consider moment balance of the rigid cylinder which requires

Tez +

∫
S

y × t dAy = o. (vii)

Since y = rer = Aer at a point on S, we have

y × t = Aer ×
[
Trr(A)er + Trθ(A)eθ + Trz(A)ez

]
= ATrθ(A)ez −ATrz(A)eθ on S. (viii)

Substituting (viii) into (vii) and simplifying the integrals as above leads to

Tez +A2Trθ(A)ez

∫ 2π

0

dθ = o

from which we obtain the boundary condition

Trθ(A) = − T

2πA2
. � (ix)

(c) On using the boundary condition (vi) in the stress field (iii)2 we get c2 = −F/(2π) and so the shear

stress field Trz(r) in the elastic body is

Trz(r) = − F

2πr
, A ≤ r ≤ B. � (x)

Similarly from (ix) and (iii)1 we find

Trθ(r) = − T

2πr2
, A ≤ r ≤ B. � (xi)
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3.11 Exercises.

Unless explicitly told otherwise neglect body forces and inertial effects, and assume all components of vectors and

tensors to be with respect to a fixed orthonormal basis {e1, e2, e3} that has been implicitly chosen.

Problem 3.1. A uniform, heavy, elastic rope has length 2LR when it is in a stress-free reference configuration

(e.g. lying on a rigid horizontal table). Its weight is W . In the reference configuration we can identify the

rope with the straight line segment

RR = {x : −LR ≤ x ≤ LR}.

The rope is placed over a rigid frictionless semi-circular cylinder of radius R as depicted in Figure 3.18 and

lies in a vertical plane with gravity acting downwards. In the deformed configuration the rope is identified

with the circular arc

R = {(y1, y2) : y1 = R sin θ, y2 = R cos θ, −θ∗ ≤ θ ≤ θ∗}.

where θ∗ = L∗/R ∈ (0, π/2) and the deformed length 2L∗ are unknown.

Gravity

O

s

Figure 3.18: A heavy elastic rope in reference and deformed configurations.

The rope is very flexible and so the only internal force within it is a force τ in the direction tangent to

the rope, and there is no internal moment. The constitutive relation of the rope, relating the internal normal

force τ to the stretch λ, is

τ = µ lnλ (i)

where the constant parameter µ is a material property representing the elastic modulus and λ is the stretch

with respect to the unstressed reference configuration. (a) Write down the equation that enforces the equi-

librium of a finite (not infinitesimal) segment of the rope and from it, by localization, derive the equilibrium

field equation that the force field τ(s) must obey. (b) Calculate the internal force τ(s) in terms of L∗ and
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the given parameters. Sketch a graph of τ(s) versus the arc length s. Keep in mind that the weight per unit

deformed length of the rope is not wR. (c) You want to determine the deformed length 2L∗ of the rope: to

this end, derive an equation in which L∗ is the only unknown.

Solution: Suppose that the deformation takes the particle located at x in the reference configuration into

the point with arc length s in the deformed configuration. This deformation is described by

s = s(x), 0 ≤ x ≤ LR. (ii)

If dx and ds denote the respective lengths of an infinitesimal material fiber in the reference and deformed

configurations, the stretch λ along the rope is their ratio:

λ(x) =
ds

dx
(x). (iii)

Any function of the (Lagrangian coordinate) x can be written in terms of the (Eulerian coordinate) s by

using (ii) and its inverse. The (unknown) deformed length of the rope is twice

L∗ = s(LR). (iv)

The angle θ shown in the figure is related to the arc length s by s = Rθ so that

θ(s) = s/R; (v)

one can use either s or θ equivalently to characterize the position of a particle in the deformed configuration.

– The weight density of the rope in the reference configuration (i.e. weight per unit undeformed length) is

wR = W/(2LR).

If w denotes the weight density in the deformed configuration (i.e. weight per unit deformed length), mass

conservation requires wRdx = wds which by (iii) yields

w(s)λ(s) = wR. (vi)

(a) Let τ(s) be the internal force (expected to be tensile) in the rope at the location s. In this elementary

problem, the easiest way in which to derive the equilibrium equation (viii) is by drawing the free-body-

diagram of an infinitesimal segment [s, s + ds] of the rope in the deformed configuration and enforcing its

equilibrium13. We leave that as an exercise. Instead, here we derive the equilibrium equation following the

general approach that can be used for more complicated problems.

The unit tangent vector to the rope in the direction of increasing arc length is eθ and the unit normal

vector is er where

er = sin θe1 + cos θe2, eθ = cos θe1 − sin θe2; (a)

13Let θ and θ+dθ be the angles between the radii at each end of this segment and the vertical. The normal

reaction force on this segment makes an angle θ + dθ/2 with the vertical. Force balance in the direction

perpendicular to the normal reaction gives τ(s+ ds) sin(π/2− dθ/2)− τ(s) sin(π/2− dθ/2) +w(s)ds sin(θ+

dθ/2) = 0 which simplifies to the equilibrium equation (vii).
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see Figure 3.18. Note that
deθ
dθ

= −er. (b)

Let t(s) be the internal normal force (vector) at s applied by the part of the rope ahead of s on the part

behind s. Let η(s)er(s) be the normal reaction force per unit length applied by the cylinder on the rope.

The weight per unit length of the rope is −w(s)e2 . Thus the “body force”, i.e. the force distributed along

the length of the rope, is b = ηer − we2. Then the equilibrium of the arbitrary segment [s1, s2] of the rope

requires

t(s2)− t(s1) +

∫ s2

s1

[
ηer − we2

]
ds = o.

In preparation for localizing this, we write the boundary term t(s2)− t(s1) as an integral over [s1, s2]. This

yields ∫ s2

s1

dt

ds
ds+

∫ s2

s1

[
ηer − we2

]
ds = o.

Since this holds for all s1 and s2 (within the rope) we can localize it to obtain the following equilibrium

equation at any location s:
dt

ds
+ ηer − we2 = o. (c)

The first term can be simplified using t(s) = τ(s)eθ(s) (note that θ is measured CW and this determines

the direction of eθ):

dt

ds
=

d

ds
(τ(s)eθ(s)) =

dτ

ds
eθ + τ

deθ
ds

=
dτ

ds
eθ + τ

deθ
dθ

dθ

ds

(b)
=
dτ

ds
eθ + τ(−er)

(
1

R

)
,

where in the last step we also used s = Rθ. Thus (c) can be written as

dτ

ds
eθ −

τ

R
er + ηer − we2 = o. (d)

This is the (vector) equilibrium equation. Since

e2 = cos θer − sin θeθ

we can write (d) as (
dτ

ds
+ w sin θ

)
eθ +

(
η − w cos θ − τ

R

)
er = 0

which gives the two scalar equilibrium equations in the eθ and er directions:

dτ

ds
(s) + w(s) sin θ(s) = 0, η(s)− w(s) cos θ(s)− τ(s)

R
= 0. (vii)

The first of these is the equilibrium equation we will find useful. In this problem we are not interested in

the normal reaction force η which can be calculated from the second.

(b) Substituting (i), (v) and (vi) into (vii)1 gives the following ordinary differential equation for λ(s):

µ

λ

dλ

ds
= −wR

λ
sin(s/R) ⇒ dλ

ds
= −wR

µ
sin(s/R). (viii)

We shall integrate this from an arbitrary location in the rope to the right-hand free end. Since the internal

force in the rope vanishes at the free ends, τ = 0 at s = L∗, it follows from the constitutive relation (i) that

the rope is unstretched there:

λ = 1 at s = L∗. (ix)
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Integrating (viii) from s to L∗ and using the boundary condition (ix) leads to

λ(s) = 1− α2
(

cos(L∗/R)− cos(s/R)
)

(x)

where we have introduced the known nondimensional parameter

α :=
√
wRR/µ.

Thus the internal force in the rope is τ(s) = µ lnλ(s) with λ(s) given by (x). �

0

Figure 3.19: The internal force τ(s) = µλ(s) versus s with λ(s) given by (x).

(c) It remains to find L∗ for which we integrate λ = ds/dx from the midpoint (x = 0, s = 0) to the right-hand

end (x = LR, s = L∗): ∫ LR

0

dx =

∫ L∗

0

1

λ(s)
ds. (xi)

Substituting (x) into (xi) gives

LR =

∫ L∗

0

1

1− α2
(

cos(L∗/R)− cos(s/R)
) ds. �

This is an equation for L∗. If so desired, we can change variables and write this as

LR

R
=

∫ θ∗

0

1

1− α2
(

cos θ∗ − cos θ
) dθ, �

which is an equation for θ∗ = L∗/R.

Problem 3.2. Suppose that the region R occupied by a certain body in its deformed configuration is a

prismatic cylinder of length L and equilateral triangular cross section of height 3a as shown in Figure 3.20.

The coordinate axes {y1, y2, y3} are as shown in the figure.

The Cauchy stress field in the cylinder is known to be

[T (y1, y2, y3)] =


0 0 T13

0 0 T23

T31 T32 0

 where
T13 = T31 = Ky2(y1 − a),

T23 = T32 = K
2

(
y2

1 + 2ay1 − y2
2

)
,

 (i)
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3aL

S

Figure 3.20: The regionR occupied by the deformed body is a prismatic cylinder of length L and equilateral

triangular cross section of height 3a . S denotes one of its lateral surfaces.

where the constant K is a given loading parameter.

Calculate

(a) the applied load distribution (traction) on the lateral surfaces, and

(b) the resultant force and moment on the end y3 = 0?

Problem 3.3. (Spencer) The region R occupied by a certain body in its deformed configuration is a right

circular cylinder of length l and radius a:

R = {(y1, y2, y3) | y2
1 + y2

2 ≤ a2, −l ≤ y3 ≤ 0}.

Suppose the matrix of components of the Cauchy stress tensor field in the cylinder is

[T (y1, y2, y3)] =



0 0 −αy2

0 0 αy1

−αy2 αy1 β + γy1 + ηy2


, (i)

where α, β, γ and η are constants. The components here have been taken with respect to an orthonormal

basis {e1, e2, e3} where e3 is aligned with the axis of the cylinder.

(a) Verify that this stress field satisfies all requirements for equilibrium in the interior of the body.

(b) Verify that the curved surface of the cylinder is traction-free.

(c) Calculate the traction on the end y3 = 0. Hence calculate the resultant force and couple acting on the

cylinder at the end y3 = 0. Show that the parameters α, β, γ and η describe, respectively, a couple

twisting the cylinder about the y3-axis, a force pulling on the cylinder in the y3-direction, a couple

bending the cylinder about the y2-axis, and a couple bending the cylinder about the y1-axis.
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(d) Consider the special case γ = η = 0 where there is no bending. Calculate the principal components

of stress at an arbitrary point in the body. Calculate the value of the largest normal stress in the

cylinder.

(e) Given a circular cylinder that is subjected to some prescribed traction on its boundary leading to

axial loading, twisting and bending, does it necessarily follow that the stress field in the body has to

be the stress field in (i)?

y1

y
2

y
3

y
2

a

l

Figure 3.21: Figure for Problem 3.3: A right circular cylinder of length ` and radius a.

Solution:

(a) For force balance we must have ∂Tij/∂yj = 0 and for moment balance we need Tij = Tji. Clearly the

given matrix of stress components is symmetric. Therefore to check whether this stress field is in equilibrium

we only need to substitute (i) into the equilibrium equations ∂Tij/∂yj = 0:

∂T11/∂y1 + ∂T12/∂y2 + ∂T13/∂y3 = 0,

∂T21/∂y1 + ∂T22/∂y2 + ∂T23/∂y3 = 0,

∂T31/∂y1 + ∂T32/∂y2 + ∂T33/∂y3 = 0.

It is readily seen that these equations hold trivially since each term in each equation is identically zero for

the stress field (i).

(b) The components of the unit outward normal vector n on the curved surface y2
1 + y2

2 = a2 can be written

as

n1 = cos θ, n2 = sin θ, n3 = 0, 0 ≤ θ < 2π, (ii)

and so the traction on this surface can be calculated using ti = Tijnj . The first two of these equations (i.e.

i = 1 and i = 2) vanish trivially for the stress field (i):

t1 = T11n1 + T12n2 + T13 ��n3 = 0; t2 = T21n1 + T22n2 + T23 ��n3 = 0.

The third equation simplifies as follows

t3 = T31n1 + T32n2 + T33��n3
(i),(ii)

= (−αy2) cos θ + (αy1) sin θ = (−αa sin θ) cos θ + (αa cos θ) sin θ = 0

where we have used the fact that y1 = a cos θ, y2 = a sin θ on the curved boundary.
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Thus we conclude that t1 = t2 = t3 = 0 on the curved boundary whence it is traction-free.

(c) Let S0 denote the cross section at y3 = 0. We know (how?) that∫
S0
dAy = πa2,

∫
S0
y1 dAy =

∫
S0
y2 dAy =

∫
S0
y1y2 dAy = 0,

∫
S0
y2

1 dAy =

∫
S0
y2

2 dAy =
1

4
πa4.

(iii)

The components of the unit outward normal vector n on S0 are n1 = n2 = 0, n3 = 1. Therefore the traction

components ti = Tijnj on this surface specialize to

t1 = T13n3 = −αy2, t2 = T23n3 = αy1, t3 = T33n3 = β + γy1 + ηy2. (iv)

The resultant force f on S0 is given by the integral of t over S0 and so using (iii)

f1 =

∫
S0
t1 dAy =

∫
S0
T1jnj dAy =

∫
S0
T13 dAy =

∫
S0

(−αy2) dAy = 0,

f2 =

∫
S0
t2 dAy =

∫
S0
T2jnj dAy =

∫
S0
T23 dAy =

∫
S0

(αy1) dAy = 0

f3 =

∫
S0
t3 dAy =

∫
S0
T3jnj dAy =

∫
S0
T33 dAy =

∫
S0

(β + γy1 + ηy2) dAy = βπa2.

Therefore the resultant force on S0 is a pure axial force in the y3-direction:

f = βπa2 e3. (v)

Turning next to the resultant moment on this face we recall that in general the resultant moment m is given

by the integral of y × t over the surface S0. Therefore

m1 =

∫
S0
e1jkyjtk dAy =

∫
S0

(e123y2t3 + e132 ��y3 t2) dAy =

∫
S0
y2t3 dAy,

m2 =

∫
S0
e2jkyjtk dAy =

∫
S0

(e213y1t3 + e231 ��y3 t1) dAy =

∫
S0
−y1t3 dAy,

m3 =

∫
S0
e3jkyjtk dAy =

∫
S0

(e312y1t2 + e321 y2 t1) dAy =

∫
S0

(−y2t1 + y1t2) dAy.

Substituting (iv) into this and using (iii) to evaluate the integrals leads to

m1 =

∫
S0
y2t3 dAy =

∫
S0
y2(β + γy1 + ηy2) dAy = η

πa4

4
,

m2 =

∫
S0
−y1t3 dAy =

∫
S0
−y1(β + γy1 + ηy2) dAy = −γ πa

4

4
,

m3 =

∫
S0

(−y2t1 + y1t2) dAy =

∫
S0

(αy2
2 + αy2

1) dAy = α
πa4

2
.

Therefore the resultant moment on S0 is

m =
πa4

4

(
ηe1 − γe2 + 2αe3

)
. (vi)

Therefore from equations (v) and (vi) we conclude that the parameters α, β, γ and η describe, respectively,

a couple twisting the cylinder about the y3-axis, a force pulling the cylinder in the y1-direction, a couple

bending the cylinder about the y2-axis, and a couple bending the cylinder about the y1-axis.



304 CHAPTER 3. FORCE, EQUILIBRIUM PRINCIPLES AND STRESS

(d) The principal stresses at an arbitrary point in the body are found by calculating the eigenvalues T of

the given stress tensor:

det [T− τI] = det



−τ 0 −αy2

0 −τ αy1

−αy2 αy1 β − τ


= −τ3 + βτ2 + α2y2(y1 + y2)τ = 0.

The principal stresses, i.e. the roots of this cubic equation are

τ = 0, τ =
1

2

{
β ±

√
β2 + 4α2(y2

1 + y2
2)
}

Therefore the largest principal stress is

τ(y1, y2, y3) =
1

2

{
β +

√
β2 + 4α2(y2

1 + y2
2)
}
> 0. �

This is the largest principal stress at any point (y1, y2, y3). In order to find the maximum principal stress

from among all points in the body, we need to maximize T as a function of (y1, y2, y3). Clearly this occurs

at the outer surface where y2
1 + y2

2 = a2 and has the value

τmax =
1

2

{
β +

√
β2 + 4α2a2

}
. �

(e) No. Prescribing only the resultant force and moment at the ends, and not the detailed traction distribu-

tion, does not adequately describe the boundary conditions of elasticity theory. There are other stress fields

that also have these same resultants (and are in equilibrium and maintain a traction free curved surface.)

Problem 3.4. The normal stress at some point on a surface is

Tnormal(n) = t(n) · n,

where the unit vector n is perpendicular to the surface at that point. From among all planes through that

point, on which is Tnormal(n) a maximum and what is its value on that plane?

Solution: The normal stress on the plane perpendicular to n is

Tnormal(n) = t(n) · n = Tn · n = Tijninj . (i)

It is convenient to work in a principal basis for T. When the components of T and n are taken with respect

to such a basis, (i) reads

Tnormal(n) = Tijninj = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3. (ii)

There is no loss of generality in supposing that τ1 ≥ τ2 ≥ τ3. For simplicity we shall exclude the case where

two principal stresses are equal and so restrict attention to

τ1 > τ2 > τ3. (iii)
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Exercise: consider the cases where either two, or all three, principal stresses coincide.

Solution 1: We want to maximize Tnormal(n) over all unit vectors n. We account for the fact that there is a

constraint |n|2 = n1ni = 1 on the set of vectors over which we carry out the extremization by including (in

the standard way) a Lagrange multiplier τ and considering the modified function

T (n) = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3 − τ(n2

1 + n2
2 + n2

3 − 1). (iv)

Setting the derivative of (v) with respect to each ni equal to zero gives the three equations

n1(τ1 − τ) = 0, n2(τ2 − τ) = 0 n3(τ3 − τ) = 0. (v)

One extremum corresponds to τ = τ1, n2 = n3 = 0 (note that n2 = n3 = 0 is in fact the eigenvector

associated with the eigenvalue τ = τ1). Evaluating (ii) at this solution gives Tnormal(n) = τ1. Likewise

the other extrema correspond to Tnormal(n) = τ2 with n2 = 1, n1 = n3 = 0; and Tnormal(n) = τ3 with

n3 = 1, n1 = n2 = 0. Thus, in view of (iii), we conclude that the maximum value of Tnormal(n) is the largest

eigenvalue τ1 and that it acts on a plane normal to the corresponding eigenvector. Likewise the minimum

value of Tnormal(n) is the smallest eigenvalue τ3 and it acts on a plane normal to the associated eigenvector.

Solution 2: In view of (iii), if we replace τ2 and τ3 by τ1 in (ii) we conclude that

Tnormal(n) = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3 ≤ τ1 n2

1 + τ1 n
2
2 + τ1 n

2
3 = τ1 (n2

1 + n2
2 + n2

3) = τ1.

Thus τ1 is an upper bound on the value of Tnormal(n). However Tnormal(n) takes the value τ1 (when n1 =

1, n2 = n3 = 0) and so achieves this upper bound. Thus the maximum value of Tnormal(n) is τ1.

Likewise on replacing τ1 and τ2 by τ3 in (ii) we conclude that

Tnormal(n) = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3 ≥ τ3 n2

1 + τ3 n
2
2 + τ3 n

2
3 = τ3 (n2

1 + n2
2 + n2

3) = τ3.

Thus τ3 is a lower bound on the value of Tnormal(n). However Tnormal(n) takes the value τ3 (when n1 = n2 =

0, n3 = 1) and so achieves this lower bound. Thus the minimum value of Tnormal(n) is τ3.

Problem 3.5. The magnitude of the resultant shear stress at a point on a surface perpendicular to the

unit vector n is

Tshear(n) =
√

t(n) · t(n)− (t(n) · n)2.

From among all planes through that point, on which is T 2
shear(n) a maximum and what is its value on that

plane?

Solution: Denote the principal Cauchy stresses by τ1, τ2, τ3 and the corresponding principal directions by t1,

t2 and t3. Then the Cauchy stress tensor can be written as

T = τ1 t1 ⊗ t1 + τ2 t2 ⊗ t2 + τ3 t3 ⊗ t3. (i)

Let n1, n2 and n3 be the components of an arbitrary unit vector n in the principal basis {t1, t2, t3}:

n = n1 t1 + n2 t2 + n3 t3. (ii)
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In carrying out the calculations below we shall use

ti · tj = δij (iii)

since t1, t2 and t3 are mutually orthogonal unit vectors.

The traction on the plane normal to the unit vector n is

t(n) = Tn
(i),(ii)

= (τ1 t1⊗t1 + τ2 t2⊗t2 + τ3 t3⊗t3)(n1 t1 + n2 t2 + n3 t3)
(iii)
= τ1n1 t1 + τ2n2 t2 + τ3n3 t3. (v)

Therefore the normal stress on this plane is

Tnormal = t(n) ·n (v),(ii)
= (τ1n1 t1 + τ2n2 t2 + τ3n3 t3)(n1 t1 + n2 t2 + n3 t3)

(iii)
= τ1n

2
1 + τ2n

2
2 + τ3n

2
3. (vi)

Likewise

T 2
shear + T 2

normal = t · t = Tn ·Tn = TijnjTiknk = τ2
1n

2
1 + τ2

2n
2
2 + τ2

3n
2
3. (vii)

Solution 1: Reference: D.H. Warner, An elementary derivation of the maximum shear stress in a three

dimensional state of stress, Journal of Elasticity, 152(2022), pp. 179-182.

Without loss of generality we can order the principal Cauchy stresses as

τ1 ≥ τ2 ≥ τ3.

On using n2
1 + n2

2 + n2
3 = 1 to eliminate n2

3 from (vi) and (vii) we get

Tnormal = (τ1 − τ3)n2
1 + (τ2 − τ3)n2

2 + τ3, T 2
shear + T 2

normal = (τ2
1 − τ2

3 )n2
1 + (τ2

2 − τ2
3 )n2

2 + τ2
3 .

Eliminating n2
1 from these two equations and rearranging terms leads to

T 2
shear =

(
τ1 − τ3

2

)2

−
(
Tnormal −

τ1 + τ3
2

)2

− (τ1 − τ2)(τ2 − τ3)n2
2.

In view of the ordering of the principal stresses this implies that

T 2
shear ≤

(
τ1 − τ3

2

)2

⇒ |Tshear| ≤
τ1 − τ3

2
.

Thus 1
2 (τ1 − τ3) is an upper bound on |Tshear|. That |Tshear| achieves this upper bound can be readily

verified by taking n1 = n3 = 1/
√

3, n2 = 0 in (vi) and (vii) which gives Tnormal = (τ1 + τ3)/2 and T 2
shear =[

(τ1 − τ3)/2
]2

. Thus

|Tshear|max over unit vectors n =
τ1 − τ3

2
.

Solution 2: Using calculus: our task is to maximizes T 2
shear over all unit vectors n where

T 2
shear = |t(n)|2 − T 2

normal = τ2
1n

2
1 + τ2

2n
2
2 + τ2

3n
2
3 − (τ1n

2
1 + τ2n

2
2 + τ3n

2
3)2. (viii)

We incorporate the constraint |n| = 1 in the usual way by introducing a Lagrange multiplier τ and con-

structing the related function

L(n1, n2, n3) = T 2
shear − τ(n2

1 + n2
2 + n2

3 − 1). (ix)
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On setting ∂L/∂ni = 0 for i = 1, 2, 3 we get

n1

[
τ2
1 − 2τ1(τ1n

2
1 + τ2n

2
2 + τ3n

2
3) + τ

]
= 0,

n2

[
τ2
2 − 2τ2(τ1n

2
1 + τ2n

2
2 + τ3n

2
3) + τ

]
= 0,

n3

[
τ2
3 − 2τ3(τ1n

2
1 + τ2n

2
2 + τ3n

2
3) + τ

]
= 0.

 (x)

We must solve (x) for n and then evaluate (viii) at this n (or these n’s).

We shall only consider the case where the principal stresses are distinct.

Since n is a unit vector, all three n’s cannot vanish. First consider solutions of (x) (if any) where two of

the n’s are zero, e.g.

n2 = n3 = 0 ⇒ n1 = ±1. (xi)

Substituting (xi) into (viii) gives

T 2
shear = τ2

1n
2
1 − (τ1n

2
1)2 = 0. (xii)

Of course the cases n1 = n2 = 0 and n3 = n1 = 0 lead to the same result. So this extremum does not

provide the maximum value of T 2
shear.

Next consider solutions where only one of the n’s is zero. e.g.

n3 = 0, n1 6= 0, n2 6= 0 (xiii)

Then (x) reduces to

τ2
1 − 2τ1(τ1n

2
1 + τ2n

2
2) + τ = 0 ⇒ τ2

1 − 2τ2
1n

2
1 − 2τ1τ2n

2
2 + τ = 0,

τ2
2 − 2τ2(τ1n

2
1 + τ2n

2
2) + τ = 0 ⇒ τ2

2 − 2τ1τ2n
2
1 − 2τ2

2n
2
2 + τ = 0

 (xiv)

On subtracting the first equation from the second (to eliminate τ) and using n2
1 + n2

2 = 1 one ends up with

(τ1 − τ2)2(n2
1 − n2

2) = 0. (xv)

Since τ1 6= τ2 (we are considering the case where the principal stresses are distinct) this yields

n1 = ±n2. (xvi)

So we have n1 = ±n2, n3 = 0 and since n is a unit vector this gives

n1 = ± 1√
2
, n2 = ± 1√

2
, n3 = 0. (xvii)

Note that this direction bisects the angle between t1 and t2 and lies in the plane spanned by t1 and t2. This

is a direction that extremizes T 2
shear. To find the value of T 2

shear at this extremum we substitute (xvii) into

(viii) to get

T 2
shear = τ2

1 /2 + τ2
2 /2− (τ1/2 + τ2/2)2 =

1

4
(τ1 − τ2)2,

from which we have

Tshear =
1

2
|τ1 − τ2|.
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The cases n1 = 0, n2 6= 0, n3 6= 0 and n2 = 0, n3 6= 0, n1 6= 0 can be handled similarly and one is eventually

led to the conclusion that the maximum resultant shear stress is given by the maximum of

1

2
|τ1 − τ2|,

1

2
|τ2 − τ3|,

1

2
|τ3 − τ1|,

and the normal to the plane on which it acts bisects the two associated principal directions.

It remains to consider the case where none of the n’s vanish. Cancelling the n’s outside the square

bracket in (x) and subtracting the first equation from the second, and the second from the third, leads to

two equations (that do not involve τ). The analysis of these equations (together with the requirement |n| = 1

is left as an exercise.

Problem 3.6.

(a) For every stress tensor T, is there a plane on which the magnitude of the resultant shear stress

Tshear(n) vanishes?

(b) For every stress tensor T, is there a plane on which the normal stress Tnormal(n) vanishes?

(c) Suppose that the principal stresses τ1, τ2, τ3 at some point in a body are all non-zero and τ2 = τ3.

Find necessary and sufficient conditions on τ1 and τ2 under which there is a plane on which the normal

stress vanishes.

Solution:

(a) Since T is symmetric it necessarily has a principal basis, and the matrix of components of [T ] in that

basis is diagonal. Thus the shear stress vanishes on any plane perpendicular to a principal direction.

(b) From (3.40) (in a principal basis for T we have)

Tnormal(n) = τ1 n
2
1 + τ2 n

2
2 + τ3 n

2
3. (i)

Suppose that all three principal stresses are positive: τ1 > 0, τ2 > 0, τ3 > 0. Then Tnormal is the sum of three

non-negative terms at least one of which is strictly positive. (Since n is a unit vector, all three ni’s cannot

vanish.) Thus in this case there is no direction n for which Tnormal vanishes and so in general there is not a

direction n for which Tnormal vanishes.

An explicit example of this is provided by a pure hydrostatic stress T = τI, τ 6= 0. The normal stress

on the plane perpendicular to an arbitrary direction n is Tnormal(n) = Tn · n = τn · n = τ which is nonzero

for all n.

(c) In this case, set τ2 = τ3 in (ii) and use n2
1 + n2

2 + n2
3 = 1 to get

Tnormal(n) = τ1 n
2
1 + τ2 (n2

2 + n2
3) = τ1 n

2
1 + τ2 (1− n2

1) = (τ1 − τ2)n2
1 + τ2. (ii)

Suppose that Tnormal vanishes:

(τ1 − τ2)n2
1 + τ2 = 0. (iii)
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Since τ2 6= 0, it follows that (τ1 − τ2)n2
1 6= 0 and therefore that

n1 6= 0, and τ1 6= τ2. (iv)

From (iii),

n2
1 =

τ2
τ2 − τ1

, (v)

where we were able to divide by τ2 − τ1 because of (iv)2. Since n1(6= 0) is one component of a unit vector,

we know that 0 < n2
1 ≤ 1. Therefore (v) will define an acceptable value for n1 provided

0 <
τ2

τ2 − τ1
≤ 1. (vi)

This yields

Case τ2 > τ1 : (vi) ⇒ 0 < τ2 ≤ τ2 − τ1 ⇒ τ2 > 0 ≥ τ1 ⇒ τ2 > 0 > τ1. (vii)

where in the last step we used the fact that τ1 6= 0 (given), and

Case τ2 < τ1 : (vi) ⇒ 0 > τ2 ≥ τ2 − τ1 ⇒ τ1 ≥ 0 > τ2 ⇒ τ1 > 0 > τ2. (viii)

Therefore it is necessary that τ1 and τ2 have opposite signs.

Conversely suppose τ1 and τ2 have opposite signs. Then one can reverse the preceding steps and go from

the last inequality in (vii) or (viii) to (vi). When (vi) holds (v) defines a real direction

n1 =

√
τ2

τ2 − τ1
for which Tnormal vanishes (n2 and n3 being arbitrary except for making a unit vector).

Thus necessary and sufficient for there being a plane on which Tnormal vanishes is that τ1 and τ2 have

opposite signs. �

Problem 3.7. Suppose the traction t(n) on every plane through a given point has the same direction a,

i.e. suppose that t(n) = τ(n) a for all unit vectors n where a is a constant unit vector. What is the form of

the most general stress tensor T that is consistent with this?

Solution In this solution we shall suspend the usual rules of indicial notation. Pick a basis {e1, e2, e3} with

e1 = a. Since t(n) = Tn = τ(n) a for all unit vectors n, we pick n = ej to get Tej = τ(ej) e1. Then from

(3.14) it follows that

Tij = Tej · ei = τ(ej) e1 · ei = τ(ej)δ1j for all i, j,= 1, 2, 3.

Therefore all components Tij vanish except T11 = τ(e1). Therefore

T =

3∑
i=1

3∑
j=1

Tijei ⊗ ej = T11e1 ⊗ e1 = τ(e1)e1 ⊗ e1,

and so returning to the vector a = e1 we obtain T = τ(a)a⊗ a. �
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Problem 3.8. In this problem you are to show that the Cauchy stress tensor at a point in a body is fully

determined by the traction on any three linearly independent planes. Specifically: consider the three planes

(through some point in the body) normal to the respective unit vectors n1,n2,n3. Suppose the traction on

each of these planes is t1, t2, t3 respectively.

(a) Write down (in terms of n1,n2,n3, t1, t2, t3) the Cauchy stress tensor in the case where the unit

vectors n1,n2,n3 are mutually orthogonal.

(b) Write down the Cauchy stress tensor in the case where the unit vectors n1,n2,n3 are linearly inde-

pendent (but not necessarily mutually orthogonal).

(c) Can you write down the Cauchy stress tensor in the case where the unit vectors n1,n2,n3 are linearly

dependent (with n1,n2 being linearly independent)? Explain.

Solution: We must construct a tensor T for which

Tni = ti, (i)

and, moreover, such that Tn is completely determined for all unit vectors n.

(a) In this case ni · nj = δij Thus clearly

T = t1 ⊗ n1 + t2 ⊗ n2 + t3 ⊗ n3 = tj ⊗ nj ,

since Tni = (tj ⊗ nj)ni = (nj · ni)tj = δijtj = ti. For an arbitrary vector n = nini we have Tn =

ni(tj ⊗ nj)ni = niδijtj = niti.

(b) We (continue to) want to find a tensor T such that (i) holds. If we can find 3 vectors m1,m2,m3 such

that mi · nj = δij (keep in mind that in this part of the problem ni · nj 6= δij) then, since (tj ⊗mj)ni =

(mj · ni)tj = δijtj = ti it would follow that T = ti ⊗mi. Thus our task is to determine three such vectors

m1,m2,m3.

Since n1,n2,n3 are linearly independent, it follows from Problem 1.7 that ni×nj 6= o and (ni×nj)·nk 6= 0

for distinct i, j, k. Therefore we can define three non-zero vectors m1,m2,m3 related to n1,n2,n3 by14

m1 =
n2 × n3

(n2 × n3) · n1
, m2 =

n3 × n1

(n3 × n1) · n2
, m3 =

n1 × n2

(n1 × n2) · n3
. (ii)

Observe that the vector m1 is perpendicular to the vectors n2 and n3 and its length is such that m1 ·n1 = 1,

i.e.

m1 · n1 = 1, m1 · n2 = m1 · n3 = 0. (iii)

The vectors m2 and m3 are related analogously to n1,n2,n3. Therefore

mi · nj = δij . (iv)

It now follows from the remarks in the first paragraph that

T = tj ⊗mj . �

14The vectors {m1,m2,m3} are said to be reciprocal to the vectors {n1,n2,n3}.
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For an arbitrary vector n = nini we have Tn = ni(tj ⊗mj)ni
(iv)
= niti.

Remark: In the special case where each vector of the set {n1,n2,n3} is perpendicular to the other two, one

sees from (ii) that mi = ni/|ni|2 = ni since ni is a unit vector.

(c) No. The vectors n1,n2,n3 lie in a plane and we have no information on the traction acting on that plane,

i.e. we do not have enough information to calculate Tn when n is perpendicular to the plane containing

n1,n2 and n3.

To demonstrate this formally it suffices to provide a single counter example. Consider the case where

n1 is perpendicular to n2, and n3 lies in the plane defined by n1 and n2. Suppose further that

ti = τni, i = 1, 2, 3, (v)

for some (given) scalar τ . The question is whether (v) fully determines the stress tensor T. Consider the

tensor

T = τn1 ⊗ n1 + τn2 ⊗ n2 + T33n⊗ n,

where n is a unit vector perpendicular to each ni, i = 1, 2, 3, and T33 is arbitrary. One can readily verify

that Tni = τni for i = 1, 2, 3 and therefore that T is consistent with all the given information in (v).

However due to the presence of the arbitrary term T33, the stress tensor T is not fully determined by the

given information in (v), e.g. the traction on the plane normal to n is T33n and is undetermined.

Problem 3.9. (Based on Chadwick) The Cauchy stress tensor (at a certain point in a body) is

T = αI + β(e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2 + e3 ⊗ e1 + e1 ⊗ e3) (i)

where α 6= 0 and β 6= 0 are constants.

(a) Calculate the principal stresses and corresponding principal directions.

(b) Calculate the maximum (over all n) of the resultant shear stress magnitude Tshear(n).

(c) Find necessary and sufficient conditions under which there is a plane on which the normal stress

vanishes.

(d) Find necessary and sufficient conditions under which there is a plane on which the traction vanishes;

assume α 6= β.

Solution:

(a) The principal stresses are the eigenvalues of T and so we must find τ such that

det(T− τ I) = det


α− τ β β

β α− τ β

β β α− τ

 = 0 (ii)
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Expanding the determinant and simplifying leads to

(α− τ + 2β)(α− τ − β)(α− τ − β) = 0,

from which we conclude that the principal stresses are

τ1 = α+ 2β, τ2 = τ3 = α− β. (iii)

To find the principal direction associated with, say τ1, we must find a unit vector t such that Tt = τ1t:
α− τ1 β β

β α− τ1 β

β β α− τ1




s1

s2

s3

 =


0

0

0

 .

This gives three scalar algebraic equations (two of which are independent) from which to find s1, s2, s3.

Solving them (together with s2
1 + s2

2 + s2
3 = 1) leads to

s1 = s2 = s3 =
1√
3
,

and so the principal direction associated with τ1 is

t1 =
1√
3

(e1 + e2 + e3).

The principal directions associated with τ2 and τ3 are found similarly (with some attention to the fact that

the eigenvalue is repeated: τ2 = τ3. One finds

t2 =
1√
6

(e1 + e2 − 2e3), t3 =
1√
2

(e1 − e2).

(b) The maximum value of the magnitude of the resultant shear stress, (Tshear)max, is given by the largest of

1

2
|τ1 − τ2|,

1

2
|τ2 − τ3|,

1

2
|τ3 − τ1|.

By substituting (iii) into this one finds

(Tshear)max =
3

2
|β|.

(c) The normal stress on the plane perpendicular to n is

Tnormal = t(n) · n = Tn · n = Tijninj . (iv)

It is convenient to work in the principal basis {s1, s2, s3} and take all components with respect to that basis.

Equation (iv) then reads

Tnormal = τ1n
2
1 + τ2n

2
2 + τ3n

2
3. (v)

Substituting (iii) into (v) and simplifying leads to

Tnormal = (α+ 2β)n2
1 + (α− β)(n2

2 + n2
3) = (α+ 2β)n2

1 + (α− β)(1− n2
1) =

= 3β n2
1 + α− β,
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where we have used the fact that n2
1 + n2

2 + n2
3 = 1. We are told that this vanishes on some plane and so

n2
1 =

β − α
3β

.

In order that this give an acceptable value of n1 it is necessary and sufficient that 0 ≤ n2
1 < 1:

0 ≤ β − α
3β

< 1 ⇔ −2 <
α

β
≤ 1

Question: why is n2
1 = 1 disallowed?

(d) In this case Tn = o and n 6= o and therefore it is necessary that T be singular. Thus

det T = (α− β)2(α+ 2β) = 0 ⇒ α = −2β, � (viii)

since we are told that α 6= β. Conversely when (viii) holds one can readily verify that Tn = o for

n =
1√
3

e1 +
1√
3

e2 +
1√
3

e3.

Problem 3.10. (Ogden) The resultant shear stress on a plane perpendicular to an arbitrary direction n

has magnitude Tshear(n). It was defined in equation (3.7) (and depicted in Figure 3.5) to be

Tshear(n) =
√

t(n) · t(n)− [t(n) · n]2. (i)

(a) Show that the expression (i) can be written as

T 2
shear = (τ1 − τ2)2n2

1n
2
2 + (τ2 − τ3)2n2

2n
2
3 + (τ3 − τ1)2n2

3n
2
1, (3.99)

where τ1, τ2, τ3 are the principal Cauchy stresses and n1, n2, n3 are the components of the arbitrary direction

n in the principal basis for T.

(b) Show that the average value of (3.99) over all possible directions n is

1

15

[
(τ1 − τ2)2 + (τ2 − τ3)2 + (τ3 − τ1)2

]
. (iii)

(c) The particular plane whose direction is equally inclined to the principal axes of T is known as the

octahedral plane. Calculate the magnitude of the resultant shear stress on the octahedral plane. How is it

related to (iii)?

Solution: The summation convention is suspended in this solution. All components are taken with respect

to a principal basis {e1, e2, e3} of T.

(a) We need to calculate t · n and t · t:

t = Tn =

(
3∑
i=1

τi(ei ⊗ ei)

)
n =

3∑
i=1

τiniei, (iv)
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t · n = Tn · n =

(
3∑
i=1

τiniei

)
· n =

3∑
i=1

τinini = τ1n
2
1 + τ2n

2
2 + τ3n

2
3, (v)

t · t = Tn ·Tn = TTTn · n = T2n · n = τ2
1n

2
1 + τ2

2n
2
2 + τ2

3n
2
3, (vi)

where in writing the last expression in (vi) we simply recognized the similarity with Tn ·n that we calculated

in (v). Substituting (v) and (vi) into (i)

T 2
shear = τ2

1n
2
1 + τ2

2n
2
2 + τ2

3n
2
3 − (τ1n

2
1 + τ2n

2
2 + τ3n

2
3)2 =

= τ2
1n

2
1(1− n2

1) + τ2
2n

2
2(1− n2

2) + τ2
3n

2
3(1− n2

3)− 2τ1τ2n
2
1n

2
2 − 2τ2τ3n

2
2n

2
3 − 2τ3τ1n

2
3n

2
1 =

= τ2
1n

2
1(n2

2 + n2
3) + τ2

2n
2
2(n2

3 + n2
1) + τ2

3n
2
3(n2

1 + n2
2)− 2τ1τ2n

2
1n

2
2 − 2τ2τ3n

2
2n

2
3 − 2τ3τ1n

2
3n

2
1 =

= (τ1 − τ2)2n2
1n

2
2 + (τ2 − τ3)2n2

2n
2
3 + (τ3 − τ1)2n2

3n
2
1.

(b) Using spherical polar coordinates,

n1 = sinφ cos θ, n2 = sinφ sin θ, n3 = cosφ. (vii)

With S denoting the surface of a unit sphere, the area dA of an infinitesimal patch on S is

dA = (r dφ)(r sinφdθ) = r2 sinφdφdθ = sinφdφdθ since the radius r = 1. (viii)

The average value that we seek is

1

4π

∫
S
T 2

shear dA =
1

4π

∫ 2π

0

∫ π

0

T 2
shear sinφdφdθ, (ix)

where 4π is the total surface area of the unit sphere. Substituting (vii) into (ii), the result into (ix) and

evaluating the integrals leads to (iii).

(c) By setting n1 = n2 = n3 = 1/
√

3 in (ii) we get

T 2
shear

∣∣
octahedral

=
1

9

[
(τ1 − τ2)2 + (τ2 − τ3)2 + (τ3 − τ1)2

]
.

which differs from (i) by (just) a factor 5/3.

Problem 3.11. (Atkin and Fox, Ogden) The stress field in a body is known to be uniaxial in the (fixed)

direction m but not necessarily uniform, i.e. it is known to have the form

T(y) = τ(y) m⊗m, (i)

where m is a constant unit vector and τ(y) is a scalar-valued function. The body is in equilibrium and there

are no body forces.

(a) Show that the vector grad τ must be perpendicular to m.

(b) Show that τ(y) must be independent of y ·m, i.e. if you pick a basis {e1, e2, e3} with e3 = m, then

τ(y) = τ(y1, y2).
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(c) Show that the traction t(n) on any plane is parallel to m.

(d) Specialize the traction from part (c) to the cases where n is parallel to m and n is perpendicular to

m.

(e) Show that

T 2
shear(n) = τ2

[
1− (m · n)2

]
(m · n)2.

Calculate the maximum and average values of this over all directions n.

Problem 3.12. Consider two bases {e1, e2, e3} and {e′1, e′2, e′3} related in the usual way by e′i = Qijej

where [Q] is an orthogonal matrix. Recall from (3.14) that the components of T in the basis {e1, e2, e3} are

defined by

Tij = t(ej) · ei = Tej · ei,

and therefore its components in the basis {e′1, e′2, e′3} are, by definition,

T ′ij = t(e′j) · e′i = Te′j · e′i.

Verify that the matrices [T ] and [T ′] are related by the basis transformation rule for a 2-tensor.

Solution: Let {e1, e2, e3} and {e′1, e′2, e′3} be two bases related in the usual way by an orthogonal matrix [Q]:

e′i = Qijej , ei = Qjie
′
j . (i)

First, let ti, ni and Tij be the components15 of t,n and T in the first basis and t′i, n
′
i and T ′ij the corresponding

components in the second. Then by (3.19)

ti = Tjinj , t′i = T ′jin
′
j . (ii)

Second, since t and n are vectors, their components in the two bases are related by the usual 1-tensor

transformation rule

t′i = Qijtj , n′i = Qijnj . (iii)

Substituting (iii) into (ii)2 gives

Qijtj = T ′jiQjknk

which by using (ii)1 yields

QijTkjnk = T ′jiQjknk.

Since this holds for all unit vectors {n}, and [Q], [T ] and [T ′] are independent of {n}, it follows that

QijTkj = T ′jiQjk.

15By (3.14), the components of stress in the two bases are

Tij = tj(ei), T ′ij = t′j(e
′
i).
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In matrix form this reads [T ][Q]T = [Q]T [T ′] whence

[T ′] = [Q][T ][Q]T

where we have used [Q]T = [Q]−1 since [Q] is orthogonal. This is the basis transformation rule for the

components of a 2-tensor.

Problem 3.13. (Ogden) The mean Cauchy stress in a body is defined as

T :=
1

vol

∫
R

T(y) dVy

where vol is the volume of the region R occupied by the body.

(a) Given that the body is in equilibrium, show that one can express T in the alternative form

T =
1

2 vol

∫
R

(b⊗ y + y ⊗ b) dVy +
1

2 vol

∫
∂R

(t⊗ y + y ⊗ t) dAy. (3.100)

This shows the following important property of the mean stress: it is fully determined by the traction on

the boundary of the body (and the prescribed body force field).

(b) Suppose the body force vanishes and the traction on the boundary ∂R is t(y,n) = τn where τ is a

constant; note that the traction is perpendicular to the boundary at each point on ∂R. Show that T = τ I.

(c) Suppose the body force vanishes and the traction on the boundary ∂R is t(y,n) = τ
[
(a · n)a

]
where

the unit vector a and scalar τ are constants; note that the traction at every point on the boundary is in the

same direction a. Show that T = τa⊗ a.

(d) The body depicted in Figure 3.22 contains a cavity, and it is subjected to a uniform internal pressure p1

on the cavity surface S1 and a uniform external pressure p2 on the outer surface S2. The cavity volume is

V1 and the body has volume Vb. Neglect body forces. Show that

T = −p2V2 − p1V1

V2 − V1
I where V2 = V1 + Vb.

Figure 3.22: Body with a cavity subject to a uniform internal pressure p1 and a uniform external pressure

p2.
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Solution:

(a) In cartesian components, we want to show that∫
R

(biyj + yibj) dVy +

∫
∂R

(tiyj + yitj) dAy = 2

∫
R
Tij dVy. (i)

We simplify the left-hand side by substituting the traction-stress relation ti = Tijnj , using the divergence

theorem and then collecting terms:

Left-hand side =
∫
R(biyj + yibj) dVy +

∫
∂R(Tiknkyj + yiTjknk) dAy =

=
∫
R(biyj + yibj) dVy +

∫
R

∂
∂yk

(Tikyj + yiTjk) dVy =

=
∫
R

([
bi + ∂Tik

∂yk

]
yj +

[
bj +

∂Tjk
∂yk

]
yi

)
dVy +

∫
R

(
Tik

∂yj
∂yk

+ Tjk
∂yi
∂yk

)
dVy =

=
∫
R (Tikδjk + Tjkδik) dVy = 2

∫
R Tij dVy, �

where in going from the third line to the fourth we dropped the first integral by using the equilibrium

equations ∂Tij/∂yj + bi = 0.

(b) We substitute ti = τni into (i) (and drop the body force terms)∫
R
Tij dVy =

1

2

∫
∂R

(tiyj + tjyi) dAy =
τ

2

∫
∂R

(niyj + njyi) dAy =
τ

2

∫
R

(
∂yj
∂yi

+
∂yi
∂yj

)
dVy = τδij

∫
R
dVy

(ii)

having used the divergence theorem in the penultimate step. This gives the result T = τ I.

(c) We substitute ti = τaknkai into (i) (and drop the body force terms)∫
R Tij dVy = 1

2

∫
∂R(tiyj + tjyi) dAy = τ

2

∫
∂R(aknkaiyj + aknkajyi) dAy =

= τ
2

∫
R

(
akai

∂yj
∂yk

+ akaj
∂yi
∂yk

)
dVy = τ

2

∫
R (akaiδjk + akajδik) dVy = τaiaj

∫
R dVy

(iii)

having used the divergence theorem in getting to the second line. This gives the result T = τ a⊗ a.

Figure 3.23: Regions occupied and boundaries thereof of a body with a cavity.
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(d) Setting b = o, vol = Vb and ∂R = S1 + S2 in (3.100) gives

T ij =

[
1

2Vb

∫
S1

(tiyj + yitj) dAy

]
+

[
1

2Vb

∫
S2

(tiyj + yitj) dAy

]
. (iv)

When a pressure p acts on the surface of a body, the traction is t = −pn where the unit vector n is normal

to the surface and points out of the body. Thus in this problem

ti = −p1ni on S1, ti = −p2ni on S2, (v)

where the outward pointing unit normal vectors n associated with the surfaces S1 and S2 are as shown in

Figure 3.23.

We now evaluate the terms on the right-hand side of (iv). First,∫
S2

(tiyj + yitj) dAy
(v)2
= −p2

∫
S2

(niyj + yinj) dAy
∗
= −p2

∫
R2

(δji + δij) dVy = −2p1δij

∫
R2

dVy = −2p2V2δij ,

where in step ∗ we used the divergence theorem and ∂yi/∂yj = δij , and R2 is the region occupied by the

body plus the cavity and V2 is the volume of the body plus the cavity. Next,∫
S1(tiyj + yitj) dAy

(v)1
= −p1

∫
S1(niyj + yinj) dAy

∗∗
= p1

∫
S1

(
(−ni)yj + yi(−nj)

)
dAy =

?
= p1

∫
R1

(δji + δij) dVy = 2p1δij
∫
R1
dVy = 2p1V1δij ;

in step ∗∗, because we intend to apply the divergence theorem to the region R1 occupied by the cavity, and

since the normal vector on ∂R1 that points out of R1 is −n, we converted n to − n; in step ? we used the

divergence theorem and ∂yi/∂yj = δij , and V1 is the volume of the cavity region R1.

Substituting the preceding two expressions into (iv) gives

T ij =

[
1

2Vb
2p1V1δij

]
+

[
− 1

2Vb
2p2V2δij

]
= −p2V2 − p1V1

Vb
δij . �

Problem 3.14. Define the mean Piola stress in a body by

S =
1

vol

∫
RR

S(x) dVx. (i)

Show that

S T =
1

vol

[∫
∂RR

x⊗ SnR dAx +

∫
RR

x⊗ bR dVx

]
(ii)

and therefore that the average Piola stress tensor field in a body depends only on the traction S(x)nR(x)

on the boundary ∂RR and the body force field bR(x) in RR. Show also that∫
RR

FST dVx =

∫
∂RR

y(x)⊗ SnR dAx +

∫
RR

y(x)⊗ bR dVx. (iii)
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Problem 3.15. In a reference configuration a body occupies the unit cube

RR = {(x1, x2, x3) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1},

and undergoes the deformation

y1 = λx1 + kx2, y2 = λ−1x2, y3 = x3. (i)

where λ and k are known constants.

Figure 3.24: Side view of the region RR. (Problem 3.15.)

(a) Sketch the region occupied by the body in the deformed configuration noting the lengths of the edges.

(b) Suppose that the matrix of components of the Cauchy stress is

[T ] =


−p+ µ(λ2 + k2) µkλ−1 0

µkλ−1 −p+ µλ−2 0

0 0 −p+ µ

 , (ii)

where µ is a known constant and p is an unknown constant.

The deformed images of the faces x3 = 0 and x3 = 1 are known to be traction-free. Simplify the

expression (ii) for [T ] accordingly.

(c) Calculate the Piola stress tensor.

(d) Calculate the force (vector) that must be applied on the deformed image of the face x2 = 1. Do this

using both the Piola and Cauchy tractions.

(e) Determine the (true) Cauchy traction that must be applied on the deformed image of the face x1 = 1.

Solution:

(a) We see from (i) that particles do not displace in the x3-direction. Moreover, the u1 and u2 displacement

components do not depend on x3. Thus this deformation is planar (in the x1, x2-plane) meaning every
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section x3 = constant deforms identically and in-plane. Thus, in sketching the body we can simply look at

the x1, x2-plane. Consider the four points O,A,B and C. In the reference configuration they have coordinates

(x1, x2, x3) = (0, 0, 0), (1, 0, 0), (1, 1, 0) and (0, 1, 0). Substituting these into (i) gives the coordinates of the

points O′, A′, B′ and C ′ in the deformed configuration (y1, y2, y3) = (0, 0, 0), (λ, 0, 0), (λ + k, λ−1, 0) and

(k, λ−1, 0). Figure 4.10 shows a view of RR and R looking down the x3-axis.

Figure 3.25: Side view of cube of the regions RR and R. The body has been biaxially stretched and

sheared.

The lengths of the edges are

|OA′| = |B′C ′| = λ, |A′B′| = |C ′O| =
√
k2 + λ−2 � (iii)

(b) The outward pointing unit normal vector on the plane x3 = 1 is e3. Therefore the Cauchy traction

components acting on it are T13, T23 and T33 and we are told that they vanish. The first two vanish

automatically. In order that (ii) obeys the requirement T33 = 0 one must have

p = µ. (iv)

Substituting (iv) in (ii) leads to

[T ] =


µ(λ2 + k2 − 1) µkλ−1 0

µkλ−1 µ(λ−2 − 1) 0

0 0 0

 , �

or equivalently

T = µ(λ2 + k2 − 1)e1 ⊗ e1 + µkλ−1(e1 ⊗ e2 + e2 ⊗ e1) + µ(λ−2 − 1)e2 ⊗ e2. � (v)

(c) The components of the Piola stress tensor can be found from S = JTF−T after first finding J and F−1.

Differentiating (i) gives the components Fij = ∂yi/∂xj of the deformation gradient tensor leading to

F = λe1 ⊗ e1 + ke1 ⊗ e2 + λ−1e2 ⊗ e2 + e3 ⊗ e3, (vi)
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from which we find

F−1 = λ−1e1 ⊗ e1 − ke1 ⊗ e2 + λe2 ⊗ e2 + e3 ⊗ e3, J = det F = 1. (vii)

Therefore by substituting (v) and (vii) into S = JTF−T and simplifying leads to

S = JTF−T =
[
µ(λ2 + k2 − 1)e1 ⊗ e1 + µkλ−1(e1 ⊗ e2 + e2 ⊗ e1) + µ(λ−2 − 1)e2 ⊗ e2

]
[
λ−1e1 ⊗ e1 − ke2 ⊗ e1 + λe2 ⊗ e2 + e3 ⊗ e3

]
=

= µ(λ− λ−1)e1 ⊗ e1 + µk(e1 ⊗ e2 + e2 ⊗ e1) + µ(λ−1 − λ)e2 ⊗ e2. �

(viii)

(d) On the surface x2 = 1 (whose edge is BC in Figure 4.10) the unit outward normal vector is

nR = e2, (ix)

and so from s = SnR, the components of the Piola traction are

s1 = S12 = µk, s2 = S22 = µ(λ−1 − λ), s3 = S32 = 0. (x)

Thus the force acting on this surface can be calculated from force = sAx where for this surface Ax = 1.

Thus

force = µk e1 + µ(λ−1 − λ) e2. � (xi)

Alternatively consider the deformed configuration. On the surface y2 = λ−1 (whose edge is B′C ′ in Figure

4.10) the unit outward normal vector is

n = e2, (xii)

and so from t = Tn the components of the Cauchy traction are

t1 = T12 = µkλ−1, t2 = T22 = µ(λ−2 − 1), t3 = T32 = 0. (xiii)

Thus the force can be calculated from force = tAy where for this surface Ay = λ. This leads to (of course)

the same result

force = µke1 + µ(λ−1 − λ)e2. � (xiv)

(e) Finally consider the surface x1 = 1 (whose edge is AB in Figure 4.10). The unit outward normal vector

on this is

nR = e1. (xv)

From s = SnR we get the components of the Piola traction:

s1 = S11 = µ(λ− λ−1), s2 = S21 = µk, s3 = S31 = 0. (xvi)

The (true) Cauchy traction t and the Piola traction s are related by tAy = sAx, where for the surface under

consideration here, Ax = 1 and Ay =
√
k2 + λ−2. Thus

t =
Ax
Ay

s =
1√

k2 + λ−2

[
µ(λ− λ−1)e1 + µke2

]
. � (xvii)

Alternatively one can calculate t using t = Tn where n is the outward unit normal to the deformed image

of x1 = 1 (whose edge is A′B′ in Figure 4.10).
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Problem 3.16. Consider a body that occupies a unit cube in a reference configuration:

RR = {(x1, x2, x3) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.

It is subjected to the following homogeneous deformation:

y1 = x1 + kx2, y2 = λx2, y3 = x3, (i)

where k and λ are constants. The Piola stress field in the body is uniform and its matrix of components is

[S] =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 . (ii)

Consider a surface SR in the reference configuration characterized by x1 + x2 = 1. The deformation carries

SR → S.

Without calculating the Cauchy stress tensor, determine

(a) the force (vector) that acts on S,

(b) the true (Cauchy) traction on S, and

(c) the normal component of true (Cauchy) traction on S.

Next, calculate the matrix of components [T ] of the Cauchy stress tensor and recalculate your answers to

parts (a)− (c).

Solution: The matrix of components of the deformation gradient tensor can be calculated from (i). It, its

inverse and determinant are

[F ] =


1 k 0

0 λ 0

0 0 1

 , [F ]−1 =


1 −k/λ 0

0 1/λ 0

0 0 1

 , J = det[F ] = λ. (iii)

A unit vector normal to the surface SR is

nR = (1/
√

2)e1 + (1/
√

2)e2. (iv)

Therefore a unit vector normal to its deformed image S is found from (iii), (iv) and Nanson’s formula to be

n =
F−TnR

|F−TnR|
= cosφ e1 + sinφ e2, (v)

where

cosφ =
λ√

λ2 + (1− k)2
, sinφ =

1− k√
λ2 + (1− k)2

. (vi)
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The areas Ax and Ay of the surfaces SR and S are

Ax =
√

2, Ay = AxJ |F−TnR| = λ/ cosφ. (vii)

(a) The resultant force on the deformed surface S is given by

force = sAx = SnRAx
(ii),(iv),(vii)

= (S11 + S12)e1 + (S21 + S22)e2 + (S31 + S32)e3. �

(b) Since the resultant force = sAx = tAy we find the Cauchy (true) traction to be

t = sAx/Ay =
cosφ

λ

[
(S11 + S12)e1 + (S21 + S22)e2 + (S31 + S32)e3

]
. � (viii)

(c) The (true) normal stress on the plane S is given by (v) and (viii) as

Tnormal = t · n =
cosφ

λ

[
(S11 + S12) cosφ+ (S21 + S22) sinφ

]
. (�)

From (ii), (iii) and [T ] = J−1[S][F ]T ,

[T ] =
1

λ


S11 + kS12 λS12 S13

S21 + kS22 λS22 S23

S31 + kS32 λS32 S33

 . (ix)

The Cauchy traction can now be calculated from (v), (ix) and {t} = [T ]{n} leading to (viii). (In carrying

out this calculation it will be helpful to note from (vi) that (1− k) cosφ = λ sinφ.) The force is then given

by {t}Ay

Problem 3.17. (Symmetry of the Cauchy stress tensor.) Take the vector product of the moment balance

law (3.9) with an arbitrary constant vector, and use the vector identity (1.191) (page 83) to show that∫
∂D

(y ⊗ t− t⊗ y) dAy +

∫
D

(y ⊗ b− b⊗ y) dVy = 0. (i)

From (i), t = Tn and the divergence theorem show that∫
∂D

[
(TT −T + y ⊗ (div T + b)− (div T + b)⊗ y)

]
dVy = 0. (ii)

Using the equilibrium equation (3.27) in (ii), followed by localization, tells us that T = TT .

Solution: On taking the vector product of the moment balance law (3.9) with an arbitrary constant vector

a we get ∫
∂D

(y × t)× a dAy +

∫
D

(y × b)× a dVy = o,
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which by the vector identity (1.191) (page 83) leads to∫
∂D

(y ⊗ t− t⊗ y)a dAy +

∫
D

(y ⊗ b− b⊗ y)a dVy = 0.

Since this must hold for all vectors a it follows that (i) must hold. Next, by using t = Tn and the divergence

theorem one can readily show that (e.g. using components)∫
∂D

y ⊗ t dAy =

∫
∂D

y ⊗Tn dAy =

∫
D

(TT + y ⊗ div T) dVy, (iii)

∫
∂D

t⊗ y dAy =

∫
∂D

Tn⊗ y dAy =

∫
D

(T + div T⊗ y) dVy. (iv)

Substituting (iii) and (iv) into (i) yields (ii). Finally, on using the equilibrium equation div T + b = o, (ii)

reduces it to ∫
∂D

(TT −T) dVy = 0,

that by localization leads to T = TT .

Problem 3.18. Suppose one does not postulate the force balance law (3.8). Moment balance about an

arbitrary pivot point z requires∫
∂D

(y − z)× t(n) dAy +

∫
D

(y − z)× b dVy = o, (i)

for all parts D of the body. Show by requiring (i) to hold for all pivot points z, that there exists a tensor

T(y) such that t(n) = T(y)n; div T + b = o; and T = TT .

Solution: One can write (i) as[∫
∂D

y × t(n) dAy +

∫
D

y × b dVy

]
− z×

[∫
∂D

t(n) dAy +

∫
D

b dVy

]
= o. (ii)

Clearly, (ii) holds for all z if and only if the force and moment balance laws (3.8) and (3.9) hold. The desired

results then follow as in Sections 3.3 and 3.4.

Problem 3.19. Establish the Principle of Virtual Work, i.e. show that the equilibrium equation

Div S + bR = 0 (i)

holds at each x ∈ RR if and only if∫
∂RR

SnR ·w dAx +

∫
RR

bR ·w dVx =

∫
RR

S · ∇w dVx (ii)

for all arbitrary smooth enough vector fields w(x).

Remark: Note that w(x) is not required to be the actual displacement field in the body. It is called a

“virtual displacement”.
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Solution: We first show that (ii) implies (i). Suppose (ii) holds. Then in terms of cartesian components∫
∂RR

Sijn
R
j wi dAx +

∫
RR

bRi wi dVx =

∫
RR

Sij
∂wi
∂xj

dVx (iii)

The first term can be written using the divergence theorem as∫
∂RR

Sijn
R
j wi dAx =

∫
RR

∂

∂xj
(Sijwi) dVx =

∫
RR

[
∂Sij
∂xj

wi + Sij
∂wi
∂xj

]
dVx.

Substituting this into (iii) and simplifying leads to∫
RR

[
∂Sij
∂xj

+ bRi

]
wi dVx = 0.

Since this must hold for all vector fields w(x) it follows from (the alternative method of localization described

in Problem 1.42) that the factor in square brackets in the integrand must vanish. This yields (i).

Next we show that (i) implies (ii). Suppose (i) holds. Multiplying it by an arbitrary function w(x), and

integrating the result over RR and reversing the steps in the preceding calculation leads to (ii). �

Problem 3.20. Consider a material such as a polarized dielectric solid under the action of an electric field,

where (in addition to a body force b(y)) there is also a body couple c(y) per unit deformed volume. Also, at

any point y on a surface S suppose that there is (in addition to the contact force t(y,n)) a contact couple

m(y,n) per unit deformed area. Here n is the unit normal vector at a point on a surface in the deformed

body and m is the couple applied by the material on the positive side of S on the material on the negative

side. (The “positive side” of S is the side into which n points.)

Write down the global force and moment balance laws for this case. Show that in addition to the stress

tensor T there is also a couple stress tensor Z(y) such that

m = Zn.

Derive the local consequences of the force and moment equilibrium principles. Is the stress tensor T sym-

metric?

Solution: The couples have no effect on force balance and so we continue to have∫
∂D

t dAy +

∫
D

b dVy = 0. (i)

The usual argument thus implies the existence of the Cauchy stress tensor T such that t = Tn and the

equilibrium equation div T + b = o. The couples do contribute to the resultant moment and so the balance

of moments requires∫
∂D

y × t dAy +

∫
D

y × b dVy +

∫
∂D

m(y,n) dAy +

∫
D

c dVy = 0. (ii)

Existence of couple stress tensor. Using the fact that t = Tn and the divergence theorem allows us to

convert the first surface integral in (ii) into a volume integral. On applying this balance law to a tetrahedral
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region and shrinking the region to a point, all the volume integrals vanish and only the contribution from

the surface integral of m remains. Then, mimicking the steps we used to show the existence of the stress

tensor T allows us to conclude that there exists a tensor Z(y) that is independent of n such that

m(y,n) = Z(y)n.

Z is called the couple stress tensor.

Field equations. Substituting t = Tn and m = Zn into the balance of moments equation (ii) leads to∫
∂D

y ×Tn dAy +

∫
D

y × b dVy +

∫
∂D

Zn dAy +

∫
D

c dVy = 0,

or in terms of components∫
∂D

eijkyjTkpnp dAy +

∫
D
eijkyjbk dAy +

∫
∂D

Zipnp dAy +

∫
D
ci dVy = 0.

Using the divergence theorem to convert the surface integrals to volume integrals, using the equilibrium

equation ∂Tij/∂yj + bi = 0 and then localizing the result in the familiar way leads

eijkδjpTkp + Zip,p + ci = 0 ⇒ eijkTkj + Zip,p + ci = 0. �

This can we written in an alternative, more illuminating form, by first multiplying by eipq and then using

the identity eipqeijk = δpjδqk − δpkδqj . This leads to

(δpjδqk − δpkδqj) Tkj + eipq
∂Zij
∂yj

+ eipqci = 0 ⇒ Tqp − Tpq + eipq
∂Zij
∂yj

+ eipqci = 0. �

According to this the Cauchy stress T is not symmetric and that the above equation provides an expression

for T−TT in terms of the couple stress and body couple.

Problem 3.21. In Problem 3.20 we encountered couple stresses, and specifically, showed that there is a

couple stress tensor Z.

(a) Let ZR be the referential version of Z, i.e. the tensor analogous to what the Piola stress tensor S is

to the Cauchy stress tensor T. Derive a formula for ZR.

(b) Similarly derive a formula for the referential body couple cR.

(c) Derive the field equation obeyed by ZR and cR corresponding to moment balance in its referential

form.

Problem 3.22. (Atkin and Fox) The Cauchy stress field in a certain body is

T(y) = τ(y) m(y)⊗m(y) where m(y) =
y

r
, r = |y|. (i)



3.11. EXERCISES. 327

(Assume that the origin lies outside the body so that r 6= 0.) Observe that locally, at each point in the body,

the stress is in the radial direction m with magnitude τ . The body is in equilibrium. Show that

y · grad τ + 2τ = 0 for all y ∈ R. (ii)

Determine τ(y) (to the extent possible). Hint: Write (ii) in spherical polar coordinates r, θ, ϕ.

Solution: In preparation for substituting the given stress field into the equilibrium equations, we first differ-

entiate r2 = |y|2 and m = y/r to get

∂r

∂yi
=
yi
r
,

∂mi

∂yj
=
r2δij − yiyj

r3
,

∂mi

∂yi
=

2

r
. (iii)

Substituting (i) into the equilibrium equations ∂Tij/∂yj = 0 and using (iii) and mi = yi/r leads to

yiyj
∂τ

∂yj
+ 2τyi = 0,

whence (for example by multiplying by yi and then cancelling the term r2 = yiyi) we get

yj
∂τ

∂yj
+ 2τ = 0 ⇔ y · grad τ + 2τ = 0. �

To solve this differential equation we write it in spherical polar coordinates using y = rer and the following

expression for the gradient of τ(r, θ, ϕ):

grad τ =
∂τ

∂r
er +

1

r

∂τ

∂θ
eθ +

1

r sin θ

∂τ

∂ϕ
eϕ.

Equation (iv) then leads to

rer · grad τ + 2τ = r
∂τ

∂r
+ 2τ = 0 ⇒ ∂

∂r
(r2τ) = 0 ⇒ τ =

c(θ, ϕ)

r2
. �

where c(θ, ϕ) is arbitrary.

Solution 2: Since m = y/r = (rer)/r = er the given stress field can be written as T(r, θ, ϕ) = Trr(r, θ, ϕ)er⊗
er in spherical polar coordinates. Substituting this into the general equilibrium equations in spherical polar

coordinates (3.97) yields
∂Trr
∂r

+ 2
Trr
r

= 0

which gives Trr = c(θ, ϕ)/r2.

Problem 3.23. Consider a very long circular cylindrical tube with inner and outer radii A and B respectively

in the reference configuration. The tube is inflated to a pressure p, the outer wall being traction-free. The

tube is made of an isotropic material and so the deformation and stress fields are axisymmetric and uniform in

the axial direction. The inner and outer radii in the deformed configuration are a and b respectively. Consider

a, b and p to be known. Work in cylindrical polar coordinates (r, θ, z) in the deformed configuration.
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(a) What are the boundary conditions at r = a and r = b?

(b) Specialize the general equilibrium equations (3.95) to the present setting.

(c) Now suppose that the tube is thin-walled, i.e. assume that t� r where t = b−a is the wall thickness

and r = (a+b)/2 the mean radius. Use the equilibrium equation from part (b) to find an approximate

expression for the circumferential Cauchy stress Tθθ.

Problem 3.24. Reconsider Problem 3.3.4.

(a) Specialize the general equilibrium equations (in cylindrical polar coordinates) (3.95) to the setting of

Problem 3.3.4. Assume no body forces.

(b) Show that for any smooth function φ(r, θ), the stresses given by

Trr =
1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
, Trθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
, Tθθ =

∂2φ

∂r2
, (viii)

satisfy the equilibrium equations from part (a).

(c) Suppose that the shear stress Trθ(r, θ) vanishes everywhere in the body. Determine the form of φ(r, θ)

implied by this and calculate expressions for the two nonzero normal stress components.

(d) Now impose the boundary conditions (v), (vii), (ii) and (iii) (from Problem 3.3.4) and further simplify

the form of the stresses.

Solution:

(a) Setting Trz = Tθz = Tzz = 0, and Trr = Trr(r, θ), Trθ = Trθ(r, θ), Tθθ = Tθθ(r, θ), and br = bθ = bz = 0

in (3.95) simplifies the equilibrium equations to

∂Trr
∂r

+
1

r

∂Trθ
∂θ

+
Trr − Tθθ

r
= 0,

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+ 2
Trθ
r

= 0. (ix)

(b) Substituting (viii) into (ix) shows that the equilibrium equations are automatically satisfied.

(c) If the shear stress Trθ = 0 everywhere, (viii) implies

∂

∂r

(
1

r

∂φ

∂θ

)
= 0.

Integrating this gives

φ(r, θ) = rg(θ) + f(r), (x)

where f(r) and g(θ) are arbitrary functions of r and θ respectively.

(d) Substituting (x) into (viii) gives

Trr(r, θ) =
g′′(θ) + g(θ)

r
+
f ′(r)

r
, Trθ(r, θ) = 0, Tθθ(r, θ) = f ′′(r). (xi)
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Turning to the boundary conditions first consider (v) (from Problem 3.3.4), the first of which holds auto-

matically while the second gives∫ b

a

Tθθ(r, α) dr
(xi)
=

∫ b

a

f ′′(r) dr = f ′(b)− f ′(a) = 0 ⇒ f ′(a) = f ′(b). (xii)

Second consider the boundary conditions (vii). This requires∫ b

a

rTθθ(r, α) dr
(xi)
=

∫ b

a

rf ′′(r) dr =

∫ b

a

[
d

dr
(rf ′(r))− f ′(r)

]
dr = m,

which upon integration gives

bf ′(b)− f ′(b)− af ′(a) + f ′(a) = m
(xii)⇒ f ′(a) = f ′(b) =

m

b− a. (xiii)

Third consider the boundary conditions (ii), the second of which holds automatically while the first requires

Trr(b, θ)
(xi)
=

g′′(θ) + g(θ)

b
+
f ′(b)

b
= 0 ⇒ g′′(θ) + g(θ) = −f ′(b) (xiv)

which implies

g(θ) = c1 cos θ + c2 sin θ − f ′(b) (xiii)
= c1 cos θ + c2 sin θ − m

b− a. (xv)

Finally the boundary condition (iii) can be examined similarly and it too leads to (xiv).

Substituting (xiv) into (xi) yields the following expression for the stress field:

Trr(r, θ) =
f ′(r)− f ′(b)

r
, Trθ(r, θ) = 0, Tθθ(r, θ) = f ′′(r). � (xvi)

The stress field (xvi) satisfies the equilibrium equations and the given boundary conditions for any function

f(r) satisfying (xiii).

Problem 3.25. (Chadwick) (a) A body is in equilibrium with no body forces. Let {e1, e2, e3} be a fixed

orthonormal basis with respect to which all components are taken. Show for an arbitrary (smooth-enough)

vector field φ(y1, y2) that the stress field given by

Tk1 =
∂φk
∂y2

, Tk2 = −∂φk
∂y1

, k = 1, 2, 3, (i)

obeys the equilibrium equations. (Is the converse necessary? i.e. if a stress field T(y1, y2) is in equilibrium

without body forces, must there necessarily exist a vector field φ(y1, y2) such that (i) holds?)

(b) Suppose that R is a solid prismatic cylinder (whose cross section is not-necessarily circular) with its

generators parallel to e3. Let C be the closed curve at which the lateral boundary of R intersects a plane

y3 = constant. Show that the traction on the lateral boundary at a point on C is

t =
∂φ

∂s
(ii)

where s is arc length on C.
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Solution:

(a) For any smooth function φ1(y1, y2) it is readily seen by direct substitution that the stress components

given by

T11 =
∂φ1

∂y2
, T12 = −∂φ1

∂y1
, (iii)

satisfy the equilibrium equation
∂T11

∂y1
+
∂T12

∂y2
= 0. (iv)

In a similar manner one can show that the stress components (i) satisfy the equilibrium equations ∂Tiα/∂yα =

0 for i = 1, 2, 3 and α = 1, 2; note since φ(y1, y2) is independent of the y3-coordinate so are the stresses defined

by (i).

Figure 3.26: Cross section of the prismatic cylinder with arc length s, unit tangent and normal vectors s

and n on the boundary C of the cross section.

(b) Observe from Figure 3.26 that the components of the unit tangent vector s in the direction of increasing

arc length s and the unit outward pointing normal vector n are related by

n1 = s2, n2 = −s1. Moreover, n3 = 0 (v)

since the normal vector on the lateral boundary is orthogonal to e3. The component t1 of the traction can

be written as

t1 = T1jnj = T11n1 + T12n2
(iii),(v)

=
∂φ1

∂y2
s2 +

∂φ1

∂y1
s1 = ∇φ1 · s =

∂φ1

∂s
.

Similar calculations can be carried out for the other two traction components. This leads to

t = tiei =
∂φi
∂s

ei =
∂

∂s
(φiei) =

∂φ

∂s
. �

Problem 3.26. (See also Problem 3.27.) Let (x1, x2, x3) and {e1, e2, e3} be rectangular cartesian coordi-

nates and the associated basis in the reference configuration; and let (r, θ, z) and {er, eθ, ez} be cylindrical

polar coordinates and the associated basis in the deformed configuration. Let the Piola stress tensor have

components in these mixed bases

S = Sr1er ⊗ e1 + Sr2er ⊗ e2 + Sr3er ⊗ e3+

+Sθ1eθ ⊗ e1 + Sθ2eθ ⊗ e2 + Sθ3eθ ⊗ e3+

+Sz1ez ⊗ e1 + Sz2ez ⊗ e2 + Sz3ez ⊗ e3.
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e.g. see Problem 3.7.1 . Calculate(
Div S

)
· er,

(
Div S

)
· eθ,

(
Div S

)
· ez.

and hence derive the equilibrium equations in these coordinates.

Problem 3.27. (See also Problem 3.26.) Let (R,Θ, Z) and {eR, eΘ, eZ} be cylindrical polar coordinates

and the associated basis in the reference configuration; and let (r, θ, z) and {er, eθ, ez} be cylindrical po-

lar coordinates and the associated basis in the deformed configuration. Let the Piola stress tensor have

components in these mixed bases

S = SrRer ⊗ eR + SrΘer ⊗ eΘ + SrZer ⊗ eZ+

+SθReθ ⊗ eR + SθΘeθ ⊗ eΘ + SθZeθ ⊗ eZ+

+SzRez ⊗ eR + SzΘez ⊗ eΘ + SzZez ⊗ eZ .

Calculate (
Div S

)
· er,

(
Div S

)
· eθ,

(
Div S

)
· ez.

and hence derive the equilibrium equations in these coordinates.

Problem 3.28. (See Problem 2.32 for an analysis of the kinematics of a piecewise homogeneous deforma-

tion.) Consider a planar surface S that passes through the region R occupied by a body in the deformed

configuration. Let n be a unit vector normal to S and let R+ denote the side into which n points, R− the

other side. Thus S is a planar interface between two parts of the body. Consider the piecewise homogeneous

stress field

T(y) =

 T+ for y ∈ R+,

T− for y ∈ R−,

where T± are constant symmetric tensors. Show that this stress field obeys force and moment balance if

and only if

T+n−T−n = o. (3.101)

Let SR be the image of S in the reference configuration with nR being a unit vector normal to SR.

Assume that the associated deformation is piecewise homogeneous (see Problem 2.32). Show that force and

moment balance requires the Piola stress tensor field associated with the aforementioned stress field to obey

S+nR − S−nR = o. (3.102)

These “jump conditions” plays an important role in studying interfaces between two material phases.
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Problem 3.29. Suppose that the Cauchy stress tensor T and the Eulerian stretch tensor V are coaxial, i.e.

that the principal directions of T and V coincide. Show that the Piola stress tensor can be expressed as

S =

3∑
i=1

τiJ

λi
`i ⊗ ri, (3.103)

where, for each i = 1, 2, 3, τi is a principal Cauchy stress, λi a principal stretch, `i a principal direction of

V, ri a principal direction of U and J = λ1, λ2λ3.

Solution: From S = JTF−T and F = VR we get

S = JT(VR)−T = JT(R−1V−1)T = JT(RTV−1)T = JT(V−1)T (RT )T = JTV−1R. (i)

Substituting

T =

3∑
i=1

τi`i ⊗ `i, V−1 =

3∑
i=1

λ−1
i `i ⊗ `i,

into (i) and simplifying (using `i · `j = δij) gives

S = J

(
3∑
i=1

τi`i ⊗ `i
) 3∑

j=1

λ−1
j `j ⊗ `j

R = J

 3∑
i=1

3∑
j=1

τiλ
−1
j δij`i ⊗ `j

R = J

(
3∑
i=1

τiλ
−1
i `i ⊗ `i

)
R.

This can be simplified further by using the tensor identity (a⊗b)A = a⊗ (ATb) and the relation `i = Rri

between the principal directions of the Eulerian and Lagrangian stretch tensors:

S = J

(
3∑
i=1

τiλ
−1
i `i ⊗RT `i

)
= J

(
3∑
i=1

τiλ
−1
i `i ⊗ ri

)
. �

Problem 3.30. Two symmetric tensors are said to be coaxial if their principal axes coincide. Prove

that the Cauchy stress tensor T and the left Cauchy-Green tensor B are coaxial if and only if the second

Piola-Kirchhoff tensor S(2) is coaxial with the right Cauchy-Green strain tensor C.

Solution: For an alternative proof, use the result of Problem 1.22.

In this solution, the summation convention is suspended. The eigenvectors of B and C are {`1, `2, `3}
and {r1, r2, r3} respectively. First suppose that T is coaxial with B, so that by definition, T has eigenvectors

{`1, `2, `3} and therefore the representation

T =

3∑
i=1

τi(`i ⊗ `i). (i)

We need to show that (i) implies that the second Piola-Kirchhoff stress tensor S(2) has the representation

S(2) =

3∑
i=1

si(ri ⊗ ri), (ii)
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so that S(2) and C are coaxial.

It follows from (i) that the second Piola-Kirchhoff stress tensor can be expressed as

S(2) (3.82)
= JF−1TF−T

(i)
=

3∑
i=1

Jτi F
−1(`i ⊗ `i)F−T

(1.78)
=

3∑
i=1

Jτi (F−1`i)⊗ (F−1`i). (iii)

By using the polar decomposition F = RU, the relation `i = Rri and the orthogonality of R,

(F−1`i)⊗ (F−1`i) = (U−1RT `i)⊗ (U−1RT `i) = (U−1ri)⊗ (U−1ri). (iv)

Since Uri = λiri we have

(U−1ri)⊗ (U−1ri) = (λ−1
i ri)⊗ (λ−1ri) = λ−2

i (ri ⊗ ri). (v)

Thus on combining (iii), (iv) and (v) we have the following representation for S(2):

S(2) =

3∑
i=1

Jτiλ
−2
i (ri ⊗ ri), �

which is of the form (ii). We therefore conclude that S(2) is coaxial with C. (We also see that the principal

values of S(2) and T are related by si = Jλ−2
i τi.)

The preceding steps can be readily reversed to show that, (ii) implies (i), and therefore that if S(2) is

coaxial with C then T is coaxial with B.

Problem 3.31. If the Cauchy stress tensor T and the left Cauchy-Green tensor B are coaxial, show that

the Biot stress tensor S(1) is coaxial with the Biot strain tensor E(1). Is the converse true? (Two symmetric

tensors are said to be coaxial if their principal axes coincide.)

Solution: In this solution, the summation convention is suspended.

The eigenvectors of B are {`1, `2, `3} and those of U (and therefore of E(1) = U− I) are {r1, r2, r3}. We

are told that T is coaxial with B, so that by the definition of coaxiality, T also has eigenvectors {`1, `2, `3},
and hence the representation

T =

3∑
i=1

τi(`i ⊗ `i). (i)

We need to show that (i) implies that the Biot stress tensor S(1) has the representation

S(1) =

3∑
i=1

si(ri ⊗ ri), (ii)

so that S(1) and E(1) are coaxial.

The Biot stress tensor is related to the Cauchy stress tensor by

S(1) (3.82)
=

1

2

(
STR + RTS

)
(3.50)

=
1

2
J
(
F−1TR + RTTF−T

)
. (iii)
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Based on (iii)2 and (i) we shall simplify the terms F−1(`i ⊗ `i)R and RT (`i ⊗ `i)F−T :

F−1(`i ⊗ `i)R
(1.78)

= (F−1`i)⊗ (RT `i)
(∗)
= (U−1RT `i)⊗ (RT `i) =

(∗∗)
= (U−1ri)⊗ ri

(∗∗∗)
= λ−1

i ri ⊗ ri, (iv)

RT (`i ⊗ `i)F−T
(1.78)

= (RT `i)⊗ (F−1`i)
(∗)
= (RT `i)⊗ (U−1RT `i) =

(∗∗)
= ri ⊗ (U−1ri)

(∗∗∗)
= λ−1

i ri ⊗ ri, (v)

where in the steps (∗) we used F = RU and the orthogonality of R; in the steps (∗∗) we used `i = Rri; and

in the steps (∗∗∗) we used Uri = λiri.

Thus on substituting (i) into (iii) and using (iv) and (v) we have the following representation for S(1):

S(1) =

3∑
i=1

Jτiλ
−1
i (ri ⊗ ri), �

which is of the form (ii). We therefore conclude that S(1) is coaxial with U. (We also see that the principal

values of S(1) and T are related by si = Jλ−1
i τi.)

Problem 3.32. Determine the symmetric stress tensor that is work conjugate to the Biot strain tensor

E(1) = U− I.

Solution: By the definition of work conjugacy, the stress tensor S(1) that we seek must be such that

S(1) · Ė(1)
= S · Ḟ. (i)

In the text surrounding (3.81) we found that the second Piola-Kirchhoff stress tensor S(2) is work conjugate

to the Green Saint-Venant strain tensor E(2), and so our task can be equivalently stated as wanting to find

a stress tensor S(1) such that

S(1) · Ė(1)
= S(2) · Ė(2)

. (ii)

Differentiating E(1) = U− I and E(2) = 1
2 (UU− I) with respect to t leads to

Ė
(1)

= U̇, Ė
(2)

=
1

2
(U̇U + UU̇). (iii)

Substituting (iii) into (ii) yields

S(1) · U̇ =
1

2
S(2) · (U̇U + UU̇).

We would like to factor out the term U̇ in the first term on the right-hand side of this equation. Recall that

for any tensors A,B,C we have A ·BC = ACT ·B. Therefore S(2) · U̇U = S(2)U · U̇ having used the fact

that U is symmetric. Therefore we can write the preceding equation as[
S(1) − 1

2
S(2)U− 1

2
US(2)

]
· U̇ = 0.
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Since this must hold for all U̇, and assuming that the terms in the square brackets are independent of U̇,

we must have

S(1) =
1

2

(
S(2)U + US(2)

)
. � (iv)

This is the stress tensor work-conjugate to E(1). We can write this in terms of the Piola stress tensor by

using S(2) = F−1S (see (3.81)):

S(1) =
1

2

(
F−1SU + UF−1S

)
. � (v)

To see that this is in fact the Biot stress tensor introduced at the end of Section 3.7, we must eliminate

F in favor of R using the polar decomposition. First, the second term can be written as

UF−1S = U(RU)−1S = RTS. (vi)

Next, on using SFT = FST (moment balance), we can simplify the first term as

F−1SU = F−1(FSTF−T )U = STF−TU = STRU−1U = STR. (vii)

Substituting (vi), (vii) into (v) yields

S(1) =
1

2

(
STR + RTS

)
, �

which is the Biot stress tensor.

Problem 3.33. Determine the stress tensor that is conjugate to the (Lagrangian) logarithmic strain tensor

ln U.

Solution: See the paper by A. Hoger, The stress conjugate to logarithmic strain, International Journal of

Solids and Structures, 23(1987), pp. 1645-1656.

Problem 3.34. Pick any Eulerian strain tensor of your choice. Find the stress tensor that is conjugate to

it.

Solution: See the paper by Andrew Norris, Eulerian conjugate stress and strain, J. Mech. Materials Struct.,

3(2008), pp. 243-260. In general finding stress tensors conjugate to Eulerian strains is much more difficult

than the corresponding problem for Lagrangian strains.

Problem 3.35. Write down expressions for the rate of working of the forces and couples in the settings of

Problems 3.20 and 3.21. Rewrite these in the form of a volume integral of the local power.
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Problem 3.36. (Conservation of mass. Rate of change of linear momentum.) You may find it helpful to

review Section 2.11 on the material time derivative and the transport formula.

(a) A body undergoes a motion y = y(x, t). Let ρ(y, t) be the mass density of the body at the particle

that is located at y at time t. Consider a part of a body, and let Dt be the region of space it occupies

at time t. Note that the region Dt varies with time. The mass of this part is the integral of ρ(y, t) over

Dt. The conservation of mass requires that the mass of every part of the body be time-independent:

d

dt

∫
Dt
ρ(y, t) dVy = 0 for all parts Dt. (i)

Show that the balance law (i) holds if and only if the following field equation holds,

ρ̇+ ρdiv v = 0 at all y ∈ Rt, (3.104)

where ρ̇ is the material time derivative of ρ and the cartesian components of div v are ∂vi/∂yi.

(b) Let ρR(x) be the mass density of the body in a reference configuration. Show that

ρR = ρJ. (3.105)

(c) Let v(y, t) be (the spatial description of) the velocity field. It is defined on Rt at each t. Show that

the rate of increase of the linear momentum of the part under consideration is

d

dt

∫
Dt
ρv dVy =

∫
Dt
ρv̇ dVy (3.106)

where v̇ is the material time derivative of v, i.e. the acceleration.
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Chapter 4

Constitutive Relation

In principle, the analyses of deformation in Chapter 2 and stress in Chapter 3 are valid

for any continuum, irrespective of the specific material of which the body is composed.

However, given the loading applied on a body, the basic equations derived in those chapters

are not sufficient for determining the resulting stress and deformation fields. Additional

information describing how the stress depends on the deformation is needed, and this comes

from considering the behavior of the specific material at hand. This is not surprising since

even in the simplest case of a spring, given the force applied on the spring, one cannot

determine its elongation without knowing something about the material of which it is made.

Nonlinear elasticity has been, and continues to be, successfully used to study a variety

of materials such as biological tissues, “soft materials” more generally including elastomeric

materials, and crystalline solids undergoing martensitic phase transformations.

There are two main approaches to constructing continuum-scale constitutive relations.

One begins at the atomistic-scale and attempts to deduce the continuum-scale response

by some sort of averaging across length and time scales (“coarse graining” using “multi-

scale methods”). The other so-called “phenomenological approach” begins directly at the

continuum-scale guided by experimental observations and some basic principles. A combi-

nation of these two approaches, where micro-mechanical considerations are used to infer the

form of the constitutive relation, the details of which are then explored experimentally, is

often particularly effective.

In Chapter 8 we shall describe one micro-mechanical model – Cauchy’s beautiful deriva-

tion of the constitutive relation of a crystalline solid using a simple lattice model in which

339
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the atoms interact through a pair potential. A second micro-mechanical model that would

have been natural for us to describe is a polymer chain model, and its use in constructing

the constitutive relation for a rubber-like material. Unfortunately, this relies crucially on

calculating the entropy, a thermodynamic notion that we do not address in these notes. The

interested reader can refer to Chapter 9 of Volume II.

In these notes we are concerned with elastic materials. We shall assume that the defining

characteristic of an elastic material is that it does not dissipate energy (at least when there

are no moving singularities in the body such as a propagating crack). Such elastic materials

are frequently said to be hyperelastic (or Green elastic).

A word on notation: in order to avoid confusion, it will sometimes be helpful to distinguish

between functions of different arguments, even when their values represent the same quantity.

In particular, we will denote the so-called strain energy density in the various forms W (x),

Ŵ (F), W (C), W̃ (I1, I2, I3) and W ∗(λ1, λ2, λ3). Even though they all represent the elastic

energy density, they are different functions. When it is not essential that we make the

distinction, and there is no chance for confusion, we will simply write W (x), W (F), W (C),

W (I1, I2, I3) and W (λ1, λ2, λ3) .

Occasionally, we will refer to the time t. When we do so, we will not be taking inertial

effects into account1. Instead, we will simply be considering a one-parameter family of

equilibrium deformations, a so-called quasi-static motion, with t merely being the parameter.

In a quasi-static motion, the stress field obeys the equilibrium equation at each instant t.

A roadmap of this chapter is as follows. In Section 4.2 we characterize an elastic material

in terms of its strain energy function W (F). The implications of material frame indifference

are explored in Section 4.3. We turn in Section 4.4 to material symmetry with Section 4.4.2

devoted to isotropic materials. (Some anisotropic materials are considered in Chapter 6.) In

Section 4.5 materials with internal constraints such as incompressibility and inextensibility

are considered. The response in uniaxial tension, simple shear and biaxial plane stress

are explored for a general isotropic material in Section 4.7. Restrictions imposed on the

strain energy function for reasons of physical reasonableness and mathematical necessity

are touched upon in Section 4.6.3. In Section 4.7 we describe a few specific strain energy

functions from the literature. Finally, in Section 4.8, we specialize the constitutive relation to

infinitesimal deformations and thus derive the stress-strain relation in linear(ized) elasticity.

The discussion of constitutive relations in this chapter, even when limited to elastic

1We make an exception briefly when referring to strong ellipticity in Section 4.6.3.
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materials, is concise and incomplete. An expanded treatment can be found in the references

cited at the end of this chapter and in Chapters 7, 8 (and 9) of Volume II.

4.1 Motivation.

We start by motivating why it is necessary to undertake a careful discussion of the constitu-

tive relation since, based on our experience with linear elasticity theory as undergraduates,

it may feel natural to simply write down a relationship between a stress tensor and a strain

tensor, say,

T = T̂(E) where E =
1

2

(
FTF− I

)
. (i)

Is this a reasonable constitutive relation?

Figure 4.1: A body subjected to two deformations y(1)(x) = Fx and y(2)(x) = QFx that differ by a rigid

rotation Q, and the associated stress tensors.

To explore this question, first consider a homogeneous deformation

y(1)(x) = Fx. (ii)

For illustrative purposes (only), suppose that F describes a uniaxial stretch in the e1-direction

with equal contraction in the directions normal to it:

F = λ1e1 ⊗ e1 + λ2(e2 ⊗ e2 + e3 ⊗ e3).
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Suppose the associate stress is a uniaxial stress in the e1-direction:

T(1) = τ e1 ⊗ e1. (iii)

Next consider a second deformation, identical to the first followed by an arbitrary rigid

rotation Q:

y(2)(x) = QFx. (iv)

Figure 4.1 shows a cartoon of these two deformations where the small square in the reference

configuration has been stretched in the e1-direction in the first deformation, and has been

rotated after stretching in the e1-direction in the second. On physical grounds, we would

expect the stress associated with the second deformation to be a uniaxial stress in the e′1-

direction:

T(2) = τ e′1 ⊗ e′1. (v)

Here the basis {e′1, e′2, e′3} is obtained by rotating the basis {e1, e2, e3} by Q:

e′i = Qei; (vi)

see Figure 4.1. While the two stress tensors are distinct, they are related by

T(2) (v)
= τe′1 ⊗ e′1

(vi)
= τ(Qe1)⊗ (Qe1) = τQ(e1 ⊗ e1)QT (iii)

= QT(1)QT . (vii)

Using the constitutive relation (i)1 we have

T(1) = T̂(E(1)), T(2) = T̂(E(2)), (viii)

so that from (vii) and (viii),

T̂(E(2)) = QT̂(E(1))QT . (ix)

However the Green Saint-Venant strain tensors associated with these two deformations are

E(1) =
1

2
(FTF− I), E(2) =

1

2

(
(QF)T (QF)− I

)
=

1

2
(FTF− I) = E(1). (x)

Thus from (ix) and (x),

T̂(E(1)) = QT̂(E(1))QT ,

or, since E(1) is in fact arbitrary,

T̂(E) = QT̂(E)QT for all rotations Q, (xi)
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and all strains E. This is a restriction on the form of the function T̂(E). In fact, from the

result in Problem 1.37, it follows that T̂(E) must be a scalar multiple of the identity:

T̂(E) = τ(E) I. (xii)

Thus a constitutive relation of the general form T = T̂(E) must necessarily be of the partic-

ular form T̂(E) = τ(E) I where the Cauchy stress tensor is hydrostatic (in all deformations)

and so the material is a fluid!

Problem 4.1.1. You might say that a shortcoming of the particular constitutive relation (i) above was that

the Cauchy stress tensor is associated with the deformed configuration while the Lagrangian strain tensor is

associated with the reference configuration. Based on this, replace (i) with the ansatz T = T̂(B) where B

is the (Eulerian) left Cauchy-Green tensor and carry out an analysis like the one above. What does this tell

you about the form of T̂(B)?

4.2 An Elastic Material.

– First, we assume that the stress at some particle x depends only on the deformation of

the particles in the immediate neighborhood of that particle. Such a theory is said to be

a local theory. We know from Chapter 2 that the deformation in the vicinity of a particle

is completely characterized by the deformation gradient tensor F = ∇y at that particle.

This implies that the stress S at particle x depends on the deformation solely through the

deformation gradient tensor2 F at particle x.

– Second, we assume further that an elastic material has no memory3, and therefore that the

stress S at time t depends only on the value of the deformation gradient tensor F at that same

time t. We are thus led to consider constitutive relations of the form S(x, t) = Ŝ(F(x, t)),

or simply

S = Ŝ(F). (4.1)

– Terminology: Note the distinction between S(x) and Ŝ(F). The former is the stress field

in the body while the latter is the constitutive response function for stress. The material is

characterized by Ŝ.

2In a nonlocal theory the stress might, for example, depend on the deformation gradient and the gradient

of the deformation gradient.
3unlike, say, a viscoelastic material which depends on the past history of the deformation.
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– Since the Cauchy and Piola stress tensors are related by T = J−1SFT , knowing Ŝ gives

T = T̂(F) where T̂(F) = J−1Ŝ(F)FT , J = det F. (4.2)

It will be convenient for us to work with the Piola stress tensor.

– If the material is inhomogeneous in the reference configuration, the constitutive response

function Ŝ will depend explicitly on x: S = Ŝ(F,x).

– Third, we assume there is no energy dissipation in an elastic material in the following

sense: let W (x, t) denote the stored energy density, i.e. the energy stored per unit volume

in the reference configuration4. The total elastic energy stored in a part of the body is then∫
DR

W dVx,

where DR is the region in the reference configuration occupied by the part under consider-

ation. When we say that an elastic material is dissipation-free we mean that the rate at

which external work is done on any part of the body during a quasi-static motion equals the

corresponding rate of increase of stored energy5 provided the fields are smooth:∫
∂DR

s · v dAx +

∫
DR

b · v dVx =
d

dt

∫
DR

W dVx. (4.3)

This must hold in all quasi-static motions for all parts of the body at all times.

– An important consequence of (4.3) can be deduced by combining it with (3.73). Equation

(3.73) states that the rate at which the external forces do work equals the rate at which the

stresses do work (the stress power). Equation (3.73) together with (4.3) yields∫
DR

S · Ḟ dVx =
d

dt

∫
DR

W dVx, (4.4)

which says that the rate at which the “internal forces” (the stresses) do work equals the rate

of increase of the stored energy. This is the sense in which the material is dissipationless.

The preceding equation can be written as∫
DR

(
S · Ḟ − Ẇ

)
dVx = 0.

4The stored energy per unit mass, say ψ, is related to the energy per unit reference volume W by W = ρRψ

where ρR is the mass density in the reference configuration.
5When inertial effects are taken into account, one must include the rate of increase of kinetic energy on

the right-hand side of (4.3).
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(Recall that the superior dot denotes the derivative with respect to t at a fixed particle x

– the “material time derivative”, see Section 2.11.2.) Since this must hold for every part of

the body it follows by localization that

S · Ḟ − Ẇ = 0 for all x ∈ RR. (4.5)

– Finally, just as for the stress, it is natural to assume that the stored energy density W

at a particle x at time t depends on the deformation only through the deformation gradient

tensor F at the same particle x at the same time t, i.e. that there is a constitutive response

function Ŵ such that W (x, t) = Ŵ (F(x, t)) or more simply

W = Ŵ (F).

Remark: In certain settings elasticity is coupled to some other physical phenomenon. For

example mechanical and thermal effects are coupled in thermoelasticity. The free energy

function (the counterpart of the strain energy function) describing a thermoelastic material

has the form Ŵ (F, θ) with θ(x, t) being the temperature field. Additional physical principles,

in this case the first and second laws of thermodynamics, must be enforced as part of the

model. A brief introduction to coupled phenomena can be found in Chapter 9.

– On using W = Ŵ (F) and S = Ŝ(F) in (4.5) we get

Ŝ · Ḟ− ∂Ŵ

∂F
· Ḟ = 0 ⇒

[
Ŝ(F)− ∂Ŵ

∂F
(F)

]
· Ḟ = 0. (4.6)

This must hold in every quasi-static motion of the body. Observe that the terms in the square

brackets only involve the deformation gradient tensor F and not its rate Ḟ. For a given F,

one can always construct a motion with an arbitrary Ḟ at a particular particle at a particular

instant6. It follows that (4.6) must hold for all tensors Ḟ and therefore that

Ŝ(F) =
∂Ŵ

∂F
(F). (4.7)

6We encountered this issue previously in Problem 1.8.4. To illustrate the argument used, consider a

one-dimensional continuum. Let y = y(x, t) be a motion with the stretch λ and stretch-rate λ̇ defined by

λ(x, t) = ∂y/∂x and λ̇(x, t) = ∂λ/∂t. Then the claim is that one can always find a motion y(x, t) in which

the values of λ and λ̇ at some particular instant can be arbitrarily and independently prescribed.

To see this, pick and fix an arbitrary instant to and let λo > 0 and ro be any two constants, each chosen

arbitrarily and independently of the other. Consider the motion

y(x, t) = λox exp

(
ro(t− to)

λo

)
, (i)
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This tells us that given the constitutive response function Ŝ for the stress can be calculated

from the constitutive response function Ŵ for the stored energy. We write this less formally

as

S =
∂W

∂F
, T = J−1SFT =

1

J

∂W

∂F
FT . (4.8)

We thus conclude that an elastic material is characterized by the constitutive response

function Ŵ (F) for the stored energy per unit reference volume. It is referred to as the

strain-energy function.

If the material is inhomogeneous in the reference configuration we would have W =

Ŵ (F,x).

4.2.1 An elastic material. Alternative approach.

The preceding analysis hinged on the balance (4.3) between the rate of work and energy, and therefore cannot

be used, at least not directly, when there is dissipation. In this subsection we briefly present a modification

of the preceding analysis based on the dissipation inequality. While not essential in elasticity, this approach

can be used in the study of inelastic materials (and we shall do so in Chapter 9 when we touch on coupled

problems).

– Dissipation inequality: Let W (x, t) be the free energy per unit reference volume. The total free energy

and observe that

λ(x, t0) = λo, λ̇(x, to) = ro. (ii)

Suppose that σ̂(λ) and Ŵ (λ) are functions such that[
σ̂(λ(x, t))− Ŵ ′(λ(x, t))

]
λ̇(x, t) = 0, (iii)

for all motions y(x, t), all particles x and all instants of time t. Since this holds for all t it necessarily holds

at t = to: [
σ̂(λ(x, to))− Ŵ ′(λ(x, to))

]
λ̇(x, t) = 0. (iv)

Substituting (ii) into (iv) yields [
σ̂(λo)− Ŵ ′(λo)

]
ro = 0. (v)

This must hold for all ro. Since λo is independent of ro, it follows that necessarily

σ̂(λo) = Ŵ ′(λo),

which holds for all λo > 0. For a discussion of this issue in three-dimensions, see Section 3.4 of Gurtin et al.

[10].
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in a part of the body is then ∫
DR

W dVx,

where DR is the region in the reference configuration occupied by the part under consideration.

The dissipation inequality states that the rate of increase of free energy cannot exceed the rate at which

external work is done7: ∫
∂DR

s · v dAx +

∫
DR

b · v dVx ≥
d

dt

∫
DR

W dVx. (4.9)

This must hold in all quasi-static motions for all parts of the body at all times. Proceeding as above leads

one to the local inequality (Exercise)

S · Ḟ − Ẇ ≥ 0 for all x ∈ RR. (4.10)

– Constitutive equations: primitive form. We assume that the stress and free energy at particle x at

time t depend only on the deformation of the particles in the immediate neighborhood of that particle at

that same instant. This implies that S(x, t) and W (x, t) depend on the deformation solely through F(x, t).

We are thus led to consider constitutive relations of the form S(x, t) = Ŝ(F(x, t)) and W (x, t) = Ŵ (F(x, t)).

Accordingly, we now assume that the material is characterized by the constitutive equations

S = Ŝ(F), W = Ŵ (F). (4.11)

This is the primitive form of the constitutive relations.

– Constitutive equations: simplified (reduced) form. On using (4.11) in (4.10) we get

Ŝ · Ḟ− ∂Ŵ

∂F
· Ḟ ≥ 0 ⇒

[
Ŝ(F)− ∂Ŵ

∂F
(F)

]
· Ḟ ≥ 0. (4.12)

This must hold in every quasi-static motion of the body. Observe that the terms in the square brackets

only involve the deformation gradient tensor F and not its rate Ḟ. The argument used on page 345 can be

generalized (and is referred to as the Coleman-Noll argument) to conclude that the terms within the square

brackets must vanish:

Ŝ(F) =
∂Ŵ

∂F
(F). (4.13)

We thus conclude that an elastic material is completely characterized by the constitutive response function

Ŵ (F) for the free energy.

– One can now use (4.13) to show that (4.10), and therefore (4.9), hold with equality. This recovers the

power - energy balance of the preceding section and motivates us to refer to W as the stored energy.

7When inertial effects are taken into account, one must include the rate of increase of kinetic energy on

the right-hand side of (4.9).
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4.3 Material frame indifference.

Material frame indifference refers to the general idea that physical laws should be independent

of the observer. In the particular context of constitutive response, it refers to the requirement

that when two observers view a body undergoing some motion, they should perceive no

difference in the material’s response. A conceptually different requirement is the invariance

of a material’s response in two rigidly-related motions as viewed by a single observer. The

consequences of these two notions, as far as the material response of elastic solids at the

continuum scale is concerned, are the same. Our analysis in these notes is based on the

latter idea, where we shall require the stored elastic energy of an elastic material to be

unaffected by a superposed rigid deformation. The reader may refer to, e.g., Chapter 4.3 of

Chadwick [6], Chapter 2 of Steigmann [21], Chapter 20 of Gurtin et al. [10] for a treatment

based on invariance with respect to two observers.

– We are concerned with the stored energy density at some fixed particle x in the body.

Its value in the reference configuration is Ŵ (I). Now suppose that the body is subjected

to a rigid rotation characterized by the proper orthogonal tensor Q. Such a deformation

does not distort the body and so we expect that it will not store any additional elastic

energy. Accordingly one expects Ŵ (Q) = Ŵ (I) for all proper orthogonal tensors Q. It

would therefore be natural to require the function Ŵ to have this property.

– Principle of material frame indifference: More generally, suppose that the body is

subjected to a homogeneous deformation y = Fx. The associated stored energy density is

Ŵ (F). Now subject this body to a further rigid rotation Q. This is equivalent to considering

the deformation y = QFx. The associated stored energy density is Ŵ (QF). We do not

expect any additional energy to be stored in the body due to the subsequent rigid rotation,

and therefore require Ŵ to have the property

Ŵ (F) = Ŵ (QF) for all nonsingular tensors F and proper orthogonal tensors Q. (4.14)

A strain energy function Ŵ (F) that conforms to (4.14) is said to be frame indifferent or

objective (as opposed to subjective).

Problem 4.3.1. Show that the Cauchy and Piola stress response functions T̂(F) and Ŝ(F) are frame

indifferent if

T̂(QF) = QT̂(F)QT , Ŝ(QF) = QŜ(F), (4.15)

for all nonsingular tensors F and proper orthogonal tensors Q.
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Problem 4.3.2. Consider two deformations y = Fx and y = QFx, and two bases {e1, e2, e3} and

{e′1, e′2, e′3} where the latter basis is obtained by rotating the former by Q: e′i = Qei. Let Tij and T ′ij
be the components of the Cauchy stress tensor in these two bases. Show that material frame indifference is

equivalent to the requirement

T̂ij(F) = T̂ ′ij(QF). (4.16)

This is precisely the idea we used in the motivational example in Section 4.1 (and leads to the next problem).

Problem 4.3.3. It has been conjectured that the constitutive relation of a certain material has the form

T = T(E),

where E is the Green Saint-Venant strain. Show that this is not consistent in general with the requirement

(4.15)1 (or (4.16)) of material frame indifference (unless it is a scalar multiple of the identity).

– Equation (4.14) imposes a restriction on the allowable functions Ŵ (F). We now determine

the most general form of Ŵ that conforms to (4.14).

Claim: The material frame indifference requirement (4.14) holds if and only if

Ŵ (F) = Ŵ (U) where U =
√

FTF. (4.17)

Proof: First suppose that (4.14) holds. Since it holds for all proper orthogonal tensors Q

it must necessarily hold for the particular choice Q = RT where R is the rotation in the

polar decomposition F = RU. Thus a necessary condition for (4.14) to hold is obtained by

setting Q = RT in it:

Ŵ (F) = Ŵ (RTF) = Ŵ (RTRU) = Ŵ (U),

where in the last step we used RTR = I. This yields (4.17).

Conversely, suppose that (4.17) holds for all nonsingular F which we may write as

Ŵ (F) = Ŵ
(√

FTF
)
. (4.18)

Since this holds for all nonsingular F it must hold for the tensor QF where Q is any proper

orthogonal tensor. Replacing F by QF in the preceding equation yields

Ŵ (QF) = Ŵ
(√

(QF)T (QF)
)

= Ŵ
(√

FTQTQF
)

= Ŵ
(√

FTF
)

= Ŵ (U).

This together with (4.17) leads to (4.14). �
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We therefore conclude that (4.14) holds if and only if (4.17) holds, i.e. if the stored

energy depends on the deformation through only the Lagrangian stretch tensor U.

Problem 4.3.4. Show that the material frame indifference requirements (4.15)1,2 for the Cauchy and Piola

stress response functions T̂(F) and Ŝ(F) hold if and only if

T̂(F) = RT̂(U)RT , Ŝ(F) = RŜ(U), (4.19)

where R and U are the factors of F in the polar decomposition F = RU.

Observe from this that if the constitutive relation we considered in the motivational example in Section 4.1

had been T = RT̂(E)RT instead of T = T̂(E), it would have been acceptable.

– As noted previously in the discussion surrounding (2.58), there is a one-to-one relation

between U and the right Cauchy-Green tensor C = FTF = U2. Moreover, given F, it is a lot

easier to calculate C than U. Therefore we introduce a function W (C) = Ŵ (
√

C) = Ŵ (U)

and thus express the stored energy in the form

Ŵ (F) = W (C) where C = FTF. (4.20)

Since every Lagrangian strain tensor E has a one-to-one correspondence with the Lagrangian

stretch tensor U, it follows thatW can equivalently be written as a function of any Lagrangian

strain tensor E.

By using (4.20), C = FTF and the chain rule, one can write the constitutive relations

(4.8) for stress as (Exercise)

S = 2F
∂W

∂C
, T =

2

J
F
∂W

∂C
FT . (4.21)

Remark: Observe that the right-hand side of (4.21)2 is a symmetric tensor. Thus the value

of the Cauchy stress yielded by the constitutive relation (4.21)2 will be automatically sym-

metric.

Remark: Observe from (4.21) that Ŝ(F) and T̂(F) cannot be written in terms of C (or U

or any Lagrangian strain) alone. They involve the rotational part R of the deformation

gradient tensor as well.
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Problem 4.3.5. Using the fact that the second Piola-Kirchhoff stress S(2) is work conjugate to the Green

Saint-Venant strain E, show that the constitutive equation for it is S(2) = ∂W (E)/∂E.

4.4 Material symmetry.

– In the discussion above we considered subjecting a body to a rotation after having first

deformed it, i.e. we were concerned with two deformations y = Fx and y = QFx. What if

instead we had rotated the body first before deforming it? That is, had we considered two

deformations y = Fx and y = FQx, would we have required Ŵ (F) = Ŵ (FQ)? The answer,

in general, is “no”. It depends on the symmetry of the material as we shall now see.

The strain energy function depends on the reference configuration: If we change the

reference configuration, the strain energy function W changes. To see this in a simple setting

consider a one-dimensional elastic bar. Suppose it has length L in some homogeneously

deformed configuration and that the stored energy has a certain value in this configuration.

There is nothing unique about a reference configuration. All that is required is that it be a

configuration that the body can achieve. Accordingly consider two reference configurations

and let L1 and L2 be the lengths of the bar in those two configurations. The stretch of the

bar from these respective reference configurations (to the same deformed configuration) is

λ1 = L/L1 and λ2 = L/L2 6= λ1. If the material is described by a strain energy function

W (λ) that does not depend on the choice of reference configuration, then we would conclude

that the energy density in the deformed body has the two values W (λ1) and W (λ2) in the

deformed configuration. This cannot be since we did not change the deformed configuration

and the energy in the deformed body has one definite value. Thus we conclude that the

function W must depend on the choice of reference configuration and so we have different

strain energy functions W1 and W2 associated with the two reference configurations. Since

Wi represents the energy per unit reference length, the total stored elastic energy in the

deformed configuration can be written in the equivalent forms L1W1(λ1) and L2W2(λ2).

Since these two values must be equal, it follows that the functions W1 and W2 must be such

that L1W1(λ1) = L2W2(λ2):
W2(λ2)

λ2

=
W1(λ1)

λ1

. (4.22)

We now generalize this.
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Figure 4.2: A sketch of the regions occupied by a body in a deformed configuration χ and three reference

configurations χ1, χ2 and χ3. The lattices are shown merely for motivational purposes where the lattice in

χ1 has been rotated to get χ2 and stretched to get χ3. The strain energy functions Ŵ1, Ŵ2 and Ŵ3 with

respect to these three reference configurations would be distinct in general.

– The deformation gradient tensor F depends on the reference configuration but the energy

stored in the deformed configuration does not depend on this choice. Therefore, since F

depends on the choice of reference configuration it is necessary that the strain energy function

Ŵ also depend on the reference configuration (in a suitable way).

This can be readily seen from Figure 4.2 which shows the regions occupied by a body in

a deformed configuration χ and three reference configurations χ1, χ2 and χ3. The lattices

are shown for motivational purposes only where the lattice in χ1 has been rotated to get

χ2 and stretched to get χ3. There are three strain energy functions Ŵ1(F1), Ŵ2(F2) and

Ŵ3(F3) associated with these three reference configurations and yet the strain energy in the

deformed configuration χ has one definite value. Thus the way in which Ŵ depends on F

must be such that the value of the stored energy remains unaffected by a change of reference

configuration.

– While there is in general a different strain energy function associated with each reference

configuration, if we know (a) the strain energy function associated with one such configura-

tion and (b) the gradient of the mapping from it to a second reference configuration, we can

calculate the strain energy function associated with the second reference configuration.

Consider a (single) deformed configuration χ and let F1 and F2 denote the deformation
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gradient tensors with respect to two reference configurations χ1 and χ2. Let Ŵ1 and Ŵ2 be

the two strain energy functions associated with the two reference configurations. Keep in

mind that these functions represent the energy stored per unit reference volume. Consider

an infinitesimal part of volume dVy in the deformed configuration and let the volumes of

this part in the respective reference configurations be dV1 and dV2. The energy stored in

this part can be written in either of the forms Ŵ1(F1) dV1 or Ŵ2(F2) dV2. Since the value

of this stored energy cannot depend on the choice of reference configuration we must have

Ŵ1(F1) dV1 = Ŵ2(F2) dV2. Since dVy = det F1 dV1 = det F2 dV2 we can write this as

Ŵ2(F2)

det F2

=
Ŵ1(F1)

det F1

; (4.23)

cf. (4.22)

– Suppose the two reference configurations χ1 and χ2 are related by some nonsingular

tensor A in the sense that the deformation gradient tensors F1 and F2 are related by F1 =

F2A. Then we can write (4.23) as Ŵ2(F2) = Ŵ1(F2A)/ det A since det F1 = det(F2A) =

det F2 det A. Thus we conclude that

Ŵ2(F) =
1

det A
Ŵ1(FA) for all nonsingular F, (4.24)

where A is the nonsingular tensor that relates χ2 to χ1. This tells us that if we know the

strain energy function Ŵ1 associated with one reference configuration, and the gradient A

of the mapping from it to another reference configuration, then the strain energy function

Ŵ2 associated with the second reference configuration can be determined from (4.24).

If the two reference configurations are related by a rotation, i.e. if A = Q is proper

orthogonal, then (4.24) reduces to

Ŵ2(F) = Ŵ1(FQ) for all nonsingular F. (4.25)

Material symmetry: We now turn to a discussion of material symmetry where we restrict

attention to reference configurations related by a rotation8. Consider the two lattices9 as-

sociated with the two reference configurations χ1 and χ2 as shown in Figure 4.2. When the

rotation Q that takes χ1 → χ2 is arbitrary, these latices would be distinct in general. How-

ever for certain special rotations Q, such as the 90o rotation associated with Figure 4.3, the

8In a general analysis of material symmetry, one allows for transformations between reference configura-

tions that are more general than proper orthogonal transformations. See the discussion following (4.29). See

also Section 4.2.3 of Ogden and Section 31 of Truesdell and Noll.
9We refer to lattices for purely motivational purposes.
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Figure 4.3: A sketch of the regions occupied by a body in a deformed configuration χ and two reference

configurations χ1 and χ2. Note that the configurations χ1 here and in Figure 4.2 are identical. The rotation

Q in Figure 4.2 was arbitrary while here it is special. Here, it rotates the underlying square lattice through

an angle π/2. The locations of 4 material points A, B, C, D in the two reference configuration are shown.

Note the symmetry between the reference configurations χ1 and χ2 even though they are distinct. The

particular transformation Q from χ1 → χ2 here preserves the symmetry of the material.

lattices coincide. Such a rotation Q preserves material symmetry. (Note that the reference

configuration χ1 is the same in Figures 4.2 and 4.3.)

– Thus it may so happen that two particular reference configurations have the same strain

energy functions. In that event

Ŵ1(F) = Ŵ2(F) for all nonsingular F, (4.26)

and so from (4.25) and (4.26)

Ŵ1(F) = Ŵ1(FQ) for the particular tensor Q relating those two configurations, (4.27)

and all nonsingular tensors F. A tensor Q for which (4.27) holds preserves the symmetry of

the material in the configuration χ1. The set of all Q for which (4.27) holds characterizes

the symmetry of the material in the configuration χ1.

– Accordingly consider a given reference configuration κ with associated strain energy func-

tion Ŵ . Let G denote the set of all symmetry preserving transformation of κ, i.e. the set

of all rotation tensors Q that take this reference configuration into a configuration with the
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identical strain energy function:

G = {Q : QQT = I, det Q = 1, Ŵ (F) = Ŵ (FQ) for all nonsingular F}.

This set G of transformations is called the material symmetry group10 of the given reference

configuration. Thus

Ŵ (F) = Ŵ (FQ) for all Q ∈ G and all nonsingular F. (4.28)

As an example, if a material has one preferred direction mR (as would be the case in

the presence of one family of fibers in the referential direction mR), the material symmetry

group will contain all rotations about mR. We shall explore such materials – said to be

transversely isotropic – in Chapter 6.

– The “larger” the set G, the greater the symmetry of the reference configuration.

– Note that symmetry is a property of the material specific to a configuration. In general,

the same body, composed of the same material, will have different symmetries in different

configurations. Symmetry transformations are the particular transformations that leave the

“material microstructure” invariant.

– Terminology: Though symmetry is a property of a material in some configuration, when

there is no chance for confusion, it will be convenient (despite being imprecise) to call G the

symmetry group of the material.

– Observe that while the material frame indifference requirement Ŵ (F) = Ŵ (QF) holds

for all rotations Q, the material symmetry requirement Ŵ (F) = Ŵ (FQ) holds only for the

particular Q’s that are in the material symmetry group. The rotation Q in the former is

imposed on the deformed configuration, while the rotation Q in the latter is imposed on the

reference configuration.

4.4.1 Material symmetry and frame indifference combined.

We now show that with material frame indifference in hand, a rotation Q ∈ G if and only if

W (C) = W
(
QCQT

)
for all symmetric positive definite C. (4.29)

10One can readily confirm that if Q1 ∈ G and Q2 ∈ G then Q1Q2 ∈ G. Moreover if Q ∈ G then Q−1 ∈ G.

In linear algebra, a group is a set of tensors with these two properties and so the set G is indeed a group in

this mathematical sense.
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– To show this, pick and fix a symmetry transformation Q ∈ G. Then

Ŵ (F) = Ŵ (FQ) for all nonsingular F. (4.30)

First, since this holds for all nonsingular F it necessarily holds with F replaced by FQT .

This tells us that Ŵ (FQT ) = Ŵ (FQTQ) = Ŵ (F):

Ŵ (F) = Ŵ (FQT ) for all nonsingular F. (4.31)

(By comparing (4.31) with (4.28) we see that if Q ∈ G then QT ∈ G.) Second, we turn

to material frame indifference. Since (4.20) holds for all nonsingular F it too holds with F

replaced by FQT . This yields

Ŵ (FQT ) = W
(
QCQT

)
, (4.32)

where on the right-hand side we have used (FQT )TFQT = QFTFQT = QCQT . Combining

(4.31) and (4.32) gives Ŵ (F) = W
(
QCQT

)
. We can now replace Ŵ (F) in this by W (C)

because of (4.20) which leads to (4.29).

Conversely if (4.29) holds, then Q ∈ G. (Exercise)

– Certain materials possess symmetries under “geometric transformations” that cannot be

achieved by deformation. Consider for example a crystal lattice that remains invariant under

a reflection in a plane perpendicular to a direction nR so that the distinction between the

lattices before and after reflection cannot be detected. Recall from Problem 1.10 that this

reflection is characterized by Q1 = I−2nR⊗nR. This tensor is improper orthogonal and since

det Q1 = −1 < 0 cannot be achieved by deformation. Observe however that Q2 = −Q1 is

proper orthogonal (and therefore can be achieved by deformation). Moreover, if (4.29) holds

for Q = Q2 then it necessarily holds for Q = −Q2 = Q1 and vice versa. Clearly our choice

of the particular tensor Q1 here is purely motivational: the preceding observation holds for

any rotation tensor Q and reflection tensor −Q. A symmetry group can be extended in this

way to accommodate reflection symmetries.

Remark: Observe by specializing Problem 1.11 that the proper orthogonal tensor Q2 =

−I + 2nR ⊗ nR = −Q1 represents a 180o-rotation about the direction nR. Therefore if

mechanical testing cannot detect a difference in elastic properties before and after a 180o-

rotation about nR, then it necessarily cannot detect a difference in properties before and

after a reflection in the plane perpendicular to nR.
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Problem 4.4.1. If Q ∈ G, then the stress response function for the Cauchy stress obeys T̂(F) = T̂(FQ).

In view of the material frame indifference requirement (4.19)1, show that

QT(C)QT = T(QCQT ) for Q ∈ G, (4.33)

where T̂(F) = T(C), C = FTF.

4.4.2 Isotropic material.

We now turn to “isotropic materials”. (As mentioned above, symmetry is a property of

a material in some configuration, but when there is no chance for confusion, we use the

(inexact) terminology that attributes symmetry to the material. Accordingly what we really

mean here is that we are considering a reference configuration in which the material is

isotropic.)

Some anisotropic materials will be considered in Chapter 6.

– Isotropic material: If the material symmetry group G contains all proper orthogonal

tensors, we say the material is isotropic. Thus by (4.29) a material is isotropic if

W (C) = W (QCQT ) for all rotations Q and all symmetric positive definite tensors C.

(4.34)

In this event it follows from the result in Problem 1.35 that W has the representation

W = W̃
(
I1(C), I2(C), I3(C)

)
(4.35)

where

I1(C) = tr C, I2(C) =
1

2

[
(tr C)2 − tr (C2)

]
, I3(C) = det C, (4.36)

are the principal scalar invariants of the right Cauchy-Green tensor C = FTF = U2.

Observe by taking Q = R in (4.34) that W (C) = W (B) for an isotropic material.

– The constitutive relation for stress can now be specialized to an isotropic material by

substituting (4.35) into (4.21), using the chain rule, and recalling

∂I1

∂C
= I,

∂I2

∂C
= I1 I−C

∂I3

∂C
= J2C−1, (4.37)
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(see equation (1.187) in Problem 1.8.4). This leads to the following constitutive relations for

an isotropic elastic material:

T = 2J
∂W̃

∂I3

I +
2

J

[
∂W̃

∂I1

+ I1
∂W̃

∂I2

]
B − 2

J

∂W̃

∂I2

B2,

S = 2F

[
I3
∂W̃

∂I3

C−1 +

[
∂W̃

∂I1

+ I1
∂W̃

∂I2

]
I − ∂W̃

∂I2

C

]
.


(4.38)

– In the undeformed configuration where F = C = B = I, the principal scalar invariants

have the values I1 = 3, I2 = 3, I3 = 1. On setting F = B = I and I1 = I2 = 3, I3 = J = 1 in

(4.38) we see that the stress in the reference configuration is

T = S = 2

[
∂W̃

∂I1

+ 2
∂W̃

∂I2

+
∂W̃

∂I3

]
I evaluated at (I1, I2, I3) = (3, 3, 1). (4.39)

Note that this stress is hydrostatic; this is a consequence of the material being isotropic in

the reference configuration. If the reference configuration is stress-free, then it is necessary

that
∂W̃

∂I1

+ 2
∂W̃

∂I2

+
∂W̃

∂I3

= 0 at (I1, I2, I3) = (3, 3, 1). (4.40)

– Note from (4.38)1 that T and B are coaxial for an isotropic material, i.e. they have the

same principal directions. Therefore we can write

T = τ1 `1 ⊗ `1 + τ2 `2 ⊗ `2 + τ3 `3 ⊗ `3, (4.41)

where the τi’s are the principal Cauchy stresses and the `i’s are the principal directions of

B (and T).

– In terms of the principal stretches λ1, λ2, λ3 one can write the principal scalar invariants

of C (or B) as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3 = λ2

1λ
2
2λ

2
3. (4.42)

It follows from (4.35) and (4.42) that the strain energy function for an isotropic material can

be written in the form11

W = W ∗(λ1, λ2, λ3). (4.43)

11Before imposing material symmetry, we had W = W (C). By the spectral representation we know

that C is fully determined by its eigenvalues and eigenvectors, and so we knew at that stage that W =

W (λ1, λ2, λ3, r1, r2, r3). What isotropy says is that W does not depend on the eigenvectors of C.
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Since the Ii’s remain invariant if any two of the λ’s are switched, e.g. λ1 ↔ λ2, the con-

stitutive response function W ∗ must also remain invariant if any two of its arguments are

switched:

W ∗(λ1, λ2, λ3) = W ∗(λ2, λ1, λ3) = W ∗(λ1, λ3, λ2). (4.44)

– We can now write the constitutive relation for T by changing W to W ∗ in (4.21)2 and

using the chain rule:

T =
2

J
F
∂W ∗

∂C
FT =

2

J
F

(
3∑
i=1

∂W ∗

∂λi

∂λi
∂C

)
FT . (4.45)

To simplify this we need an expression for ∂λi/∂C. Let λ2
i and ri be an eigenvalue and

corresponding eigenvector of C. One can show by differentiating Cri = λ2
i ri (no sum on i)

and using the fact that ri is a unit vector that

∂λi
∂C

=
1

2λi
ri ⊗ ri (no sum on i); (4.46)

see Problem 2.25. Substituting (4.46) into (4.45) and simplifying using Fri = λi`i leads to

T =
3∑

k=1

τk `k ⊗ `k where τi =
λi
J

∂W ∗

∂λi
(no sum on i). (4.47)

It follows from (4.41) and (4.47) that the constitutive relation for the principal Cauchy

stresses is

τ1 =
λ1

λ1λ2λ3

∂W ∗

∂λ1

, τ2 =
λ2

λ1λ2λ3

∂W ∗

∂λ2

, τ3 =
λ3

λ1λ2λ3

∂W ∗

∂λ3

. (4.48)

Thus given F, one can find the principal values of T from (4.48) and the principal directions

of T by finding the principal directions of B = FFT :

– Since the Piola stress tensor S is not symmetric in general, it may not have principal values.

However S = JTF−T, F−1 = λ−1
i ri⊗`i and (4.47) enable us to write the constitutive relation

for S as

S =
3∑

k=1

σk `k ⊗ rk where σi =
∂W ∗

∂λi
; (4.49)

here r1, r2, r3 and `1, `2, `3 are the eigenvectors of the Lagrangian and Eulerian stretch tensors

U and V respectively.
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We will sometimes consider particular deformations where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 +

λ3e3 ⊗ e3. In this case the rotation tensor R = I and so the bases {e1, e2, e3}, {r1, r2, r3}
and {`1, `2, `3} coincide and

S = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 + σ3e3 ⊗ e3 where σi =
∂W ∗

∂λi
.

When we consider spherically symmetric problems for isotropic materials in Chapter 5, we

will find that the bases {eR, eΘ, eZ} and {er, eθ, ez} coincide; and that they are the principal

bases for B and T; and that [F ] and [S] are diagonal in these bases.

– In Problem 4.15 you are asked to show for the Biot stress tensor introduced in (3.82) that

S(1) =
3∑

k=1

σk rk ⊗ rk where σi =
∂W ∗

∂λi
=
τiJ

λi
(no sum on i). (4.50)

Equation (4.50)1 is a consequence of S(1) being work conjugate to U (as established in

Problem 3.32.)

Perhaps it is worth remarking that if one is to conduct laboratory experiments to find

W ∗, it is necessary to carry out experiments that probe various paths of λ1, λ2, λ3-space.

Carrying out, for example a uniaxial tension test alone, would only probe a single path in

this space; see Problem 4.7.

Problem 4.4.2. Blatz and Ko proposed the following strain energy function for the foam rubber material

they studied in their experiments:

W̃ (I1, I2, I3) =
µ

2

(
I2
I3

+ 2
√
I3 − 5

)
; (i)

here µ > 0 is a material constant. See page 394 for a reference to their paper. Determine the response of

this material in uniaxial stress and simple shear. What are the values of the Young’s modulus, Poisson’s

ratio and shear modulus of this material at infinitesimal deformations?

See also Problem 4.7.1 concerning the bending of a block made of a Blatz-Ko material.

Solution: In terms of the principal stretches, we find from (4.42) and (i) that

W ∗(λ1, λ2, λ3) =
µ

2

(
λ−2

1 + λ−2
2 + λ−2

3 + 2λ1λ2λ3 − 5
)
. (ii)

The constitutive equation for T is given by (i) and (4.38)1 to be

T =
µ

J3

[
(J3 − I2)I + I1B−B2

]
, (iii)
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Blatz-Ko material in plane strain

Figure 4.4: Constant energy contours W ∗(λ1, λ2, 1) for the Blatz-Ko material in plane strain (λ3 = 1).

The reference configuration corresponds to the local minimum at (λ1, λ2) = (1, 1).

and from (4.48) and (ii) the principal stresses can be written in terms of the principal stretches as

τk =
λk
J

∂W ∗

∂λk
= µ

[
1− λ−2

k /J
]
, J = λ1λ2λ3. (iv)

We will find below that the form (iv) of the constitutive relation is more convenient to use when examining

uniaxial stress, while it will be more natural to use the form (iii) when considering simple shear.

Consider a state of uniaxial stress in the e1-direction:

τ1 = τ, τ2 = τ3 = 0, (v)

and assume the deformation to be a homogeneous pure stretch y = Fx with

F = λe1 ⊗ e1 + Λ(e2 ⊗ e2 + e3 ⊗ e3). (vi)

Our aim is to calculate the longitudinal stretch λ (in the direction of the applied stress) and the transverse

stretch Λ.

The principal stretches are λ1 = λ, λ2 = λ3 = Λ and the Jacobian determinant is

J = λ1λ2λ3 = λΛ2. (vii)

From (iv) and τ2 = 0 we get

1− λ−2
2 /J = 0

(vii)⇒ 1− Λ−2/(λΛ2) = 0 ⇒ Λ = λ−1/4. � (viii)

Likewise from (iv) with k = 1 we find

τ = µ
[
1− λ−2

1 /J
]

(vii)
= µ

[
1− λ−2/(λΛ2)

]
(viii)

= µ(1− λ−5/2). � (ix)
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This relation between τ and λ is monotonic with τ → −∞ as λ → 0+, τ = 0 when λ = 1, and τ → µ as

λ→∞; it is sketched in Figure 4.5.

Observe since J = λΛ2 (viii)
= λ1/2 that λ1 = J2 and λ2 = J−1/2. Therefore from (ii) it follows that (in

uniaxial stress) W = µ
2 (J−4 +2J−1 +J−5). We see from this that W →∞ when both J → 0+ and J →∞,

i.e. at extreme deformations.

For infinitesimal deformations we write the principal stretches as

λ1 = λ = 1 + ε1, λ2 = Λ = 1 + ε2, (x)

where the principal strains ε1 and ε2 are small: ε1 � 1, ε2 � 1. Substituting (x)1 into (ix) and linearizing

gives

τ = µ
(

1− (1 + ε1)−5/2
)
.
= µ

(
1−

(
1− 5

2
ε1

))
=

5

2
µε1 ⇒ τ/ε1 =

5

2
µ, � (xi)

where we have used the Taylor expansion (1 + ε)m = 1 + mε + O(ε2) as ε → 0. Therefore the Young’s

modulus of this material is 5µ/2. Similarly substituting (x) into (viii) and linearizing gives

1 + ε2 = (1 + ε1)−1/4 .
= 1− 1

4
ε1 ⇒ −ε2/ε1 = 1/4, � (xii)

and so the Poisson’s ratio of this material is 0.25.

Alternatively we could have differentiated (ix) with respect to λ and used the fact that the Young’s

modulus equals dτ/dλ evaluated at λ = 1. Likewise, the Poisson’s ratio is −dΛ/dλ evaluated at λ = 1 which

can be calculated from (viii).

1.0 1.5 2.0 2.5 3.0

- 2.0

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

Figure 4.5: Uniaxial stress: Cauchy stress T11 (black) and Piola stress S11 versus stretch λ1.

We can find the Piola stress by using T = J−1SFT . However it is easier (and more insightful) to use the

following calculation: suppose that the cross-section of the undeformed specimen (normal to the stressing

direction) is 1× 1. The cross-section of the deformed specimen is then Λ×Λ. Therefore the force acting on

the cross-section can be written as S11 × 1 and equivalently as T11 × Λ2. Therefore

S11 = T11Λ2 = τΛ2 (viii),(ix)
= µ(λ−1/2 − λ−3). (xiii)
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Observe that the relation between S11 and λ is not monotonic. As λ increase, the stress S11 first increases,

then reaches a maximum value at λ = 62/5 and then decreases with S11 → 0 as λ → ∞; it is sketched in

Figure 4.5.

Now consider a simple shear deformation with shearing direction e1 and glide plane normal e2:

y1 = x1 + kx2, y2 = x2, y3 = x3. (xiv)

The deformation gradient tensor, left Cauchy-Green deformation tensor and its square are

F = I + k e1 ⊗ e2,

B = FFT = I + k2 e1 ⊗ e1 + k(e1 ⊗ e2 + e2 ⊗ e1),

B2 = I + (3k2 + k4) e1 ⊗ e1 + k2 e2 ⊗ e2 + (2k + k3)(e1 ⊗ e2 + e2 ⊗ e1),

(xv)

and so the principal scalar invariants of B are

I1 = tr B = 3 + k2, I2 =
1

2

[
(tr B)2 − tr (B2)

]
= 3 + k2 I3 = det B = 1. (xvi)

Substituting (xv) and (xvi) into the constitutive relation (iii) and simplifying gives

T12 = µk, T22 = −µk2, T11 = T33 = T13 = T23 = 0.

Observe that the relation between the shear stress T12 and the amount of shear k is linear for all deformations.

The shear modulus is µ. Observe also that the normal stress T22 6= 0 (in contrast to the linear theory for

infinitesimal deformations). For small k this term is O(k2) and so is an order of magnitude smaller than the

shear stress. For large k however this is no longer true.

4.5 Materials with Internal Constraints.

Thus far in this chapter we have assumed that the body under consideration can undergo any

deformation at all (provided it is subjected to suitable body forces and surface tractions).

Sometimes it is convenient, and not a bad approximation, to idealize the body such that it

is permitted to only undergo motions of a certain restricted class. For example a rigid body

can only undergo rigid motions, i.e. motions in which

FT (x, t)F(x, t) = I for all x and t;

an incompressible body can only undergo isochoric (volume-preserving) motions, i.e. motions

in which

det F(x, t) = 1 for all x and t;
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a body that is inextensible in a certain (referential) direction mR can only undergo motions

in which

|F(x, t)mR| = 1 for all x and t.

All of these idealizations constrain the set of possible deformation gradient tensors. Note

that this is part of modeling the material’s constitutive behavior.

These constraints (and several others) can be described by equations of the form

φ̂(F(x, t)) = 0 for all x and t. (4.51)

The aforementioned constraints of rigidity, incompressibility and inextensibility correspond

to

φ̂(F) = FTF− I, φ̂(F) = det F− 1, φ̂(F) = FmR · FmR − 1, (4.52)

respectively.

We now turn to the stress in a constrained body. In order to explain the basic idea,

consider as an example a spherical body composed of an incompressible isotropic material.

It is subjected to a uniform radial pressure p on its boundary. Since the geometry, the

material and the loading are all spherically symmetric, let us restrict attention to spherically

symmetric deformations. Thus the body must remain spherical when p is applied. However,

due to incompressibility, the radius of the spherical body, and in fact the radius of every

spherical surface within the body, cannot change. Therefore: (a) irrespective of the value

of p, incompressibility implies that the deformation must be the trivial one, ŷ(x, t) = x, so

that F(x, t) = I for all p. (b) The stress on the other hand would certainly depend on the

value of the applied pressure p and will change as the value of p changes. (c) Thus the stress

T does not vanish (and can have different values depending on the value of p) though F = I

(for all values of p). (d) Observe that the pressure does no work since the boundary does

not displace and so the energy stored in the body does not increase as p increases.

Observation (c) implies that the stress is not completely determined by the deformation

gradient F, or equivalently, different stress fields can correspond to the same deformation.

This contradicts our earlier assumption (4.1), (4.2) that the stress is completely determined

by the deformation gradient. We must therefore modify this assumption when considering

a constrained body. We choose to do this by allowing a part of the stress to be determined

by the deformation and the other to be indeterminate (as far as the constitutive relation is

concerned). Motivated by observation (d) we determine the additional part of the stress by

requiring it to do no work in all deformations conforming to the constraint.
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Mathematically, we now assume that

S = Ŝ(F) + N, (4.53)

where Ŝ(F) is the constitutively determined part of S, and N is the part that arises as a

reaction to the constraint. We further assume that the reactive stress N does no work in the

sense that

N · Ḟ = 0. (4.54)

The strain energy function on the other hand continues to have the form

W = Ŵ (F),

and the rate of working of the stress is related to the rate of increase of stored energy by

S · Ḟ = Ẇ .

Our immediate goal is to determine the form of N. If (4.54) held for all Ḟ then we would

have N = 0. However it only holds in all allowable motions (i.e. all motions consistent with

the constraint). To determine the restriction placed on Ḟ by the constraint (4.51), we note

that (4.51) holds at all points x in the body and at all times t. Differentiating it with respect

to t gives φ̇ = 0 whence

∂φ̂

∂F
· Ḟ = 0, (4.55)

where ∂φ̂/∂F is the tensor with cartesian components ∂φ̂/∂Fij. Thus (4.54) must hold for

all Ḟ that conform to (4.55).

Problem 1.52 describes the following algebraic result: if12 A1 ·X = 0 for all tensors X

for which A2 ·X = 0, then there is a scalar q such that A2 = −qA1. Using this result with

X = Ḟ,A2 = N and A1 = ∂φ̂/∂F, leads to13

N = −q ∂φ̂

∂F
. (4.56)

The stress field N(x) that arises in reaction to the constraint is referred to as the reactive

(or reaction) stress. It should be noted that q(x) is a scalar field and in general is not a

constant.

12i.e. if A1 is orthogonal to all tensors X that are orthogonal to A2,
13Many authors use the symbol p instead of q. We shall reserve p to denote the applied pressure on a

body, e.g. in an inflated tube.
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The constitutive equation for the Piola stress S for a constrained material is therefore

taken to be

S =
∂Ŵ

∂F
− q ∂φ̂

∂F
. (4.57)

The corresponding relation for the Cauchy stress tensor T is

T =
1

J

∂Ŵ

∂F
FT − q

J

∂φ̂

∂F
FT . (4.58)

Note that the theory now involves an additional scalar field q(x), but we also have an

additional scalar field equation φ̂(F(x)) = 0 at our disposal. Observe also that (4.57) can

be written as

S =
∂

∂F

(
Ŵ − q φ̂

)
, (4.59)

from which we see that we have, essentially, added the constraint φ to W using a Lagrange

multiplier q.

As an example, consider an incompressible body in which case

φ̂(F) = det F− 1.

Differentiating this with respect to F using the formula (1.208) from Problem 1.47 gives

∂φ̂

∂F
= (det F) F−T

J=1
= F−T . (4.60)

Thus (4.57), (4.58) and (4.60) yield

S =
∂Ŵ

∂F
− q F−T , T =

∂Ŵ

∂F
FT − q I. (4.61)

Observe that the part of the Cauchy stress arising in reaction to the constraint is hydrostatic.

Exercise: In Problem 4.22 you are asked to derive the constitutive relations for S and T in the presence of

the inextensibility constraint |FmR| = 1 and to physically interpret the reactive part of the Cauchy stress.

Frame indifference: It is natural to require (4.51) to be frame indifferent. That is, if a

deformation gradient tensor F obeys the constraint (4.51), a subsequent rigid rotation should

not lead to a violation of the constraint. This requires φ(F) = φ(QF) for all nonsingular

tensors F and all rotations Q. The earlier discussion in Section 4.3 can be readily adapted
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to the present context to show that (4.51) is frame indifferent if and only if the constraint

can be expressed in the form

φ(U) = 0 (4.62)

where U =
√

FTF. Exercise: Verify that the constraints (4.52) can be written in this way.

.

Problem 4.5.1. Show that the reactive stress to be added to the Biot stress is q ∂φ/∂U.

Material symmetry: Some care must be taken when analyzing material symmetry. Pre-

viously we said that a proper orthogonal tensor Q was in the material symmetry group

if W (F) = W (FQ) for all nonsingular F. Here however we must limit attention to those

deformation gradient tensors that obey the constraint φ(F) = 0. Thus a symmetry transfor-

mation Q must be such that both W (F) = W (FQ) and φ(F) = φ(FQ) = 0 hold. Material

symmetry must therefore be compatible with the constraint.

First, consider an incompressible material where φ(F) = det F − 1. Since φ(FQ) =

det(FQ)−1 = det F−1 = φ(F) for all proper orthogonal Q we see that the constraint imposes

no further restrictions on material symmetry. Thus for example an isotropic incompressible

material is simply one that obeys W (QCQT ) = W (C) for all orthogonal Q.

Second, consider a material that is inextensible in the direction mR so that φ(F) =

FmR · FmR − 1. If Q is a rotation about mR then QmR = mR and so φ(FQ) = FQmR ·
FQmR − 1 = FmR · FmR − 1 = φ(F) for such a Q. Thus an inextensible material would

be transversely isotropic with respect to the direction mR if W (QCQT ) = W (C) for all

rotations about mR. (In fact, we will see in Chapter 6 that I4 = FmR ·FmR = CmR ·mR is

one of the invariants for such a material; see also page 395.) On the other hand an isotropic

material cannot be inextensible since φ(FQ) 6= φ(F) for all rotations Q.

The reader is referred to Section 6.3 of Steigmann for more details.

In the case of an isotropic incompressible material the analysis proceeds as for an un-

constrained material. In particular, one finds that the strain energy function Ŵ (F) de-

pends on the deformation only through the principal scalar invariants of C. However, since

I3(C) = det C = (det F)2 = 1 due to incompressibility, there are only 2 nontrivial invariants

and the energy takes the form W̃ (I1, I2). The stress tensors T and S are now found to be
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related to the deformation through

T = −q I + 2

[
∂W̃

∂I1

+ I1
∂W̃

∂I2

]
B − 2

∂W̃

∂I2

B2, (4.63)

S = −qF−T + 2

[
∂W̃

∂I1

+ I1
∂W̃

∂I2

]
F − 2

∂W̃

∂I2

BF. (4.64)

If the strain energy function is expressed in terms of the principal stretches,

W = W ∗(λ1, λ2, λ3), λ1λ2λ3 = 1, (4.65)

with W ∗ being invariant if any two of its arguments are switched,

W ∗(λ1, λ2, λ3) = W ∗(λ2, λ1, λ3) = W ∗(λ1, λ3, λ2) = . . . , (4.66)

then the principal Cauchy stress components can be written as

τi = λi
∂W ∗

∂λi
− q, i = 1, 2, 3, (no sum on i). (4.67)

A strain energy function W (F) for an incompressible material is only defined on the set

of all nonsingular tensors with det F = 1. In view of the constraint det F = 1, one has to

explain what one means by the term ∂W/∂F that enters into the constitutive equation for

stress. The usual approach is to consider the following function W o(F) defined on the set of

all nonsingular tensors with positive determinant:

W o(F) = W

(
F

(det F)1/3

)
. (4.68)

Observe that the tensor argument of W on the right-hand side of (4.68) has determinant

one even when the determinant of F is not unity. Moreover, note that W (F) = W o(F) on

the subset of tensors with det F = 1. Thus W o(F) is an extension of W (F) to the larger set

of all nonsingular tensors with positive determinant. Then by ∂W/∂F we mean ∂W o/∂F.

Exercise: The function W ∗(λ1, λ2, λ3) is defined for all positive λs subject to the constraint λ1λ2λ3 = 1.

Extend W ∗ to the set of all positive λs (not subjected to the constraint) and use this to define the partial

derivative ∂W ∗/∂λi.
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4.6 Response of Isotropic Elastic Materials.

In this section we examine the response of an isotropic elastic material in uniaxial tension,

simple shear and plane stress biaxial stretch. We keep the strain energy function, W (I1, I2)

or W (I1, I2, I3) as the case may be, general, and so the results hold for any isotropic elastic

material. In Section 4.7 we consider some particular constitutive relations, but before doing

so, in Section 4.6.3, we will make some brief remarks on restrictions one might impose on

the strain energy function for physical and mathematical reasons.

All of the deformations we consider in this section are homogeneous in that the defor-

mation gradient tensor is uniform throughout the body. Therefore14 the stress field S(x)

(resp. T(y)) is also uniform and does not depend on x (resp. y). The equilibrium equation

without body forces, Div S = o (resp. div T = o) therefore holds automatically.

It is convenient to record again the constitutive relations. For an (unconstrained) isotropic

elastic material we have

T = 2JW3 I +
2

J
[W1 + I1W2] B − 2

J
W2B

2,

S = 2I3W3 F−T + 2 [W1 + I1W2] F − 2W2BF,

 (4.69)

and for an incompressible isotropic elastic material we have

T = −q I + 2 [W1 + I1W2] B − 2W2B
2,

S = −qF−T + 2 [W1 + I1W2] F − 2W2BF,

(4.70)

where we have set

Wα =
∂W

∂Iα
, α = 1, 2. (4.71)

Terminology: An isotropic material whose constitutive behavior is described by (4.69) is

frequently referred to as a compressible material. However a compressible material (i.e. one

that is not incompressible) may involve some other constraint, for example an inextensibility

constraint, in which case its constitutive relation would not be (4.69) even though it is

compressible. In order to avoid any confusion we shall speak of (4.69) as describing an

unconstrained isotropic elastic material (rather than a compressible material).

14In the case of an incompressible material it is assumed that q(x) is constant.
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4.6.1 Incompressible isotropic materials.

Uniaxial stress.

Consider a state of uniaxial stress in the e1-direction. The Cauchy stress tensor is

T = τ e1 ⊗ e1, (4.72)

and we assume the deformation to be a homogeneous pure stretch y = Fx with

F = λe1 ⊗ e1 + Λ(e2 ⊗ e2 + e3 ⊗ e3). (4.73)

The constant parameter λ is the longitudinal stretch (in the direction of T11) and Λ is the

transverse stretch (in the direction perpendicular to T11). We have assumed15 that λ2 = λ3.

The principal stretches are

λ1 = λ, λ2 = λ3 = Λ, (4.74)

and the tensors B and B2 are

B = λ2
1 e1⊗e1 +λ2

2 e2⊗e2 +λ2
3 e3⊗e3, B2 = λ4

1 e1⊗e1 +λ4
2 e2⊗e2 +λ4

3 e3⊗e3. (4.75)

Our aim is to calculate the normal stress τ and the transverse stretch Λ in terms of the

longitudinal stretch λ.

Incompressibility requires λ1λ2λ3 = 1 which on using (4.74) reads λΛ2 = 1. Therefore

the transverse stretch Λ and longitudinal stretch λ are related by

Λ = λ−1/2. (4.76)

The principal scalar invariants associated with this deformation are

I1 = λ2
1 + λ2

2 + λ2
3

(4.74)
= λ2 + 2Λ2 (4.76)

= λ2 + 2λ−1,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

(4.74)
= 2λ2Λ2 + Λ4 (4.76)

= 2λ+ λ−2.

 (4.77)

We now turn to the constitutive relation (4.70)1 for stress, keeping in mind that it involves

the reaction pressure q. We first determine q by making use of the fact that T22 = T33 = 0;

thereafter we calculate T11. Substituting (4.75) into (4.70)1 gives

T22 = −q + 2(W1 + I1W2)λ2
2 − 2W2λ

4
2 = 0,

15Re-examine this analysis without making the a priori assumption λ3 = λ2. See Problem 4.30.
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which can be solved for q:

q = 2λ−1W1 + 2(λ+ λ−2)W2, (4.78)

where we have made use of (4.74), (4.76) and (4.77) to eliminate I1 and λ2 in favor of λ.

The normal stress T11 = τ is now found by substituting (4.75), (4.77) and (4.78) into (4.70)1,

which after simplification leads to

τ = T11 = −q + 2(W1 + I1W2)λ2 − 2W2λ
4 = 2(W1 + λ−1W2)(λ2 − λ−1). (4.79)

This describes the stress-stretch response in uniaxial stress. In both (4.78) and (4.79) the

derivatives W1 and W2 of the strain energy function are evaluated at the values of the

invariants given by (4.77), i.e. at I1 = λ2 + 2λ−1, I2 = 2λ+ λ−2.

We can now calculate the components of the Piola stress tensor by using the formula S =

JTF−T . However, just as in Problem 4.4.2, it is illuminating to do so by physical reasoning

instead. Suppose the cross-section of the body normal to the axis of stressing has dimensions

1×1 in the reference configuration. In the deformed configuration its dimensions are λ2×λ3.

Thus the areas of this cross-section in the undeformed and deformed configurations are 1

and λ2λ3 respectively. Therefore the axial force on this cross-section can be written in the

equivalent forms S11 × 1 and T11 × λ2λ3. Thus S11 = T11λ2λ3 = τΛ2:

σ = S11 = 2(W1 + λ−1W2)(λ− λ−2), (4.80)

with all other stress components Sij being zero.

Let w(λ) be the restriction of the strain energy function W to uniaxial stress:

w(λ) := W (I1, I2)
∣∣∣
I1=λ2+2λ−1, I2=2λ+λ−2

, λ > 0. (4.81)

It is readily seen by differentiating (4.81) with respect to λ and using (4.80) that

σ = w′(λ). (4.82)

This is in fact a consequence of S · Ḟ = Ẇ which when specialized to the present setting

reads S11λ̇ = ẇ = w′(λ) λ̇ thus resulting in (4.82).

Finally we linearize these results for an infinitesimal deformation. The normal strain

components ε1 and ε2 of the infinitesimal strain tensor ε are related to the stretches by

λ = λ1 = 1 + ε1, Λ = λ2 = 1 + ε2. (4.83)



372 CHAPTER 4. CONSTITUTIVE RELATION

First consider the relation between the transverse stretch Λ and the axial stretch λ. Substi-

tuting (4.83) into (4.76) and approximating the result for small ε1 gives

1 + ε2 = (1 + ε1)−1/2 ≈ 1− 1

2
ε1 + . . . ⇒ −ε2

ε1

.
=

1

2
.

This shows that for all incompressible isotropic elastic materials the Poisson’s ratio ν at

infinitesimal deformations is

ν =
1

2
.

Next we linearize the stress-stretch relation (4.80) (or equivalently (4.79)). First consider

the term λ− λ−2. It can be linearized as follows:

λ− λ−2 = (1 + ε1)− (1 + ε1)−2 ≈ (1 + ε1)− (1− 2ε1 + . . .) = 3ε1.

Since this term is order O(ε), and it multiplies the remaining terms on the right hand side

of (4.80), we need only approximate those other terms to O(1). So we set λ = 1 and write

the remaining term as 2(W1 + W2) keeping in mind that the Wi’s are now evaluated at

I1 = I2 = 3 (which is what we get by setting λ = 1 in (4.77)). We are thus led to the linear

stress-strain relation

σ
.
= 6(W1 +W2)

∣∣∣
I1=I2=3

ε1.

The Young’s modulus of any incompressible isotropic elastic material at infinitesimal defor-

mations is therefore

E := 6(W1 +W2)
∣∣∣
I1=I2=3

. (4.84)

Alternatively the Poisson’s ratio ν and Young’s modulus E can be calculated directly

from their definitions, i.e. by differentiating (4.76) and (4.80) and evaluating the results in

the undeformed state:

ν := − dΛ

dλ

∣∣∣∣
λ=1

, E :=
dσ

dλ

∣∣∣∣
λ=1

.

Simple shear.

Now consider a simple shear deformation of a unit cube with shearing direction e1 and glide

plane normal e2:

y1 = x1 + kx2, y2 = x2, y3 = x3. (4.85)
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One finds that det F = 1 and so the deformation is automatically volume preserving. The

left Cauchy-Green deformation tensor and its square are

B = I + k2 e1 ⊗ e1 + k(e1 ⊗ e2 + e2 ⊗ e1),

B2 = I + (3k2 + k4) e1 ⊗ e1 + k2 e2 ⊗ e2 + (2k + k3)(e1 ⊗ e2 + e2 ⊗ e1), .
(4.86)

and so the principal scalar invariants of B are

I1 = tr B = 3 + k2, I2 =
1

2

[
(tr B)2 − tr (B2)

]
= 3 + k2. (4.87)

We now turn to the constitutive relation (4.70)1. Substituting (4.86) and (4.87) into

(4.70)1 gives the shear stress T12 to be

T12 = 2k(W1 +W2)
∣∣∣
I1=3+k2,I2=3+k2

. (4.88)

This is the relation between the shear stress T12 and the amount of shear k. The remaining

shear stress components are readily seen to vanish T23 = T31 = 0.

Turning to the normal components of stress, we first note that they involve the reaction

pressure q which we cannot determine unless we know the stress on one pair of faces of the

cube. Suppose that the faces perpendicular to the e3-direction are traction-free: T33 = 0.

Substituting (4.86) into (4.70)1 gives T33 and setting it equal to zero yields

T33 = −q + 2(W1 + I1W2)− 2W2 = 0.

This can be solved for q, which after using (4.87), can be written as

q = 2W1 + 2W2(2 + k2). (4.89)

The normal stress components T11 and T22 can now be found from (4.70)1, (4.86) , (4.87)

and (4.89) to be

T11 = 2k2W1, T22 = −2k2W2. (4.90)

Observe from this that in general, normal stresses are needed in order to maintain a simple

shear deformation. This is a feature of finite deformations and is in contrast to the linearized

theory where the shear stress T12 is the only nonzero stress. This is not unexpected since in

Section 2.6.1 we noticed that the normal strain component E22 of the Green Saint-Venant

strain did not vanish in simple shear. The existence of non-zero normal stresses in simple

shear is sometimes called the Poynting effect.
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It is interesting to observe from (4.88) and (4.90) that

T11 − T22 = kT12,

which is a relation between the stress components that does not involve W . It therefore

holds for all incompressible isotropic materials and is called a universal relation.

Problem 4.6.1. Show that the preceding universal relation holds even if we did not take T33 = 0.

Next we define the restriction of the strain energy function W to simple shear by

w(k) := W (I1, I2)
∣∣∣
I1=3+k2, I2=3+k2

. (4.91)

Note that w here is different to the function w introduced in (4.81). Differentiating (4.91)

with respect to k and using (4.88) yields

T12 = w′(k).

Again, this is a consequence of S · Ḟ = Ẇ specialized to the present setting.

Finally consider an infinitesimal deformation (4.85) with |k| � 1. Linearizing (4.88) for

small |k| gives

T12 = 2k(W1 +W2)
∣∣∣
I1=I2=3

+ O(k2).

Thus we have the linear stress-strain relation T12 = µk where

µ := 2(W1 +W2)
∣∣∣
I1=I2=3

(4.92)

is the shear modulus of linear elasticity. Observe from (4.90) that for infinitesimal amounts

of shear

T11 = O(k2), T22 = O(k2),

which is why these stress components are neglected in the linearized theory. Note from (4.84)

and (4.92) that for any incompressible isotropic elastic material the Young’s modulus and

shear modulus are related by E = 3µ.
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Biaxial stretch in plane stress.

Rivlin and Saunders [20] carried out biaxial stress-stretch experiments on thin sheets of

rubber and so we turn to such states of deformation and stress next. Consider a thin square

sheet of dimension 1× 1× h in the reference configuration. The coordinate axes are aligned

with the edges of the sheet with the x3-axis being perpendicular to the square faces. The

sheet is subjected to a pure stretch

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, (4.93)

with the top and bottom faces of the sheet being traction-free:

T31 = T32 = T33 = 0 for x3 = ±h/2.

In view of incompressibility,

λ3 = λ−1
1 λ−1

2 , (4.94)

and so the principal scalar invariants take the form

I1 = λ2
1 + λ2

2 + λ2
3

(4.94)
= λ2

1 + λ2
2 + λ−2

1 λ−2
2 ,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

(4.94)
= λ2

1λ
2
2 + λ−2

1 + λ−2
2 .

 (4.95)

The left Cauchy-Green tensor and its square associated with the deformation (4.93) and

(4.94) are

B = λ2
1e1 ⊗ e1 + λ2

2e2 ⊗ e2 + λ−2
1 λ−2

2 e3 ⊗ e3,

B2 = λ4
1e1 ⊗ e1 + λ4

2e2 ⊗ e2 + λ−4
1 λ−4

2 e3 ⊗ e3.
(4.96)

It follows from (4.70)1 and (4.96) that the shear stress components vanish throughout

the sheet and so the traction-free boundary condition on the shear stress components, T31 =

T32 = 0 for x3 = ±h/2, holds automatically. Calculating T33 from (4.70)1, (4.95) and (4.96)

and setting the result equal to zero allows one to solve for the reaction pressure q. This leads

to

q = 2λ−2
1 λ−2

2 W1 − 2λ2
1λ

2
2W2 . (4.97)

The in-plane normal stress components are now found from (4.70)1, (4.95) and (4.96), to-

gether with (4.97), to be

T11 = 2(λ2
1 − λ−2

1 λ−2
2 )(W1 + λ2

2W2), T22 = 2(λ2
2 − λ−2

1 λ−2
2 )(W1 + λ2

1W2). (4.98)
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The corresponding Piola stresses are readily found by noting that the dimensions of the

sheet in the deformed configuration are λ1, λ2, hλ3. Thus the force on a face perpendicular

to the x1-axis can be written as T11 × deformed area = T11λ2hλ3 and equivalently as S11 ×
undeformed area = S11h. Likewise the force on a face perpendicular to the x2-axis is T22λ1hλ3

and equivalently S22h. On equating these one has T11λ2hλ3 = S11h and T22λ1hλ3 = S22h

whence S11 = T11λ
−1
1 and S22 = T22λ

−1
2 . Solving (4.98) forW1 andW2 and using S11 = T11λ

−1
1

and S22 = T22λ
−1
2 leads to

W1 =
1

2(λ2
1 − λ2

2)

[
λ3

1S11

λ2
1 − λ−2

1 λ−2
2

− λ3
2S22

λ2
2 − λ−2

1 λ−2
2

]
,

W2 =
1

2(λ2
2 − λ2

1)

[
λ1S11

λ2
1 − λ−2

1 λ−2
2

− λ2S22

λ2
2 − λ−2

1 λ−2
2

]
.

(4.99)

The energy w(λ1, λ2) that is the restriction of W (I1, I2) to the class of deformations at

hand is

w(λ1, λ2) := W̃ (I1, I2)
∣∣∣
I1=λ21+λ22+λ−2

1 λ−2
2 , I2=λ21λ

2
2+λ−2

1 +λ−2
2

.

One can readily verify that

S11 =
∂w

∂λ1

, S22 =
∂w

∂λ2

. (4.100)

Rivlin and Saunders [20] carried out biaxial stress-stretch experiments on thin rubber

sheets. They varied the stretches λ1 and λ2, keeping I1 fixed and allowing I2 to vary, where

I1 and I2 are given by (4.95). The experiments were repeated for different fixed values of

I1. They measured the values of S11 and S22 and then used (4.99) to determine W1 and

W2. They also carried out experiments in which I2 was fixed and I1 was varied. In this

way they determined W1(I1, I2) and W2(I1, I2) along various straight lines I1 = constant and

I2 = constant in the I1, I2-plane. This information was then used to determine the strain

energy function W (I1, I2) describing the particular material they were testing.

4.6.2 Unconstrained isotropic materials.

Uniaxial stress.

Consider a state of uniaxial stress in the e1-direction. The Cauchy stress tensor is again

given by (4.72), the deformation by (4.73), the principal stretches by (4.74), and the tensors

B and B2 by (4.75). Our aim is to calculate the normal stress T and transverse stretch Λ

in terms of the longitudinal stretch λ.
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In the case of an incompressible material we used the incompressibility constraint to

determine Λ. Here we will use the condition T22 = 0 to determine Λ. In the incompressible

case the equation T22 = 0 was used to determine the reaction pressure q which is absent for

an unconstrained material.

The principal scalar invariants associated with the deformation at hand are

I1 = λ2
1 + λ2

2 + λ2
3

(4.74)
= λ2 + 2Λ2,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

(4.74)
= 2λ2Λ2 + Λ4,

I3 = J2 = λ2
1λ

2
2λ

2
3

(4.74)
= λ2Λ4.


(4.101)

We can now calculate the stress from the constitutive relation (4.69)1. For T11 we get

T11 = 2λΛ2W3 +
2

λΛ2

(
W1 + (λ2 + 2Λ2)W2

)
λ2 − 2

λΛ2
W2λ

4, (4.102)

where the derivatives of W appearing in (4.102) are evaluated at the values of the invariants

given in (4.101). This is an equation of the form T11 = T11(λ,Λ). Similarly we calculate T22,

and then set the result to zero:

T22 = 2λΛ2W3 +
2

λΛ2

(
W1 + (λ2 + 2Λ2)W2

)
Λ2 − 2

λΛ2
W2Λ4 = 0. (4.103)

Equation (4.103) is a nonlinear algebraic equation of the form f(λ,Λ) = 0. If (in principle)

(4.103) can be solved for Λ, one has a relation of the form Λ = Λ(λ) for finding the transverse

stretch in terms of the longitudinal stretch. This is now substituted into (4.102) to obtain

the stress T11 as a function of the stretch λ.

Remark: If we had carried out this analysis using the representation W ∗(λ1, λ2, λ3) of the

strain energy function together with the associated constitutive relation (4.48), the transverse

stretch and normal stress are given by the respective equations

∂W ∗

∂λ2

∣∣∣∣
λ1=λ,λ2=λ3=Λ

= 0, T11 =
1

Λ2

∂W ∗

∂λ1

∣∣∣∣
λ1=λ,λ2=λ3=Λ

.

Simple shear.

The tensors B and B2 again have the components given in (4.86) and the principal scalar

invariants are

I1 = 3 + k2, I2 = 3 + k2, I3 = 1. (4.104)
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Substituting these into (4.69)1 and simplifying leads to

T12 = 2k(W1 +W2)
∣∣∣
I1=3+k2, I2=3+k2, I3=1

(4.105)

where we have kept in mind that the strain energy function here is a function of all three

invariants: W = W (I1, I2, I3). Again, the normal components of stress are nonzero in

general.

4.6.3 Restrictions on the strain energy function.

A nonlinearly elastic material is characterized by its strain energy function W (F). Typically,

W is determined by using (micro-mechanical reasoning to motivate) some functional form

that is then fitted to experimental measurements. Since some level of judgement is used in

coming up with the functional form, and since experimental data is necessarily limited to a

certain finite (even if large) number of tests, it is important to make sure that a proposed

constitutive model is not fundamentally flawed in some way.

There are two types of restrictions that one might consider imposing on W (F) in order

to address this issue. The first ensures that the response predicted by the constitutive model

is “physically reasonable”. For example in simple shear, the shear stress τ and amount of

shear k are related by τ = 2k(W̃1 + W̃2). This by itself does not ensure, for example, that

a positive shear stress τ > 0 is needed to deform the body by a positive amount of shear

k > 0. That would require W̃ to obey the inequality(
∂W̃

∂I1

+
∂W̃

∂I2

)∣∣∣∣∣
I1=I2=3+k2,I3=1

> 0 for all k.

Similarly in uniaxial stress, equations (4.102) and (4.103) do not ensure that a tensile stress

(T11 > 0) is required to elongate the body (λ1 > 1). This would require W̃ to obey a

second inequality. One must of course be careful in deciding what is “reasonable”. For

example in some situations one might require the stress-stretch relation in uniaxial stress

to be monotonically increasing for all stretches. There are however certain situations where

this is not the case and the stress-stretch relation is monotonically increasing for only certain

ranges of stretch. We shall encounter such a problem in Section 5.6.

The second type of restriction stems from mathematical considerations. For example,

without certain requirements on W it is possible that boundary-value problems may have

no solution. Or the solutions that exist maybe unstable. Again, one must be careful in what
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one imposes. Consider for example the strong ellipticity condition described below that is

related to a certain notion of stability. When one models phase transformations in solids,

it is known that the constitutive model has to violate this condition at certain deformation

gradients (but not others). This does not mean that the strong ellipticity condition should

be abandoned entirely; only that it not be required at all deformation gradients. It is also

worth mentioning that one does not always expect uniqueness of solutions to boundary value

problems in the nonlinear theory. If we did, we would not be able to study instabilities such

as buckling. Thus uniqueness is not something one would insist on in general.

In this sub-section we list a few restrictions on the strain energy function W that have

been suggested in the literature. Checking whether the specific strain energy functions

presented in the next section obey these conditions is left as an exercise. See also Problems

4.6, 4.29, 4.6.2 and 4.6.3 .

Baker-Ericksen inequalities. Consider an isotropic material subjected to a pure homoge-

neous deformation y = Fx where F = λ1e1⊗e1+λ2e2⊗e2+λ3e3⊗e3. Let the accompanying

Cauchy stress be T = τ1e1⊗e1 +τ2e2⊗e2 +τ3e3⊗e3. Baker and Ericksen [3] suggested that

if the principal stretch λi is larger than the principal stretch λj, then one would expect the

principal Cauchy stress τi to be larger than the principal Cauchy stress τj, i.e. that λi > λj

implies τi > τj. This requires

(τi − τj)(λi − λj) > 0 whenever λi 6= λj, (4.106)

which, by using the constitutive relation τi = λiJ
−1∂W/∂λi can be written as

λi ∂W/∂λi − λj ∂W/∂λj
λi − λj

> 0 provided λi 6= λj; (4.107)

the usual rules of indicial notion have been suspended in (4.107). Problem 4.30 illustrates one

consequence of this, namely that in a uniaxial tensile stress state T = τe1⊗e1 with τ > 0, the

Baker-Ericksen inequalities hold if and only if the principal stretches obey λ1 > λ2 = λ3 > 0.

Problem 4.6.2. Determine the restrictions imposed by the Baker-Ericksen inequalities on an (incompress-

ible) Mooney-Rivlin material,

W =
µ

2

[
α(I1 − 3) + (1− α)(I2 − 3)

]
,

µ and α being material parameters.

Solution: We first write the Mooney-Rivlin strain energy function in the equivalent form

W =
µ

2

[
α(λ2

1 + λ2
2 + λ2

3 − 3) + (1− α)(λ−2
1 + λ−2

2 + λ−2
3 − 3)

]
, (i)
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and then use the constitutive equation (4.67) for the principal Cauchy stresses to get

τ1 = λ1
∂W

∂λ1
− q = µ

[
αλ2

1 − (1− α)λ−2
1

]
− q, (ii)

τ2 = λ2
∂W

∂λ2
− q = µ

[
αλ2

2 − (1− α)λ−2
2

]
− q. (iii)

Subtracting (iii) from (ii) gives

τ1 − τ2 = µ
[
α(λ2

1 − λ2
2)− (1− α)(λ−2

1 − λ−2
2

]
= µ(λ2

1 − λ2
2)
[
α+ (1− α)λ2

3

]
where we used λ1λ2λ3 = 1 in getting to the second equality. Therefore

τ1 − τ2
λ1 − λ2

= µ(λ1 + λ2)
[
α+ (1− α)λ2

3

]
, λ1 6= λ2.

The Baker-Ericksen inequalities require (τ1 − τ2)/(λ1 − λ2) > 0 provided λ1 6= λ2 which in the present case

reduces to

µα+ µ(1− α)λ2
3 > 0 (iv)

since the principal stretches are positive. Equation (iv) must hold for all λ3 > 0.

First suppose that α = 1. In this particular case, (iv) holds if and only if µ > 0:

µ > 0, α = 1. (v)

Next suppose that α 6= 1. For (iv) to hold when λ3 →∞ we must have

µ(1− α) > 0 ⇔ µ > µα, (vi)

whereas for it to hold when λ3 → 0 we must have

µα > 0. (vii)

Equations (vi) and (vii) together require

µ > µα > 0.

Therefore we must have µ > 0. With this in hand, dividing by µ gives 1 > α > 0. Thus it is necessary that

µ > 0, 0 < α < 1. (viii)

Combining (viii) with (v)

µ > 0, 0 < α ≤ 1. � (ix)

Conversely when the inequalities (ix) hold so does (iv). Thus the Baker-Ericksen inequalities hold if and

only if (ix) holds.

Monotonicity: Consider again a pure homogeneous deformation of an isotropic material.

Let S = σ1e1⊗ e1 +σ2e2⊗ e2 +σ3e3⊗ e3 be the associated Piola stress. If one requires each
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stress component σi (which is effectively the ith component of force) to be an increasing

function of the corresponding stretch λi, it then follows from the constitutive relation σi =

∂W/∂λi that one must have
∂2W

∂λ2
i

> 0. (4.108)

This describes a certain type of convexity of W (λ1, λ2, λ3).

Convexity. Convexity plays a central role in proving the existence of solutions (to min-

imization problems in the Calculus of Variations). There are various notions of convexity

such as quasiconvexity, polyconvexity and rank-one convexity, but this is a topic that is

beyond the scope of these notes. The interested reader is referred to, for example, Antman

[2], Ball [5] Marsden and Hughes [15 ] and Steigmann [21]. It is shown in some of these

references that the usual notion of convexity of W (F) leads to various difficulties including

incompatibility with material frame indifference, preclusion of buckling and the violation of

the growth condition W →∞ as det F→ 0.

Consider the special case of a homogeneous deformation y = Fx of a homogeneous elastic

body whose entire boundary is subjected to a prescribed Piola traction (“dead loading”). If

F is a local minimizer of W (F) one must have

Aijk`(A)HijHk` > 0 (4.109)

for all tensors H 6= 0, |H| � 1, where

Aijk`(F) :=
∂2W

∂Fij∂Fk`
(F), (4.110)

are the components of the elasticity tensor A. If one limits attention to (a) isotropic

materials, (b) symmetric deformation gradient tensors F = λ1e1⊗e1 +λ2e2⊗e2 +λ3e3⊗e3,

and (c) perturbations H that are symmetric and coaxial with F (i.e. H that have the same

principal directions as F), the inequality (4.109) leads to the requirement that the Hessian

matrix with elements
∂2W ∗

∂λi∂λj
be positive definite. (4.111)

We shall work out the details of this in the context of a particular problem in Section 5.3.

Additional inequality restrictions on the ∂W/∂λi’s are needed when the perturbation H is

not coaxial with F. For these, as well as the modification of (4.111) for incompressible

materials, see Ogden [18].

Strong ellipticity (material stability): The basic question underlying strong ellipticity

(material stability) is: when one perturbs a homogeneous equilibrium configuration, do
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the perturbations remain bounded at all times? To illustrate this issue, consider a one-

dimensional setting. The deformation y(x, t), stretch λ(x, t), particle speed v(x, t) and stress

σ(x, t) obey the equations

λ = yx, v = yt, σ = Wλ, σx = ρRvt,

where the subscripts x, t and λ denote partial differentiation, and the mass density ρR in the

reference configuration is positive. Consider a homogeneous equilibrium configuration

y(x) = λ0x, λ(x) = λ0, v(x) = 0, σ(x) = σ0 = Wλ(λ0),

where λ0 > 0 is a constant. Now consider an infinitesimal perturbation u(x, t) of this

equilibrium deformation: y(x, t) = λ0x + u(x, t) where |ux| � 1. The associated stretch,

particle speed and stress are

λ = yx = λ0+ux, v = yt = ut, σ = Wλ(λ0+ux)
.
= Wλ(λ0)+Wλλ(λ0)ux = σ0+Wλλ(λ0)ux.

Substituting these expressions into the equation of motion σx = ρRvt gives

αuxx = ρRutt where α := Wλλ(λ0).

In order to study the behavior of the perturbation u(x, t) we must examine the solu-

tions of this linear partial differential equation. Consider solutions of the form u(x, t) =

a exp ik(x− ct) which describe propagating harmonic waves with wave number k and prop-

agation speed c. Observe that if c is imaginary, say c = ±iγ, the temporal term reads

exp(±kγt) and becomes unbounded as t → ∞. Thus we shall say that material stability

prevails when c is real and nonzero. Substituting u(x, t) = a exp ik(x− ct) into αuxx = ρRutt

gives

ρRc
2 = α,

whence c is real and nonzero when α > 0. Therefore we say that W is strongly elliptic at

the stretch λ0 when

Wλλ(λ0) > 0.

Observe that when Wλλ(λ0) > 0 the partial differential equation αuxx = ρRutt is hyperbolic;

the energy W (λ) is convex at λ = λ0; and the slope Wλ(λ) of the stress-stretch curve is

positive at λ = λ0. If the inequality Wλλ(λ0) > 0 holds for all λ0 > 0 one says that the

material is strongly elliptic.

We now turn to the three-dimensional setting. Consider a pure homogeneous equilibrium

deformation y = Fx of a homogenous but not necessarily isotropic elastic body, and super-

pose on it an infinitesimal perturbation u(x, t). Thus we consider a motion y = Fx+u(x, t)
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where |∇u| � 1. On linearizing the equations of motion Div (∂W/∂F) = ρRÿ we arrive at

the following system of linear partial differential equations

Apqrs
∂2ur
∂xq∂xs

= ρRüp where Apqrs(F) :=
∂2W (F)

∂Fpq∂Frs
. (4.112)

Observe that Apqrs = Arspq. Suppose the perturbed motion u(x, t) describes a plane harmonic

wave propagating in the direction n, with wave speed c, wave number k and particle motion

in the direction a. Then u(x, t) = a exp[ik(x · n − ct)]. If the wave speed is imaginary (or

complex), the perturbation u involves a term that grows exponentially with time t and so

the homogeneous deformation would be unstable. Thus we say that material stability16

holds provided the wave speed c is real and nonzero (for all a and n). Substituting u(x, t) =

a exp[ik(x · n− ct)] into (4.112) leads to

Apqrsarnqns = ρRc
2ap.

We can write this as [
A(n)− ρRc2 I

]
a = o (4.113)

in terms of the acoustic tensor A(n) whose components are defined by

Apr := Apqrsnqns. (4.114)

Since Apqrs = Arspq it follows that A is symmetric. From (4.113) we see that ρRc
2 are the

eigenvalues of A and so for c to be real and nonzero the acoustic tensor must be positive

definite. This requires that the elasticity tensor A(F) obey the inequality

Apqrs(F)apnqarns > 0 for all unit vectors a and n. (4.115)

When W (F) satisfies (4.115) at some F, we say that W is strongly elliptic17 at that F.

Equation (4.115) is equivalent to the acoustic tensor A(n) being positive definite for all

directions n.

Observe that the inequality (4.115) can be written equivalently as

d2

dξ2
W (F + ξ a⊗ n)

∣∣∣∣
ξ=0

> 0 for all unit vectors a and n. (4.116)

16One refers to this as material stability because no boundary or initial conditions are involved in this

notion (in contrast to other notions of stability).
17Knowles and Sternberg [14] have shown that the strain energy function W that describes a material

capable of undergoing solid-solid phase transitions cannot be strongly elliptic at all F, though it would be

strongly elliptic at certain F in general.
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Viewed in this way, strong ellipticity can be thought of as requiring W to be strictly convex

at F along certain paths in deformation gradient tensor space. If the strict inequality in

(4.115) (or (4.116)) is replaced by ≥, the resulting inequality is the Legendre-Hadamard

condition of the Calculus of Variations which in turn is equivalent to the so-called rank-one

convexity18 condition (given that we have implicitly assumed W to be twice continuously

differentiable on the set of all tensors with positive determinant); see Ball [5].

Problem 4.6.3. Consider a “compressible neo-Hookean” material19

W (I1, I2, I3) =
µ

2
(I1 − 3) + h(J), J =

√
I3. (i)

Determine the conditions under which strong ellipticity prevails at a given deformation.

Solution: Differentiating I1 = tr FTF gives

∂I1
∂Fpq

= 2Fpq,
∂2I1

∂Fpq∂Frs
= 2δprδqs, (iv)

and using (1.206) and (1.207) (page 104) to calculate ∂J/∂Fij and ∂F−1
ij /∂Fk` leads to

∂J

∂Fpq
= JF−1

qp ,
∂2J

∂Fpq∂Frs
= JF−1

sr F
−1
qp − JF−1

qr F
−1
sp . (v)

We may now differentiate (i) to get

∂W

∂Fpq
=
∂W

∂I1

∂I1
∂Fpq

+
∂W

∂J

∂J

∂Fpq

(i)
=

µ

2

∂I1
∂Fpq

+ h′(J)
∂J

∂Fpq
= µFpq + Jh′(J)F−1

qp , (vi)

Apqrs =
∂2W

∂Fpq∂Frs
= µδprδqs +

(
Jh′(J)

)′
JF−1

sr F
−1
qp − Jh′(J)F−1

qr F
−1
sp . (vii)

The components of the acoustic tensor A are defined by (4.114). For the particular material at hand we find

from (vii) that

A = µI + J2h′′(J) (F−Tn⊗ F−Tn). (viii)

The eigenvalues of A are

µ, µ, µ+ J2h′′(J) (F−Tn · F−Tn) = µ+ J2h′′(J)C−1n · n. (ix)

Strong ellipticity requires A to be positive definite and therefore the three eigenvalues of A to be positive

for all unit vectors n. Taking n to be in turn the three principal directions of the Lagrangian stretch tells

us that necessary for the eigenvalues to be positive is

µ > 0, µ+ λ−2
i J2h′′(J) > 0 for i = 1, 2, 3. � (x)

18Note that a⊗ n is a rank one tensor.
19This is a special case of the Hadamard material given in Problem 4.33.
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Conversely when (x) holds it is readily seen that the eigenvalues (ix) are positive for all unit vectors n and

so (x) is necessary and sufficient for strong ellipticity at a particular deformation. Exercise: If the strain

energy function (i) is to be strongly elliptic at all deformations what restriction does this impose on h?

Problem 4.6.4. Show for an isotropic material that strong ellipticity implies both the Baker-Ericksen

inequalities (4.106) and the monotonicity inequality (4.108). (Problem 4.31)

For an incompressible material, according to Problem 4.28, the strong ellipticity condition

is

Aijk`aibjakb` > 0 for all unit vectors a and b with a · F−Tb = 0, (4.117)

where the restriction a ·F−Tb = 0 arises from the requirement that the motions be isochoric.

This can be written equivalently as

Bijk`ainjakn` > 0 for all unit vectors a and n with a · n = 0 (4.118)

where

Babcd(F) = Aapcq(F)FbpFdq. (4.119)

For an incompressible isotropic material, the components of B in the principal basis {`1, `2, `3}
are given in Problem 6.1.8 of Ogden [17] where his tensor A1

0 is related to our tensor B by

A1
0ijk` = Bji`k (see his equations (6.1.14), (6.1.29) and keep in mind that his tensor S is the

transpose of the Piola stress tensor). With the summation convention suspended,

Biijj = λiλj
∂2W

∂λi∂λj
, (4.120)

Bjiji =
λ2
i

(
λi

∂W
∂λi
− λj ∂W∂λj

)
λ2
i − λ2

j

, i 6= j, λi 6= λj, (4.121)

Bjiij = Bijji = Bjiji − λi
∂W

∂λi
, i 6= j. (4.122)

If λi = λj, (4.121) is replaced by

Bjiji =
1

2

(
Biiii − Biijj + λi

∂W

∂λi

)
, i 6= j, λi = λj. (4.123)

Growth conditions. A deformation is “extreme” if (at least) one of the principal stretches

tends to 0 or ∞. It is reasonable to require (for a compressible material) that the strain

energy density associated with an extreme deformation be infinite:

W (F)→∞ when det F→ 0 or ∞. (4.124)
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The reader is referred to Section 2, Chapter XIII of Antman [2] for a detailed discussion of

growth conditions and their implications. The way in which W grows at extreme deforma-

tions plays an important role when considering the existence of certain types of discontinuous

deformation fields such as those associated with fracture or cavitation. In particular, Ball

[4] shows that the growth condition

W (F)

|F|n →∞ as |F| → ∞ (4.125)

precludes the possibility of cavitation (where n = 2 or 3 is the dimension of the space).

Therefore in order to study cavitation one must consider strain energy functions for which

this condition fails; see Section 5.4.

4.7 Some Models of Isotropic Elastic Materials.

In order to describe the detailed response of a particular isotropic elastic material one needs

to know the specific strain energy function W (I1, I2, I3) that characterizes that material.

Determining explicit forms for W must be done using laboratory experiments (together with

micro-mechanical modeling when possible).

The data from the early experiments of Treloar [23, 24] continue to be important in

modeling rubberlike materials. The reader is encouraged to read the classic paper by Rivlin

and Saunders [20] which describes some of their experiments carried out to determine the

specific W for a certain rubber-like material.

One can find a great many20 strain energy functions in the literature. In this section we

give a few specific examples of particularly simple strain energy functions W . We do not

discuss how these forms were developed. Our intention is to simply give a flavor for some

explicit examples. In order to determine the response according to each of these W ’s one

simply substitutes them into the formulae we derived in Sections 4.6.1 and 4.6.2.

The Gent, 1-term Ogden and Fung models that we consider below, see (4.137), (4.143) and

(4.147), each involves a single constitutive parameter Jm, n and β respectively (in addition

to the shear modulus µ). According to Table 11.1 of Goriely [8] , the Gent material provides

a reasonable model for elastomers when 20 < Jm < 200 and for soft biological tissues when

20Holzapfel [11] makes this point (tongue-in-cheek) by saying “... new specific forms [of W ] are published

on a daily basis.”
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1/3 < Jm < 5/2. For the 1-term Ogden material the appropriate parameter ranges are n ≈ 3

(elastomers) and n ≥ 9 (soft biological tissues). For the Fung material, 3 < β < 20 provides

a reasonable model for soft biological tissues.

In Figure 4.6 we show the stress-stretch responses in uniaxial stress according to several

of these models. In the left-hand figure we plot the Cauchy and Piola stresses versus stretch

for a neo-Hookean material. In the right-hand figure we plot the Piola stress versus stretch

for neo-Hookean, 1-term Ogden, Gent and Fung materials.

1. A compressible inviscid fluid: Consider an elastic material characterized by the

strain energy function

W = W (I3).

Substituting this into (4.69) yields the following constitutive relation for the Cauchy

stress:

T = −p I where p = −2JW ′(I3), I3 = J2.

Observe that for this class of materials, the stress tensor is hydrostatic in every defor-

mation. Therefore the strain energy function W = W (I3) describes an inviscid fluid.

The constitutive relation for T can be written in the form familiar in fluid mechanics

by replacing J with the mass density ρ using

ρ = ρR/J,

where ρR is the mass density in the reference configuration, and replacing W (I3) by

the function ψ(ρ) defined by

ψ(ρ) :=
1

ρR

W (I3), I3 = J2 = (ρR/ρ)2.

One can then show that the constitutive relation above can be written as

T = −p I where p = ρ2 ψ ′(ρ).

2. Generalized neo-Hookean model. (Incompressible): A generalized neo-Hookean

material is described by a strain energy function of the form

W (I1, I2) = W (I1) for I1 ≥ 3. (4.126)
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Many constitutive models for incompressible isotropic rubber-like materials, including

the neo-Hookean, Arruda-Boyce and Gent models, are special cases of the generalized

neo-Hookean model. Substituting (4.126) into (4.70)1 leads to the constitutive relation

T = −q I + 2W ′(I1) B, I1 = tr B. (4.127)

In uniaxial stress, the stress-stretch relations for the Cauchy stress and the Piola stress

are found from (4.79) and (4.80) respectively:

T = 2W ′(I1)(λ2 − λ−1) where I1 = λ2 + 2λ−1, (4.128)

S = 2W ′(I1)(λ− λ−2) where I1 = λ2 + 2λ−1. (4.129)

The relation between the transverse stretch Λ and the longitudinal stretch λ is Λ =

λ−1/2.

In simple shear one finds from (4.88) and (4.126) that the shear stress T12 is related

to the amount of shear k by

T12 = 2W ′(I1) k, I1 = 3 + k2, (4.130)

and from(4.90) that the normal stresses are

T11 = 2k2W ′(I1), T22 = T33 = 0, I1 = 3 + k2, (4.131)

having assumed that T33 = 0. The fact that setting T33 = 0 automatically implies

T22 = 0 is a peculiarity of all generalized neo-Hookean materials. For a more general

W , one finds that T22 6= 0 in general; see for example the response of a Mooney-Rivlin

material described later in this section. If the shear stress T12 is to be > 0 when

the amount of shear k is > 0, (4.130) shows that we must have W ′ > 0. Thus it is

reasonable to require the constitutive function W (I1) for a generalized neo-Hookean

material to obey

W ′(I1) > 0 for I1 ≥ 3. (4.132)

From the linearized expression (4.92) we see that the infinitesimal shear modulus of

the material is µ = 2W ′(3).

3. Neo-Hookean model. (Incompressible): A neo-Hookean material is characterized

by the strain energy function

W (I1, I2) =
µ

2
(I1 − 3), µ > 0, (4.133)
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where µ is a material constant. This is a special case of a generalized neo-Hookean

material. The neo-Hookean model can in fact be derived from a simple statistical

thermodynamic analysis of a polymer chain. The interested reader can refer to Chapter

3.1 of Treloar [24] (or Chapter 9 of Volume II).

Substituting (4.133) into (4.127) leads to the constitutive relation

T = −q I + µB. (4.134)

The responses in uniaxial stress and simple shear are immediately found by specializing

(4.128), (4.129) and (4.130):

T = µ(λ2 − λ−1), S = µ(λ− λ−2), T12 = µk.

See Figure 4.6.
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Figure 4.6: Stretch-stretch response in uniaxial stress. Left: Cauchy and Piola stress for neo-Hookean

material. Right: Piola stress for (a) neo-Hookean, (b) 1-term Ogden material with n1 = 3, µ1 = 2µ/n1, (c)

Gent material with Jm = 2, and (d) Fung material with Q(B) = β(I1 − 3), α = µ/(2β), β = 2.

4. Mooney-Rivlin model. (Incompressible): A Mooney-Rivlin material is charac-

terized by the strain energy function21

W (I1, I2) =
µ

2

[
α(I1 − 3) + (1− α)(I2 − 3)

]
, µ > 0, 0 < α < 1, (4.135)

where µ and α are material constants. Due to the presence of the term I2 this is not a

special case of a generalized neo-Hookean material when α 6= 1, though it specializes to

21The strict inequalities on α are required by the Baker-Eriksen inequalities.
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a neo-Hookean material for α = 1. Substituting (4.135) into (4.70)1 gives the following

constitutive relation for T,

T = −q I + µαB + µ(1− α)
[
I1 B − B2

]
. (4.136)

The response of this material in various settings can be readily studied as above.

We shall simply make one observation here. Note from (4.127) that for a general-

ized neo-Hookean material, the term involving B2 in the general constitutive equation

(4.70)1 drops out while we see from (4.136) that this is not so for the Mooney-Rivlin

material. To see one consequence of this consider a simple shear deformation with

shearing direction e1 and glide plane normal e2, and again suppose that the boundary

conditions give T33 = 0. The response in simple shear can be calculated from (4.88)

and one is led to

T12 = µk, T11 = µαk2 T22 = −µ(1− α)k2.

Observe that T22 6= 0 when 0 < α < 1 which implies that one needs to apply a normal

stress on the glide plane in order to maintain a simple shear deformation. This is in

contrast to the behavior of a generalized neo-Hookean materials where T22 = 0; see

(4.131).

Reference:

M. Mooney, A theory of large elastic deformation, Journal of Applied Physics, volume

11 (1940), pp. 582-592.

R.S. Rivlin, Some applications of elasticity theory to rubber engineering. Original

paper 1948. See reprint in Collected Papers of R.S. Rivlin, edited by G.I. Barenblatt

and D.D. Joseph, Springer, 1997.

5. Gent Model. Limited Extensibility. (Incompressible):

Rubber-like materials are composed of a network of freely-jointed randomly oriented

polymer chains. As the stress increases in uniaxial tension, initially, most of the de-

formation arises due to the unfolding of the polymer chains and the slope of the cor-

responding stress-stretch curve is relatively small. As the polymer chains orient them-

selves in the pulling direction, the slope begins to increase rapidly until eventually

when the polymer chains are “all” oriented in the axial direction, any further increase

in stress requires the chains themselves to stretch. Gent modeled this by limiting the
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extensibility of polymer chains so that the stress tends to infinity as the stretch ap-

proaches a certain finite critical value. The strain energy function proposed by Gent

is the particular generalized neo-Hookean material

W = W (I1) = −µ
2
Jm ln

(
1− I1 − 3

Jm

)
, µ > 0, Jm > 0, (4.137)

where µ and Jm are positive material constants. Since the argument of the logarithm

must be positive, the principal invariant I1 cannot exceed 3 + Jm:

I1 < 3 + Jm. (4.138)

Exercise: Show that in the limit Jm →∞, the Gent model reduces to the neo-Hookean model (4.133).

Substituting the particular form (4.137) of W into the general constitutive equation

(4.70)1 leads to

T = −qI +
µJm

3 + Jm − I1

B. (4.139)

In uniaxial stress the principal invariant I1 is

I1 = λ2 + 2λ−1, (4.140)

having used λ2 = λ3 = λ−1/2 and I1 = λ2
1 + λ2

2 + λ2
3. Since I1 cannot exceed 3 + Jm we

must have

λ2 + 2λ−1 < 3 + Jm ⇒ λ3 − (3 + Jm)λ+ 2 < 0.

The cubic equation λ3 − (3 + Jm)λ + 2 = 0 has three real roots, two of which, λmin

and λmax, are positive with 0 < λmin < 1 < λmax. This implies that the stretch λ

must lie in the interval λmin < λ < λmax and in particular cannot exceed λmax . The

stress-stretch relation in uniaxial stress is found by substituting (4.137) into (4.128):

T11 =
(
λ2 − λ−1

)( µJm
3 + Jm − λ2 − 2λ−1

)
, λmin < λ < λmax. (4.141)

Note that T11 → +∞ as λ→ λmax (and T11 → −∞ as λ→ λmin). The corresponding

Piola stress S = T11λ
−1 is plotted as a function of stretch in Figure 4.6.

Reference: A.N. Gent, A new constitutive relation for rubber, Rubber Chemistry and

Technology, 69(1996), pp. 59-61

6. Ogden model. (Incompressible): An N -term incompressible Ogden material is

characterized by the strain energy function

W (λ1, λ2, λ3) =
N∑
i=1

µi
ni

(λni1 + λni2 + λni3 − 3), (4.142)
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where N,µ1, . . . µN , ni . . . nN are material constants such that

µini > 0 for each i.

The material constants ni need not be integers. Figure 4.6 shows a graph of the Piola

stress versus stretch in uniaxial stress for the one-term Ogden model

W (λ1, λ2, λ3) =
2µ

n2
(λn1 + λn2 + λn3 − 3), µ > 0, n > 0. (4.143)

The strain energy function (4.143) reduces to the neo-Hookean form when n = 2 and

yields the Varga model when n = 1:

W = µ1(λ1 + λ2 + λ3 − 3). (4.144)

Valanis and Landel suggested that the strain energy function for an isotropic incom-

pressible elastic material should have the form

W (λ1, λ2, λ3) = w(λ1) + w(λ2) + w(λ3) (4.145)

for some suitable function w(·). Certainly the Ogden, neo-Hookean, Mooney-Rivlin

and Varga models are of this form.

Reference: R. W. Ogden, Large deformation isotropic elasticity: On the correlation of

theory and experiment for incompressible rubberlike solids, Proceedings of the Royal

Society of London. Series A, Vol. 326, (1972), issue 1567, pp. 565-584.

7. Arruda-Boyce model. (Incompressible):

By using statistical mechanical arguments applied to a cubic representative volume el-

ement with eight polymer chains, Arruda and Boyce developed the following particular

generalized neo-Hookean material model:

W (I1) = c1

[
βL(β)− ln

(
sinh β

β

)]
, (i)

where

β = L−1

(√
I1

3c2

)
, (ii)

c1 and c2 being constant material parameters. The function L−1 in (ii) is the inverse

of the Langevin function

L(x) = coth x− 1

x
, −∞ < x <∞. (iii)
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The Langevin function (iii) is monotonically increasing with

L(x)→ ±1 as x→ ±∞.

Therefore L−1(x) is only defined for −1 < x < 1 and so according to (ii)

I1 < 3c2.

Thus, like the Gent model, the extensibility of this material is limited.

Reference: E. M. Arruda and M.C. Boyce, A three-dimensional model for the large

stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 1993, pp.

389-412.

8. Fung model for soft biological tissue.

The mechanical response of soft biological tissue is dominated by its fibrous con-

stituents: collagen and elastin. At small strains, the collagen fibers are unstretched

and the mechanical response is almost entirely due to the soft, isotropic elastin. As the

load increases, the collagen fibers straighten-out and align with the direction of load-

ing. This leads to a rapid increase in the stiffness, as well as to anisotropic material

behavior due to the preferred direction induced by the alignment of collagen fibers.

Both of these effects can be modeled by the strain energy function

W = W (C) = α
(

eQ(C) − 1
)
, (4.146)

where α is a material constant and Q(C) is a scalar-valued function of the right Cauchy

Green tensor C = FTF. The exponential term leads to rapid stiffening of the mate-

rial. Different functional forms of Q have been considered in the literature, a general

quadratic form being the most common. By suitably choosing the form of Q(C),

material anisotropy can be built in.

Figure 4.6 shows a graph of the Piola stress versus stretch in uniaxial stress for the

particular (isotropic) Fung model

W =
µ

2β

(
eβ(I1−3) − 1

)
. (4.147)

Observe that in the limit β → 0, the strain energy function (4.147) reduces to the

neo-Hookean model.

Reference: Review article by J. D. Humphrey, Continuum biomechanics of soft bio-

logical tissues, Proceeding of the Royal Society: Series A, Vol. 459, 2003, pp. 3 -

46.
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9. Blatz-Ko Model. (Unconstrained): In Problem 4.4.2 (page 360) we gave the

expression for the strain energy function for a Blatz-Ko material and examined its

response in uniaxial stress and simple shear. This constitutive model was proposed by

Blatz and Ko based on their experiments on a foam rubber.

Reference: R. J. Blatz and W.L. Ko, Application of finite elastic theory to the defor-

mation of rubbery materials, Transactions of the Society of Rheology, volume 6 (1962),

pp. 223-251 .

10. Ogden model. (Unconstrained): The Ogden strain energy function22 for uncon-

strained materials is

W (λ1, λ2, λ3) =
M∑
i=1

aiφ(αi) +
N∑
i=1

biψ(βi) + h(J), J = λ1λ2λ3,

where

φ(α) = λα1 + λα2 + λα3 − 3, ψ(β) = (λ1λ2)β + (λ2λ3)β + (λ3λ1)β − 3

and

ai > 0, bi > 0, α1 ≥ α2 ≥ . . . ≥ αM ≥ 1, β1 ≥ β2 ≥ . . . ≥ βM ≥ 1.

Reference: R. W. Ogden, Large deformation isotropic elasticity - On the correlation

of theory and experiment for compressible rubberlike solids, Proceedings of the Royal

Society of London. Series A, Vol. 328, Issue 1575, (1972), pp. 567-583.

11. Some incompressible anisotropic material models:

As we shall see in Chapter 6, the strain energy function W (C) characterizing an

anisotropic elastic material with one preferred direction (one family of fibers) involves,

in addition to the invariants I1, I2 and I3, two other (pseudo) invariants I4 and I5.

If the material has two preferred directions, its strain energy function involves three

additional invariants I6, I7 and I8.

An example of such a constitutive model that has been proposed by Holzapfel et. al.

[12] as a model for soft biological tissues is

W (I1, I4, I6) =
µ1

2
(I1−3)+

1

2

µ4

k4

[
exp[k4(I4−1)2]−1

]
+

1

2

µ6

k6

[
exp[k6(I6−1)2]−1

]
, (i)

22The original form proposed by Ogden does not include the functions ψ. For the modified form shown

here, see for example the paper by Ball [5].
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where µ1, µ4, µ6, k1, k4, k6 are material constants and

I4 = CmR ·mR, I6 = Cm′R ·m′R. (ii)

Here the unit vectors mR and m′R denote the preferred directions in the reference

configuration. Observe that the term involving I1 in (i) has the neo-Hookean form

while the terms involving I4, I6 are of the Fung form. If I4 − 1 and I6 − 1 are small,

(i) can be replaced by

W =
µ1

2
(I1 − 3) +

µ4

2
(I4 − 1)2 +

µ6

2
(I6 − 1)2. (iii)

The special case of (iii) corresponding to µ1 = µ, µ4 = µ6 = βµ is referred to as the

standard fiber reinforcing model,

W =
µ

2
(I1 − 3) +

µβ

2

[
(I4 − 1)2 + (I6 − 1)2

]
, µ > 0, β > 0; (iv)

see Goriely [8].

Problem 4.7.1. Recall the bending of a block, the kinematics of which was analyzed in Problem 2.5.4 with

the equilibrium equations and boundary conditions examined in Problem 3.7.1. Suppose that the material

is composed a Blatz-Ko material. Use this added information to complete the solution to that problem.

Solution: Recall from Problems 2.5.4 and 3.7.1 that

F = λ1er ⊗ e1 + λ2eθ ⊗ e2 + λ3ez ⊗ e3, (i)

S = σ1er ⊗ e1 + σ2eθ ⊗ e2 + σ3ez ⊗ e3, (ii)

λ1 = r′(x1), λ2 = αr(x1), λ3 = Λ, (iii)

where we have set

α = β/B.

Moreover

σ1(x1) = σ̂1(λ1, λ2, λ3), σ2(x1) = σ̂2(λ1, λ2, λ3), σ3(x1) = σ̂3(λ1, λ2, λ3), (iv)

and equilibrium required
dσ1

dx1
− ασ2 = 0 for −A ≤ x1 ≤ A. (v)

In the absence of an explicit constitutive relation we were unable to proceed further.

Now that we are told that the block is composed of a Blatz-Ko material, we have

σ1 = µ
(
λ2λ3 − λ−3

1

)
, σ2 = µ

(
λ1λ3 − λ−3

2

)
, (vi)
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which upon using (iii) gives

σ1 = µ

(
αΛr(x1)− 1

[r′(x1)]3

)
, σ2 = µ

(
Λr′(x1)− 1

[αr(x1)]3

)
. (vii)

Substituting (vii) into the equilibrium equation (v) and simplifying leads to (the nonlinear ordinary differ-

ential equation)

r′′

(r′)4
+

1

3r3α2
= 0 for −A ≤ x1 ≤ A. (viii)

Integrating once gives

r′ =
αr
√

3√
c1r2 − 1

for −A ≤ x1 ≤ A, (ix)

and integrating again yields

x1 =
1

α
√

3

[√
c1r2(x1)− 1− tan−1

√
c1r2(x1)− 1 + c2

]
. for −A ≤ x1 ≤ A, (x)

The boundary conditions

σ1(±A) = 0, 2C

∫ A

−A
r(x1)σ2(x1)dx1 = m,

are now to be used to determine the unknown constants c1, c2 and α (= β/B).

4.8 Linearized elasticity.

In the preceding chapters on kinematics and stress, we specialized the general theory to the

case where the displacement gradient tensor H = ∇u = F − I was infinitesimal: |H| � 1.

In particular, we found that all of the general strain measures E(U) and E(V) defined in

(2.67) and (2.70) reduce to the infinitesimal strain tensor ε:

ε =
1

2
(H + HT ), εij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.148)

We also found that the right Cauchy-Green deformation tensor C = FTF yielded

C = I + 2ε+ O(|H|2). (4.149)

In the case of stress, the Cauchy and Piola stress tensors coincided to leading order and we

denoted this common stress by the symmetric tensor σ.
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We now approximate the general frame-indifferent constitutive relationship for an elastic

solid to this case where the displacement gradient tensor is infinitesimal. It is convenient to

start with the expression (4.21)1 for the Piola stress:

S = 2F
∂W

∂C
(C). (4.150)

In the reference configuration we have F = I,C = I. Substituting this into the right hand

side of (4.150) gives the stress in the reference configuration which we denote by
o
σ:

o
σ= 2

∂W

∂C

∣∣∣∣
C=I

. (4.151)

This is called the residual stress.

We now approximate (4.150) by using F = I + H, C = I + 2ε and carrying out a Taylor

expansion of its right hand side:

σij = 2Fik
∂W

∂Ckj
(C) = 2

(
δik +

∂ui
∂xk

)
∂W

∂Ckj

∣∣∣∣
C=I+2ε

,

= 2

(
δik +

∂ui
∂xk

)[
∂W

∂Ckj

∣∣∣∣
C=I

+
∂2W

∂Ckj∂Cpq

∣∣∣∣
C=I

2εpq + O(|H|2)

]
,

(4.151)
=

(
δik +

∂ui
∂xk

)[
o
σkj +Ckjpqεpq +O(|H|2)

]
,

=
o
σij +

o
σkj

∂ui
∂xk

+ Cijpqεpq + O(|H|2),

where we have introduced

Cijk` := 4
∂2W

∂CijCk`

∣∣∣∣
C=I

. (4.152)

The constitutive relation for stress in the linearized theory is thus

σij =
o
σij +

o
σkj

∂ui
∂xk

+ Cijk`εk`. (4.153)

Observe that the second term on the right-hand side involves the displacement gradient

tensor (which can be written in terms of the infinitesimal strain and rotation tensors using

∇u = ε+ ω).

The 4-tensor C is known as the elasticity tensor. Note that it does not depend on

the deformation since the right-hand side of (4.152) is evaluated at C = I. Its components
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Cijk` represent the various elastic moduli of the material. The elasticity tensor has 34 = 81

components but not all of them are independent. Observe from (4.152) that

Cijk` = Ck`ij, Cijk` = Cjik`, Cijk` = Cij`k, (4.154)

which implies that C has 21 independent components. Therefore the most general (anisotropic)

elastic material has 21 elastic constants.

From hereon we shall take the residual stress to vanish so that

∂W

∂C

∣∣∣∣
C=I

= 0. (4.155)

The constitutive relation for stress is then

σ = Cε, σij = Cijk`εk`. (4.156)

For completeness we note the corresponding approximation for the strain energy function

W . A Taylor expansion of W (C) about C = I is readily shown to lead to

W (ε) =
1

2
Cijk`εi,jεk,l. (4.157)

Observe from (4.156) and (4.157) that

σij =
∂W

∂εij
(ε), Cijk` =

∂2W

∂εijεk`
(ε). (4.158)

Material symmetry in the linearized theory. Following the discussion in Section 4.4,

the material symmetry group G is the collection of proper orthogonal transformations that

preserves the symmetry of the material in the sense that

W (ε) = W (QεQT ) for each Q ∈ G (4.159)

and all symmetric tensors ε; see (4.29). Note that the tensor Q (that operates on the

reference configuration prior to deforming the body) need not be infinitesimal. In view of

(4.157),

W (QεQT ) = 1
2
Cpqrs(QεQ

T )pq(QεQ
T )rs =

= 1
2
Cpqrs(QpiεijQqj)(Qrkεk`Qs`) =

= 1
2
QpiQqjQrkQs`Cpqrsεijεk`.
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Therefore if Q ∈ G it follows from this and (4.159) that

1

2
Cijk`εijεk` =

1

2
QpiQqjQrkQs`Cpqrsεijεk`,

which must hold for all strains ε whence

Cijk` = QpiQqjQrkQs`Cpqrs for each Q ∈ G. (4.160)

Recall that in general, the components C′ijk` and Cijk` of a 4-tensor C in two bases

{e′1, e′2, e′3} and {e1, e2, e3} are related by C′ijk` = QpiQqjQrkQs`Cpqrs where the proper or-

thogonal matrix [Q] relates the two bases by e′i = Qijej. Therefore (4.160) tells us that

C′ijk` = Cijk` if the bases are related by a symmetry transformation, i.e. the components of

C in two bases related by a symmetry transformation are identical.

For an isotropic material, G contains all proper orthogonal transformations and therefore,

as in the finite deformation theory, we may conclude that W depends on the strain ε only

through its scalar invariants. It is convenient to choose the invariants

ii = tr ε, i2 = tr ε2, i3 = tr ε3.

Thus for an isotropic material we have W (i1, i2, i3). However according to (4.157) W is a

quadratic (polynomial) function of strain. Therefore it cannot depend on i3 and it must

depend linearly on i2 and i21:

W = µ i2 +
λ

2
i21 = µ tr(ε2) +

λ

2
(tr ε)2 = µεijεij +

λ

2
εiiεjj, (4.161)

where µ and λ are material parameters. (Caution: λ here is not the stretch.) It is illuminating

to write (4.161) in the form

W = µ ε · ε+
λ

2
(tr ε)2, (4.162)

which can be compared with the Saint-Venant Kirchhoff model (Problem 4.2) and the Hencky

model (Problem 4.9) both of which are used at finite strain.

It follows from (4.161) and (4.158)1 that the constitutive relation for stress is

σ = 2µ ε+ λ tr ε I, σij = 2µεij + λεkk δij, (4.163)

and from (4.158)2 that

Cijkl = µ(δikδj` + δi`δjk) + λδijδk`. (4.164)
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Observe that an isotropic elastic material is described by 2 elastic moduli. The two moduli

λ and µ are known as the Lamé constants. The more familiar material constants shear

modulus G, bulk modulus κ, Young’s modulus E and Poisson’s ratio ν can be expressed in

terms of λ and µ:

G = µ, κ = λ+
2

3
µ, E =

µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
. (4.165)

Remark: Linearization of the strain energy function W = W (I1(C), I2(C), I3(C)) of the

nonlinear theory shows, after a lengthy calculation, that the material parameters λ and µ

can be expressed as

µ = 2

(
∂W

∂I1

+
∂W

∂I2

) ∣∣∣
I1=I2=3,I3=1

,

λ = 4

(
∂W

∂I2

+
∂W

∂I3

+
∂2W

∂I2
1

+ 4
∂2W

∂I2
2

+
∂2W

∂I2
3

+ 4
∂2W

∂I1∂I2

+

+ 2
∂2W

∂I1∂I3

+ 4
∂2W

∂I2∂I3

) ∣∣∣
I1=I2=3,I3=1

.

Expressions for λ and µ in terms of the derivatives of W ∗(λ1, λ2, λ3) can be found in Problem

4.20.

For an incompressible material one has the constraint

tr ε = 0, εkk = 0, (4.166)

and a reactive stress −qI must be added to the expression for stress:

σij = Cijk`εk` − qδij.
If the material is isotropic, this reduces to

σ = 2µ ε− q I, σij = 2µεij − q δij. (4.167)

Note that (4.167) can be formally obtained from (4.163) by letting tr ε → 0 and λ → ∞
with λ tr ε held constant. Observe that taking this limit in the expression (4.161) for the

strain energy yields

W = µεijεij −
1

2
qεii

(4.166)
= µεijεij,

where in the first expression q plays the role of a Lagrange multiplier associated with the

constraint εii = 0.

Exercise: Problem 4.20.
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4.9 Exercises.

Response of an elastic material.

Problem 4.1. Carry out the calculations described in Problem 4.1.1 and show that T(B) must necessarily

have the form

T(B) = β2B
2 + β1B + β0I, (i)

where the βj ’s are functions of the principal scalar invariants of B. This restricted form of T(B) implies the

material is isotropic. (The result of Problem 1.38 will be useful.)

Solution: Suppose that T̂(F) = T(B) where B = FFT . Then, for any nonsingular F and proper orthogonal

Q we have

T̂(F) = T
(
FFT

)
= T(B), (ii)

T̂(QF) = T
(
(QF)(QF)T

)
= T

(
QFFTQT

)
= T(QBQT ). (iii)

Substituting (ii) and (iii) into the requirement (4.15)1 of frame indifference gives

T(QBQT ) = QT(B)QT . (iv)

Since (iv) must hold for all proper orthogonal Q and symmetric positive definite B, the desired result (i)

follows from Problem 1.38 (page 104).

Problem 4.2. (Based on Holzapfel) The Saint-Venant Kirchhoff model of an isotropic unconstrained ma-

terial is described by the strain energy function

W =
α

2
(tr E)2 + µ (E ·E) =

α

2
(tr E)2 + µ tr (E2), (i)

where E = 1
2 (C − I) is the Green Saint-Venant strain tensor and µ > 0 and α > 0 are material constants.

(The symbol λ is usually used for the parameter α, but since we use λ for stretch, we are using α instead.)

(a) Does this strain energy function W obey the growth conditions (4.124)? i.e. does W →∞ as J →∞
and J → 0+?

(b) Derive the constitutive law associated with (i) relating the Green Saint-Venant strain tensor E to

the second Piola-Kirchhoff stress tensor S(2). (Recall that S(2) is work-conjugate to the Green Saint-

Venant strain.)

(c) Consider a uniaxial deformation y = Fx where F = I + (λ − 1)e1 ⊗ e1. (c1) : Calculate the stress-

stretch relation between S11 and λ where S11 is the 1,1 component of the Piola stress tensor S; (c2) :

show that this relation loses monotonicity in compression at the stretch λ =
√

1/3; and (c3) that

S11 → 0 at extreme contraction λ→ 0+.
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(d) Show for the modified Saint-Venant Kirchhoff model

W =
κ

2
(ln J)2 + µ tr (E2), (ii)

where µ > 0 and κ are material constants, that S11 → −∞ as λ→ 0+ in a uniaxial deformation.

Solution:

(a) Consider a pure hydrostatic deformation y = Fx where F = λI. For this F, we have

E =
1

2
(FTF− I) =

1

2
(λ2 − 1)I, tr E =

3

2
(λ2 − 1), tr E2 =

3

4
(λ2 − 1)2. (iii)

and so from (iii) and (i),

W =
3

8
(3α+ 2µ)(λ2 − 1)2.

Thus

W →∞ when J = λ3 →∞, W → 3

8
(3α+ 2µ) when J = λ3 → 0+. �

Thus W does not tend to ∞ as J → 0+.

(b) In Section 3.8.1 we showed that the second Piola-Kirchhoff stress tensor S(2) is work conjugate to the

Green Saint-Venant strain tensor E(2) which for convenience we shall write as E. Therefore from (3.80) and

(4.5),

S(2) · Ė = Ẇ . (iv)

From material frame indifference we know that W = W (C). Since E = 1
2 (C − I) it follows that the strain

energy function can be expressed as a function of E : W = W (E). From this and (iv),(
S(2) − ∂W

∂E

)
· Ė = 0 ⇒ S(2) =

∂W

∂E
, (v)

where in getting to (v)2 we have used the fact that (v)1 holds for all Ė and the term within the parentheses

is independent of Ė. Since (as can be shown, e.g., using components in a basis),

∂

∂E

(
tr E

)2
= (2 tr E )I,

∂

∂E
tr (E2) = 2E, (vi)

it follows from (v)2 and (vi) that for the particular material (i),

S(2) = 2µE + α(tr E) I. � (vii)

(c) Since F = λe1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, we have

E =
1

2
(FTF− I) =

λ2 − 1

2
e1 ⊗ e1. (viii)

Therefore from (vii) and (viii),

S
(2)
11 =

1

2
(α+ 2µ)(λ2 − 1).

However we are asked to find the 1, 1 component of the Piola stress tensor S. Since S = FS(2) it is readily

shown that

S11 = λS
(2)
11 =

1

2
(α+ 2µ)(λ3 − λ). � (ix)
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By differentiating (ix),

dS11

dλ
< 0 for 0 < λ <

1√
3
,

dS11

dλ
= 0 for λ =

1√
3
,

dS11

dλ
> 0 for λ >

1√
3
. �

From (ix), S11 → 0 when λ→ 0+.

(d) We need to first calculate ∂J/∂E. Since E = 1
2 (C− I) and det C = J2,

∂J

∂E
= 2

∂J

∂C
=

∂

∂C
(J2) =

∂

∂C
(det C)

(1.208)
= (det C) C−T = J2 C−1. (x)

It follows that

S(2) (v)
=

∂W

∂E

(ii)
= κ

ln J

J

∂J

∂E
+ µ

∂

∂E
(tr E2)

(vi),(x)
= κJ ln J C−1 + 2µE. � (xi)

Therefore for a uniaxial deformation F = λe1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 this yields

S
(2)
11 = 2µE11 + κλ lnλC−1

11 = µ(λ2 − 1) + κ
lnλ

λ
.

Since S(2) is related to the Piola stress tensor by S = FS(2), it follows that S11 = λS
(2)
11 . Thus

S11 = λS
(2)
11 = µ(λ3 − λ) + κ lnλ

Since lnλ→ −∞ as λ→ 0+ it follows that S11 → −∞ as λ→ 0+.

Problem 4.3. Consider an unconstrained isotropic elastic material characterized by the strain energy func-

tion

W (E) = µE ·E +
α

2

(
tr E

)2
where E = ln U is the Hencky strain tensor, and µ and α are material constants. (This is identical to the

strain energy function in Problem 4.9.)

(a) Express the given strain energy function in terms of the principal stretches.

(b) Consider a hydrostatic deformation y = Fx, F = λI. Calculate the magnitude τ of the corresponding

hydrostatic stress T = τI. Plot τ versus J . Calculate the bulk modulus of this material at infinitesimal

deformations.

(c) Consider a uniaxial stress T = τ e1⊗e1 with corresponding homogeneous deformation y = Fx where

F = λ e1 ⊗ e1 + Λ(e2 ⊗ e2 + e3 ⊗ e3). Calculate Λ in terms of λ. Calculate and plot the relations

between τ and σ versus λ (where σ = S11). Determine the Young’s modulus and Poisson’s ratio of

the material at infinitesimal deformations.

(d) Calculate and plot the relation between the shear stress and the amount of shear in a simple shear

deformation.

Solution: The various conventions of indicial notation are suspended in this solution.
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(a) Since E =

3∑
i=1

lnλi(`i ⊗ `i), in a principal basis for E we have Eii = lnλi (no sum on i) and Eij = 0 for

i 6= j. Thus

E ·E = EijEij = E2
11 + E2

22 + E2
33 = (lnλ1)2 + (lnλ2)2 + (lnλ3)2,

tr E = E11 + E22 + E33 = lnλ1 + lnλ2 + lnλ3 = lnλ1λ2λ3,

and so the given strain energy function can be expressed as

W ∗(λ1, λ2, λ3) = µ
[
(lnλ1)2 + (lnλ2)2 + (lnλ3)2

]
+
α

2

[
ln(λ1λ2λ3)

]2
. � (i)

From (i) we obtain

σk =
∂W ∗

∂λk
=

2µ lnλk + α ln J

λk
, τk = σk

λk
J

=
2µ lnλk + α ln J

J
. (ii)

(b) In a hydrostatic deformation we have λ1 = λ2 = λ3 =: λ, J = λ3 and τ1 = τ2 = τ3 =: τ . Thus (ii)2 gives

τ =
2µ lnλ+ α ln J

J
=

2µ ln J1/3 + α ln J

J
=

(
2

3
µ+ α

)
ln J

J
= (2µ+ 3α)

lnλ

λ3
. � (iii)

In an infinitesimal deformation we have λ = 1 + ε where |ε| � 1. Thus J = (1 + ε)3 .
= 1 + 3ε and so (iii)

can be approximated as

τ
.
= (2µ+ 3α)

ln(1 + ε)

1 + 3ε

.
= (2µ+ 3α) ε.

Thus the bulk modulus at infinitesimal deformations is

κ :=
1
3 (τ1 + τ2 + τ3)

ε1 + ε2 + ε3
=

τ

3ε
=

2

3
µ+ α. �

Observe that we can now write (iii) as

τ = κ
ln J

J
. �

This has been plotted in Figure 4.7.

0.5 1.0 1.5 2.0

- 1.0

- 0.5

0.5

Hydrostatic deformation

Figure 4.7: Hydrostatic deformation: Stress τ/κ versus dilatation J .



4.9. EXERCISES. 405

(c) In uniaxial stress we have τ1 = τ, τ2 = τ3 = 0, λ1 = λ, λ2 = λ3 = Λ and J = λΛ2. We calculate τ2 from

(ii)2 and set it equal to zero:

τ2 =
2µ lnλ2 + α ln J

J
=

2µ ln Λ + α ln(λΛ2)

J
=

(2µ+ 2α) ln Λ + α lnλ

J
= 0

which gives

(2µ+ 2α) ln Λ + α lnλ = 0 ⇒ Λ2(µ+α)λα = 1 ⇒ Λ = λ−
α

2µ+2α �. (iv)

In an infinitesimal deformation we have λ = 1 + ε1, Λ = 1 + ε2, |ε1|, |ε2| � 1. Thus we can approximate (iv)

as

1 + ε2 = (1 + ε1)−
α

2µ+2α
.
= 1− α

2µ+ 2α
ε1 ⇒ ε2

ε1
= − α

2µ+ 2α
.

The Poisson’s ratio is thus

ν := −ε2

ε1
=

α

2µ+ 2α
. � (v)

We could also have derived (v) by differentiating (iv) and using:

ν := −dΛ

dλ

∣∣∣∣
λ=1

.

Observe because of (v) that (iv) can be written as

Λ = λ−ν .

Furthermore, in uniaxial stress we have J = λΛ2 = λ
µ

µ+α and so

ln J =
µ

µ+ α
lnλ.

We now calculate τ1 from (ii)2:

τ1 =
2µ lnλ1 + α ln J

J
=

2µ lnλ+ [αµ/(µ+ α)] lnλ

J
= µ

(
2µ+ 3α

µ+ α

)
lnλ

λ
µ

µ+α

. � (vi)

For an infinitesimal deformation we have lnλ = ln(1 + ε1)
.
= ε1 and so we can approximate (vi) as

τ1 = µ

(
2µ+ 3α

µ+ α

)
ln(1 + ε1)

(1 + ε1)
µ

µ+α

.
= µ

(
2µ+ 3α

µ+ α

)
ε1.

The Young’s modulus is therefore

E :=
τ1
ε1

= µ

(
2µ+ 3α

µ+ α

)
. �

We could alternatively derived this expression for E by differentiating (vi) and using:

E :=
dτ1
dλ

∣∣∣∣
λ=1

.

Observe that we can now write (vi) as

τ1 = E
lnλ

λ1−2ν
. �
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Uniaxial stress
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Figure 4.8: Uniaxial stress: Cauchy stress τ1/E and Piola stress σ1/E versus stretch λ. The curve for the

Cauchy stress has been drawn for ν = 0.45.

The corresponding Piola stress is

σ1 = τ1Λ2 = E
lnλ

λ
. �

(d) From Section 4.6.2, the relation between the shear stress τ and amount of shear k in simple shear (for

an isotropic unconstrained material) is

τ = w′(k) (vii)

where

w(k) := W ∗(λ1(k), λ2(k), λ3(k)). (viii)

The principal stretches in simple shear were found in Problem 2.5.2 to be

λ1(k) =

√
k2 + 4 + k

2
, λ2(k) =

√
k2 + 4− k

2
, λ3(k) = 1. (ix)

From (vii) and (viii) we obtain

τ =
∂W ∗

∂λ1

∂λ1

∂k
+
∂W ∗

∂λ2

∂λ2

∂k
+
∂W ∗

∂λ3

∂λ3

∂k
, (x)

and from (ix),
∂λ1

∂k
=

λ1√
k2 + 4

,
∂λ2

∂k
= − λ2√

k2 + 4
,

∂λ3

∂k
= 0. (xi)

Therefore (x) reduces to

τ =
1√

k2 + 4

[
λ1
∂W ∗

∂λ1
− λ2

∂W ∗

∂λ2

]
. (xii)

Now consider the particular material (i). Differentiating W ∗ with respect to λk gives

∂W ∗

∂λk
= 2µ

lnλk
λk

+ α
ln(λ1λ2λ3)

λk
, k = 1, 2, 3, (no sum on k), (xiii)

which simplifies in simple shear, since λ1λ2λ3 = 1, to

∂W ∗

∂λk
= 2µ

lnλk
λk

(no sum on k). (xiv)
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Therefore from (xii) and (xiv) we obtain the relation between the shear stress τ and the amount of shear k

in simple shear for the material (i):

τ =
2µ√
k2 + 4

ln(λ1/λ2) =
2µ√
k2 + 4

ln

[√
k2 + 4 + k√
k2 + 4− k

]
=

4µ√
k2 + 4

ln

[√
k2 + 4 + k

2

]
. � (xv)

This relation is plotted in Figure 4.9. For small amounts of shear, |k| � 1, equation (xv) approximates to

τ
.
= 2µ ln[1 + k/2]

.
= µk

and so the shear modulus at infinitesimal deformations is µ.
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0.8
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1.4

Figure 4.9: Shear stress versus the amount of shear for the material (i).

Problem 4.4. (Based on Chadwick) The constitutive relation for a certain class of foam rubbers has the

form

T =
1

J3

[[
f(J)− βI2

]
I + βI1B− βB2

]
(i)

where β is a constitutive parameter and f(J) is a constitutive function.

(a) A uniaxial stress experiment is carried out in order to determine the function f(J). Let λ be the

stretch in the direction of the applied stress. During the experiment λ and the transverse stretch Λ

are measured. A plot of Λ versus λ on a logarithmic scale is found to be a straight line with slope −ν
where ν is a positive constant. Deduce the form of the function f .

(b) Calculate the Cauchy stress - stretch relation in uniaxial stress and from it determine the Young’s

modulus of the material.

Solution:

(a) Suppose that the stress is applied in the x1-direction and that the deformation gradient tensor is

F = λe1 ⊗ e1 + Λ(e2 ⊗ e2 + e3 ⊗ e3). (ii)
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Then

J = det F = λΛ2. (iii)

Keep in mind that foam rubber is compressible and so we do not require J = 1. It follows from (ii) that

B = FFT = λ2e1 ⊗ e1 + Λ2(e2 ⊗ e2 + e3 ⊗ e3), (iv)

B2 = λ4e1 ⊗ e1 + Λ4(e2 ⊗ e2 + e3 ⊗ e3), (v)

I1 = tr B = λ2
1 + λ2

2 + λ2
3 = λ2 + 2Λ2, (vi)

I2 =
1

2

[
(tr B)2 − tr B2

]
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = 2λ2Λ2 + Λ4. (vii)

We can calculate the transverse stress T22 by substituting (iv), (v), (vi) and (vii) into the constitutive relation

(i). This leads to T22 = J−3
[
f(J)− βλ2Λ2

]
. Since we have a state of uniaxial stress in the x1-direction, T22

must vanish:

T22 =
1

J3

[
f(J)− βλ2Λ2

]
= 0 ⇒ f(J) = βλ2Λ2. (viii)

While this gives f(J) in a state of uniaxial stress, in order to obtain f(J) in a form that can be used in

all experiments, we have to express the right hand side of (viii) in terms of J alone. We are told that the

experiments give ln Λ = −ν lnλ+ ln c, or equivalently Λ = cλ−ν . In the undeformed configuration we have

λ = Λ = 1 which implies that c = 1. Thus

Λ = λ−ν . (ix)

We now solve (iii) and (ix) for λ and Λ in terms of J . This leads to

λ = J1/(1−2ν), Λ = J−ν/(1−2ν). (x)

Substituting (x) into (viii) gives

f(J) = βJ
2(1−ν)
1−2ν . � (xi)

(b) Substituting (iv), (v), (vi) and (vii) into the constitutive relation (i) and calculating the axial stress T11

gives

T11 =
1

J3

[
f(J)− βΛ4

] (x),(xi)
=

1

λ3(1−2ν)

[
βλ2−2ν − βλ−4ν

]
= β

[
λ−1+4ν − λ−3+2ν

]
. � (xii)

The Young’s modulus is defined as

E :=
d

dλ
T11

∣∣∣∣
λ=1

= β
[
(−1 + 4ν)λ−2+4ν − (−3 + 2ν)λ−4+2ν

]
λ=1

= β
[
(−1 + 4ν)− (−3 + 2ν)

]
= 2(1 + ν)β. �

Alternatively, define the normal strain ε by λ = 1 + ε so that (xii) gives

T11 = β
[
(1 + ε)−1+4ν − (1 + ε)−3+2ν

]
.

Approximating this for small ε using (1 + ε)n = 1 + nε . . . leads to

T11 = β
[
(1 + (−1 + 4ν)ε)− (1 + (−3 + 2ν)ε) + . . .

]
≈ 2(1 + ν)βε.

The Young’s modulus is the coefficient of ε:

E = 2(1 + ν)β. �
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Problem 4.5. (Spencer) Consider a body composed of a neo-Hookean material. In a reference configuration

it occupies the unit cube 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1 and undergoes the deformation

y1 = λx1 + kx2, y2 = λ−1x2, y3 = x3. (o)

(a) Sketch the region occupied by the body in the deformed configuration noting the lengths of the edges.

(b) Calculate the components of the Cauchy and Piola stress tensors.

(c) Suppose the faces x3 = 0 and x3 = 1 are known to be traction-free. Simplify your answer to part (b).

(d) Calculate the force that must be applied to the face (that in the reference configuration corresponded

to) x2 = 1.

(e) Determine the (true) Cauchy traction that must be applied on the face (that in the reference config-

uration corresponded to) x1 = 1.

Solution:

(a) We see from (o) that particles do not displace in the x3-direction. Moreover, the u1 and u2 displacement

components do not depend on x3. Thus this deformation is planar (in the x1, x2-plane) meaning every

section x3 = constant deforms identically and in-plane. Thus, in sketching the body we can simply look at

the x1, x2-plane. Consider the four points O,A,B and C. In the reference configuration they have coordinates

(x1, x2, x3) = (0, 0, 0), (1, 0, 0), (1, 1, 0) and (0, 1, 0). Substituting this into (o) gives the coordinates of the

points O′, A′, B′ and C ′ in the deformed configuration (y1, y2, y3) = (0, 0, 0), (λ, 0, 0), (λ + k, λ−1, 0) and

(k, λ−1, 0). Figure 4.10 shows a view of R and R∗ looking down the x3-axis.

Figure 4.10: Side view of cube that has been biaxially stretched and sheared.

The lengths of the edges are

|OA′| = |B′C ′| = λ, |A′B′| = |C ′O| =
√
k2 + λ−2 (i)
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(b) Differentiating (o) gives the components Fij = ∂yi/∂xj of the deformation gradient tensor. The compo-

nents of the left Cauchy-Green tensor can then be calculated from [B] = [F ][F ]T :

[F ] =


λ k 0

0 λ−1 0

0 0 1

 , [B] = [F ][F ]T =


λ2 + k2 kλ−1 0

kλ−1 λ−2 0

0 0 1

 , (ii)

Note that

J = det F = 1, (iii)

so that the incompressibility of the material places no restrictions on the parameters λ and k.

The components of the Cauchy stress tensor are given by the neo-Hookean constitutive relation T =

−pI + µB:

[T ] =


−p+ µ(λ2 + k2) µkλ−1 0

µkλ−1 −p+ µλ−2 0

0 0 −p+ µ

 . (iv)

The corresponding components of the Piola stress tensor can be found from S = JTF−T after noting that

[F ]−1 =


λ−1 −k 0

0 λ 0

0 0 1

 , (v)

[S] = J [T ][F ]−T =


λ−1T11 − kT12 λT12 0

λ−1T12 − kT22 λT22 0

0 0 T33

 , (vi)

where the Tij ’s are given in (iv).

(c) The traction components on the plane x3 = 1 are T13, T23 and T33. The first two vanish automatically.

The requirement T33 = 0 implies using (iv) that p = µ. Using this in (iv) leads to

[T ] =


µ(λ2 + k2 − 1) µkλ−1 0

µkλ−1 µ(λ−2 − 1) 0

0 0 0

 . (vii)

Substituting (vii) into (vi)

[S] =


µ(λ− λ−1) µk 0

µk µ(λ−1 − λ) 0

0 0 0

 . (viii)
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(d) On the surface x2 = 1 (whose edge is BC in the figure)

no1 = 0, no2 = 1, no3 = 0,

and so from s = Sn0

s1 = S12 = µk, s2 = S22 = µ(λ−1 − λ), s3 = S32 = 0.

Thus the force can be calculated from force = s ·Ax where for this surface Ax = 1. Thus

force = µk e1 + µ(λ−1 − λ) e2.

Alternatively consider the current configuration. On surface y1 = λ−1 (whose edge is B′C ′ in the figure)

n1 = 0, n2 = 1, n3 = 0,

and so from t = Tn

t1 = T12 = µkλ−1, t2 = T22 = µ(λ−2 − 1), t3 = T32 = 0.

Thus the force can be calculated from force = t ·Ay where for this surface Ay = λ. This leads to (of course

the same result

force = µke1 + µ(λ−1 − λ)e2.

(e) Finally consider the surface x1 = 1 (whose edge is AB in the figure) on which

no1 = 1, no2 = 0, no3 = 0.

From s = Sn0 we get

s1 = S11 = µ(λ− λ−1), s2 = S21 = µk, s3 = S31 = 0.

The (true) Cauchy traction t and the Piola traction s are related by t.Ay = s.Ax, where for the surface

under consideration here, Ax = 1 and Ay =
√
k2 + λ−2. Thus

t =
Ax
Ay

s =
1√

k2 + λ−2

[
µ(λ− λ−1)e1 + µke2

]
.

Alternatively one can calculate t using t = Tn where n is the outward unit normal to the deformed image

of x1 = 1 (whose edge is A′B′ in the figure).

Problem 4.6. (Ball) Consider an incompressible isotropic elastic material characterized by the strain

energy function

W = α(λ2
1 + λ2

2 + λ2
3 − 3) + β(λ−1

1 + λ−1
2 + λ−1

3 − 3), (i)

where α and β are material constants.

(a) What restrictions (if any) do the Baker-Ericksen inequalities (4.106) impose on α and β?
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(b) Assume that the restrictions determined in (a) hold. Consider a state of uniaxial stress in the x3-

direction. Show that the graph of the Piola stress S33 versus λ3 is not everywhere increasing if

β2 > 64α(2α+ β). (ii)

(This is related to the phenomenon of necking, in which a material can have an instability in tension

leading to a greater extension and thinner deformed cross-section.)

Solution:

(a) The principal Cauchy stress components associated with (i) are given by

T1
(4.67)

= λ1W1 − q
(i)
= (2αλ2

1 − βλ−1
1 )− q,

T2
(4.67)

= λ2W2 − q
(i)
= (2αλ2

2 − βλ−1
2 )− q,

T3
(4.67)

= λ3W3 − q
(i)
= (2αλ2

3 − βλ−1
3 )− q.


(iii)

Therefore

T1 − T2 = 2α(λ2
1 − λ2

2)− β(λ−1
1 − λ−1

2 ) =
[
2α(λ1 + λ2) + βλ−1

1 λ−1
2

]
(λ1 − λ2),

and (when λ1 6= λ2),
T1 − T2

λ1 − λ2
=
[
2α(λ1 + λ2) + βλ−1

1 λ−1
2

]
.

The Baker-Ericksen inequalities requires this to be positive:

2α(λ1 + λ2) + βλ−1
1 λ−1

2 > 0. (iva)

This must hold for all λ1 and λ2. For it to hold when λ1λ2 → 0 one must have β > 0, and when λ1 → ∞
we need α > 0. Thus it is necessary that

α > 0, β > 0. (ivb)

Conversely, when (ivb) holds, it is seen immediately that (iva) holds (since the principal stretches are

positive). Thus the inequalities (ivb) are necessary and sufficient for the Baker-Ericksen inequalities to hold.

(b). We now consider a state of uniaxial stress in the x3-direction. Assume λ1 = λ2 so that by incompress-

ibility

λ1λ2λ3 = 1 ⇒ λ1 = λ2 = λ
−1/2
3 . (v)

By setting T1 = 0 we find the reaction pressure q and then use that value of q to calculate T3. From (iii),

T1 = λ1W1 − q = (2αλ2
1 − βλ−1

1 )− q (v)
= (2αλ−1

3 − βλ
1/2
3 )− q = 0 ⇒ q = 2αλ−1

3 − βλ
1/2
3 ,

and so

T3 = λ3W3 − q = (2αλ2
3 − βλ−1

3 )− q = (2αλ2
3 − βλ−1

3 )− 2αλ−1
3 + βλ

1/2
3 .

The corresponding Piola stress tensor component S33 = S3 is related to T3 by S3 = T3λ1λ2 (how?) and so

S3 = T3λ1λ2 = T3λ
−1
3 = 2αλ3 − (2α+ β)λ−2

3 + βλ
−1/2
3 . (vi)
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The slope of the λ3, S3-curve is

dS3

dλ3
= 2α+ 2(2α+ β)λ−3

3 −
1

2
βλ
−3/2
3 . (vii)

Observe from (vii) and (iv) that

dS3

dλ3
(1) = 6α+

3

2
β > 0,

dS3

dλ3
→ 2α > 0 as λ3 →∞,

dS3

dλ3
→ 2(2α+ β) > 0 as λ3 → 0

We can write (vii) as
dS3

dλ3
= 2(2α+ β)ξ2 − 1

2
βξ + 2α

having set ξ = λ
−3/2
3 . If dS3/dλ3 = 0 at some λ3 then

2(2α+ β)ξ2 − 1

2
βξ + 2α = 0. (viii)

For there to be a real value of ξ at which (viii) holds the discriminant of this quadratic equation must be

positive: (
1

2
β

)2

− 4(2α+ β)(2α) > 0 ⇒ β2 > 64α(2α+ β). (ix)

For this root to correspond to a real value of the stretch, this root must be positive. Keeping (iv) in mind,

the coefficients of ξ2 and ξ0 in the quadratic equation (viii) are positive, while the coefficient of ξ is negative.

This guarantees that (both real) roots of (viii) are positive (when (ix) holds).

Problem 4.7. For a particular isotropic, incompressible, elastic material, the stress-stretch relation (for the

Cauchy stress) in uniaxial stress is

τ = µ(λ2 − λ−1), (i)

where µ > 0 is a material parameter. Note that τ → −∞ when λ→ 0+ and τ →∞ when λ→∞.

Determine two strain energy functions W (I1, I2) that yield this same stress-stretch relation in uniaxial stress.

For each W , calculate and plot the corresponding relation between the shear stress and amount of shear in

simple shear.

Solution: In uniaxial stress we set λ1 = λ, λ2 = λ3 = λ−1/2 to get

τ1 = τ = λ1
∂W ∗

∂λ1

∣∣∣∣
λ1=λ,λ2=λ3=λ−1/2

− q, τ2 = 0 = λ2
∂W ∗

∂λ2

∣∣∣∣
λ1=λ,λ2=λ3=λ−1/2

− q, (ii)

which by eliminating q gives

τ =

(
λ1
∂W ∗

∂λ1
− λ2

∂W ∗

∂λ2

)∣∣∣∣
λ1=λ,λ2=λ3=λ−1/2

. (iii)

On setting

w(λ) := W ∗(λ1, λ2, λ3)
∣∣∣
λ1=λ,λ2=λ3=λ−1/2

(iv)
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we can write (iii) as

τ = λw′(λ) (v)

which together with (i) gives

λw′(λ) = µ(λ2 − λ−1). (vi)

Integrating and taking w(1) = 0 yields

w(λ) =
µ

2
(λ2 + 2λ−1 − 3). (vii)

Therefore from (iv) and (vii),

W ∗(λ1, λ2, λ3)
∣∣∣
λ1=λ,λ2=λ3=λ−1/2

=
µ

2
(λ2 + 2λ−1 − 3). (viii)

Since

I1 = λ2 + 2λ−1, I2 = 2λ+ λ−2, (ix)

we can write (viii) equivalently as

W̃ (I1, I2)
∣∣∣
I1=λ2+2λ−1, I2=2λ+λ−2

=
µ

2
(λ2 + 2λ−1 − 3). (x)

We see immediately from (ix) and (x) that

W̃ (I1, I2) =
µ

2
(I1 − 3) (xi)

is consistent with the given information.

To determine additional forms of W , we aim to add a term to (xi) that vanishes identically in isochoric

uniaxial tension but not in general. To this end we eliminate λ from (ix) to get

18I1I2 + I2
1I

2
2 − 4I3

1 − 4I3
2 − 27 = 0.

I obtained this using MATHEMATICA. (This relation between the invariants holds in isochoric uniaxial

tension but not in general.) Therefore a second (family) of strain energy functions consistent with the given

information is

W̃ (I1, I2) =
µ

2
(I1 − 3) + f(18I1I2 + I2

1I
2
2 − 4I3

1 − 4I3
2 − 27) �

for a function f with f(0) = 0; f is arbitrary other than for the restrictions demanded by Section 4.6.3.

In simple shear,

I1 = I2 = 3 + k2

and so

w(k) := W ∗(I1, I2)
∣∣∣
I1=I2=3+k2

=
µ

2
k2 + f

(
(4 + k2)k6

)
and so the relation between the shear stress τ12 and the amount of shear k is

τ12 = w ′(k) = µk + 8k5(k2 + 3)f ′
(
(4 + k2)k6

)
. �

Figure 4.11 shows plots of the response in simple shear for material (xi), and material (xii) with f(I) = µI.
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Figure 4.11: Response in simple shear. Black: τ12 = µk (material (xi)). Blue: τ12 = µk + 8µk5(k2 + 3)

(case f(I) = µI of material (xii)).

Problem 4.8. Can you construct an explicit example of a strain energy function for an isotropic uncon-

strained material that has a Poisson’s ratio (at infinitesimal deformations) equal to 1/2 even though the

material is compressible at finite deformations? Ensure that the energy and stress in the reference configu-

ration vanish; that the Baker-Ericksen inequalities hold; that W → ∞ when J → 0+ and J → ∞; and the

Legendre Hadamard condition (page 384) at F = I holds. If you are able to construct such a W , determine

and sketch a graph of the associated pressure-volume relation in pure dilatation.

Problem 4.9. (Based on Anand [1]) Consider an unconstrained isotropic elastic material characterized by

the strain energy function

W (E) = µE ·E +
α

2

(
tr E

)2
(i)

where

E = ln U (ii)

is the Hencky (logarithmic) strain tensor, and µ and α are material constants.

(a) Show that this is identical to the strain energy function (i) in Problem 4.3.

(b) Under what conditions does this material satisfy the Baker-Ericksen inequalities?

(c) Determine the linearized form of W at infinitesimal deformations and thus interpret µ and α.

(d) Calculate and sketch the relation between τ1 and λ1 in a uniaxial deformation λ2 = λ3 = 1.

(e) Consider a so-called pure shear deformation λ1 = λ, λ2 = λ−1, λ3 = 1. Calculate and sketch the

relation between τ1 and λ.

(f) Does this strain energy function W satisfy the convexity condition (4.111)? Is it strongly elliptic?
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Some general considerations.

Problem 4.10. Show that an elastic material is isotropic if and only if

TB = BT (i)

where T is the Cauchy stress tensor and B is the left Cauchy-Green deformation tensor.

Problem 4.11. If an elastic material is isotropic, show that

STR = RTS, (i)

and hence that the Biot stress tensor can be written (in this case) as

S(1) = STR. (ii)

Solution: Recall that the Piola stress tensor S and the Cauchy stress tensor T are related by

T =
1

J
SFT =

1

J
FST . (iii)

If the material is isotropic, T and V are coaxial (see remark above (4.41)), and so by Problem 1.22,

TV = VT. (iv)

Substituting (iii) into (iv) and using the polar decomposition F = VR gives

FSTV = VSFT ⇒ VRSTV = VSRTV ⇒ RST = SRT .

Multiplying this by RT from the front and by R from the back and using RRT = RTR = I leads to the

desired result:

STR = RTS. �

The general definition of the Biot stress tensor is

S(1) =
1

2
(STR + RTS).

So when (i) holds, (ii) follows immediately.

Problem 4.12. (Cauchy elasticity) See Problem 4.13 for an important observation. An elastic material that

is not hyperelastic is called a Cauchy elastic material. One cannot associate a strain energy function W (F)

with a Cauchy elastic material. The Cauchy stress in such a material is related to the deformation through

T = T̂(F), (i)
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where the stress response function T̂ is defined for all tensors with positive determinant. Explain why

material frame indifference requires

T̂(QF) = QT̂(F)QT , (ii)

for all proper orthogonal tensors Q and all tensors F with positive determinant. Explain also why the

material symmetry group G for such a material is defined to be the set of all proper orthogonal tensors Q

for which

T̂(F) = T̂(FQ), Q ∈ G, (iii)

for all tensors F with positive determinant .

(a) Show that (ii) holds if and only if

T̂(F) = RT̂(U)RT . (v)

(b) Assume that (ii) holds. Show that (iii) holds for a particular Q ∈ G if and only if

T̂(QFQT ) = QT̂(F)QT , (iv)

for all tensors F with positive determinant.

(c) Show that a material is isotropic if and only if

T̂(QVQT ) = QT̂(V)QT , (vi)

for all proper orthogonal tensors Q.

(d) If the material is isotropic show that

T̂(V)V = VT̂(V). (vii)

Solution:

(d) Let λ and ` be an eigenvalue and normalized eigenvector of V:

V` = λ`.

Pick Q to be the rotation through an angle π about the axis `. Then from Problem 1.11,

Q = 2`⊗ `− I, Q` = `.

One can readily verify for this Q that

QVQT = V,

and therefore from (vi) that

T̂(V) = QT̂(V)QT ⇒ T̂(V)Q = QT̂(V).

Consequently

QT̂(V)` = T̂(V)Q` = T̂(V)`
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and therefore T̂(V)` is an eigenvector of Q. But Q is a rotation and therefore it has only one eigenvector

and it is its axis of rotation ` (see Problem 1.57). Thus T̂(V)` has to be parallel to `:

T̂(V)` = τ`

for some scalar τ . This shows that ` is an eigenvector of T̂(V). Thus all three eigenvectors of V are

eigenvectors of T̂(V) and so T̂(V) and V are coaxial. Therefore by Problem 1.22,

T̂(V)V = VT̂(V).

Problem 4.13. (Cauchy elasticity) For a Cauchy elastic material, the stress response function T(F) is

not derivable from a strain energy function W (F). This is in contrast to a Green elastic (or hyperelastic)

material where it is. The present example, taken from Carroll23, concerns a particular Cauchy elastic material

undergoing a particular loading cycle. You are asked to demonstrate that the total work done in this cycle is

negative even though it is closed, i.e. despite the initial and final configurations of the body being the same.

Therefore the material is a source of energy and can be used to construct a perpetual motion machine! This

casts a shadow on Cauchy elastic materials (unless they are in fact Green elastic).

Consider a body that occupies a unit cube in a reference configuration with its edges parallel to the

basis vectors {e1, e2, e3}. It undergoes a (quasi-static), spatially homogeneous, motion of the following plane

strain, biaxial form:

y1 = λ1(t)x1, y2 = λ2(t)x2, y3 = x3, (i)

over some time interval. According to (4.19)2, frame indifference requires the constitutive relation to have

the form

S = R Ŝ(U). (ii)

and the material is isotropic when Ŝ(QUQT ) = QŜ(U)QT for all rotations Q. Here we consider the

particular isotropic material

Ŝ(U) = 2µ ln U + β [tr (ln U)] I, µ > 0, β > 0, (iii)

ln U being the Lagrangian logarithmic (Hencky) strain and µ and β material constants. One can show that

it obeys the Baker-Ericksen inequalities for stretches λi ≥ 1.

Suppose that the body undergoes the particular quasi-static loading history depicted on the λ1, λ2-plane

in Figure 4.12. It is comprised of 4 stages, and the body returns eventually to its original undeformed

configuration λ1 = λ2 = λ3 = 1.

Stage I: λ1(t) increases from 1 to a (> 1) while λ2 remains constant at λ2(t) = 1.

Stage II: λ2(t) increases from 1 to b (> 1) while λ1 remains constant at λ1(t) = a.

Stage III: λ1(t) decreases from a (> 1) to 1 while λ2 remains constant at λ2(t) = b.

Stage IV: λ2(t) decreases from b (> 1) to 1 while λ1 remains constant at λ1(t) = 1.

The deformed shape of the body, at the beginning and end of each loading stage, is depicted in Figure 4.13.

23M. M. Carroll, Must elastic materials be hyperelastic?, Mathematics and Mechanics of Solids, Volume

14, 2009, pp. 369–376.
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Figure 4.12: Plane strain (λ3 = 1) loading path in the λ1, λ2-plane, starting and ending at (λ1, λ2) = (1, 1).
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Figure 4.13: Deformed shape of the body (in the e1, e2-plane) at the beginning and end of each loading

step.

Calculate the total work done in this cyclic loading. If b > a show that this work is negative!

Solution: For a deformation

y1 = λ1(t)x1, y2 = λ2(t)x2, y3 = λ3(t)x3,

we have

F = U =

3∑
i=1

λiei ⊗ ei, R = I, (iv)

and so

ln U =

3∑
i=1

ln(λi)ei ⊗ ei.

Therefore the constitutive relation (ii), (iii) yields

S =

3∑
i=1

σi(λ1, λ2, λ3)ei ⊗ ei where σi(λ1, λ2, λ3) = 2µ ln(λi) + β ln(λ1λ2λ3). (v)
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The principal Cauchy stresses are τi = σiλi/J and the Baker-Ericksen inequalities

(τ1 − τ2)/(λ1 − λ2) > 0 for λ1 6= λ2.

can be shown to hold for λi ≥ 1 (exercise).

From (iv) and (v)1 the stress power is

S · Ḟ =

3∑
i=1

σi(λ1, λ2, λ3)λ̇i. (vi)

The total rate of working in general would be the volume integral of S · Ḟ over the body in the reference

configuration, and the work would be the time integral of this. In our present case, since all fields are uniform

over the body and the volume of the body in the reference configuration is unity, the total work done during

some time interval [t1, t2] is simply the time integral of S · Ḟ:

Wt1→t2 =

∫ t2

t1

S · Ḟ dt =

∫ t2

t1

[
3∑
i=1

σi(λ1, λ2, λ3) λ̇i

]
dt. (vii)

For the plane strain deformation (i) with λ3 = 1 we can write (v)2 as

σ1 = α lnλ1 + β lnλ2, σ2 = α lnλ2 + β lnλ1, σ3 = β lnλ1λ2,

where

α = 2µ+ β > 0.

We now calculate the work done during each stage:

Stage I: λ1(t) increases from 1 to a, λ2(t) = 1:

WI =

∫ a

1

σ1(λ1, 1)dλ1 =

∫ a

1

αλ1 dλ1 = α(a ln a− a+ 1).

Stage II: λ2(t) increases from 1 to b, λ1(t) = a:

WII =

∫ b

1

σ2(a, λ2)dλ2 =

∫ b

1

[
αλ2 + β ln a

]
dλ2 = α(b ln b− b+ 1) + β(b− 1) ln a.

Stage III: λ1(t) decreases from a to 1, λ2(t) = b:

WIII =

∫ 1

a

σ1(λ1, b)dλ1 =

∫ 1

a

[
αλ1 + β ln b

]
dλ1 = α(−a ln a+ a− 1) + β(1− a) ln b.

Stage IV: λ2(t) decreases from b to 1, λ1(t) = 1:

WIV =

∫ 1

b

σ2(1, λ2)dλ2 =

∫ 1

b

αλ2 dλ2 = α(−b ln b+ b− 1).

Therefore the total work done over the loading cycle is

Wtotal = WI +WII +WIII +WIV = β
[
(b− 1) ln a− (a− 1) ln b

]
.
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Observe (since lnx/(x− 1) is monotonically decreasing for x > 1) that

Wtotal < 0 for b > a,

(and Wtotal > 0 for a > b).

Remark: If one is given the strain energy function W (λ1, λ2, λ3), to find the Piola stress components σi one

simply differentiates W : σi = ∂W/∂λi. On the other hand if one is given the three functions σi(λ1, λ2, λ3),

in order to find the associated strain energy function W (if one exists), one must integrate

∂W

∂λ1
= σ1(λ1, λ2, λ3),

∂W

∂λ2
= σ2(λ1, λ2, λ3),

∂W

∂λ3
= σ3(λ1, λ2, λ3).

This is a set of 3 equations for the 1 unknown W and so it is, in general, an overdetermined system of

equations. It can be solved only if the σi(λ1, λ2, λ3)s satisfy certain consistency (compatibility) conditions.

A necessary condition for the solvability of the preceding set of equations can be obtained by eliminating W

from them. This can be achieved by first calculating

∂σj
∂λi

=
∂

∂λi

(
∂W

∂λj

)
=

∂2W

∂λi∂λj
,

∂σi
∂λj

=
∂

∂λj

(
∂W

∂λi

)
=

∂2W

∂λj∂λi
,

which yields the necessary conditions
∂σi
∂λj

=
∂σj
∂λi

.

It is easy to verify that (v) does not satisfy these conditions and so there is no strain energy function W

associated with this material. It is Cauchy elastic and not Green elastic.

Problem 4.14. For an isotropic material one can express the Cauchy stress tensor T as

T =

3∑
i=1

τi`i ⊗ `i, (i)

where τ1, τ2, τ3 are the principal Cauchy stresses and `1, `2, `3 are the principal directions of both T and the

Eulerian stretch tensor V. Show that the Piola stress tensor S and the Biot stress tensor S(1) (defined in

(3.82)) can be written in the respective forms

S =

3∑
i=1

Jτi
λi
`i ⊗ ri, S(1) =

3∑
i=1

Jτi
λi

ri ⊗ ri. (4.168)

Observe that this, together with (4.48), yields (4.49) and (4.50).

Solution: The summation convention is suspended in this solution. From (2.56),

F =

3∑
i=1

λi`i ⊗ ri, R =

3∑
i=1

`i ⊗ ri, (ii)

and therefore

F−1 =

3∑
i=1

(1/λi) ri ⊗ `i and F−T =

3∑
i=1

(1/λi) `i ⊗ ri. (iii)
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From (i), (iii)2 and S = JTF−T

S = J

(
3∑
i=1

τi`i ⊗ `i
) 3∑

j=1

(1/λj) `j ⊗ rj

 =

3∑
i=1

3∑
j=1

(Jτi/λj)(`i ⊗ `i)( `j ⊗ rj) =

=

3∑
i=1

3∑
j=1

(Jτi/λj)(`i · `j)(`i ⊗ rj) =

3∑
i=1

3∑
j=1

(Jτi/λj)δij(`i ⊗ rj) =

=

3∑
i=1

(Jτi/λi)(`i ⊗ ri), � (iv)

where in the last step we used the substitution rule. This establishes (4.168)1.

Likewise from (ii)2, and (iv),

STR =

(
3∑
i=1

(Jτi/λi)(ri ⊗ `i)
) 3∑

j=1

`j ⊗ rj

 =

3∑
i=1

(Jτi/λi)(ri ⊗ ri), (v)

and

RTS =

 3∑
j=1

rj ⊗ `j

( 3∑
i=1

(Jτi/λi)(`i ⊗ ri)

)
=

3∑
i=1

(Jτi/λi)(ri ⊗ ri), (vi)

and so the Biot stress tensor (for an isotropic material) can be expressed as

S(1) =
1

2
(STR + RTS)

(v),(vi)
= STR =

3∑
i=1

(Jτi/λi)(ri ⊗ ri). �

This establishes (4.168)2.

Note from (v) and (vi) that STR = RTS (for an isotropic material) which is the result of Problem 4.11.

Problem 4.15. (Biot stress) It was shown in Problem 3.32 that the Biot stress

S(1) =
1

2

(
STR + RTS

)
, (4.169)

is work conjugate to the Lagrangian stretch tensor U:

S(1) · U̇ = S · Ḟ. (4.170)

(a) Show that S(1) obeys the constitutive relation

S(1) =
∂Ŵ

∂U
(U). (4.171)

(b) For an isotropic elastic material show that the principal components of the Biot stress obey

S
(1)
k =

∂W ∗

∂λk
(λ1, λ2, λ3), k = 1, 2, 3, (4.172)

with associated principal directions r1, r2, r3 (the eigenvectors of U), and therefore that

S(1) =

3∑
k=1

∂W ∗

∂λk
rk ⊗ rk. (4.173)
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(c) When the material is subjected to the constitutive constraint φ(U) = 0, show that

S(1) = Ŝ(1)(U)− q ∂φ
∂U

(4.174)

(d) For an incompressible isotropic material show that the principal components of the Biot stresses are

S
(1)
k =

∂W ∗

∂λk
− qλ−1

k , k = 1, 2, 3. (4.175)

Solution:

(a) From (4.19), material frame difference requires Ŝ(F) = RŜ(U). Substituting this into the expression

(4.169) for the Biot stress gives

Ŝ(1) (4.19)
=

1

2

(
ŜT (U)RTR + RTRŜ(U)

)
=

1

2

(
ŜT (U) + Ŝ(U)

)
,

and so Ŝ(1) is only a function of U:

S(1) = S(1)(U). (i)

Since the stress S(1) is work conjugate to the strain U− I we have S(1) · U̇ = Ẇ . Moreover, by material

frame indifference W = W (U). Therefore

S(1) · U̇ = Ẇ =
∂W

∂U
· U̇ ⇒

(
S(1)(U)− ∂W

∂U
(U)

)
· U̇ = 0. (ii)

Since this must hold for all U̇ and the terms inside the parenthesis are independent of U̇, they must vanish.

This yields (4.171).

(b) For an isotropic material we see from (4.168) (page 421) that the principal directions of the Biot stress

are r1, r2, r3 and the principal stresses are

S
(1)
k =

Jτk
λk

(4.48)
=

∂W ∗

∂λk
. (iii)

This establishes (4.172) and (4.173).

(c) Now consider a frame independent constraint described by φ(U) = 0 (see (4.62)). This implies that

∂φ/∂U · U̇ = 0. We assume the stress to be expressible as S(1) = S(1)(U) + N where N is the part of the

stress that is not determined by the deformation and arises in reaction to the constraint. We assume the

part N is workless which, since the stress power is given by S(1) · U̇, requires N · U̇ = 0. Therefore we need

N · U̇ = 0 for all U̇ such that
∂φ

∂U
· U̇ = 0,

which by the same argument as in Section 4.5 implies that N is a scalar multiple of ∂φ/∂U. This leads to

(4.174).

(d) For an incompressible material the reaction stress to be added to the Piola stress tensor is −qF−T it

follows by substituting this into (4.169) that the reaction stress to be added to the Biot stress is

=
1

2

((
− qF−T

)T
R + RT

(
− qF−T

))
= −q

2

((
RU−1

)T
R + RT

(
RU−1

))
= −qU−1.
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Therefore from this and (4.171),

S(1) =
∂W

∂U
− qU−1.

When the material is isotropic we can write this using (4.173) as

S(1) =

3∑
k=1

∂W ∗

∂λk
rk ⊗ rk − q

3∑
k=1

λ−1
k rk ⊗ rk (4.176)

which yields (4.172).

Problem 4.16. In Problem 2.44 we decomposed the deformation gradient tensor multiplicatively into the

product of the hydrostatic tensor J1/3I that described the volume change, and a second tensor F that

characterized the shape change:

F = J−1/3F, J = det F. (i)

In this problem you are to decompose the constitutive relation for the Cauchy stress into a part due to the

volume change and a part due to the shape change.

The modified left Cauchy-Green tensor B associated with F, and its scalar invariants I1, I2 and I3, were

shown in Problem 2.44 to obey

B = J−2/3B, I1 = J−2/3I1, I2 = J−4/3I2, I3 = 1. (ii)

Here I1, I2 and I3 = J2 are the principal scalar invariants of B. Show that there is a one-to-one relation

between {I1, I2, J} and {I1, I2, J} and therefore that the strain energy function for an unconstrained isotropic

elastic material can be written as

W =W(I1, I2, J). (iii)

Note that F,B, I1 and I2 are associated with the shape change. Show that the constitutive relation for the

Cauchy stress can be expressed as

T =
2

J

[
−1

3

(
I1W1 + 2I2W2

)
I +

(
W1 + I1W2

)
B−W2B

2
]

+
∂W
∂J

I (iv)

where we have written

Wα :=
∂W
∂Iα

, α = 1, 2.

IfW is separable into a part that depends on I1, I2 only plus a part that depends on J only, i.e. W(I1, I2, J) =

f(I1, I2) + g(J), then (iv) provides an additive decomposition of the constitutive relation for T into a part

determined by F and a part determined by J .

Problem 4.17. (Ericksen’s theorem24 on universal deformations for an unconstrained material. The situ-

ation for incompressible materials is rather different; see Problem 4.18 for an example.) In the absence of

24J.L. Ericksen, Deformations possible in every compressible, isotropic, perfectly elastic material. Journal

of Mathematics and Physics, 34 (1955) 126–128.
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body forces, a deformation y(x) obeys the equilibrium equations

∂

∂xj

(
∂W

∂Fij
(F(x)

)
= 0 for all x ∈ RR (i)

where F(x) = ∇y(x). Suppose that a particular deformation y(x) is possible in every homogeneous, isotropic,

unconstrained material (in the absence of body forces). Such a deformation y(x) obeys (i) for every choice of

W and is called a universal deformation. Show that it is necessary and sufficient that a universal deformation

be a homogeneous deformation.

Remark: Suppose one plans to perform experiments on a body in order to determine its constitutive relation,

and suppose that these tests involve subjecting the body to certain deformations. Since we don’t know W

a priori, it is possible that the material at hand cannot in fact sustain the deformations to be applied. This

theorem says that a homogeneous deformation is the only deformation that every (homogeneous, isotropic,

unconstrained) material can sustain.

Solution: Since F(x) is constant in a homogeneous deformation, we see immediately that (i) holds for such

a deformation no matter what the material W . In order to prove the converse, i.e. that the deformation

must necessarily be homogeneous, we must show that Fij,k(x) = 0 on RR.

In the calculations to follow we keep the particular (as yet unknown) deformation y(x) fixed and vary the

constitutive function W ; we do this since we know that this particular deformation satisfies (i) for every W .

Since (i) holds for all W (I1, I2, I3), it must necessarily hold for the choice W = f(I1). Then (i) specializes

to
∂

∂xj
(f ′(I1)Fij) = 0 ⇒ f ′(I1)Fij,j + 2f ′′(I1)FijFpqFpq,j = 0. (ii)

First consider f(I1) = I1. Then (ii) reduces to

Fij,j(x) = 0 for all x ∈ RR. (iii)

(Remark: Since we can write this as Fij,j = yi,jj = ∇2yi = 0 it follows from a theorem concerning solutions

of Laplace’s equation that yi ∈ C∞(RR).) Now take f(I1) = I2
1 and keep in mind that equation (iii) still

holds since we are continuing to consider the same deformation as above. Thus (ii) now simplifies to

FijFpqFpq,j = 0. (iv)

Multiplying this by F−1
si gives

FpqFpq,j = 0. (v)

Differentiating (v) with respect to xj

Fpq,jFpq,j + FpqFpq,jj = 0 ⇒ Fpq,jFpq,j + Fpqyp,jjq = 0 ⇒ Fpq,jFpq,j = 0, (vi)

where in getting to the last expression we set yp,jjq = 0 since yp,jj = 0 from the line below (iii). The

left-hand side of (vi)3 involves the sum of the squares of Fpq,j and therefore we must have

Fpq,j(x) = 0 for all x ∈ RR.

Therefore F(x) is necessarily constant on RR and so y(x) is a homogeneous deformation.
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Problem 4.18. (Related to Ericksen’s problem on universal deformations. See Problem 4.17 for universal

deformations in an unconstrained material.)

Consider a body composed of an isotropic incompressible elastic material that is in equilibrium with

no body forces. Traction is prescribed on ∂R and this leads to a deformation y = y(x) for which the

associated principal scalar invariants I1(B) and I2(B) are constants independent of x. Does this imply that

the deformation is homogeneous?

Solution:

Reference: M. Singh and A. C. Pipkin, A note on Ericksen’s problem, Zeitschrift fur angewandte Mathematik

und Physik (ZAMP), 16(1965), pp. 706-709.

The answer is no. Here is the counter example given by Singh and Pipkin. (Fosdick previously gave the

counter example B = 0.)

Consider the following deformation in cylindrical polar coordinates:

r = r̂(R,Θ, Z) = AR, θ = θ̂(R,Θ, Z) = B lnR+ CΘ, z = ẑ(R,Θ, Z) = Z/(A2C), (i)

where A,B and C are constants. From the general formula (2.79), the associated left Cauchy-Green tensor

is

B = A2er ⊗ er +A2K2eθ ⊗ eθ +A−4C−2ez ⊗ ez +A2B(er ⊗ eθ + eθ ⊗ er), (ii)

where K2 = B2 + C2. Clearly the invariants of B will only depend on (the constants) A,B,C, so they are

constants.

Therefore (i) is an inhomogeneous deformation with constant principal scalar invariants. We must verify

that the deformation is isochoric and that it can be in equilibrium without body forces.

First, since the material is incompressible we must verify that the deformation is locally volume preserv-

ing:

det B = Bzz(BrrBθθ −B2
rθ) = A−4C−2(A4K2 −A4B2) = 1. (iii)

Second we confirm that the body is in equilibrium with no body forces. From (ii),

B2 = (B2
rr +B2

rθ)er ⊗ er + (B2
θθ +B2

rθ)eθ ⊗ eθ +B2
zzez ⊗ ez +Brθ(Brr +Bθθ)(er ⊗ eθ + eθ ⊗ er) (iv)

Substituting (ii) and (iv) into the constitutive relation

T = −qI + ϕ1B + ϕ2B
2 (v)

(where the ϕ’s are functions of I1 and I2) gives

Trr = −q + ϕ1A
2 + ϕ2(A4 +A4B2),

Tθθ = −q + ϕ1A
2K2 + ϕ2(A4K4 +A4B2),

Tzz = −q + ϕ1A
−4C−2 + ϕ2A

−8C−4,

Trθ = Tθr = ϕ1A
2B + ϕ2A

2B(A2 +A2K2),

Tθz = Tzr = 0.

(vi)
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Note that the reaction pressure need not be constant: q = q(r, θ, z). On substituting these stresses into the

equilibrium equations div T = o given in cylindrical polar coordinates in (3.95) we get

∂q

∂r
=

1

r
(Trr − Tθθ),

∂q

∂θ
= 2Trθ,

∂q

∂z
= 0. (vii)

Solving (vii) yields

q(r, θ, z) = (Trr − Tθθ) ln r + 2θTrθ + q0. (viii)

Thus when q(r, θ, z) is given by (viii), the stress field (vi) is in equilibrium with no body forces.

Problem 4.19. Energy-Momentum Tensor

The tensor

P = W (F) I− FTS (4.177)

is known as the Energy-Momentum Tensor. Consider a homogeneous elastic body that is in equilibrium

(with no body forces).

(a) Show that

Div P = o at all x ∈ RR. (i)

(b) Suppose that the body contains a cavity in its interior. Let S be an arbitrary closed surface in the

body that encloses the cavity. Show that the value of the integral∫
S

PnR dAx (ii)

is the same for all such surfaces. (Remark: This result underlies the path-independent nature of the

famous J-integral of fracture mechanics.)

(c) If the material is isotropic, show that

P = PT . (iii)

Solution:

(a) In order to establish (i) we work with components in a fixed cartesian basis:

∂Pij
∂xj

=
∂

∂xj

(
Wδij − FkiSkj

)
=
∂W

∂xi
− ∂

∂xj

(
FkiSkj

)
=

∂W

∂Fpq

∂Fpq
∂xi

− ∂Fki
∂xj

Skj −
∂Skj
∂xj

Fki =

(4.7),(3.63)
= Spq

∂Fpq
∂xi

− ∂Fki
∂xj

Skj
(2.22)

= Spq
∂2yp
∂xi∂xq

− Skj
∂2yk
∂xj∂xi

=

(∗)
= Spq

∂2yp
∂xi∂xq

− Spq
∂2yp
∂xq∂xi

(∗∗)
= Spq

∂2yp
∂xi∂xq

− Spq
∂2yp
∂xi∂xq

= 0.

In step (*) we simply changed repeated subscripts, and in step (∗∗) we changed the order of partial differ-

entiation.
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(b) First consider any subregion D of the body that does not include the cavity. It follows from the divergence

theorem and (i) that ∫
∂D

PnR dAx = o. (iv)

Let ∂R0 be the the boundary of the cavity. Now choose for D the region between the closed surface S and

the closed surface ∂R0. Then ∂D = ∂S ∪ ∂R0 and so (iv) gives

o =

∫
∂S

PnR dAx +

∫
∂R0

PnR dAx

(where nR points inwards on ∂R0 and outwards on ∂S. Thus we have∫
∂S

PnR dAx = −
∫
∂R0

PnR dAx.

This holds for any closed surface S that encloses the cavity while the right-hand side is independent of S.

This establishes the result.

(c) Multiplying (operating on) the constitutive relation (4.38) for S by FT from the front gives an equation

of the form

FTS = c1I + c2C + c3C
2

where C = FTF. Since C is symmetric it follows that FTS is symmetric and therefore by (4.177), so is P.

Problem 4.20. In terms of the strain energy function W ∗(λ1, λ2, λ3) for an isotropic unconstrained material,

show that

∂2W ∗

∂λ2
i

∣∣∣∣
λ1=λ2=λ3=1

= λ+ 2µ = κ+
4

3
µ,

∂2W ∗

∂λi∂λj

∣∣∣∣
λ1=λ2=λ3=1

= λ = κ− 2

3
µ i 6= j,

where λ is a Lamè constant and κ and µ are the bulk and shear moduli respectively at infinitesimal defor-

mations.

Problem 4.21. Show that the constitutive relation (4.38)1 for an isotropic unconstrained material can be

written equivalently as

T =
2

J

(
I2
∂W̃

∂I2
+ I3

∂W̃

∂I3

)
I +

2

J

∂W̃

∂I1
B − 2J

∂W̃

∂I2
B−1. (4.178)

Materials with internal constraints.

Problem 4.22.

(a) Consider a body that is inextensible in a direction mR (in the reference configuration). It may, for

example, involve a family of very stiff fibers in that direction. Determine the corresponding reactive

stress that needs to be added to the constitutively determined part of the stress for both the Cauchy

stress and the Piola stress. Physically interpret the reactive part of the Cauchy stress.
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(b) Now reconsider Problem 2.3 where the body involved two families of inextensible fibers in directions

m+
R and m−R and the material was incompressible. Write down the reaction stress that needs to be

added to the constitutively determined part of the Cauchy stress.

Solution:

(a) The inextensibility constraint is described by φ(F) = 0 where

φ(F) = |FmR|2 − 1 = FmR · FmR − 1. (i)

To calculate ∂φ/∂F we shall work with cartesian components:

∂φ

∂Fpq
=

∂

∂Fpq
(Fijm

R
j Fikm

R
k ) = 2δipδjqm

R
j Fikm

R
k = 2Fpkm

R
km

R
q , (ii)

i.e.
∂φ

∂F
= 2FmR ⊗mR. (iii)

Therefore the reaction stress to be added to the Piola stress is

N = 2qFmR ⊗mR. � (iv)

Using T = J−1SFT , the reaction stress to be added to the Cauchy stress is

= J−1NFT = 2
q

J
(FmR ⊗mR)FT = 2

q

J
(FmR ⊗ FmR) = 2

q

J
m⊗m, (v)

where we used the identity (a⊗b)A = a⊗ATb and set m = FmR/|FmR| = FmR. Note that m is the fiber

direction in the deformed configuration and therefore we see from (v) that the reactive part of the Cauchy

stress is a uniaxial stress in the direction of the deformed fiber. (The factors 2 and J can be absorbed into

q in (v).)

(b) Note that the constraints

φ1(F) = det F− 1, φ2(F) = |Fm+
R| − 1, φ3(F) = |Fm−R | − 1

have to be enforced individually (and not as a single constraint φ(F) = det F− 1 + |Fm+
R| − 1 + |Fm−R | − 1.

Why?) There is a reaction stress associated with each constraint and each of them must be added to the

constitutively determined part of the stress. Thus to the Cauchy stress we should add

q1I + q2Fm+
R ⊗ Fm+

R + q3Fm−R ⊗ Fm−R . �

Problem 4.23. Reconsider the problem considered previously in Chapter 2 and illustrated in Figure 4.14.

The material is incompressible and there are two families of inextensible fibers. In the reference configuration

the fiber directions m1 and m2 are

m1 = cos Θ e1 + sin Θ e2, m2 = cos Θ e1 − sin Θ e2, 0 < Θ < π/2. (i)
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e3

n0

n

Figure 4.14: Region occupied (in a reference configuration) by an incompressible rectangular block with

two families of inextensible fibers.

The two faces perpendicular to the y3-axis are traction-free. The four faces perpendicular to the y1- and

y2-axes are free of shear traction. Normal tractions are applied on these faces leading to the homogeneous

stress state

T = T11e1 ⊗ e1 + T22e2 ⊗ e2, (ii)

in the body. Assume the resulting deformation gradient tensor to have the form

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (iii)

The constitutive relation for this material is such that the stress is only due to the reaction stresses, i.e.

assume that

T = q0 I + q1Fm1 ⊗ Fm1 + q2Fm2 ⊗ Fm2, (iv)

for some q0, q1, q2. Given T11, T22 and Θ, calculate λ1, λ2 and λ3. Discuss your results.

Problem 4.24. Here we consider a body subjected to the following kinematic constraint: let the unit vector

mR denote a direction in the reference configuration, and suppose that the area of any plane normal to mR

cannot change. (Though the body is treated as a homogeneous continuum, it might, for example, be a solid

that has a family of stiff parallel planes aligned normal to the direction mR.) Determine the corresponding

reaction stress.

Problem 4.25. Ericksen has suggested that certain elastic crystals obey the kinematic constraint

tr C = 3.

(a) Determine the associated reaction stress that should be added to the Cauchy stress. (b) Can an Ericksen

material be isotropic? (See the discussion preceding (4.63).) If so, write down the constitutive relation

between T and B for an isotropic Ericksen material.
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(c) Show that for infinitesimal deformations Ericksen’s constraint is equivalent to the incompressibility

constraint. (d) Show for finite plane strain deformations that the only deformation that simultaneously

satisfies the incompressibility constraint and Ericksen’s constraint is a rigid deformation. (e) Is this true for

all finite deformations?

Reference: J. L. Ericksen, Constitutive theory for some constrained elastic crystals, International Journal of

Solids and Structures, Vol. 22, 1986, pp. 951-964.

Solution:

(a) Differentiating φ(F) = tr C− 3 = tr (FTF)− 3 with respect to F gives

∂φ

∂F
= 2F.

Therefore the reaction stress to be added to the Piola stress tensor is qF. Since the Cauchy stress is related

to the Piola stress by T = J−1SFT it follows that the reaction stress to be added to the Cauchy stress is

= qFFT = qB �

where we have absorbed the scalar field J into q.

(b) Since φ(F) = tr C−3 = tr B−3 = tr FFT −3 it follows that φ(F) = φ(FQ) for all rotations Q. Therefore

this constraint, tr C = 3, places no restrictions on material symmetry. Thus such a material can be isotropic.

For an isotropic Ericksen material, since I1(C) = 3, the strain energy function depends only on the other

two invariants: W = W̃ (I1, I3) and so in place of (4.38) we get

T = 2J
∂W̃

∂I3
I + qB − 2

J

∂W̃

∂I2
B2,

having absorbed all scalar terms multiplying B into q.

(c) Let H = ∇u be the displacement gradient tensor so that F = I + H. Thus

det F = det(I + H) = 1 + tr H + O(|H|2),

C = FTF = (I + H)T (I + H) = I + H + HT + O(|H|2),

and so

det F− 1 = tr H + O(|H|2) tr C− 3 = 2tr H + O(|H|2).

Therefore in the case of infinitesimal deformations, the incompressibility constraint det F = 1 and the

Ericksen constraint tr C = 3 both reduce to tr H = 0.

(d) The Ericksen constraint together with incompressibility requires

λ2
1 + λ2

2 + λ2
3 = 3, λ1λ2λ3 = 1.

In plane strain, where λ3 = 1, these specialize to

λ2
1 + λ2

2 = 2, λ1λ2 = 1.
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Multiply first equation with λ2
1 and use second equation to get

λ4
1 + 1 = 2λ2

1 ⇒ (λ2
1 − 1)2 = 0 ⇒ λ1 = 1,

and so λ2 = 1 as well from incompressibility. So all principal stretches are unity and so C = I and the

deformation is rigid.

(e) The Ericksen constraint together with incompressibility in a general deformation requires

λ2
1 + λ2

2 + λ2
3 = 3, λ2

1λ
2
2λ

2
3 = 1.

Given I1 and I2, the triplet of equations

λ2
1 + λ2

2 + λ2
3 = I1, λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = I2, λ2

1λ
2
2λ

2
3 = 1,

can be solved for real positive λ’s if and only if (I1, I2) lies in a certain region of the I1, I2-plane. K.N.

Sawyers, Journal of Elasticity, Volume 7, Number 1, 1977, pp. 99-102, has shown that this is the region

between the curves C1 and C2 where C1 and C2 are defined parametrically by

C1 : I1 = 2ξ + 1/ξ2, I2 = ξ2 + 2/ξ, 0 < ξ ≤ 3,

C2 : I1 = 2ξ + 1/ξ2, I2 = ξ2 + 2/ξ, 3 ≤ ξ <∞.

These curves lie in the quadrant I1 ≥ 3, I2 ≥ 3 and intersect at (I1, I2) = (3, 3). So in particular, if I1 = 3

then one must have I2 = 3 (and vice versa) and the roots of the triplet of equations are λ1 = λ2 = λ3 = 1.

Thus C = I and the deformation is rigid.

Problem 4.26. (Chadwick) The only deformations that a particular body can undergo are those that

preserve the angle between pairs of material fibers that, in the reference configuration, lie in the directions

mR and nR. Determine the associated reactive stress to be added to the Cauchy stress tensor.

Solution: Since the angle between these fibers in the deformed and undeformed configurations are the same,

we have
FmR

|FmR|
· FnR

|FnR|
= mR · nR. (i)

Therefore, we can characterize this constraint by

φ(F) = FmR · FnR − (mR · nR)|FmR| |FnR| = 0. (ii)

Since we want to calculate ∂φ/∂F it is convenient to first show that (exercise)

∂

∂F
(FmR · FnR) = FmR ⊗ nR + FnR ⊗mR,

∂

∂F
|FmR| =

FmR ⊗mR

|FmR|
. (iii)

Thus, differentiating (ii) gives

∂φ

∂F
= FnR ⊗mR + FmR ⊗ nR − (mR · nR)

|FnR|
|FmR|

FmR ⊗mR − (mR · nR)
|FmR|
|FnR|

FnR ⊗ nR. (iv)
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This can be simplified by using φ = 0:

∂φ

∂F
= FnR ⊗mR + FmR ⊗ nR − (FmR · FnR)

FmR ⊗mR

|FmR|2
− (FmR · FnR)

FnR ⊗ nR

|FnR|2
.

The reaction stress to be added to the Cauchy stress is a scalar multiple of

∂φ

∂F
FT = FnR ⊗ FmR + FmR ⊗ FnR − (FmR · FnR)

FmR ⊗ FmR

|FmR|2
− (FmR · FnR)

FnR ⊗ FnR

|FnR|2
. (v)

Denoting the directions of these material fibers in the deformed configuration by

m =
FmR

|FmR|
, n =

FnR

|FnR|
, (vi)

we can write (v) as

∂φ

∂F
FT = |FmR||FnR|

[
n⊗m + m⊗ n− (m · n) m⊗m− (m · n) n⊗ n

]
. (vii)

The scalar factor |FmR||FnR| can be absorbed into the scalar factor multiplying this and so we can write

the reactive stress (for the Cauchy stress tensor) as

q
[
n⊗m + m⊗ n− (m · n)

[
m⊗m + n⊗ n

]]
. �

Restrictions on W .

Problem 4.27. (Strong ellipticity.) Consider a homogeneous body that is in equilibrium under the defor-

mation y = Fx where F is a constant tensor with positive determinant. Consider the (time-dependent)

motion

y(x, t) = Fx + u(x, t) where |∇u| � 1. (i)

This is a small perturbation superposed on the given homogeneous deformation. Show that the equation of

motion Div S = ρRÿ when linearized about the deformation y = Fx reads

Apqrs
∂2ur
∂xq∂xs

= ρRüp where Apqrs(F) :=
∂2W (F)

∂Fpq∂Fra
. (ii)

Suppose that the motion u(x, t) is a plane harmonic wave propagating in a direction n with wave speed c

and wave number k, the particle motion being in a direction a:

u(x, t) = a eik(n·x−ct). (iii)

Here i (does not denote an integer but rather) is the unit imaginary number (i2 = −1); a and n are constant

unit vectors; and the scalars c and k are constants.

Show using (ii) that the wave speed c is given by

ρRc
2 = Apqrsapnqarns,

and therefore that material stability requires the strong ellipticity condition (4.115) to hold for all directions

a and n.

See Problem 4.28 for the case of an incompressible material.
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Solution: It follows from (i) that

∇y = F +∇u, v = u̇, v̇ = ü. (v)

The associated stress, approximated for small |∇u|, is

S(∇y) =
∂W

∂F

∣∣∣∣
∇y=F+∇u

=
∂W

∂F

∣∣∣∣
∇y=F

+ A(F)∇u + h.o.t. = S(F) + A(F)∇u + h.o.t., (vi)

where

Apqrs(F) =
∂2W (F)

∂Fpq∂Frs
and

(
A(F)∇u

)
pq

= Apqrs(F)
∂ur
∂xs

. (vii)

Substituting (v)3 and (vi) into the equation of motion

∂Spq
∂xq

= ρRv̇p

gives

Apqrs
∂2ur
∂xq∂xs

= ρRüp. (viii)

Now consider the motion

ur = ar eik(n·x−ct) (ix)

where i is the unit imaginary number, a and n are constant unit vectors and the scalar c is a constant. This

gives

∂ur
∂xq

= ikarnq eik(n·x−ct),
∂2ur
∂xq∂xs

= −k2arnqns eik(n·x−ct), üp = −k2c2ap eik(n·x−ct). (x)

Substituting this into (viii) gives

Apqrsarnqns = ρRc
2ap. (xi)

Multiplying by ap gives

Apqrsaparnqns = ρRc
2. (xii)

For the wave speed c to be real (and non-zero) one must have

Apqrsapnqarns > 0. (xiii)

Remark: The 2-tensor A(n), known as the acoustic tensor, is defined as the tensor with cartesian components

Aik := Aijk`njn`. (xiv)

Since A has the symmetry Aijk` = Ak`ij , see (ii)2, it follows that A is symmetric. Moreover, equation (xi)

can now be written as

Aa = ρRc
2a

which is the eigenvalue problem for A. Strong ellipticity is therefore equivalent to the positive definiteness

of the acoustic tensor in which event its three real eigenvalues must be positive.
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Problem 4.28. (Strong ellipticity for incompressible material.)

By carrying out calculations analogous to those in Problem 4.27, derive the conditions for strong ellip-

ticity for an incompressible elastic material. The calculations in Chapter 5.7.2 will be helpful.

Solution: In Chapter 5.7.2 we develop the equations governing an equilibrium deformation y = Fz +

u(x) which is superposed on the homogeneous deformation x = Fz for an incompressible material. It is

straightforward to include inertial effects in that analysis and this leads to the following equation of motion

∂Σpq
∂xq

= ρüp, (i)

where

Σpq = BpqrsHrs + q0Hqp − q̃δpq, Hpq =
∂up
∂xq

, (ii)

Apqrs(F) =
∂2W (F)

∂Fpq∂Frs
, Babcd(F) = Aapcq(F)FbpFdq, (iii)

with incompressibility requiring

Hpp =
∂up
∂xp

= 0. (iv)

We consider a perturbation of the form of a plane harmonic wave and so take

up(x, t) = ap eik(n·x−ct), q̃ = ikQ eik(n·x−ct), (v)

where q̃ is the perturbation of the reactive pressure field. Substituting (v)1 into (ii)2 gives

Hpq = ikapnq eik(n·x−ct), (vi)

and so the incompressibility equation (iv) yields

Hpp = 0 ⇒ a · n = 0. (vii)

Substituting (v) into (ii) gives

Σpq = [ikBpqrsarns + ikq0aqnp − ikQδpq ] eik(n·x−ct), (viii)

and therefore
∂Σpq
∂xq

=
[
−k2Bpqrsarnsnq + k2Qnp

]
eik(n·x−ct), (ix)

where the term involving q0 has dropped out because of (iv). Substituting (ix) and (v)1 into the equation

of motion (i) gives

−k2Bpqrsarnsnq + k2Qnp = −ρk2apc
2, (x)

that on multiplying by ap and using (vii) leads to

Bpqrsarapnsnq = ρc2. (xi)

Material stability requires c to be real, and taking it to be nonzero as well, we are led to the strong ellipticity

condition

Bpqrsapnqarns > 0 for all vectors a and n with a · n = 0. (4.179)
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Remark: The inequality (4.180) can be written equivalently using (iii) and (vii) as

Aijk`aibjakb` > 0 for all vectors a and b with a · F−Tb = 0. (4.180)

Problem 4.29. Consider an (isotropic, incompressible) generalized neo-Hookean material characterized by

the strain energy function W (I1).

(a) Determine the restrictions imposed on W by the Baker-Ericksen inequalities.

(b) Find necessary and sufficient conditions for strong ellipticity.

Problem 4.30. Baker-Ericksen: Consider a uniaxial tensile stress state

T = Te3 ⊗ e3, T > 0,

in an isotropic elastic material. Show that the Baker-Ericksen inequalities (4.106) hold if and only if the

principal stretches obey

λ3 > λ1 = λ2 > 0. (o)

Solution:

Reference: S. Marzano, An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress,

Meccanica, volume 18, 1983 , pp. 233-235.

We show that BE implies (o). The proof of the converse is left as an exercise.

We first show that if the principal Cauchy stress components T1 = T2, then the BE inequalities imply

λ1 = λ2. The constitutive relation for an isotropic elastic material can be written in the form

T = β0I + β1B + β−1B
−1.

Therefore in a principal basis for T and B,

T1 = β0 + β1λ
2
1 + β−1λ

−2
1 , T2 = β0 + β1λ

2
2 + β−1λ

−2
2 , T3 = β0 + β1λ

2
3 + β−1λ

−2
3 , (i)

and so

T1 − T2 =
[
β1 − β−1λ

−2
1 λ−2

2

]
(λ2

1 − λ2
2). (ii)

Therefore the BE inequalities require

β1 − β−1λ
−2
1 λ−2

2 > 0, λ1 6= λ2. (iii)

Now suppose that T1 = T2. Then from (ii)[
β1 − β−1λ

−2
1 λ−2

2

]
(λ2

1 − λ2
2) = 0. (iv)
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If λ1 6= λ2, then (iv) leads to β1 − β−1λ
−2
1 λ−2

2 = 0. This contradicts (iii). Therefore λ1 and λ2 cannot be

distinct and (iv) implies λ1 = λ2. �

Return to the constitutive relation (i) with T3 = T and T1 = 0:

0 = β0 + β1λ
2
1 + β−1λ

−2
1 , T = β0 + β1λ

2
3 + β−1λ

−2
3 .

Subtracting the first from the second gives

T = β1(λ2
3 − λ2

1) + β−1(λ−2
3 − λ−2

1 ) = (β1 − β−1λ
−2
1 λ−2

3 )(λ2
3 − λ2

1).

We are told that T > 0, and we know that the BE implies β1−β−1λ
−2
1 λ−2

3 > 0. It follows from the preceding

equation that

λ3 > λ1.

Problem 4.31. Strong ellipticity: The notion of strong ellipticity was introduced previously in (4.110),

(4.115).

Suppose the material is isotropic: W (F) = W (λ1, λ2, λ3). By taking

F = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λ3 e3 ⊗ e3, a = e1, b = e2,

in the strong ellipticity condition show that the Baker-Ericksen inequalities are implied by strong ellipticity.

By taking

F = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λ3 e3 ⊗ e3, a = e1, b = e1,

in the strong ellipticity condition show that

∂2W

∂λ2
1

> 0 ⇒ S11 is an increasing function of λ1.

It will be useful to note that by replacing b by FTb in the strong ellipticity inequality (4.115), it can be written equivalently

as

Bijk`aibjakb` > 0 for all vectors a and b (4.181)

where

Bijk`(F) = Aipkq(F)FjpF`q . (4.182)

For an isotropic unconstrained material the components of B in the principal basis {`1, `2, `3} are given in Problem 6.1.7 of

Ogden [17] keeping in mind that his A1
0ijk = Bji`k:

Biijj = λj
∂τi

∂λj
+ (1− δij)τi,

Bjiji =
λ2i (τi − τj)
λ2i − λ2j

, i 6= j, λi 6= λj ,

Bjiij = Bijji = Bjiji − τi, i 6= j,


where τi =

λi

J

∂W

∂λi
. (4.183)

Solution: On taking a = e1 and b = e2, the inequality (4.181) specializes to

Bijk`δ1iδ2jδ1kδ2` = B1212
(4.183)

=
λ2

2 (τ2 − τ1)

λ2
2 − λ2

1

> 0 ⇒ τ2 − τ1
λ2 − λ1

> 0,
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where in getting to the second inequality we used λ1 > 0, λ2 > 0. This is one of the Baker-Ericksen

inequalities.

On taking a = e1 and b = e1, the inequality (4.181) specializes to

Bijk`δ1iδ1jδ1kδ1` = B1111
(4.183)

= λ1
∂τ1
∂λ1

(4.183)
=

λ1

λ2λ3

∂2W

∂λ2
1

> 0 ⇒ ∂2W

∂λ2
1

> 0,

which is the monotonicity inequality (4.108).

Problem 4.32. The components of the elasticity tensor A are defined by

Aijk`(F) =
∂2W (F)

∂Fij∂Fk`
.

Calculate these components for an unconstrained isotropic material characterized by the strain energy func-

tion

W (F) = f(I1) + g(J) where I1 = F · F, J = det F.

Linearize your answer for infinitesimal deformations and identify the Lamé constants.

Problem 4.33. Determine necessary and sufficient conditions for strong ellipticity of the “compressible

Mooney-Rivlin” material (also known as a Hadamard material)

W (I1, I2, I3) =
µ

2

[
α(I1 − 3) + (1− α)(I2 − 3)

]
+ h(I3).

Problem 4.34. This problem asks you to construct from first principles the one-dimensional counterparts

of the theory developed in Chapters 2, 3 and 4 for a deformable elastic string. When a body is modeled as

a string, its cross-section is invisible and the body is treated as a one-dimensional object. Assume that the

string lies in a plane.

Part A: Kinematics. A string occupies a curve RR in a reference configuration as illustrated in the left-

hand figure in Figure 4.15. The position vector of a particle in this configuration is denoted by x(x), 0 ≤
x ≤ LR, where x is arc length along this curve and LR is the corresponding length of the string. A particle

can be identified (i.e. labeled) by its coordinate x in this configuration. Thus, rather than saying “the

particle located at x(x) in the reference configuration” we can simply say “the particle x”. Since the choice

of reference configuration is arbitrary, provided only that it be a configuration the body can occupy, the

string could, for example, be straight and horizontal in this configuration in which case x(x) = x e1.

At time t during a motion, the position vector of particle x is y(x, t) and the string occupies the curve Rt;
see the right-hand figure in Figure 4.15. Time is not important in this part of the problem, all calculations

being carried out at the same instant t. Thus we will not keep referring to time.
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Let `R and ` be unit vectors tangent to the string in the reference and current configurations, and let x and

s be arc lengths along the string in these respective configurations. A material fiber in the reference and

current configurations can then be expressed as

dx = dx `R, dy = ds `; (ia)

see Figure 4.15. The stretch λ of the fiber, being the ratio between the deformed and undeformed lengths

ds and dx, is given through

ds = λdx. (iia)

(a1) Derive expressions for `R, `, λ and s in terms of x(x),y(x, t) and their derivatives.

(a2) In terms of only the stretch λ and the unit vectors25 `R and `, determine tensors F,U,R and V with

the following properties: F takes an undeformed material fiber dx into its deformed image dy; U stretches

dx by λ without rotating it; and R rotates a fiber dx without stretching it.

Figure 4.15: An elastic string in a reference configuration (left) and at time t (right). In the reference

configuration an infinitesimal material fiber dx has length dx and direction `R. Its image dy in the current

configuration has length ds = λ dx and direction `.

Part B: Forces. Equilibrium. Now focus attention on the string in the current configuration at some fixed

instant t, and identify points along the string by the arc length s. The string is subjected to a distributed

(body) force per unit deformed length b(s, t). This induces an internal contact force field within the string,

i.e. if we make a hypothetical cut through the string at some s, the part of the string on one side of the cut

applies a force on the part on the other side (and vice versa) due to contact at s. Do not assume the contact

force to be tangent to the string. Assume that the string, in both the undeformed and current configurations,

as well as all forces, lie in the same plane. Neglect inertial effects and enforce force and moment equilibrium

for an arbitrary (finite not infinitesimal) part of the string, and from them derive the associated equilibrium

field equations that the contact force must obey.

Part C: Rate of working. Energy. Constitutive relation. Thus far did not say anything about the

constitutive relation of the string.

25Since we are studying a one-dimensional body, we are only permitting the respective unit vectors `R

and ` along the body.
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(c1) Derive the relation between stretch rate λ̇ and velocity gradient v′ where the dot denotes the derivative

with respect to t at fixed x; the prime denotes the derivative with respect to x at fixed t; and v = ẏ

is particle velocity.

(c2) Calculate the rate at which the external forces acting on a (finite not infinitesimal) part of the string

do work.

(c3) If the material is dissipation-free, the work done is stored in the string. Let W be the energy stored

per unit deformed length of the string. Write down the elastic power identity, i.e. the equation that

describes the balance between the rate of work and the rate of change of the stored energy for a part

of the string. Localize your result. You may find it useful to introduce the energy stored per unit

reference length, say W . (How is W related to W?)

(c4) Finally, if the string is elastic in the sense that there is a constitutive function W̃ (λ) such that

W (x, t) = W̃ (λ(x, t)), derive the constitutive relation for τ . (Here t = τ`.)

Solution:

Part A:

(a1) The particles x and x + dx are located at x(x) and x(x + dx) in the reference configuration. The

infinitesimal material fiber connecting them is

dx = x(x+ dx)− x(x)
.
= x′(x)dx; (iiia)

a prime denotes the derivative with respect to x (and if the function depends on both x and t it is the

derivative with respect to x at fixed t). Note from (iiia) that the vector x′(x) is parallel to the fiber dx

and is therefore tangent to the string in the reference configuration. On comparing (iiia) with (ia)1, i.e.

dx = `R dx = x′(x)dx, we conclude that

`R = x′(x). � (iva)

Therefore from the preceding two equations,

dx = dx `R. (va)

− In the deformed configuration the two particles x and x + dx are located at y(x, t) and y(x + dx, t) and

thus the fiber under consideration is

dy = y(x+ dx, t)− y(x, t)
.
= y′(x, t) dx. (via)

Note from (va) that the vector y′(x, t) is parallel to the fiber dy and is therefore tangent to the string in the

deformed configuration. On combining (ia)2, (iia) and (va) we get dy = ` ds = λ ` dx = y′(x, t) dx and so

we conclude that

y′ = λ`. (viia)

Therefore from the preceding two equations,

dy = λ dx `. (viiia)
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Taking the magnitude of both sides of (viia) gives

λ = |y′|, � (ixa)

and from (viia) and (ixa) it follows that

` =
y′

|y′| =
y′

λ
. � (xa)

− The arc length along the deformed fiber can be found by integrating ds = λ dx:

s = s(x, t) :=

∫ x

0

λ(ξ, t) dξ
(viia)

=

∫ x

0

∣∣y′(ξ, t)∣∣ dξ, � (xia)

(where ξ is a dummy variable).

(a2) The tensor F takes dx 7→ dy: from (va) we have dx = dx · `R and so

dy
(viiia)

= λ dx ` = λ (dx · `R) ` = λ (`⊗ `R) dx = Fdx

where

F := λ`⊗ `R. � (xa)

− The tensor U stretches dx without rotating it: therefore Udx = λdx or equivalently U`R = λ`R. Therefore

by inspection

U = λ`R ⊗ `R.

Observe that U2 = FTF.

− The tensor R rotates dx without stretching it: therefore Rdx = dy/λ or equivalently Rd`R = d`, and so

by inspection

R = `⊗ `R.

Observe that F = RU.

Part B: We are now concerned with the current configuration and we identify different points along the

string by the arc length s in that configuration. Again, all calculations will be carried out at a fixed instant

t and so we will not keep referring to the time.

Make a hypothetical cut through a point s on the string as depicted in the left-hand figure in Figure

4.16. There are two sides to the cut. The unit tangent vector ` points out of the string at one (call this the

negative side) and into the string at the other (call this the positive side). Then we let t+(s, t) be the force

applied by the positive side on the negative side (at s) and t−(s, t) the force applied by the negative side on

the positive side. This is illustrated in the figure. (Recall that the direction of ` is always in the direction of

increasing s.)

Now consider a free body diagram of an arbitrary segment [s1, s2] of the string as illustrated in the

right-hand figure in Figure 4.16. The tangent vector `(s2, t) points out of the string and so the contact force

acting on the part of the string in the free body at s2 is t+(s2, t). At the other end the tangent vector `(s1, t)
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+

-

Figure 4.16: Left: A hypothetical cut has been made through the string at some point s. There are two

sides to the cut. The unit tangent vector ` points out of the string at one (call that the negative side) and

into the string at the other (the positive side). The force applied by the positive side on the negative side

is denoted by t+(s, t) and the force applied by the negative side on the positive side is t−(s, t). Right: Free

body diagram of the segment s1 ≤ s ≤ s2 of the string.

points into the string and so the contact force acting on the free body at s1 is t−(s1, t). Therefore force

balance of this free body requires

t+(s2, t) + t−(s1, t) +

∫ s2

s1

b(s, t) ds = o, (ib)

where b ds is the body force acting on an infinitesimal segment of the string. We now derive some conse-

quences of this.

Pick an arbitrary point s ∈ (s1, s2) and consider the limits s1 → s− and s2 → s+ with s fixed. Then,

assuming all terms in (ib) to be continuous, it yields

t+(s, t) + t−(s, t) = o ⇒ t+(s, t) = −t−(s, t). (iib)

This says that the force applied by the positive side on the negative side is equal in magnitude and opposite

in direction to the force applied by the negative side on the positive side. It is convenient therefore to

introduce

t(s, t) := t+(s, t) = −t−(s, t).

We can now write (ib) as

t(s2, t)− t(s1, t) +

∫ s2

s1

b(s, t) ds = o,

which in turn can be written as∫ s2

s1

∂

∂s

[
t(s, t)

]
ds+

∫ s2

s1

b ds = o ⇒
∫ s2

s1

[∂t

∂s
+ b

]
ds = o.

Since this integral vanishes for all [s1, s2], the integrand must vanish and so we are led to the equilibrium

field equation
∂t

∂s
+ b = o. � (iiib)



4.9. EXERCISES. 443

This must hold for all s and all t. (Note from (ixa) that s lies in the range s(0, t) ≤ s ≤ s(LR, t)).

Moment balance of the free body requires

y2 × t2 − y1 × t1 +

∫ s2

s1

y × b ds = o, (ivb)

where yα and tα, α = 1, 2, are the position vector and contact force respectively at sα. Equation (ivb) can

be written as ∫ s2

s1

∂

∂s

[
y × t

]
ds+

∫ s2

s1

y × b ds = o.

Expanding the first term yields ∫ s2

s1

[
∂y

∂s
× t + y ×

(
∂t

∂s
+ b

)]
ds = o,

and using (iiib) leads to ∫ s2

s1

[
∂y

∂s
× t

]
ds = o.

Since this holds for all [s1, s2] the integrand must vanish and so

∂y

∂s
× t = o.

However (iia) and (viia) imply
∂y

∂s
=
∂y

∂x

∂x

∂s

(iia)
=

1

λ
y′

(viia)
= `,

and so we can write this moment balance equation as

`× t = o. (vb)

Equation (vb) tells us that t is parallel to ` and so we can write

t = τ `. � (vib)

This is the field equation associated with moment balance. Observe that it has told us that the force t in

the string is tangent to the (deformed) string at each point, τ being the tension in the string.

Remark: We can use the result (vib) from moment balance to further simplify the force equilibrium equation (iiib) as follows:

∂τ

∂s
`+ τ

∂`

∂s
+ b = o. � (viib)

The unit vector n normal to the deformed string (obtained by rotating ` through a CCW angle π/2) and the tangent vector `

can be expressed as

` = cosφ e1 + sinφ e2, n = − sinφ e1 + cosφ e2, (viiib)

where φ(s, t) is the angle the deformed string makes with the e1-direction. Therefore ∂`/∂s = (∂φ/∂s)n. Thus (viib) can be

written as
∂τ

∂s
`+ τ

∂φ

∂s
n + b = o. (ixb)

The two components of this vector equilibrium equation in the ` and n directions are obtained by taking its scalar product of

(ixb) with ` and n:
∂τ

∂s
+ b · ` = 0, τ

∂φ

∂s
+ b · n = 0. � (xb)
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Remark: Alternatively, to determine the equilibrium equations in the e1 and e2 directions we use (viiib) in (ixb) to get(
∂

∂s
(τ cosφ) + b1

)
e1 +

(
∂

∂s
(τ sinφ) + b2

)
e2 = o, (xib)

where b = b1e1 + b2e2. The vanishing of each component in (xib) can be readily derived directly by enforcing force equilibrium

in the x1- and x2-directions for an infinitesimal part of the string.

Remark: The second equilibrium equation (xb)2 can be written in classical form in terms of the curvature κ := ∂φ/∂s as

τκ = p,

where p = −b ·n is the normal pressure on the string. This is effectively the so-called Young-Laplace relation between “surface

tension” τ , curvature κ and pressure p.

Part C:

(c1) The velocity of a particle is

v := ẏ, (ic)

where, as mentioned in the problem statement, the dot denotes the derivative with respect to t at fixed x.

Differentiating y′ = λ ` (see (via)) with respect to t at fixed x gives

ẏ′ = λ̇`+ λ ˙̀ ⇒ v′ = λ̇`+ λ ˙̀ . (iic)

Taking the scalar product of this equation with ` gives

` · v′ = λ̇` · `+ λ` · ˙̀ ⇒ λ̇ = ` · v′, � (iiic)

having used ` · ˙̀ = 0 which follows from differentiating ` · ` = 1. Observe that (iiic) says that the rate at

which the stretch increases equals the velocity gradient tangent to the string (which is in fact ∂v/∂s).

Remark: We can interpret (iic) as follows. On differentiating (viiib) with respect to t at fixed x we get

˙̀ = φ̇n,

where φ is the angle the deformed string makes with the e1-direction. The velocity of particle x + dx relative to particle x is

v(x+ dx, t)− v(x, t) = v′ dx. Combining this with (iic) yields

v(x+ dx, t)− v(x, t) = dx
(
λ̇`+ λ ˙̀

)
= ḋs `+ ds ˙̀ = ḋs `+ ds φ̇n.

where we have used ds = λdx. Therefore the velocity of particle x + dx relative to particle x has two components, one due

to stretching at the rate ḋs in the fiber direction ` and the other in the direction n normal to the fiber due to rotation at the

angular rate φ̇.

(c2) The rate of working of the external forces acting on a part of the string is

= t2 · v2 − t1 · v1 +

∫ s2

s1

b · v ds =

∫ s2

s1

[
∂

∂s

(
t · v

)
+ b · v

]
ds =

=

∫ s2

s1

[
∂t

∂s
· v + t · ∂v

∂s
+ b · v

]
ds =

∫ s2

s1

[
t · ∂v

∂s
+

(
∂t

∂s
+ b

)
· v
]
ds =

(iiib)
=

∫ s2

s1

t · ∂v

∂s
ds

(∗)
=

∫ s2

s1

τ` · 1

λ

∂v

∂x
ds =

∫ s2

s1

τ

λ
` · v′ ds (∗∗)

=

∫ s2

s1

τ
λ̇

λ
ds, � (ivc)

where we have used (vib) and ds = λ dx in step (∗) and (iiic) in step (∗∗).
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(c3) Since W is the stored energy per unit deformed length, the energy stored in an infinitesimal part of the

string is W ds. Therefore the total stored energy is the integral of W with respect to s from s1 to s2, and

the rate of change of this energy is its time derivative:

d

dt

∫ s2

s1

W(s, t) ds. (vc)

Since the material is dissipation-free we can equate the rate of work (ivc) to the rate of increase of stored

energy (vc) to obtain ∫ s2

s1

τ
λ̇

λ
ds =

d

dt

∫ s2

s1

W ds. (vic)

Time, which was unimportant in the previously parts of the problem, is significant here. It is important

to keep in mind that by a part of the string we mean a segment of the string that involves the same particles

at all times. Even though the string occupies different curves in space at different times, a part of the string

always involves the same particles. Thus the part of the string between particles x1 and x2 can be identified

with the interval [x1, x2].

The arc lengths associated with the two ends of a part [x1, x2] of the string are

s1(t) = s(x1, t), s2(t) = s(x2, t), (viic)

where s = s(x, t) is given by (ixa). Observe that s1(t) and s2(t) are time dependent. Consequently with

more detail, (vic) reads ∫ s2(t)

s1(t)

τ
λ̇

λ
ds =

d

dt

∫ s2(t)

s1(t)

W ds. (viiic)

When we evaluate the right-hand side of (viiic) we have to account for the time dependence of both the

integrand and the limits of integration.

In order to localize (viiic) we want to write this as a single integral that vanishes, and for this we must

take the time derivative into the integral on the right-hand side. Since the limits are time dependent we

must use Leibniz’ rule. Alternatively to avoid this we can map [s1(t), s2(t)] into the corresponding (fixed)

domain [x1, x2] in the reference configuration using ds = λ dx. Then (viiic) reads∫ x2

x1

τ
λ̇

λ
λ dx =

d

dt

∫ x2

x1

W λ dx. (viiic)

Recall thatW is the energy per unit deformed length. It is related to the energy per unit undeformed length,

W , by Wds = Wdx, i.e.

W λ = W. (ixc)

It is important to note that W is not the energy in the undeformed string. It is obtained by dividing the

energy in (an infinitesimal part of) the deformed string by its undeformed length. We can now write (viiic)

as ∫ x2

x1

τ λ̇ dx =
d

dt

∫ x2

x1

W dx.

Since we are concerned with a fixed set of particles of the string, x1 and x2 are time independent and

therefore we can take the d/dt derivative inside the integral on the right hand side:∫ x2

x1

τ λ̇ dx =

∫ x2

x1

Ẇ dx ⇒
∫ x2

x1

(τ λ̇− Ẇ ) dx = 0. (xiiic)
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This holds for every part of the string, and so by localization the integrand must vanish:

τ λ̇ = Ẇ . � (xivc)

(c4) Finally, when W = W̃ (λ), equation (xivc) gives

τ λ̇ =
dW̃

dλ
λ̇ ⇒ τ =

dW̃

dλ
(λ). � (xvc)

In summary, the three scalar equations (xb)1, (xb)2 and (xvc) are to be solved for the three unknown

scalar fields λ(x, t), φ(s, t) and τ(s, t).

Remark: Any function of s and t can be expressed as a function of x and t by using s = s(x, t). Thus for example we can write

the unknown angle as φ̂(x, t) = φ(s(x, t), t) and the unknown tension as τ̂(x, t) = τ(s(x, t), t) where we have simply substituted

s(x, t) for s. In this way we can consider the three unknown functions λ, φ, τ to be functions of x and t that hold for 0 ≤ x ≤ LR

and t ≥ 0.

Exercise: Let bR denote the distributed body force per unit undeformed length. Show that the equilibrium equation (iiib) can

be written as
∂t̂

∂x
+ bR = o, 0 ≤ x ≤ LR

where t̂ = t(s(x, t), t).

Problem 4.35. Axisymmetric deformation of an elastic membrane. (See Problem 4.34 for an analogous

problem for an elastic string.) In an unstressed reference configuration an elastic membrane26 is a circular

cylinder of radius R and length L. The Z-axis coincides with the axis of the cylinder and the origin is at

one end. The membrane is subjected to a circumferentially uniform but axially varying internal pressure

p(Z) per unit deformed area; it acts in a direction perpendicular to the deformed membrane. Formulate the

complete theory for the kinematic and force fields in the membrane. Do so by working from first principles,

addressing the kinematics, balance laws of equilibrium and constitutive principles. (A different way in which

to approach this problem is by taking the limit as the thickness tends to zero of the corresponding problem

for a thick-walled tube. Do NOT take this approach here but you may want to try that approach as an

exercise.)

A boundary-value problem.

Problem 4.36. In this and the preceding two chapters we studied the three foundational pillars of the

subject, viz. kinematics of deformation, stress and equilibrium, and constitutive relations. We focused on

each individually, more or less in isolation of the other two. Now that we have these three pillars in hand, we

are in a position to combine and draw upon them in order to solve complete boundary-value problems. In

26In the membrane model of an elastic body, its thickness is invisible and the membrane is treated as

a two-dimensional object. Moreover, a membrane has no bending stiffness and so the internal forces are

assumed to be tangential to the deformed membrane.
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the next chapter we shall consider several such problems, but the focus there will be on examining inherently

nonlinear phenomena. Here we shall solve one problem, solely to illustrate how one might combine many of

the concepts and tools we have learnt thus far.

We are told here that the block is composed of a neo-Hookean material.

OO

2A

2B

Figure 4.17: A 2A × 2B × 2C rectangular block is bent as described in Problem 2.5.4 . The extent of

bending is measured by the angle 2β. The dimensions A,B,C, the bending angle β and the shear modulus

µ are known.

The kinematics of bending a 2A × 2B × 2C rectangular block was studied in Problem 2.5.4. The deforma-

tion we considered there mapped vertical and horizontal straight lines in the reference configuration into,

respectively, arcs of circles and radial lines in the deformed configuration. It was described by

y1 = r(x1) cos θ(x2), y2 = r(x1) sin θ(x2), y3 = x3, (i)

with

r(x1) > 0, r′(x1) > 0, θ′(x1) > 0, θ(x2) = −θ(−x2). (ii)

Moreover, we showed that the principal stretches and the left Cauchy-Green tensor were

λ1 = r′(x1), λ2 = r(x1)θ′(x2), λ3 = 1, (iii)

B = λ2
1 er ⊗ er + λ2

2 eθ ⊗ eθ + ez ⊗ ez, (iv)

where (r, θ, z) are cylindrical polar coordinates in the deformed configuration and {er, eθ, ez} is the associated

basis.

The two curved surfaces (r = a,−β ≤ θ ≤ β and r = b,−β ≤ θ ≤ β) are traction-free where 2β denotes the

angle subtended by the two planar inclined faces of the block in the deformed configuration as depicted in

Figure 4.17 – it is a measure of the “amount” of bending. Certain tractions are applied on the two planar

inclined faces (θ = ±β, a ≤ r ≤ b) such that the resultant force on each face is zero and the resultant moment

is ±m ez.
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We want to work in terms of the Cauchy stress and the deformed configuration and to (a) determine the radii

a and b of the deformed block (or at least derive two algebraic equations in which the only unknowns are

a and b); and (b) calculate an expression for the bending moment m. The dimensions A,B,C, the bending

angle β and the shear modulus µ are known.

In the course of solving this (and any) boundary-value problem one must satisfy all of the field equations and

boundary conditions. Observe that boundary conditions have been prescribed pointwise at each point on the

curved surfaces, but on the flat surfaces only the stress resultants have been given. Therefore, since boundary

conditions have not been prescribed at each point on the flat surfaces, the information given above does not

fully formulate the boundary-value problem at hand. There will be many elastostatic fields satisfying the

given information. More on boundary conditions will be said in Chapter 5.

Solution: We have to enforce the kinematic requirements:

θ(±B) = ±β, r(A) = b, r(−A) = a; (v)

the traction boundary conditions on the two curved surfaces:

Trr(b, θ) = Tθr(b, θ) = Tzr(b, θ) = 0, Trr(a, θ) = Tθr(a, θ) = Tzr(a, θ) = 0 for− β ≤ θ ≤ β; (vi)

and the vanishing of the resultant force on the two flat surfaces:∫ b

a

Trθ(r,±β) dr =

∫ b

a

Tθθ(r,±β) dr =

∫ b

a

Tzθ(r,±β) dr = 0. (vii)

In addition, since we intend to enforce the equilibrium equations for the Cauchy stress field in the deformed

configuration, we must express T as a function of r, θ, z. Since we will use the constitutive equation to

determine T in terms of the principal stretches, this means the principal stretches must also be expressed as

functions of r, θ, z. Note that the expressions given in (iii) of the principal stretches are not in this form.

(a) A neo-Hookean material is incompressible and the deformation must therefore obey the field equation

det F(x) = 1. Thus by (iii),

det F = λ1λ2λ3 = r(x1)r′(x1)θ′(x2) = 1.

By separating variables we conclude that

r(x1)r′(x1) =
1

θ′(x2)
= c1 (constant),

which when integrated yields

r(x1) =
√

2c1x1 + c3, θ(x2) =
x2

c1
+ c2, (viii)

where c1, c2 and c3 are constants. According to (ii)4 the function θ(x2) is odd whence

c2 = 0. (ix)

Since the total angle subtended by the flat faces of the deformed block is 2β, we have the kinematic require-

ment (v)1 and so (viii)2 gives

c1 = B/β. (x)
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Next, it follows from (v)2, (viii)1 and (x) that

c3 = b2 − 2BA

β
. (xi)

Substituting these values of the constants c1, c2 and c3 back into (viii) gives

r(x1) =

√
b2 − 2B

Λβ
(A− x1), θ(x2) = β

x2

B
. (xii)

Observe from (iii) and (xii) that the principal stretches are now seen to be functions of x1 only:

λ1 = r′(x1), λ2 =
β

B
r(x1), λ3 = 1. (xiii)

Also, from (v)3 and (xii)1 we get the relation

b2 − a2 = 4
AB

β
, (xiv)

that involves a and b as the only unknowns. (Note that (xiv) says that the cross-sectional area 4AB of the

rectangle in Figure 4.17 equals the area βb2 − βa2 of the annular sector in the deformed configuration.)

The principal stretches can now be expressed in terms of r using (xiii)2 and incompressibility:

λ1 =
B

βr
, λ2 =

βr

B
, λ3 = 1. (xv)

It follows from (iv), (xv) and the constitutive relation T = µB− qI for a neo-Hookean material that

Trr(r) = µλ2
1 − q = µ

B2

β2r2
− q, Tθθ = µλ2

2 − q = µ
β2r2

B2
− q, Tzz(r) = µ− q, (xvi)

with all shear stress components being zero. Here q = q(r, θ, z) is the reactive pressure field. Substituting

(xvi) into the second and third of the general equilibrium equations (3.95) in cylindrical polar coordinates

gives
∂q

∂θ
= 0,

∂q

∂z
= 0,

and so we conclude the q does not depend on θ and z. The first equilibrium equation now reduces to

dTrr
dr

+
Trr − Tθθ

r
= 0. (xvii)

Substituting (xvi) into (xvii) leads to

dq

dr
= −µ B2

β2r3
− µβ

2r

B2
,

that when integrated gives

q(r) = µ
B2

2β2r2
− µβ

2r2

2B2
+ c0 (xviii)

where c0 is a constant of integration (to be determined). Substituting (xviii) into (xvi)1 gives the radial

normal stress to be

Trr = µ
B2

2β2r2
+ µ

β2r2

2B2
− c0. (xix)
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The boundary conditions Trr(a) = 0 and Trr(b) = 0 now yield

c0 = µ
B2

2β2a2
+ µ

β2a2

2B2
, (xx)

and
B2

β2a2
+
β2a2

B2
=

B2

β2b2
+
β2b2

B2
⇒ ab = B2/β2. (xxi)

The boundary conditions in (vi) involving the shear stress components hold trivially since the shear

stresses vanish at all points in the body.

Equations (xiv) and (xxi) are two algebraic equations for determining a and b. They can be solved to

find

a =

[
B

β2

√
4A2β2 +B2 − 2AB

β

]1/2

, b =

[
B

β2

√
4A2β2 +B2 +

2AB

β

]1/2

. � (xxii)

To calculate the resultant force on a flat face we first note that since the shear stresses vanish everywhere

in the body there is no resultant force on such a face in the r and z directions. To calculate the force in

the θ direction we can substitute (xviii) and (xx) into (xvi)2 and then integrate Tθθ with respect to r from

r = a to r = b. However one can calculate this more easily as follows: the equilibrium equation (xvii) can

be written as Tθθ = d
dr (rTrr) which when integrated from r = a to r = b gives∫ b

a

Tθθ dr = bTrr(b)− aTrr(a) = 0 �

since Trr(b) = Trr(a) = 0 by the traction-free boundary condition on r = a and r = b. Thus the resultant

force on each flat face is zero.

(c) The moment of the traction on an inclined face is given by

m =

∫ b

a

2CrTθθ dr =

∫ b

a

2Cµ

[
3

2

β2r3

B2
− B2

2β2r
− B2

2β2a2
r − β2a2

2B2
r

]
dr.

where 2C is the length of the block into the page. Integrating this gives the bending moment

m = 2Cµ

[
3

8

β2

B2
(b4 − a4)− B2

2β2
ln(b/a)−

(
B2

β2a2
+
β2a2

B2

)
(b2 − a2)

4

]
�

where a and b are given by (xxii).
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Chapter 5

Some Nonlinear Effects: Illustrative

Examples

Nonlinearity can lead to phenomena that are not seen in the linearized theory, phenomena

that may even be totally unexpected and counterintuitive. In this chapter we describe some

examples of this, but first we summarize the basic field equations and make a few remarks

on boundary conditions.

5.1 Summary and boundary conditions.

5.1.1 Field equations.

The strain energy function W (F) characterizing the material is given. The region RR occu-

pied by the body in the reference configuration is known and the body force field bR(x) is

prescribed on RR. (It might vanish.) The stress field S(x), deformation gradient tensor field

F(x) and deformation field y(x) must satisfy the following equations at each point x ∈ RR:

Div S + bR = o, S =
∂W

∂F
, F = Grad y. (5.1)

(Question: What about moment equilibrium?)

– Observe that the equilibrium equations

∂Sij
∂xj

+ bRi = 0, (5.2)

455
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comprise a set of three scalar partial differential equations involving the 9 unknown stress

components. Thus the equilibrium equations by themselves are not sufficient for determining

the stress field Sij(x) in the body. Stated differently, in general there will be many stress

fields that satisfy the equilibrium equations and traction boundary conditions.

– When the constitutive equations

Sij =
∂W

∂Fij
(5.3)

are also taken into account, one has an additional set of 9 scalar equations but they involve

the 9 components of the deformation gradient tensor field Fij(x).

– Finally, the kinematic equations

Fij =
∂yi
∂xj

(5.4)

provide a set of 9 more scalar equations. They involve the 3 components of the deformation

yi(x).

– Thus taken together, the system (5.2), (5.3), (5.4) comprises a set of 21 (= 3+9+9) scalar

equations for the 21 (= 9 + 9 + 3) unknown scalar fields Sij(x), Fij(x), yi(x).

– Given the deformation field y(x), one can calculate the 9 components of the deformation

gradient field using (5.4). However given a tensor field F(x) with positive determinant, the

equations
∂yi
∂xj

= Fij (5.5)

for finding yi(x) comprise a set of 9 equations for the three fields yi(x). For an arbitrary

F(x), this would be an over-determined set of equations. If a solution yi(x) is to exist,

the nine fields Fij(x) must be suitably restricted. These are known as the compatibility

conditions and were looked at previously in Problem 2.27.

– For a homogeneous material1, substituting (5.3) into (5.2) and using (5.4) leads to

Aijk`(F)
∂2yk
∂xj∂x`

+ bRi = 0, (5.6)

where

Aijk`(F) =
∂2W (F)

∂Fij∂Fk`
(5.7)

1For an inhomogeneous material the strain energy function would depend on the particle and would have

the form W (F,x). Thus the strain energy would depend on x both through F(x) and explicitly.
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are the components of the 4-tensor A that we encountered previously when looking at strong

ellipticity.

Equation (5.6) is a set of 3 scalar second-order partial differential equations involving the

3 deformation component fields yi(x).

5.1.2 Boundary conditions

Let ∂RR be the boundary of the regionRR occupied by the body in a reference configuration.

Let S1 and S2 be complementary parts of ∂RR so that ∂RR = S1 ∪S2. Then the boundary

conditions associated with the mixed boundary-value problem of elastostatics are

y(x) = ŷ(x) for all x ∈ S1, SnR = ŝ(x) for all x ∈ S2, (5.8)

where ŷ(x) and ŝ(x) are the given deformation and traction on S1 and S2 respectively.

Observe that one vector quantity y or s, or equivalently three scalar quantities y1, y2, y3 or

s1, s2, s3 are prescribed at (almost2) every point on the boundary; recall that (5.6) is a set

of three scalar second-order partial differential equations.

– In the special case where the deformation is prescribed on the entire boundary, i.e. y(x) =

ŷ(x) for all x ∈ ∂RR, one has a deformation boundary-value problem. When the deformation

is prescribed on ∂RR, the displacement is also known on ∂RR since u(x) = û(x) := ŷ(x)−x

on ∂RR. Thus this is equivalently a displacement boundary-value problem.

– In the complementary case where the traction is prescribed on the entire boundary, SnR =

ŝ(x) for all x ∈ ∂RR, one has a traction boundary-value problem. This loading is

referred to as dead loading. Observe that in dead loading, the prescribed (Piola) traction

ŝ(x) does not depend on the deformation itself. Since the body is in equilibrium, it is

necessary that ŝ(x) (and bR(x)) be such that∫
∂RR

ŝ(x) dAx +

∫
∂R

bR(x) dVx = 0. (5.9)

Question: what about moment balance?

– Configuration dependent traction boundary condition. Let R be the region occu-

pied by the body in the deformed configuration and let ∂R be its boundary. Suppose, as

an example, that a pressure −pn is applied on ∂R where the pressure p is a force per unit

2The exception is at corners on the boundary (if any).
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deformed area. The associated boundary condition is Tn = −pn for y ∈ ∂R. By using

Nanson’s formula ndAy = JF−TnRdAx and TndAy = SnRdAx, this boundary condition can

be written as

SnR = −pJF−TnR for all x ∈ ∂RR. (5.10)

Observe that the (Piola) traction on ∂RR for this loading, the right-hand side of (5.10),

depends on the deformation through JF−T . It is not dead loading.

5.2 Example (1): Torsion of a circular cylinder.

References:

1. R. S. Rivlin, Torsion of a Rubber Cylinder, Journal of Applied Physics, 18(1947), pp.

444-449.

2. R.S. Rivlin, Large elastic deformations of isotropic materials. III. Some simple prob-

lems in cylindrical polar co-ordinates, Philosophical Transactions of the Royal Society

A, 240(1948), pp. 509-525.

3. R.S. Rivlin, Large elastic deformations of isotropic materials VI. Further results in the

theory of torsion, shear and flexure, Philosophical Transactions of the Royal Society A,

242(1949), pp. 173-195.

4. R. S. Rivlin and D. W. Saunders, Section 15 of Large elastic deformations of isotropic

materials. VII Experiments on the deformation of rubber, Philosophical Transactions

of the Royal Society of London. Series A., 243(1951), pp. 34 - 288.

You are encouraged to read the paper by Rivlin and Saunders [4] where they describe

various experiments on rubber including, in Section 15, the torsion of a circular cylinder.

The regionRR occupied by the body in a reference configuration is a solid circular cylinder

of radius A and length L. It is composed of an (incompressible, isotropic) generalized neo-

Hookean material. This cylindrical body is welded onto two rigid plates at its ends. The

plate at x3 = 0 is held fixed while that at x3 = L is rotated through an angle αL about

the axis of the cylinder. Here we have in mind rectangular cartesian coordinates with the
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origin at the center of the fixed end and the x3-axis along the centerline of the cylinder. The

curved lateral boundary is traction-free.

Let (R,Θ, Z) and (r, θ, z) be the cylindrical polar coordinates of a particle in the reference

and deformed configurations respectively:

x1 = R cos Θ, x2 = R sin Θ, x3 = Z,

y1 = r cos θ, y2 = r sin θ, y3 = z.

 (i)

The associated basis vectors are {eR, eΘ, eZ} and {er, eθ, ez} respectively. A general defor-

mation that takes (R,Θ, Z)→ (r, θ, z) can be characterized by

r = r̂(R,Θ, Z), θ = θ̂(R,Θ, Z), z = ẑ(R,Θ, Z). (ii)

Here, since the end Z = 0 is held fixed, the boundary condition there requires

r̂(R,Θ, 0) = R, θ̂(R,Θ, 0) = Θ, ẑ(R,Θ, 0) = 0. (iii)

Since the other end Z = L is rigidly rotated through an angle αL about the Z-axis, the

boundary condition there necessitates

r̂(R,Θ, L) = R, θ̂(R,Θ, L) = Θ + αL, ẑ(R,Θ, L) = L. (iv)

The curved lateral boundary of the body is traction-free.

Motivated by the boundary conditions (iii) and (iv), we make the following ansatz3 that

the deformation of the body is given by

r = r̂(R,Θ, Z) = R, θ = θ̂(R,Θ, Z) = Θ + αZ, z = ẑ(R,Θ, Z) = Z, (v)

where α is the given angle of twist per unit length. Note that the region R that the body

occupies in the deformed configuration is also a circular cylinder4 of radius A and length L.

The deformation (v) satisfies the boundary conditions (iii) and (iv) automatically. In

this deformation, the cross-section at x3 = Z rotates rigidly through an angle αZ about

3If, based on this assumed form of the deformation, we can satisfy all of the field equations and boundary

conditions, then we certainly have a solution of the problem though we have no assurance that it is unique.

This approach to solving problems in solid mechanics is referred to as the “semi-inverse method”.
4This illustrates why we must not confuse a configuration of a body with the region it occupies. In the

present setting, the regions RR and R occupied by the body in the undeformed and deformed configurations

are identical, though they correspond to different configurations of the body. See Chapter 1 of Volume II for

a careful discussion of this issue.
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the x3-axis. Though each cross-section rotates rigidly, different cross-sections rotate through

different angles and so the deformation is not purely a rigid rotation. Consider the cross-

sections at x3 = Z and x3 = Z + ∆Z. If we draw an infinitesimal square on the surface of

the undeformed cylinder touching these two sections, the deformation at hand will rotate the

square rigidly through an angle αZ (along with the section at x3 = Z), and the additional

rotation α∆Z (of the section at x3 = Z + ∆Z) will shear the square in the circumferential

direction eθ (the normal to the shearing plane being ez).

We want to inquire whether (a) the assumed deformation (v) is possible, i.e. whether

the stress field associated with (v) obeys the equilibrium equations and the traction-free

boundary condition on r = A; and if it is possible, (b) to calculate the loading that must be

applied on the ends of the cylinder in order to maintain this deformation. Body forces will

be ignored.

Substituting the deformation (v) into the formula (2.77) for the deformation gradient

tensor in polar coordinates yields

F = er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ + γeθ ⊗ eZ , (vi)

where we have set

γ(r) := rα. (vii)

The expression (vi) for the deformation gradient tensor can be written in the illuminating

form

F = (I + γeθ ⊗ ez)(er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ). (viii)

Observe that the second factor in (viii) is the rotation tensor that carries the basis {eR, eΘ, eZ}
into the basis {er, eθ, ez}. The first factor is a simple shear with shearing direction eθ, glide

plane normal ez and amount of shear γ = rα.

The left Cauchy-Green tensor corresponding to (vi) is

B = FFT = I + γ2eθ ⊗ eθ + γ(eθ ⊗ ez + ez ⊗ eθ). (ix)

It can be readily verified that det B = 1 and therefore that

det F = 1. (x)

Thus the torsional deformation (v) is automatically locally volume preserving (isochoric)

and incompressibility does not impose any restrictions on it. From (ix) we get

I1(B) = tr B = 3 + γ2, I2(B) =
1

2

[
(tr B)2 − tr B2

]
= 3 + γ2. (xi)
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Exercise: Calculate the components of B in rectangular cartesian coordinates by first writing (i) and (v) as

y1 = r cos θ = R cos(Θ + αZ) = R cos Θ cosαZ −R sin Θ sinαZ = x1 cosαx3 − x2 sinαx3,

y2 = r sin θ = R sin(Θ + αZ) = R sin Θ cosαZ +R cos Θ sinαZ = x2 cosαx3 + x1 sinαx3,

y3 = x3.


Then calculate the components of B in the cylindrical polar basis {er, eθ, ez} by using the basis change formula for 2-tensors.

The body is composed of a generalized neo-Hookean material characterized by its strain

energy function

W = W (I1), W (3) = 0, W ′(I1) > 0 for I1 ≥ 3; (xii)

the positivity of W ′ is a consequence of the Baker-Ericksen inequalities together with equa-

tion (i) of Problem 2.23. The corresponding constitutive relation for the Cauchy stress is

T = −qI + 2W ′(I1)B. (xiii)

In view of (vi), the deformation is characterized by the single kinematic parameter γ = αr

and so it is natural to express the strain energy function W (I1) in terms of γ. Thus let w(γ)

be the restriction of W (I1) to a torsional deformation:

w(γ) := W (3 + γ2). (xiv)

Substituting (ix) and (xiv) into (xiii) gives the Cauchy stress tensor to be

T = (2W ′(I1)− q)I + γw′(γ)eθ ⊗ eθ + w′(γ)(eθ ⊗ ez + ez ⊗ eθ), (xv)

and so the cylindrical polar components of the Cauchy stress are5

Trr = −q + 2W ′(3 + γ2), Tθθ = −q + 2W ′(3 + γ2) + γw′(γ),

Tzz = −q + 2W ′(3 + γ2), Trθ = Trz = 0, Tθz = w′(γ).
(xvi)

Observe from (xvi) that the shear stress component Tzθ is known, and that once q has been

determined, the normal stress components will also be known.

Since the torque about the z-axis is due to the shear stress Tzθ, and this stress component

is known, we can calculate the componentmz of the moment on the end x3 = L of the cylinder

to be

mz =

∫ A

0

r Tθz 2πr dr = 2π

∫ A

0

r2w′(γ) dr
(vii)
=

2π

α3

∫ Aα

0

γ2w′(γ) dγ. �

5Observe that these expressions can be simplified by absorbing the term 2W ′(3 + γ2) into q.
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Given the twist angle α and the material w(γ), this equation gives the value of mz. This is

conditional of course on being able to satisfy all the field equations and boundary conditions,

which requires that the stress field (xvi) satisfy the equilibrium equations and the following

traction-free boundary conditions on the curved lateral boundary:

Trr = Trθ = Trz = 0 at r = A. (xvii)

Note from (xvi) that the second and third boundary conditions in (xvii) hold trivially and

so only the first has to be enforced.

It would be natural to assume that q is independent of θ and z and depends only on r.

However it is easy to show that this must necessarily be true (without having to assume it):

the equilibrium equations in cylindrical polar coordinates were given in (3.95). Substituting

(xvi) into (3.95)2 and (3.95)3 yields

∂q

∂θ
= 0,

∂q

∂z
= 0, (xviii)

which tells us that q does not depend on θ and z and so is a function of r alone: q = q(r).

All stress components are now functions of r only. Finally, the radial equilibrium equation

(3.95)1 specializes to the ordinary differential equation

dTrr
dr

+
Trr − Tθθ

r
= 0, 0 ≤ r < A. (xix)

A straightforward approach in which to proceed would be to substitute (xvi) into (xix)

to obtain a differential equation for q(r). After this has been solved for q(r), one can then

calculate Trr from (xvi) and finally enforce the boundary condition at r = A. However, since

we are not particularly interested in q(r) we shall proceed in a way that avoids having to

find it. Since the only nontrivial boundary condition is on Trr(A) it is natural to use (xix)

to solve for Trr directly if possible. To this end, observe from (xvi) that Tθθ − Trr does not

involve q:

Tθθ − Trr = γw′(γ). (xx)

Substituting (xx) into (xix) gives

dTrr
dr

= αw′(γ), 0 ≤ r < A. (xxi)

We now integrate this from an arbitrary radius r to the outer radius r = A and use the

boundary condition Trr(A) = 0:

����Trr(A)− Trr(r) =

∫ A

r

αw′(γ)dr
(vii)
=

∫ Aα

rα

w′(γ)dγ = w(Aα)− w(rα). (xxii)
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Thus the equilibrium equations and boundary conditions have been satisfied and the radial

stress field is given by

Trr(r) = w(rα)− w(Aα), 0 ≤ r ≤ A. (xxiii)

Therefore we conclude that the assumed deformation (v) does indeed satisfy all of the re-

quirements of the problem.

Observe from (xvi)1 and (xxiii) that

q(r) = 3W ′(3 + γ2)− w(rα) + w(Aα), 0 ≤ r ≤ A,

and note, as mentioned previously in Chapter 4.5, that q(r) is a field, not a constant (in

general).

Exercise: Suppose the shaft was hollow with its inner and outer boundaries being traction-free. Can you

satisfy both boundary conditions Trr(A) = 0 and Trr(B) = 0 (where B is the inner radius)? If not, how

would you proceed?

Next we calculate the loading on the ends (having already calculated the torque above).

Observe from (xvi) that due to the non-zero stress Tzz there is a normal traction on the

the ends of the cylinder. Thus we now calculate the resultant force on a cross-section. This

is simply the integral of Tzz over the cross-section. From (xvi) we see that Tzz = Trr and so

the axial stress is

Tzz = w(rα)− w(Aα), 0 ≤ r ≤ A. (xxiv)

The axial force to be applied on a cross-section can now be calculated:

fz =

∫ A

0

Tzz 2πrdr
(xxi),(iii)

=
2π

α2

∫ Aα

0

γ
[
w(γ)− w(Aα)

]
dγ. � (xxv)

Exercise: Use symmetry arguments to infer that the components fx and fy of the resultant force and the

components mx and my of the resultant torque vanish.

5.2.1 Discussion.

– When the preceding results are specialized to the neo-Hookean material W (I1) = µ
2
(I1−3),

one has w(γ) = µ
2
γ2 and so

mz
(�)
=

2πµ

α3

∫ Aα

0

γ3 dγ =
π

2
µαA4, (xxvii)
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fz
(xxv)
=

πµ

α2

∫ Aα

0

[γ3 − A2α2γ] dγ = −π
4
µA4α2. (xxviii)

– Our analysis in this section was limited to a generalized neo-Hookean material. For a gen-

eral isotropic incompressible material characterized by the strain energy function W (I1, I2),

one can show that

fz = −2πα2

∫ A

0

r3

(
∂W

∂I1

+ 2
∂W

∂I2

)∣∣∣∣
I1=I2=3+α2r2

dr, (xxix)

mz = 4πα

∫ A

0

r3

(
∂W

∂I1

+
∂W

∂I2

)∣∣∣∣
I1=I2=3+α2r2

dr. (xxx)

Again, since the torsional deformation involves a single parameter γ, it is convenient to

express the strain energy function W (I1, I2) in terms of it. Thus let w(γ) be the restriction

of W (I1, I2) to a torsional deformation:

w(γ) := W (3 + γ2, 3 + γ2), (xxxi)

where we have used (xi). One can show that equation (xxx) can be written in terms of w as

mz = 2π

∫ A

0

r2w′(αr) dr =
2π

α3

∫ Aα

0

γ2w′(γ) dγ, (xxxii)

which coincides with what we got for the generalized neo-Hookean material except that here

w is defined by (xxxi).

– If a normal force was not applied on the two end plates, then the plates would displace

in the x3-direction and so the length of the cylinder would change. In this case one would

consider a deformation of the form

r = r̂(R,Θ, Z) = R, θ = θ̂(R,Θ, Z) = Θ + αΛZ, z = ẑ(R,Θ, Z) = ΛZ, (xxxiii)

where the stretch Λ is to be determined (from the zero resultant axial force condition).

Exercise: In Problem 5.3 you are asked to carry out the calculations underlying the preceding remark and

determine Λ.

– Recall that according to the classical linearized theory of elasticity, in order to subject a

circular cylindrical shaft to a torsional deformation one need only apply a torque about its

axis; an axial force is not required. It is not surprising that the finite deformation theory

says that one must also apply an axial force. Recall from Section 4.6.1 that in order to

maintain a finite simple shear deformation one must apply both shear and normal stresses.
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Locally, at each point of the shaft, a torsional deformation is just a simple shear together

with a rigid rotation. The need for an axial force here is simply a manifestation of the need

for normal stresses in simple shear.

– To see another consequence of the presence of normal stresses in simple shear, consider a

large thin sheet that contains a small planar crack in its interior. Far from the crack the

sheet is subjected to a simple shear deformation in the plane of the sheet with the direction

of shearing being parallel to the crack – a so-called Mode II loading. If the crack was not

present, the sheet would undergo a simple shear deformation and in particular, there would

be a normal stress acting on the plane where we intend there to be a crack. If we now

introduce a crack with traction-free faces, it follows that in addition to sliding, the crack

faces will either move apart and so the crack will open up, or the crack faces will press

together and be in contact. Which of these occurs depends on whether the normal stress in

the direction perpendicular to the crack faces is tensile or compressive in the absence of the

crack. In contrast, in the linearized theory, the crack faces in Mode II simply slide parallel

to each other.

– Finally we remark that normal stresses are also present in the shear flow of non-Newtonian

fluids. If such a fluid is placed between two vertical coaxial circular cylindrical tubes with

a closed horizontal base, and one of the tubes is rotated about its axis, the fluid will climb

up along the tubes (in addition to rotating). This is because, in order to maintain a shear

flow, a suitable normal stress must be applied, and such a stress was not applied at the free

surface of the fluid in the aforementioned experiment. Thus the fluid moves in the vertical

direction.

Exercises: Problems 5.2, 5.3, 5.4, 5.5, 5.14, 5.15 and 5.16.

5.3 Example (2): Deformation of an Incompressible

Cube Under Prescribed Tensile Forces.
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Equilibrium configurations of a cube: Consider an elastic body that occupies a unit cube

in a reference configuration. It is composed of an (incompressible, isotropic) neo-Hookean

material6 characterized by the strain-energy function

W =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3), µ > 0. (i)

The principal Cauchy stresses are related to the principal stretches by the constitutive rela-

tion

τi = λi
∂W

∂λi
− q = µλ2

i − q, i = 1, 2, 3, (no sum on i), (ii)

where q arises due to the incompressibility constraint.

Each of the six faces of the cube is subjected to a uniformly distributed normal traction

whose resultant is a tensile force F (> 0). This is illustrated in Figure 5.1 where the uniform

distribution of normal traction is not shown, only the resultant forces are. We wish to deter-

mine the resulting pure homogeneous deformation of the body. This problem is frequently

referred to as the “Rivlin cube problem”.

It should be noted that in the problem we are considering it is the force F , or equivalently

the Piola traction, that is prescribed and so we have dead loading on the entire boundary

of the body. The associated Cauchy (true) tractions on the faces of the cube will depend

on the areas of the faces in the deformed configuration. One could alternatively consider

the problem in which the Cauchy tractions are prescribed on each face; that is a different

problem to the one we study here.

6In Problem 10.3 you will generalize this to an arbitrary isotropic material.
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Figure 5.1: A unit cube in the reference configuration. All six of its faces are subjected to uniformly

distributed normal tractions whose resultant force, on each face, has magnitude F . The figure only shows

the resultant forces and not the distributed tractions.

Because of the symmetry of the body, the loading and the material, one may be inclined

to assume that the deformation will also be symmetric. However, we wish to look at the

possibility of not-necessarily symmetric pure homogeneous deformations, and so we shall not

assume a priori that the cube deforms symmetrically. If it does, then we will find this to be

the case. Thus suppose that the cube undergoes a pure homogeneous deformation

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3. (iii)

Incompressibility requires

λ1λ2λ3 = 1. (iv)

The deformed faces of the body have areas λ2λ3, λ3λ1 and λ1λ2 and so the prescribed bound-

ary conditions tell us that the Cauchy stress components are

τ1 = T11 =
F

λ2λ3

(iv)
= Fλ1, τ2 = T22 =

F

λ3λ1

(iv)
= Fλ2, τ3 = T33 =

F

λ1λ2

(iv)
= Fλ3. (v)

The problem at hand is to find the principal stretches λi, given F (and µ). The Piola stress

tensor (field throughout the body) is

S = S(x) = Fe1 ⊗ e1 + Fe2 ⊗ e2 + Fe3 ⊗ e3 for x ∈ RR. (vi)

It does not depend on the deformation. Note that

S(x)nR(x) = ŝR(x) for x ∈ ∂RR. (via)

Since the deformation is homogeneous, and assuming the reaction pressure field q to be

constant, the stress field will also be homogeneous throughout the body. Therefore (ignoring
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body forces) the equilibrium equations are satisfied automatically. The boundary conditions

have already been accounted for in (v) above. All that remains is to enforce the constitutive

law (ii):

T11 = µλ2
1 − q, T22 = µλ2

2 − q, T33 = µλ2
3 − q. (vii)

Combining (vii) with (v) and using (iv) leads to

Fλ1 = µλ2
1 − q, Fλ2 = µλ2

2 − q, Fλ3 = µλ2
3 − q. (viii)

Equations (viii) and (iv) provide four (nonlinear) algebraic equations involving λ1, λ2, λ3

and q.

In order to solve these equations systematically it is convenient to first eliminate q. Thus,

subtracting the second of (viii) from the first, and similarly the third from the second leads

to
[F − µ(λ1 + λ2)](λ1 − λ2) = 0,

[F − µ(λ2 + λ3)](λ2 − λ3) = 0.

 (ix)

Equations (iv) and (ix) are to be solved for the principal stretches λ1, λ2, λ3. There are three

cases to consider:

Case (1): Suppose first that all of the λ’s are distinct: λ1 6= λ2 6= λ3 6= λ1. Then (ix) yields

F = µ(λ1 + λ2), F = µ(λ2 + λ3),

which implies that λ1 + λ2 = λ2 + λ3 whence

λ1 = λ3.

This contradicts the assumption that the λ′s are all distinct. Thus there is no solution in

which the three λ’s are distinct. (If such a solution had existed, it would have described an

orthorhombic configuration of the body.)

Case (2): Suppose next that all of the λ’s are equal: λ1 = λ2 = λ3. This describes a cubic

configuration. In this case equations (ix) are automatically satisfied and (iv) tells us that

λ1 = λ2 = λ3 = 1. (x)

Thus one solution of the problem, for every value of the applied force F , is given by (iii),

(x). This corresponds to a configuration of the body in which, geometrically, it remains a

unit cube, but one that is under stress.
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Figure 5.2: Graph of h(λ) = λ+ λ−2 versus λ.

Case (3): Finally, consider the remaining possibility that two λ’s are equal and different to

the third. This describes a tetragonal configuration. Suppose that

λ1 = λ2 = λ (say), λ3 6= λ. (xi)

Incompressibility (iv) together with (xi) requires

λ3 = λ−2, λ 6= 1, (xii)

while the pair of equations (ix) reduce to F = µ(λ2 + λ3) = µ(λ+ λ−2), i.e.

λ+ λ−2 = f where we have set f := F/µ. (xiii)

Given f , if (xiii) can be solved for one or more real roots λ > 0, then (iii), (xi), (xiii)

provides the corresponding solution to the problem7. Whether (xiii) can be solved or not

depends on the value of f .

In order to examine the solvability of (xiii), let h(λ) := λ + λ−2 for λ > 0, and observe

that h→∞ as λ→ 0+ and h→∞ as λ→∞. Moreover, h′(λ) = 1−2λ−3 and so h′(λ) < 0

for 0 < λ < 21/3, h′(λ) = 0 for λ = 21/3, and h′(λ) > 0 for λ > 21/3. Thus the graph of h(λ)

versus λ is as shown in Figure 5.2. The minimum value of h is h(21/3) = 3/22/3.

From Figure 5.2 and (xiii) we see that

7There are of course additional configurations corresponding to permutations of the λ’s, e.g. λ3 = λ1 =

λ, λ2 = λ−2.
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if f < 3/22/3, equation (xiii) has no roots,

if f = 3/22/3, equation (xiii) has one root λ = 21/3, and

if f > 3/22/3, equation (xiii) has two roots.

For a solution with λ > 1 one has λ1 = λ2 > 1, λ3 < 1 and so the deformed body has

two relatively long equal edges and one relatively short unequal edge, i.e. the block has a

flattened shape as depicted by the upper inset in Figure 5.3. On the other hand λ < 1

describes configurations in which λ1 = λ2 < 1, λ3 > 1 where the deformed body has two

relatively short equal edges and one relatively long unequal edge, i.e. the block has a pillar-

like shape as in the lower inset.

Thus in summary, there are two types of configurations which the body can adopt. In

one, the body remains a unit cube in the deformed configuration and this is possible for

all values of the applied force F . The other is possible only if F/µ ≥ 3/22/3 and here the

deformed body is no longer a cube. Rather, it has a tetragonal shape where two sides are

equal and the third is different, and there are two possibilities of this form corresponding to

the two roots of (xiii).

Figure 5.3: Equilibrium configurations of the cube: the symmetric (cubic) configuration corresponds to

the line λ = 1. The curve corresponds to the asymmetric (tetragonal) configurations given by (xiii).

Both types of solutions are depicted in Figure 5.3. The cubic solution corresponds to

the horizontal line λ = 1 which extends indefinitely to the right. The tetragonal solution

corresponds to the curve (which is the same curve as in Figure 5.2 but with the axes switched).
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The figure shows that

if f < 3/22/3 the body must be in the cubic configuration,

if f > 3/22/3 the body can be in either a cubic or tetragonal configuration

there being two configurations of the latter type.

Thus the solution to the equilibrium problem is non-unique.

Stability of the cube: The lack of uniqueness prompts us to examine the stability of the

various equilibrium configurations.

Remarks on the stability of an equilibrium configuration: An alternative approach

for studying equilibrium configurations of an elastic solid/structure is via the minimization

of the potential energy. One considers all geometrically possible deformation fields z(x), and

minimizes the potential energy Φ over this class of functions. If the potential energy has an

extremum at say z(x) = y(x) then y(x) describes an equilibrium configuration of the body.

If this extremum corresponds to a minimum of the potential energy, then we presume that

this configuration is stable.

Suppose that an elastic body occupies a region RR in a reference configuration and

that the body force bR(x) is prescribed on RR, the deformation ŷ(x) is prescribed on a

portion S1 of its boundary, and the Piola traction (“dead load”) ŝ(x) is prescribed on the

remaining portion S2 of the boundary; here ∂RR = S1 ∪ S2. A kinematically possible

deformation field (“a virtual deformation field”) is any smooth enough vector field z(x)

defined on RR that obeys all geometric constraints. One geometric requirement is that z(x)

coincide with the prescribed deformation on S1. If there are internal kinematic constraints

such as incompressibility, then these too must be enforced. The potential energy associated

with a geometrically possible deformation field z(x) is

Φ =

∫
RR

W (∇z) dVx −
∫
RR

bR · z dVx −
∫
S2

ŝ · z dAx; (xiv)

Appendix 5.3.1 on page 479 explains how this expression arises. The first term on the right-

hand side describes the elastic energy stored in the body while the next two terms correspond

to the potential energy of the loading. One seeks to minimize this functional over the set of

all geometrically possible deformation fields z(x).

In the case of the tri-axially loaded incompressible cube, dead-loading is prescribed on
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the entire boundary and so one can replace S2 in (xiv) by ∂RR and write

Φ =

∫
RR

W (∇z) dVx −
∫
∂RR

ŝ · z dAx
(via)
=

∫
RR

W (∇z) dVx −
∫
∂RR

SnR · z dAx. (xv)

We have also omitted the body force term. Since the deformation is not prescribed anywhere

on ∂RR, the only requirement of an admissible deformation z(x) is that due to incompress-

ibility. Thus (xv) is to be minimized over the set of all smooth enough vector fields z(x)

subject to det∇z = 1.

Rather than minimizing this over the set of all geometrically possible kinematic fields

suppose that we minimize over the smaller class of all geometrically possible homogeneous

deformation fields: z(x) = Fx where F is an arbitrary constant tensor with unit determinant.

(In Problem 10.4.8 you will consider all virtual deformations.) Then the potential energy

specializes to

Φ =

∫
RR

W (F) dVx −
∫
∂RR

SnR · Fx dAx =

∫
RR

[
W (F) − S · F

]
dVx,

where we have used the divergence theorem in getting to the second equality and S is given

by (vi). Since F and S are constants, this leads to

Φ = W (F)− S · F, (xvi)

which is to be minimized over all tensors F with det F = 1.

Finally, suppose that we further limit attention to geometrically possible deformation

fields of the even more restricted form

z1 = λ1x1, z2 = λ2x2, z3 = λ3x3, λ1λ2λ3 = 1; (xvii)

here λ1, λ2, λ3 are arbitrary subject only to (xvii)4 and λk > 0. The potential energy (xvi)

(for the neo-Hookean material with S given by (vi)) now takes the explicit form

µ

2
(λ2

1 + λ2
2 + λ2

3 − 3)− F (λ1 + λ2 + λ3). (xviii)

We are to minimize this over all (λ1, λ2, λ3) subject to the constraint λ1λ2λ3 = 1. We

can simplify this by eliminating λ3 using the incompressibility equation. After dropping an

inessential constant, dividing by µ and letting f = F/µ as before, we can write the function

to be minimized as

Φ(λ1, λ2) =
1

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 )− f (λ1 + λ2 + λ−1

1 λ−1
2 ). (xix)
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This function is to be minimized over all λ1 > 0, λ2 > 0.

For convenience let

Φα =
∂Φ

∂λα
, Φαβ =

∂2Φ

∂λα∂λβ
, [P ] =

 Φ11 Φ12

Φ12 Φ22

 , D = det [P ]. (xx)

The equilibrium configurations correspond to the extrema of the potential energy function

Φ(λ1, λ2). They are found by setting

Φ1 = Φ2 = 0.

An equilibrium configuration is locally stable if the corresponding extremum is a local mini-

mum of Φ(λ1, λ2). To study the character of an extremum one evaluates the Hessian matrix

[P ] at that extremum. The extremum is a local minimum if the Hessian matrix is positive

definite, i.e. if both eigenvalues of [P ] are positive; it is a local maximum if both eigenvalues

of [P ] are negative; and it is a saddle if one eigenvalue of [P ] is positive and the other is

negative. Thus

An extremum is a local minimum if D > 0, Φ11 > 0,

An extremum is a local maximum if D > 0, Φ11 < 0,

An extremum is a saddle if D < 0.

Differentiating (xix) yields

Φ1 = λ1 − λ−3
1 λ−2

2 − f(1− λ−1
2 ) = [λ1 + λ−1

1 λ−1
2 − f ](λ2 − λ−2

1 )λ−1
2 ,

Φ2 = λ2 − λ−3
2 λ−2

1 − f(1− λ−2
2 λ−1

1 ) = [λ2 + λ−1
2 λ−1

1 − f ](λ1 − λ−2
2 )λ−1

1 .

 (xxi)

Setting Φ1 = Φ2 = 0 leads to a pair of algebraic equations. There are four cases to consider

since each equation involves two factors, each of which could vanish. For example the

vanishing of the terms in both square brackets leads to case (b) below, while the vanishing

of the terms in the first square bracket and the second parenthesis gives case (d). In this

way we find the set of equilibrium configurations to be

(a) λ1 = λ2 = 1, (λ3 = 1),

(b) λ1 + λ−2
1 = f, λ1 = λ2, (λ3 = λ−2

1 ),

(c) λ1 + λ−2
1 = f, λ3 = λ1, (λ2 = λ−2

1 ),

(d) λ2 + λ−2
2 = f, λ2 = λ3, (λ1 = λ−2

2 ).
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By using the incompressibility condition λ1λ2λ3 = 1, we see that solution (a) corresponds

to the cubic configuration λ1 = λ2 = λ3 = 1; solution (b) corresponds to the tetragonal

configuration λ1 = λ2 6= λ3; solution (c) corresponds to the tetragonal configuration λ1 =

λ3 6= λ2; and solution (d) corresponds to the tetragonal configuration λ2 = λ3 6= λ1. Thus

the equilibrium configurations corresponding to solutions (a) and (b) are the same ones we

found earlier, while solutions (c) and (d) are permutations of solution (b).

Since (c) and (d) are simply permutations of (b), we will shortly ignore them (as we

did before). However, in order to better understand these extrema we shall plot energy

contours on the λ1, λ2-plane, and when we do this we will be forced to confront all of the

extrema. Thus for a short while longer we will continue to consider all extrema (a) − (d).

The λ1, λ2-plane with these seven extrema marked is shown in Figure 5.4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

a

Figure 5.4: Extrema of the potential energy function Φ(λ1, λ2) on the λ1, λ2-plane. The point a corresponds

to solution (a); points b1, b2 to solution (b); points c1, c2 to solution (c); and points d1, d2 to solution (d).

The figure has been drawn for f = 3. Figures 5.5 and 5.6 tell us which of these are local minima, (local

maxima and saddle points).

To examine the stability of these equilibrium configurations we next calculate the second
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Figure 5.5: Energy contours of potential energy Φ(λ1, λ2) on the λ1, λ2-plane for f = 3. The energy has

a local maximum at point 1 (corresponding to point a in Figure 5.4). It has saddle points at 7, 5 and 6

(corresponding to b1, c1, d1 in Figure 5.4). The energy has local minima at 2, 3 and 4 (corresponding to

b2, c2, d2 in Figure 5.4). Figure provided by Haiqian Yang (student in 2.074 in 2020).

derivatives of Φ:
Φ11 = 1 + 3λ−4

1 λ−2
2 − 2f λ−3

1 λ−1
2 ,

Φ22 = 1 + 3λ−4
2 λ−2

1 − 2f λ−3
2 λ−1

1 ,

Φ12 = 2λ−3
1 λ−3

2 − fλ−2
1 λ−2

2 .

 (xxii)

Considering the cubic configuration, we set λ1 = λ2 = λ3 = 1 in (xxii) and (xx)4 which

gives

Φ11 = 2(2− f), Φ22 = 2(2− f), Φ12 = 2− f, D = 3(2− f)2.

Therefore by the statement above (xxi), this extremum is a local minimum and the cubic

configuration is stable if (D > 0, i.e. f 6= 2 and) Φ11 > 0:

f < 2.

(It is a local maximum for f > 2.) At a tetragonal solution, say (b), we have (λ3 = λ−2 and)

λ1 = λ2 = λ 6= 1, f = λ+ λ−2, (xxiii)

and to examine its stability we evaluate (xxii) and (xx)4 at (xxiii):

Φ11 = (1− λ−3)2 > 0, Φ22 = (1− λ−3)2, Φ12 = −(1− λ−3)λ−3,

D = λ−3(1− λ−3)2 (λ3 − 2) .
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Figure 5.6: Energy contours of the potential energy at three values of force. For f = 1 it has a single

energy well at the cubic configuration. The force f = 1.93 corresponds to the intermediate range in Figure

5.3. The energy has four energy wells corresponding to the cubic and three flattened configurations. When f

exceeds 2, the cubic configuration is no longer a local minimum. Figure provided by Haiqian Yang (student

in 2.074 in 2020).

By the statement above (xxi), this extremum is a minimum and the tetragonal configuration

is stable if D > 0:

λ3 > 2 ⇒ λ > 21/3. (xxiv)

(It is a saddle point when it is not a minimum.)

Figure 5.5 shows the energy contours of the potential energy Φ(λ1, λ2). The figure has

been drawn for f = 3. At this value of force, the energy has a local maximum at point 1 (cor-

responding to point a in Figure 5.4); saddle points at 7, 5 and 6 (corresponding to b1, c1, d1

in Figure 5.4); and energy wells (local minima) at 2, 3 and 4 (corresponding to b2, c2, d2 in

Figure 5.4). The saddle points b1, c1 and d1 correspond to unstable pillar like configurations,

while the local minima b2, c2 and d2 correspond to flattened stable configurations.

Figure 5.6 shows the energy contours at several values of f . For f = 1 it has a single

energy well and it occurs at the cubic configuration. Since 3/22/3 < 1.93 < 2, the force
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1 2 3 4 5 6

Figure 5.7: Graphs of the potential energy φ(λ) = Φ(λ, λ) versus λ for three fixed values of the force f , one

> 2, the second in the interval (3/22/3, 2) and the third < 3/22/3. The leftmost local minimum of the curve

corresponding to f = 3 is in fact a saddle point of the energy Φ(λ1, λ2) on the two-dimensional λ1, λ2-plane.

f = 1.93 corresponds to the intermediate range in Figure 5.3, and the energy in Figure 5.6

has four energy wells corresponding to the cubic and three flattened configurations. When

f exceeds 2, the cubic configuration is no longer a local minimum.

Figure 5.7 shows a plot of the potential energy

φ(λ) := Φ(λ1, λ2)
∣∣∣
λ1=λ,λ2=λ

(xix)
=

1

2
(2λ2 + λ−4)− f(2λ+ λ−2)

versus the stretch λ for three different values of force. This is the slice of the graph of

Φ(λ1, λ2) on the λ1, λ2-plane along the straight line λ2 = λ1. In keeping with Figure 5.6,

observe that the extremum at λ = 1 is an energy well (local minimum) for f < 2 while it

is a local maximum for f > 2. For 3/21/3 < f < 2 the energy has two energy wells, one at

λ = 1 and the other at a value of λ > 21/3, and a local maximum between them. For f > 2

the graph in Figure 5.7 shows two energy wells with a local maximum at λ = 1. We know

from the preceding analysis that what appears to be an energy-well at the smaller stretch

here is in fact a saddle point when viewed on the λ1, λ2-plane. It merely appears to be a

minimum along the particular slice of the energy shown in Figure 5.7.

Finally we return to considering solutions (a) and (b) only and ignore the various permu-

tations. Figure 5.8 depicts the solutions again, now with the solid line/curve corresponding

to the stable solutions and the dashed line/curve the unstable ones. For f < 3/21/3 we have a

unique stable cubic configuration. For f > 2 we have a unique (to within permutations) sta-

ble tetragonal configuration; see also Figure 5.4. On the intermediate range 3/21/3 < f < 2

there is one stable cubic configuration and one stable tetragonal configuration. (Strictly,
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there are 3 asymmetric solutions since permutations of the λi’s should be considered.) Ob-

serve that λ is > 1 for the stable tetragonal configurations and these, as noted previously,

correspond to configurations where the deformed body is flattened.

Figure 5.8: The stable and unstable solutions are depicted by the solid and dashed curves respectively.

Remark: We were supposed to minimize the potential energy (xvi) over all F with det F = 1.

However we only considered admissible deformations of the form (xvii) where F was coaxial

with S, i.e. F and S were diagonal in the same basis. When the more restricted analysis

we carried out claims an equilibrium state to be a local minimizer, it may or may not be a

minimizer under the wider class of all deformations. However if the restricted analysis shows

an equilibrium state to be not a local minimizer, then it is not a minimizer even under the

wider class of all deformations. Therefore equilibrium states that we found to be unstable

are indeed unstable. Those we found to be stable may not be stable in the context of a wider

class of admissible deformations.

Remark: The analogous plane stress problem was analyzed by Kearsley [2] in the context of

the experiments of Treloar. In this case the stress-free body is a thin sheet and it is subjected

to equal in-plane biaxial forces F , the other two faces of the sheet being traction-free. See

references given at the beginning of this section (including the monograph by Ericksen [1]).

The neo-Hookean material model does not exhibit asymmetric configurations in this case

but a Mooney-Rivlin material does; see Problem 5.7.

Exercises: Problems 5.6 and 5.7.
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5.3.1 Appendix: Potential energy of an elastic body subjected to

conservative loading:

A brief video on potential energy can be found here.

Consider a motion y(x, t). By taking the scalar product of the equation of motion

Div S+bR = ρRv̇ with the particle velocity v = ẏ, and integrating over RR, one can readily

show for an elastic body that∫
∂RR

SnR · v dAx +

∫
RR

bR · v dVx =
d

dt

∫
RR

(
1

2
ρRv · v +W

)
dVx, (i)

where ρR is the mass density in the reference configuration. This is a statement of the fact

that the rate at which work is done on the body by the traction on ∂RR and the body force on

RR equals the rate at which the kinetic energy and the potential energy due to deformation

(the strain energy) increase. When the loading is conservative, the rate at which the loading

does work can also be expressed as the rate of increase of an associated potential energy.

Suppose that the deformation is prescribed on a part S1 of the boundary to be ŷ(x) ,

and the Piola traction is prescribed on the complementary part S2 to be ŝ(x). Thus for all

t,

y(x, t) = ŷ(x) for x ∈ S1, S(x, t)nR = ŝ(x) for x ∈ S2. (ii)

A body force bR(x) is applied on RR. Observe that the prescribed deformation ŷ, the

traction ŝ and the body force bR have all been assumed to be time-independent8. Moreover,

note that the loading ŝ and bR are independent of the deformation – they are said to be

“dead loadings”. Differentiating (ii)1 with respect to t shows that the particle velocity v

vanishes on S1. Thus we can write (i) as∫
S2

ŝ · v dAx +

∫
RR

bR · v dVx =
d

dt

∫
RR

(
W +

1

2
ρRv · v

)
dVx, (iii)

having also used (ii)2. Since ŝ and bR (as well as S2 and RR) are time independent, and

v = ẏ, this can be written as

d

dt

∫
S2

ŝ · y dAx +
d

dt

∫
RR

bR · y dVx =
d

dt

∫
RR

(
W +

1

2
ρRv · v

)
dVx, (iv)

8This does not imply that the body is in equilibrium. It could, for example, be vibrating while the loading

remains constant.

https://www.dropbox.com/sh/8l7pn0tv6cvsp5l/AAAfhpGJkW7EKlFoTyhHBpFHa?dl=0
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which yields

d

dt

[∫
RR

1

2
ρRv · v dVx +

∫
RR

W dVx −
∫
S2

ŝ · y dAx −
∫
RR

bR · y dVx
]

= 0. (v)

This states that the sum of the kinetic and potential energies is conserved, the first term

being the kinetic energy and the next three terms the potential energy Φ:

Φ :=

∫
RR

W dVx −
∫
S2

ŝ · y dAx −
∫
RR

bR · y dVx. (vi)

The first term in (vi) is the elastic potential energy of the body due to deformation and the

next two terms represent the potential energy of the loading.

Remark: More generally, suppose instead of being a dead load, the body force bR is merely

conservative in the sense that there is an associated potential ϕ(x,y) such that

bR = −∂ϕ
∂y

.

The special case of a dead load corresponds to ϕ(x,y) = −bR(x) ·y. The rate of working of

the body force, the second term on the left-hand side of (iii), can now be written as∫
RR

bR · v dVx = −
∫
RR

∂ϕ

∂y
· ẏ dVx = −

∫
RR

∂ϕ

∂t
dVx = − d

dt

∫
RR

ϕdVx.

Similarly if the traction ŝ is conservative with an associated potential ψ(y,x),

ŝ = −∂ψ
∂y

, (vii)

the first term on the left-hand side of (iii) can be written as∫
S2

ŝ · v dAx −
d

dt

∫
S2
ψ dAx.

The expression (vi) for the total potential energy now reads

Φ =

∫
RR

(W + ϕ) dVx +

∫
S2
ψ dAx. (viii)

Remark: A potential energy of the form ψ(x,y) does not cover all prescribed tractions of

interest since we are sometimes concerned with loadings of the form ŝ(x,y,F), e.g. the

pressure loading in (5.10). See Section 5.4.2 of Ogden [2] for a discussion on how to handle

such loadings.
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5.4 Example (3): Growth of a Cavity.

References:

1. A.N. Gent and P.B. Lindley, Internal rupture of bonded rubber cylinders in tension,

Proceedings of the Royal Society (London), A249, (1958), 195-205.

2. J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,

Philosophical Transactions of the Royal Society (London), A306, (1982), 557-611.

3. H. Wang and S. Cai, Drying-induced cavitation in a constrained hydrogel, Soft Matter,

11(2015), pp. 1058-1061.

See also Problems 10.4.3, 10.4.6 and 10.1.

A body occupies a hollow spherical region of inner radius A and outer radius B in a

reference configuration. It is composed of a generalized neo-Hookean material. A uniformly

distributed radial tensile dead load (Piola traction) of magnitude σ is applied on the outer

surface of the body while the inner surface remains traction-free. We wish to determine the

deformation and stress fields in the body. Our particular interest is in the radius a of the

deformed cavity as a function of the applied stress σ.

!

"

#

$

Figure 5.9: A hollow sphere in a reference configuration (left) and in the deformed configuration (right).

A uniform radial dead load is applied on the outer surface of the sphere.
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Let (R,Θ,Φ) and (r, θ, φ) be the spherical polar coordinates of a particle in the refer-

ence and deformed configurations respectively with associated basis vectors {eR, eΘ, eΦ} and

{er, eθ, eφ}. The geometric, material and loading symmetries, suggest that we assume the

deformation to have the spherically symmetric form

r = r̂(R,Θ,Φ) = r(R), θ = θ̂(R,Θ,Φ) = Θ, φ = φ̂(R,Θ,Φ) = Φ. (i)

Thus the displacement of a particle is in the radial direction and its magnitude depends only

on the radial coordinate. Moreover, {eR, eΘ, eΦ} = {er, eθ, eφ}. In Chapter 2.7.2 we derived

formulae for the components of the left Cauchy-Green deformation tensor B in spherical

polar coordinates. Substituting (i) into (2.87) yields

B =
[
r′(R)

]2
er ⊗ er +

[
r(R)

R

]2

(eθ ⊗ eθ + eφ ⊗ eφ). (ii)

Since B is diagonal in the basis {er, eθ, eφ} we can read off the principal stretches to be

λr = r′(R), λθ = λφ = r(R)/R,

having assumed r′(R) > 0. Since the material is incompressible, λrλθλφ = λrλ
2
θ = 1 and so

it is convenient to work in terms of the circumferential stretch which we denote by λ. Then

λθ = λφ = λ :=
r

R
, λr = λ−2 = r′. (iii)

Incompressibility requires

λrλθλφ = r′
r2

R2
= 1. (iv)

Integrating (iv) gives r3 = R3 + constant. Let a denote the as-yet-unknown radius of the

cavity in the deformed configuration. Then, since r = a when R = A we can write this as

r(R) =
[
R3 + a3 − A3

]1/3
. (v)

The value of the constant a is to be determined. We could have written (v) directly by

equating the volume between the spherical surfaces of radii A and R in the reference config-

uration to the volume between the surfaces of radii a and r in the deformed configuration:
4
3
π(R3 − A3) = 4

3
π(r3 − a3). The outer radius of the deformed body, b = r(B), is

b =
[
B3 + a3 − A3

]1/3
. (vi)

The deformation r = r(R) is completely determined by (i) and (v) once we determine a.
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Turning to the constitutive relation we first note from (iii) that

I1 = tr B = λ2
r + λ2

θ + λ2
φ = 2λ2 + λ−4. (vii)

From (ii), (iii) and the constitutive relation (4.67) for a generalized neo-Hookean material,

we find the Cauchy stress components to be

Trr = −q + 2λ−4W ′(I1), Tθθ = Tφφ = −q + 2λ2W ′(I1), Trθ = Tθz = Tzr = 0, (viii)

where q arises from the incompressibility constraint. Note that the stress components are

fully determined by (viii) when q(r, θ, φ) and a are known.

We assume that the stress components are functions of the radial coordinate r alone,

which, by (viii), implies that q depends only on r: q = q(r). The equilibrium equations

(3.98) in spherical polar coordinates now reduce to the single equation

dTrr
dr

+
2

r
(Trr − Tθθ) = 0. (ix)

The direct way in which to proceed is to substitute (viii) into (ix) to obtain a differential

equation for q(r), and after it has been solved, to then calculate the stresses from (viii).

However, since we are not particularly interested in q, and the boundary conditions are

given on the radial stress, it is more natural to work with Trr.

Observe from (viii) that Trr − Tθθ does not depend on q. In fact,

Trr − Tθθ = 2(λ−4 − λ2)W ′(I1), (x)

and so we can write (ix) as
dTrr
dr

=
4

r
(λ2 − λ−4)W ′(I1). (xi)

While we can integrate both sides with respect to r, it turns out to be preferable to integrate

the right-hand side with respect to λ instead. This requires us to convert the left-hand side

to dTrr/dλ. We achieve this by changing variables, first from r to R using r = r(R), and

then from R to λ using λ = r(R)/R:

dTrr
dr

=
1

r′
dTrr
dR

=
1

r′
Rr′ − r
R2

dTrr
dλ

=
1− λ3

R

dTrr
dλ

having also used λ = r/R and r′ = λ−2 in the last step. Therefore from the two preceding

equation we obtain

dTrr
dλ

=
4(λ− λ−5)

1− λ3
W ′(I1) where I1 = 2λ2 + λ−4. (xiii)
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It is convenient to express the strain energy as a function of the stretch λ, i.e. to define

a function w(λ) by

w(λ) := W (I1)
∣∣∣
I1=2λ2+λ−4

. (xiv)

Differentiating (xiv) with respect to λ gives

w′(λ) = 4(λ− λ−5)W ′(I1), (xv)

and so we can finally write (xiii) as

dTrr
dλ

=
w′(λ)

1− λ3
. (xvi)

On integrating (xvi) from the inner boundary to the outer boundary we get

Trr(b)− Trr(a) =

∫ λb

λa

w′(λ)

1− λ3
dλ =

∫ λa

λb

w′(λ)

λ3 − 1
dλ, (xvii)

where λa and λb are the circumferential stretches at the corresponding boundaries:

λa :=
a

A
, λb :=

b

B

(vi)
=

[
1− A3

B3
+
a3

B3

]1/3

. (xviii)

As for the boundary conditions, we are told the inner boundary is traction-free:

Trr = 0 at r = a. (xix)

We are also told that there is a radial Piola stress SrR(B) = σ at the outer boundary.

The corresponding radial Cauchy stress Trr(b) can be calculated using the general tensor

relation between S and T. Alternatively, since the area of the outer surface in the reference

configuration is 4πB2 while the corresponding area in the deformed configuration is 4πb2 we

must have 4πB2SrR(B) = 4πb2Trr(b) and so the boundary condition at the outer surface is

Trr = σ
B2

b2

(xviii)
=

σ

λ2
b

at r = b. (xx)

On substituting (xix) and (xx) into (xvii),

σ = λ2
b

∫ λa

λb

w′(λ)

λ3 − 1
dλ. (xxi)

By (xviii), λa and λb are functions of the unknown deformed cavity radius a which is

therefore the only unknown in equation (xxi). Thus given σ, equation (xxi) constitutes an

algebraic equation for a.
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Figure 5.10: Variation of the deformed cavity radius a with applied stress σ for a neo-Hookean material.

The figure has been drawn for the case A/B = 0.3.

To illustrate the behavior predicted by (xxi) consider a neo-Hookean material. In this

case

W =
µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

⇒ w(λ) =
µ

2
(λ−4 + 2λ2 − 3).

Substituting this into (xxi) and evaluating the integral leads to

σ

2µ
=

[
1

λb
+

1

4

1

λ4
b

− 1

λa
− 1

4

1

λ4
a

]
λ2
b . (xxii)

This equation together with (xviii) tells us how the cavity radius a in the deformed config-

uration depends on the stress σ.

Equation (xxii) with (xviii) is of the form σ/2µ = h(a). One can show that h(a) increases

monotonically with a, and moreover that h(A) = 0 and h(a)→∞ as a→∞. Thus, for each

given value of the stress σ > 0, the equation σ/2µ = h(a) can be solved for a unique root a.

The graph in Figure 5.10 shows the variation of the cavity radius a/B with the stress σ/2µ

according to (xxii); the figure has been drawn for a cavity of initial radius A/B = 0.3.

Thus far, this problem in the nonlinear theory, has not been qualitatively different to

the corresponding problem in linear elasticity. However, if we plot graphs of a versus σ

for progressively decreasing initial cavity radii A, the family of curves obtained shows an

interesting trend as seen in Figure 5.11. As A/B → 0, the graph of a/B versus σ/2µ
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a/B
A /B = 0.15A /B = 0.3

A /B = 0.5

1.25

C

a B

Figure 5.11: Variation of the deformed cavity radius a with applied stress σ for a neo-Hookean material.

The different curves correspond to different values of the undeformed cavity radius A. Observe that as

A/B → 0 these curves approach the curve C.

approaches the curve C. Note that C is composed of two segments: the straight line segment

a = 0 for 0 < σ/2µ ≤ 1.25 and the curved portion for σ/2µ ≥ 1.25. The curve C describes the

growth of a cavity whose radius is infinitesimal in the undeformed configuration. According

to it, for σ/2µ ≤ 1.25 the cavity radius in the deformed configuration is also zero. However

when σ/2µ > 1.25, the cavity has a positive radius and has opened. Thus “cavitation”

occurs at the critical stress σ/2µ = 1.25.

To examine this analytically, we first determine the curved portion of C by taking the

limit of the right-hand side of (xxii) as A/B → 0 at fixed a/B > 0. Observe from (xviii)

that in this limit

λa =
a

A
=

a

B

B

A
→∞, λb →

[
1 +

a3

B3

]1/3

. (xxiii)

Substituting these limiting values into (xxii) gives

σ

2µ
= λb +

1

4

1

λ2
b

=
5/4 + a3/B3

(1 + a3/B3)2/3
,

which is the equation of the curved portion of C. To find σcr, i.e. the point at which C



5.4. EXAMPLE (3): CAVITATION 487

departs from the horizontal axis, we let a/B → 0 in this equation which yields

σcr

2µ
= 5/4. (xxiv)

This is indicated in Figure 5.11.

Remark: Observe from (xxiii) that λb → 1 in the limit a/B → 0 and therefore from (xx)

that

Tcr = σcr.

In summary, we have shown for a neo-Hookean material that a cavity that is infinites-

imally small in the undeformed configuration remains infinitesimally small as the stress σ

increases until it reaches the critical value σcr. When σ exceeds σcr, the cavity opens and

grows (i.e. a > 0) in the manner described by the curved portion of C. This describes the

phenomenon of cavitation.

We now return to the generalized neo-Hookean material (from the neo-Hookean material)

and concern ourselves with (xxi). On taking the limit A/B → 0 at fixed a/B > 0 and keeping

(xxiii) in mind, (xxi) yields

σ = λ2
b

∫ ∞
λb

w′(λ)

λ3 − 1
dλ where λb =

[
1 +

a3

B3

]1/3

. (xxv)

This relates the deformed radius a of a cavity that was infinitesimal in the reference config-

uration to the stress σ. To find the critical stress σcr for cavitation we let a/B → 0 in (xxv)

to obtain the formal expression

σcr =

∫ ∞
1

w ′(λ)

λ3 − 1
dλ. (xxvi)

As noted in the exercise below, this expression for the cavitation stress continues to hold for

an arbitrary isotropic incompressible material (with w(λ) defined by (xxix) below). Observe

that the integrand in (xxvi) has a potential singularity at λ = 1 unless w ′(1) behaves

suitably. Moreover, since the range of this integral is infinite, its convergence depends on

the behavior of w(λ) as λ → ∞. If w(λ) ∼ λm for large λ, the integral will converge if

m < 3 and not otherwise. This is essentially Ball’s condition (4.125). Thus for example

for the one-term Ogden material (4.143), cavitation will not occur, i.e. the critical stress

at cavitation will be infinite, if the constitutive parameter n ≥ 3. In summary, for certain

elastic materials, i.e. certain functions W , the integral in (xxvi) will not converge and so an

infinitesimally small void will remain infinitesimally small for all values of applied stress. For
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other materials (this integral will converge and) an infinitesimally small cavity will begin to

grow when σ exceeds the critical value given by (xxvi).

Remark: Ball [2] studied this problem using energy minimization which therefore addresses

the issue of stability as well. Moreover, he studied this as a bifurcation problem for an

(initially) solid sphere.

Exercise: Arbitrary incompressible isotropic material: The preceding analysis (for a generalized neo-Hookean

material) can be carried over quite easily to an arbitrary incompressible isotropic material. Rather than

working with W (I1, I2) work with the form W (λ1, λ2, λ3) and use the constitutive relation (4.67) to show

that

Trr = λ1
∂W

∂λ1
− q = λ−2 ∂W

∂λ1

∣∣∣∣
λ1=λ−2,λ2=λ3=λ

− q, (xxvii)

Tθθ = Tφφ = λ2
∂W

∂λ2
− q = λ

∂W

∂λ2

∣∣∣∣
λ1=λ−2,λ2=λ3=λ

− q. (xxviii)

Let w(λ) be the restriction of the strain energy function to deformations of the sort at hand:

w(λ) := W (λ−2, λ, λ). (xxix)

Show that

Trr − Tθθ = −1

2
λw′(λ), (xxx)

and that equation (xxvi) continues to hold except that w is now defined by (xxix).

Exercises: Problems 5.10, 5.11, 5.14, 5.17.

5.5 Example (4): Limit point instability of a thin-

walled hollow sphere.

The limit point instability of a thin-walled hollow sphere (or cylinder) refers to the loss

of monotonicity of the function p(λ) that gives the pressure p as a function of the mean

circumferential stretch λ. Since we studied the deformation of a hollow spherical body in

Section 5.4, it is convenient to make use of those results here, specializing them to the thin-

walled case9. The two differences, (at least to start with), between the problem in Section

5.4 and that considered here is that one, the loading here is an internal pressure p per unit

deformed area applied on the inner boundary with the outer boundary being traction-free,

and two, the body is composed of an arbitrary isotropic incompressible elastic material. (We

9Alternatively one can derive the results pertinent to this case directly as in the next problem in Section

5.6.
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will want to specialize the results to a Mooney-Rivlin material, and so it is not sufficient to

limit attention to a generalized neo-Hookean material.)

We start be rewriting the relevant equations from Section 5.4 (making use of the results in

the Exercise at the end of that section): the deformation is given by either of the equivalent

forms

r3(R) = R3 + a3 − A3 = R3 + b3 −B3, (i)

where a and b are the inner and outer radii in the deformed configuration; and the circum-

ferential stretch λ(R) is

λ(R) =
r(R)

R
. (ii)

From the constitutive relation we obtain

Tθθ − Trr =
1

2
λw′(λ), (iii)

and the equilibrium equations reduce to

dTrr
dλ

= − w′(λ)

λ3 − 1
, (iv)

where

w(λ) := W (λ−2, λ, λ). (v)

Here W (λ1, λ2, λ3) is the strain energy function characterizing the incompressible isotropic

material. The boundary conditions in the problem considered here are

Trr(a) = −p, Trr(b) = 0. (vi)

Integrating (iv) from r = a to r = b and using the boundary conditions (vi) leads to

p =

∫ λa

λb

w′(λ)

λ3 − 1
dλ, (vii)

where λa and λb are the circumferential stretches at the inner and outer surfaces respectively:

λa = a/A, λb = b/B. (viii)

Equation (vii) together with (viii) and b3 − B3 = a3 − A3 provides a relation between the

pressure p and the deformed inner radius a.

We now specialize the preceding results to the case where the body is thin-walled, i.e.

when the wall thickness T = B − A is small compared to the mean radius R = (A+B)/2:

ε := T/R � 1. (ix)
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The inner and outer undeformed radii can be expressed in terms of R and ε as

A = R− T/2 = R(1− ε/2), B = R + T/2 = R(1 + ε/2). (x)

If λ = λ(R) is the mean circumferential stretch we can approximate (vii) as

p ≈ w′(λ)

λ
3 − 1

(λa − λb).

Thus our immediate task is to find an approximate expression for λa − λb for small ε. We

shall do this by deriving expressions of the form λa = λ+εα+O(ε2) and λb = λ+εβ+O(ε2).

From (i), together with (ii) and (viii), we have

λ3
a =

a3

A3
=
R3

A3
(λ3 − 1) + 1, λ3

b =
b3

B3
=
R3

B3
(λ3 − 1) + 1, (xi)

where λ = λ(R) is the stretch at the radius R. Now evaluate (xi)1 at the mean radius R

where the stretch is λ, use (x)1 and drop terms smaller than O(ε):

λa
(xi)1
=

[
R

3

A3
(λ

3 − 1) + 1

]1/3

(x)1
=

[(
1− ε

2

)−3

(λ
3 − 1) + 1

]1/3

=

=

[(
1 +

3ε

2

)
(λ

3 − 1) + 1

]1/3

+ O(ε2) = λ

[
1 +

3ε

2

λ
3 − 1

λ
3

]1/3

+ O(ε2) =

= λ+
λ

3 − 1

2λ
2 ε+ O(ε2). (xii)

Likewise from (xi)2 and (x)2 one obtains

λb = λ− λ
3 − 1

2λ
2 ε+ O(ε2). (xiii)

We can now approximate (vii) as

p =
w′(λ)

λ
3 − 1

(λa − λb) + O(ε2)
(xii),(xiii)

= ε
w′(λ)

λ
2 + O(ε2). (xiv)

Therefore to leading order, the pressure p is related to the mean circumferential stretch λ by

p = p(λ) := ε
w′(λ)

λ
2 =

T

R

w′(λ)

λ
2 . (xv)
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Figure 5.12: Pressure p versus the mean circumferential stretch λ for a thin-walled spherical shell of a

Mooney-Rivlin material. The figure has been drawn for α = 0.75 and 0.91

To illustrate the response of the thin-walled shell, consider a Mooney-Rivlin material:

W =
µ

2

[
α(λ2

1 + λ2
2 + λ2

3 − 3) + (1− α)(λ−2
1 + λ−2

2 + λ−2
3 − 3)

]
, µ > 0, 0 < α < 1.

The associated energy function w(λ) defined by (v) is

w(λ) =
µ

2

[
α(λ−4 + 2λ2 − 3) + (1− α)(λ4 + 2λ−2 − 3)

]
,

and so from (xv) we find that

pR

T
=
w′(λ)

λ
2 = 2µ(λ− λ−5

)(1− α + αλ
−2

). (xvi)

Figure 5.12 shows a plot of the pressure p versus the circumferential stretch λ based on

(xvi) for two values of α. For α = 0.75, the pressure increases monotonically with increasing

stretch but the curvature is seen to change. The curve for α = 0.91 is quite different (once

λ exceeds about 1.25). In particular, the relation between p and r/R loses monotonicity –

the so-called limit point instability. The curve now has two rising branches connected by

a declining branch. The multiple branches of the curve indicate the existence of multiple

equilibrium configurations if the pressure is in a suitable range. The configuration associated
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with the left-most branch has a relatively small deformed radius while the configuration

associated with the right-most branch has a significantly larger radius. Transition between

these configurations occurs at the local maximum and minimum.

Remark 1: Before leaving this problem we shall calculate the radial and circumferential stress components

Trr and Tθθ. For convenience we shall drop the overline on the mean stretch. First, considering the thick-

walled shell, the radial stress is found by integrating (iv) from an arbitrary radius to the outer boundary

leading to

Trr(r) = −
∫ r/R

λb

w′(λ)

λ3 − 1
dλ, (xvii)

and then the circumferential stress is given by (iii) and (xvii) to be

Tθθ(r) =
1

2
λw′(λ)−

∫ r/R

λb

w′(λ)

λ3 − 1
dλ. (xviii)

Approximating the expression (xvii) for the radial stress gives

Trr = − w′(λ)

λ3 − 1
(λ− λb) + O(ε2)

(xiii)
= −1

2
ε
w′(λ)

λ2
+ O(ε2)

(xiv)
= −p

2
+ O(ε2). (xix)

Observe from (xvi) that

w′(λ) =
pλ2

ε
+ O(ε). (xx)

Finally we turn to the circumferential stress Tθθ. Substituting (xix) and (xx) into (iii) yields

Tθθ = Trr +
1

2
λw′(λ) = −p

2
+
pλ3

2ε
+ O(ε) =

pλ3

2ε
+ O(1). (xxi)

The familiar expression for Tθθ in a thin-walled spherical shell involves the mean radius r and wall

thickness t in the deformed configuration. Setting λ = r/R and ε = T/R in (xxi) gives

Tθθ ≈
pr3

2TR2
. (xxii)

However by incompressibility, the volumes 4πR2T and 4πr2t of the undeformed and deformed shell must be

equal whence

R2T = r2t. (xxiii)

Observe from this and λ = r/R that

t = T/λ2. (xxiv)

Using (xxiii) in (xxii) gives the circumferential stress in the familiar form

Tθθ ≈
pr

2t
, (xxv)

where r and t are the mean radius and wall thickness in the deformed configuration.

In summary, given the geometric parameters R and T , the constitutive description of the material w(λ)

and the applied loading p, one solves (xv) for the stretch λ, determines the deformed radius and wall-thickness

from (ii) and (xxiv), and calculates the circumferential stress Tθθ from (xxv).
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Remark 2: Volume is the work-conjugate kinematic variable corresponding to pressure. Accordingly if v

denotes the volume contained within the deformed spherical shell, it is related to the stretch by

v =
4

3
πr3 =

4

3
πR3λ3.

Let ŵ(v) = w(λ). Since w denotes the energy per unit reference volume, the total elastic energy in the shell

is

Ê(v) = 4πR2T ŵ(v).

It is readily seen by differentiating the two preceding equations that

Ê ′(v) =
dE

dv
= 4πR2T

dŵ(v)

dv
= 4πR2T

dw(λ)

dλ

dλ

dv
= 4πR2T w′(λ)

1

4πR3λ2
=
T

R

w′(λ)

λ2

(xv)
= p.

Thus we have

p = p̂(v) = Ê ′(v). (xxvi)

Remark 3: In the thin-walled limit, where the pressurized sphere is like an inflated membrane, it is natural

to absorb the wall-thickness into the other variables. Accordingly let W(λ) denote the elastic energy per

unit deformed area so that then, since w is the energy per unit reference volume,

(4πr2)W = (4πR2T )w ⇒ W =
Tw(λ)

λ2
. (xxvii)

Also, let τ be the circumferential (hoop) force per unit deformed length – the “surface tension”. Since Tθθ is

the circumferential force per unit deformed area, they are related by

(2πr)τ = (2πrt)Tθθ ⇒ τ = tTθθ. (xxviii)

Therefore we can rewrite Tθθ = pr/(2t) as

p =
2τ

r
. (xxix)

This is the well-known Young-Laplace equation for a spherical bubble relating the pressure p, radius r and

surface tension τ . Moreover the equation p = (T/R)w′(λ)/λ2 can be rewritten as τ = (λ2W)′/(2λ), i.e.

τ =W +
λW ′

2
. (xxx)

In the special case where the energy per unit deformed area W is a constant (corresponding to w(λ) =

constant λ2), then τ = W. This is a second commonly used relation in the study of bubbles: the surface

tension equals the surface energy per unit area. The results (xxix) and (xxx) are derived directly in Problem

5.1.

5.6 Example (5): Two-Phase Configurations of a Thin-

Walled Tube.

References:
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This example provides a toy model for a phase transition where a body can exist in one

of several phases, and transform between them when the (mechanical or thermal) loading is

varied. This is because different phases are “preferred” (stable) at different load-levels. Of-

ten, for some intermediate range of loading, multiple phases will10 co-exist. An introduction

to this topic can be found in Chapter 7.

Consider a long thin-walled circular cylindrical tube that has length L, mean radius R

and wall thickness T (� R) in a stress-free reference configuration. The tube is composed of

an incompressible isotropic elastic material and is subjected to an internal pressure p (per

unit deformed area). In the deformed configuration the tube has (an unknown) mean radius

r and wall thickness t. We assume a state of plane strain so that particles do not undergo

any displacement in the axial direction; in particular, this implies that the length of the tube

in the deformed configuration is also L.

Let λ = r/R denote the mean circumferential stretch. Then the principal stretches are

λR = λ−1, λΘ = λ, λZ = 1 where λ =
r

R
, (i)

having used the plane strain assumption to write λZ , and incompressibility to write λR. Let

w(λ) be the restriction of the strain energy function to deformations of the present form, i.e.

let

w(λ) := W ∗(λ−1, λ, 1). (ii)

10One could say that the Rivlin cube problem in Section 5.3 involves cubic and tetragonal phases, though

one does not encounter configurations in which both of these phases co-exist.
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The pressure-stretch relation p = p(λ) can be shown to be

p = p(λ) =
T

R

w′(λ)

λ
. (iii)

This can be derived by specializing the solution to the thick-walled tube to the case T/R� 1

(as we did for the thin-walled sphere in Section 5.5, the resulting equation there being (xv)

on page 491), or directly, as in the appendix at the end of this section on page 505.

The total elastic energy per unit length of the tube is E = 2πRTw since w is the strain

energy per unit reference volume and the reference volume of the tube per unit length is

2πRT . Since volume is work-conjugate to pressure, it is natural to convert the kinematic

variable of choice from λ→ v where

v := πr2 (i)4
= πR2λ2 (iv)

is the volume enclosed by a unit length of the tube in the deformed configuration. We now

express the energy E and the pressure p as functions of v:

Ê(v) := 2πRT w(λ)
∣∣∣
λ=(v/πR2)1/2

, p̂(v) := p(λ)
∣∣∣
λ=(v/πR2)1/2

. (v)

Differentiating (v)1 with respect to v and using (iii) and (v)2 leads to the following pressure-

volume relation (please carry out this calculation):

p = p̂(v) = Ê ′(v). (vi)

Observe that the pressure is the gradient of the energy with respect to volume reflecting the

work-conjugacy of p and v.

Given a specific strain energy function, one can work out the details above and obtain

an explicit expression for the pressure-volume relation p = p̂(v). For example for the neo-

Hookean strain energy function,

W ∗(λ1, λ2, λ3) =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3),

we find

w(λ)
(ii)
=

µ

2
(λ−2 + λ2 − 2), Ê(v)

(iv),(v)
= µπRT

(
πR2

v
+

v

πR2
− 2

)
.

Then (vi) takes the explicit form

p = p̂(v) = µ
T

R

{
1−

(
πR2

v

)2
}
.
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For certain strain energy functions such as the neo-Hookean and Gent models, the pressure is

found to be a monotonically increasing function of volume. Consequently given the pressure

p, there is a unique corresponding value of volume v.

However for certain other strain energy functions this relation is non-monotonic, an

example of which is the following 3-term Ogden strain energy function that models the

particular latex rubber material studied by Kyriakides and Chang [3]:

W ∗ =
3∑

n=1

µn
αn

(λαn1 + λαn2 + λαn3 − 3),

where

µ1 = 617 kPa, µ2 = 1.86 kPa, µ3 = −9.79 kPa, α1 = 1.30, α2 = 5.08, α3 = −2.00.

For this material, as the volume v increases, the pressure p first increases until it reaches a

p
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Figure 5.13: Schematic graph of p = p̂(v) = Ê′(v) versus v for a certain class of strain energy functions.

The pressure reaches a (local) maximum value pM at v = vM and a (local) minimum value pm at v = vm.

value pM, it then decreases until it reaches a value pm, and finally increases again. Figure 5.13

depicts this schematically where the (local) maximum value of pressure p = pM is attained

at v = vM, and the (local) minimum value of pressure p = pm is attained at v = vm.

We shall now discuss the consequences of having such a rising-falling-rising pressure-

volume curve.

Loading by a “soft device”: pressure controlled loading. If the prescribed value

of pressure is < pm or > pM we see from Figure 5.13 that there is a unique corresponding

value of v. However if the pressure lies in the intermediate range pm < p < pM , there are
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Figure 5.14: Three values of volume, v1, v2 and v3, correspond to the given pressure p∗. The tube has

a relatively small radius in the configuration associated with v1 and a large radius in the configuration

associated with v3. The configuration associated with v2 is unstable.

three values of v, say v1, v2 and v3, corresponding to the three branches of the pressure-

volume curve as depicted in Figure 5.14. Thus the solution to the equilibrium problem is

non-unique. Additional considerations must be taken into account in order to resolve this

non-uniqueness.

Equilibrium solutions that are observed in the laboratory must be stable. Thus it is

natural to look at the stability of these multiple equilibrium states. In order to examine this,

one must describe more carefully the manner in which the loading is controlled. Suppose that

the pressure is controlled – often called loading by a “soft device”. This can be achieved, for

example, by inflating the tube with an incompressible fluid using a piston carrying a weight.

Changing the magnitude of the weight changes the pressure. The potential energy of the

elastic tube and a soft loading device is

Φ(v; p) = Ê(v)− pv, v > 0. (vii)

(In Section 5.3 we discussed the potential energy of an elastic body in a general setting.)

At each value of p, equation (vii) defines the potential energy Φ for all positive v. The

particular values of v corresponding to equilibrium configurations are given by the extrema

of Φ(· ; p); moreover, we say that such an equilibrium configuration is stable against small

disturbances (locally stable) if the extremum is a local minimum. To determine the stable

equilibria we first calculate the first and second variations, δΦ and δ2Φ, of Φ:

δΦ = Ê ′(v) δv − p δv =
[
Ê ′(v)− p

]
δv, δ2Φ = Ê ′′(v)

(
δv
)2
. (viii)
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Equilibria are found by requiring the first variation δΦ to vanish for all variations δv:

δΦ =
[
Ê ′(v)− p

]
δv = 0 ⇒ p = Ê ′(v)

(vi)
= p̂(v). (ixa)

Given p, this tells us how to determine v. An equilibrium configuration is locally stable if the

second variation (evaluated at that configuration) is positive for all (nontrivial) variations

δv:

δ2Φ = Ê ′′(v)
(
δv
)2
> 0 ⇒ Ê ′′(v) > 0 ⇒ p̂ ′(v) > 0. (ixb)

Thus according to (ixb), the p, v-curve must be rising at a stable equilibrium configuration.

This implies that the configuration associated with v2 in Figure 5.14 is unstable, but those

associated with v1 and v3 are both stable.

Figure 5.15 illustrates this in terms of the potential energy function: Φ(· ; p) has a single

energy-well (local minimum) for p < pm corresponding to the first branch of the p, v-curve;

a single energy-well for p > pM corresponding to the third branch of the p, v-curve; and for

pm < p < pM, it has two energy-wells, one, v1, associated with the first branch and the other,

v3, the third branch. The local maximum between them, at v2, is associated with the second

branch.

Observe that there are two (locally) stable configurations corresponding to each value of

pressure in the range pm < p < pM and so the solution to the equilibrium problem (continues

to be) nonunique11.

Figure 5.15: Potential energy Φ(v; p) versus volume v at three values of the pressure. Though the middle

figure shows the energy-well on the left being lower than that on the right, this need not be the case; it

depends on the value of p ∈ (pm, pM); see Figure 5.19.

One approach to understanding this non-uniqueness is to consider the process by which

the tube is pressurized instead of considering a strictly equilibrium problem. Say the pressure

11As can be seen from Figure 5.8, this also occurs in the Rivlin cube problem studied in Section 5.3 for

applied force values in the range 3/22/3 < F/µ < 2.
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in the tube is p∗ as shown in Figure 5.16. The observed value of the corresponding volume

v may depend on the process by which the pressure p∗ is reached: one might reasonably

expect based on Figure 5.16 that if the pressure had increased monotonically from 0 to p∗ the

associated volume would be v1; but that if instead the pressure had decreased monotonically

from some large value to p∗, the associated volume would be v3.
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Figure 5.16: A process during which the pressure increases from 0 to p∗; and a second process during

which the pressure decreases from some large value to p∗. The first process necessarily starts on the first

branch of the p, v-curve, while the second process necessarily starts on the third branch of the p, v-curve.

An alternative approach would be to require an equilibrium configuration to be a global

minimizer of the potential energy. Suppose there are two local minimizers v1 and v3 as shown

in Figure 5.17:

p = p̂(v1) = p̂(v3), p̂ ′(v1) > 0, p̂ ′(v3) > 0. (x)

In the current problem, the global minimizer would be the solution with the smaller value of

potential energy. Thus we must compare Φ(v3; p) = Ê(v3)−pv3 with Φ(v1; p) = Ê(v1)−pv1:

Φ(v3; p)− Φ(v1; p) =
[
Ê(v3)− pv3

]
−
[
Ê(v1)− pv1

]
=

∫ v3

v1

p̂(v) dv − p(v3 − v1), (xi)

where in getting to the second equality we used p̂(v) = Ê ′(v). The first term represents the

area below the p, v-curve between v1 and v3 (see Figure 5.17) while the second is the area

of the rectangle with base v3 − v1 and height p. Therefore in terms of the areas shown in

Figure 5.17,

Φ(v3; p)− Φ(v1; p) = Area A − Area B. (xii)

Thus Φ(v1; p) < Φ(v3; p) when AreaA > AreaB in which case the configuration associated

with v1 is the global minimizer. On the other hand Φ(v3; p) < Φ(v1; p) when AreaA < AreaB
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Figure 5.17: Areas A and B of two lobes cut off by the p = constant line.
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Figure 5.18: The Maxwell pressure p0 cuts off lobes of equal area.

and so the configuration associated with v3 is the global minimizer in this case. It is readily

shown that there is a unique value of pressure, say p0, at which these areas are equal; see

Figure 5.18. It is called the Maxwell pressure and is given by∫ v3(p0)

v1(p0)

p̂(v) dv = p0

[
v3(p0)− v1(p0)

]
. (xiii)

Here the functions v1(p) and v3(p) are the inverses of p̂(v) when it is restricted to the first

and third branch respectively. Thus we conclude that the solutions v = v1 and v = v3 are

the respective global minimizers for p < p0 and p > p0. This is illustrated by the bold curves

in Figure 5.18.

Figure 5.19 shows plots of the potential energy Φ(v; p) = Ê(v) − pv versus v at three

different values of p ∈ (pm, pM); see Figure 5.15 for plots corresponding to 0 < p < pm and

p > pM. The energy-well associated with the first branch of the p, v-curve is lower than that

associated with the third branch for pm < p < p0, and the reverse is true for p0 < p < pM.

Loading by a “hard device”: volume controlled loading. In this case the total
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Figure 5.19: Potential energy Φ(v; p) = Ê(v) − pv versus volume v at three values of the pressure p ∈
(pm, pM); see Figure 5.15 for plots corresponding to 0 < p < pm and p > pM
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Figure 5.20: Volume controlled loading: There is only one homogeneous equilibrium configuration of the

tube corresponding to any value v∗ of the prescribed volume. If vM < v∗ < vm as in the figure, this

configuration is associated with the falling branch of the pressure-volume curve and it is unstable.

volume within the tube is controlled – often called loading by a “hard device”. This can

be achieved, for example, by inflating the tube with an incompressible fluid using a screw:

moving the screw in or out would increase or decrease the prescribed volume.

As can be seen from Figure 5.20, there is a unique value of pressure corresponding

to any value v∗ of the prescribed volume. The solutions corresponding to v∗ < vM and

v∗ > vm are associated with the two rising branches of the pressure-volume curve, and they

are stable against small disturbances. The solution associated with the intermediate range

vM < v∗ < vm is associated with the falling branch of the pressure-volume curve, and it is

unstable; see Ericksen [1] for a proof of this. Thus if the prescribed volume lies in the range

vM < v∗ < vm there is no stable solution to the problem within the class of homogeneous

solutions we have considered (non-existence).

However, since we control the volume in this experiment, we are free to prescribe a value

such as v∗ shown in Figure 5.20. What configuration does the tube take, given that the

homogeneous configuration is unstable?
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Figure 5.21: A configuration of the tube in which a length L−s of the tube has a radius r1 (where v1 = πr2
1

is associated with the first branch of the p, v-curve); and the remaining length s of the tube has a radius r3

(where v3 = πr2
3 is associated with the third branch of the p, v-curve);

Based on the experiments of Kyriakides and Chang [3], it turns out that when v∗ ∈
(vM , vm) the tube adopts a piecewise homogeneous deformed configuration as depicted in

Figure 5.21: a configuration that involves two segments, each homogeneous, but different

to the other (co-existence). One homogeneous segment is associated with the first branch

of the pressure-volume curve and has some volume per unit length v1(< v∗); and the other

homogeneous segment is associated with the third branch of the pressure-volume curve with

some volume per unit length v3(> v∗). See Figure 5.22, and also Figure 5.23. These two

values of volume, v1 and v3, average out to give the value v∗. Thus the equilibrium con-

figuration of the tube involves lengths of two different radii (with a transition zone joining

them) as depicted in Figure 5.21. In our one-dimensional model we treat the transition zone

as a sharp (jump) discontinuity.

When v∗ is close to vM (see Figure 5.20), most of the tube will be associated with the

first branch; and when v∗ is close to vm, most of it will be associated with the third branch.

As the value of v∗ increases from vM to vm, more and more of the tube transforms from the

first to the third branch and the segment associated with the first branch gets monotonically

shorter. See Kyriakides and Chang [3] and Kyriakides and Lee [4] for experiments that

exhibit this behavior.

To make this quantitative, now consider piecewise homogeneous configurations of the

tube, as depicted in Figure 5.21, in which a length s of the tube is associated with the third

branch of the pressure-volume curve and has volume (per unit length) v3. The rest of the

tube of length L − s is associated with the first branch of the pressure-volume curve and

has volume (per unit length) v1. Let the (prescribed) total volume in the tube be V∗ = v∗L.
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Figure 5.22: Sequence of photographs provided by Stelios Kyriakides (see also Kyriakides and Chang [3])

showing a “two-phase” equilibrium configuration of an inflated latex rubber tube with the larger radius

phase growing at the expense of the other.

Then

(L− s)v1 + sv3 = V∗ = v∗L. (xiv)

(We can add a constant to account for any volume inside the loading device if we wish.)

Since

s

L
=
v∗ − v1

v3 − v1

and v3 > v1, it follows that s will increase as v∗ increases (assuming v1 and v3 remain

constant). In fact, when v∗ increases from v1 to v3, the length s will increase from 0 to L.

Thus the length of the segment of the tube associated with branch-3 increases as stated in

the preceding paragraph.
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The potential energy of the system is12

Φ(v1, v3, s) = Ê(v1)(L− s) + Ê(v3)s, (xv)

there being no potential energy associated with the hard loading device. We are to minimize

(xv) subject to the constraint (xiv). The constraint can be accounted for in the usual way

through a Lagrange multiplier q and so we consider the modified function:

Ψ(v1, v3, s) = Ê(v1)(L− s) + Ê(v3)s− q[(L− s)v1 + sv3 − V∗]. (xvi)

On calculating the first variation δΨ we obtain

δΨ = Ê ′(v1)(L− s) δv1 − Ê(v1) δs+ Ê ′(v3)s δv3 + Ê(v3) δs−

−q(L− s) δv1 + qv1 δs− qs δv3 − qv3δs =

=
[
Ê ′(v1)− q

]
(L− s) δv1 +

[
Ê ′(v3)− q

]
s δv3 +

[
Ê(v3)− Ê(v1)− q(v3 − v1)

]
δs.

(xvii)

Thus on setting δΨ = 0 for all variations δv1, δv3 and δs we find

Ê ′(v1)− q = 0, Ê ′(v3)− q = 0, Ê(v3)− Ê(v1)− q(v3 − v1) = 0. (xviii)

This gives

q = Ê ′(v1) = Ê ′(v3), ⇔ q = p̂(v1) = p̂(v3), (xix)

and

Ê(v3)− Ê(v1)− q(v3 − v1) = 0 ⇔
∫ v3

v1

p̂(v) dv = q(v3 − v1). (xx)

Equation (xix) tells us that the pressures p̂(v1) and p̂(v3) in the two parts of the tube are

equal, and that the value of the Lagrange multiplier q is in fact this pressure. From (xx)

we conclude that q = p0 is the (“equal-area”) Maxwell pressure and therefore that v1 and v3

have the values

v1 = v0
1 = v1(p0), v3 = v0

3 = v3(p0), (xxi)

shown in Figure 5.18. The length s of the tube associated with the third branch is given by

(xiv) with v1 = v0
1 and v3 = v0

3:

s =
v∗ − v0

1

v0
3 − v0

1

L. (xxii)

12Since the configuration of interest is not homogeneous we have to calculate the potential energy of the

entire length of the tube. In contrast previously, we only needed to consider the potential energy per unit

length.
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These solutions are relevant for v0
1 < v∗ < v0

3. As the prescribed volume v∗ increases from v0
1

to v0
3 equation (xxii) tells us that s increases from 0 to L, and so the length of the segment

associated with the third branch gradually increases as more and more of the tube transforms

from the first to the third branch.

To examine the stability of these configurations we calculate the second variation δ2Ψ

using (xvii):

δ2Ψ = Ê ′′(v1)(L− s) (δv1)2 −
[
Ê ′(v1)− q

]
δs δv1

+Ê ′′(v3)s (δv3)2 +
[
Ê ′(v3)− q

]
δs δv3 +

[(
Ê ′(v3)− q

)
δv3 −

(
Ê ′(v1)− q

)
δv1)

]
δs.

(xxiii)

Evaluating the second variation at the extrema given by (xviii)

δ2Ψ
∣∣∣
at extremizer

(xxiii),(xviii)
= Ê ′′(v1)(L− s) (δv1)2 + Ê ′′(v3)s (δv3)2 =

= p̂′(v1)(L− s) (δv1)2 + p̂′(v3)s (δv3)2.

It follows that δ2Ψ ≥ 0 since p̂ ′(v1) > 0, p̂ ′(v3) > 0 and therefore the equilibrium configura-

tions (xviii) are locally stable.

In summary, we see from Figure 5.18 that for 0 < v∗ < v0
1 there is only the homogeneous

solution involving the first branch; for v∗ > v0
3 there is only the homogeneous solution in-

volving the third branch; and for vM < v∗ < vm there is only the piecewise homogeneous

solution involving the first and third branches. However for values of volume in the interme-

diate range v0
1 < v∗ < vM we have a homogeneous solution associated with the first branch

and a piecewise homogeneous solution. Likewise for values of volume in vm < v∗ < v0
3 we

have a homogeneous solution associated with the third branch and a piecewise homogeneous

solution.

The experiments of Kyriakides and Chang [3] and Kyriakides and Lee [4] show that, as

the prescribed volume is increased, the pressure rises along the first branch of the pressure-

volume curve all the way until the pressure reaches the value pM. Two-phase configurations

then emerge and the pressure drops to the Maxwell pressure p0. As the volume continues to

increase, the pressure remains constant at the value p0. This can be seen in the videos here

provided to us by Kyriakides taken from [4].

Appendix: Derivation of equation (iii): Our approach will be to directly construct an approximate

solution, exploiting the fact that the tube is thin-walled. The results can be justified by first solving the

https://www.dropbox.com/sh/4hdqkvzy5wz5i16/AADeEwiJEBPsEdPQSQvjzMkla?dl=0
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Figure 5.23: Top: Entire balloon in the small radius phase. Middle: Balloon in a 2-phase configuration,

with part in the small radius phase and the rest in the large radius phase. Bottom: The extent of the large

radius phase has increases, at the expense of the extent of the small radius phase. https://www.doitpoms.

ac.uk/tlplib/bioelasticity/index.php. Department of Materials Science & Metallurgy, University of

Cambridge, 2008.

corresponding problem for a thick-walled tube, and then taking the limit T/R → 0 of those results. This

was the approach we followed when studying a thin-walled spherical shell in Section 5.5.

The volume of material (per unit axial length of the tube) is 2πRT in the undeformed configuration

and 2πrt in the deformed configuration. Incompressibility tells us they must be equal: 2πRT = 2πrt. Thus

t/T = R/r and so we can write the deformed radius r and the deformed wall-thickness t in terms of the

stretch λ as

r = λR, t = T/λ. (a)

By symmetry, the principal Cauchy stresses are Trr, Tθθ and Tzz. The radial stress Trr varies from the

value −p at the inner wall to the value zero at the outer wall over a small distance t. Thus we approximate

Trr to be

Trr ≈ −
p

2
. (b)

https://www.doitpoms.ac.uk/tlplib/bioelasticity/index.php
https://www.doitpoms.ac.uk/tlplib/bioelasticity/index.php
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Figure 5.24: Free body diagram of a longitudinal section of the tube including the fluid it contains (in the

deformed configuration). The tube has thickness t and the hoop stress is Tθθ. The relevant portion of fluid

has length 2r and pressure p. The force 2× (Tθθ t) must balance the force p(2r).

Next, consider the equilibrium of the longitudinal section of the tube shown in Figure 5.24. Observe that the

figure shows the tube in the deformed configuration. Note also that the figure depicts a free body diagram of

the lower half of the tube and the fluid inside it. Equilibrium requires the resultant force on this free body

diagram to vanish, i.e. we must have p× 2r = 2(Tθθ × t) where Tθθ is the mean Cauchy hoop stress. Thus

Tθθ ≈
pr

t

(xvi)
=

pR

T
λ2. (c)

Observe that Tθθ = O
(
R
T

)
while Trr = O(1) as T/R→ 0 and so Tθθ � Trr.

The principal Cauchy stress τi is related to the principal stretches by the constitutive relation τi =

λi∂W/∂λi − q (no sum on i). By taking the 1- and 2-directions to refer to the radial and circumferential

directions respectively we have, upon using λr = λ−1, λθ = λ from (i),

Trr = λr
∂W

∂λ1
− q (i)

= λ−1 ∂W

∂λ1
− q, Tθθ = λθ

∂W

∂λ2
− q (i)

= λ
∂W

∂λ2
− q.

The reaction pressure q can be eliminated by subtracting the first equation from the second leading to

Tθθ − Trr = λ
∂W

∂λ2
− λ−1 ∂W

∂λ1
.

Since Tθθ � Trr we drop Trr and write

Tθθ ≈ λ
∂W

∂λ2
− λ−1 ∂W

∂λ1
. (d)

Finally turning to the constitutive relation, we differentiate w(λ) = W ∗(λ−1, λ, 1) with respect to λ to

find

w′(λ) = −λ−2 ∂W

∂λ1
+
∂W

∂λ2
,

and so we can write (d) as

Tθθ = λw′(λ). (e)

On combining (c) and (e) we get

p =
T

R

w′(λ)

λ
(xxi)
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which is equation (iii).

5.7 Example(6): Surface instability of a neo-Hookean

half-space.

References:

1. M.A. Biot, Surface instability of rubber in compression. Applied Scientific Research

Section A, 12(1963), pp. 168-182. (doi:10.1007/BF03184638).

2. Yi-chao Chen, Shengyou Yang and Lewis Wheeler, Surface instability of elastic half-

spaces by using the energy method, Proceedings of the Royal Society Series A, Volume

474 (2018).

3. M. A. Dowaikh and R. W. Ogden, On Surface Waves and Deformations in a Pre-

stressed Incompressible Elastic Solid, IMA Journal of Applied Mathematics, 44(1990),

pp. 261-284.

4. Yanping Cao and J.W. Hutchinson, From wrinkles to creases in elastomers: the insta-

bility and imperfection sensitivity of wrinkling, Proceedings of the Royal Society Series

A, Volume 468 (2012), pp. 94-115.

5. M.K. Kang and R. Huang, Effect of surface tension on swell-induced surface instability

of substrate-confined hydrogel layers, Soft Matter, Volume 22, 2010, pp. 5736-5742.

(doi: 10.1039/c0sm00335b)

In this section we study a homogeneously deformed body that is in equilibrium under a

certain loading, and inquire as to the conditions under which there may exist a second equi-

librium configuration “close” to the homogeneous one, satisfying the same loading. If such

a configuration exists, and if it is energetically preferred, this would indicate the instability

of the first.

In analyzing the question at hand there are three configurations to consider as shown

schematically in Figure 5.25: a stress-free reference configuration, a homogeneously deformed

configuration, and an inhomogeneously deformed configuration. We shall let z,x and y

denote the respective positions of a particle in these three configurations. Since we will have
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Reference configuration

Homogeneously deformed configuration

Inhomogeneously deformed 
configuration

Figure 5.25: A homogeneous deformation takes z→ x. An inhomogeneous deformation takes z→ y. The

displacement of a particle from the homogeneously deformed configuration to the inhomogeneously deformed

configuration is u(x). In the problem of interest to us here, the two deformed configurations are “close” to

each other.

to calculate the gradients of various fields with respect to different configurations, we shall

append a subscript to refer to the configuration. Thus for example gradzf , gradxf and gradyf

will denote the gradients of f(z), f(x) and f(y) with respect to the reference configuration,

the homogeneously deformed configuration and the inhomogeneously deformed configuration

respectively; they have cartesian components ∂fi/∂zj, ∂fi/∂xj and ∂fi/∂yj.

We start in Section 5.7.1 by carrying out all calculations explicitly in the context of a

specific boundary-value problem. This analysis will be generalized in Section 5.7.2 where we

consider an arbitrary small deformation superimposed on an arbitrary homogeneous finite

deformation. Problem 5.21 is concerned with an arbitrary small deformation superposed on

an arbitrary (not necessarily homogeneous) finite deformation.

5.7.1 Example: Surface instability of a neo-Hookean half-space.

The wrinkling and creasing of surfaces under compression are of interest in various appli-

cations as described in the papers listed above and the reference is them. The particular

problem we consider is the following: in a stress-free reference configuration the body occu-

pies the half-space z2 > 0 as depicted in Figure 5.26. The rectangular cartesian coordinates
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,

Figure 5.26: Semi-infinite neo-Hookean body with traction-free surface subjected to a uniaxial compression.

of a generic particle in this configuration are denoted by (z1, z2, z3). All components are

taken with respect to a fixed basis {e1, e2, e3}. The surface z2 = 0 is traction-free which

implies that Se2 = 0:

S12 = S22 = S32 = 0 for z2 = 0. (i)

A uniform compressive Piola normal stress of magnitude S parallel to the z1-axis is applied

remotely as depicted in Figure 5.26. We model this by requiring

S11 → −S, all other Sij (except S33) → 0 as |z| → ∞; (ii)

the stress component S33 tends to some finite value as will be discussed below.

We first consider a homogeneous deformation that is consistent with (the field equations

and) the preceding boundary conditions. Let (x1, x2, x3) be the rectangular cartesian coordi-

nates of a particle in the homogeneously deformed configuration, the deformation that takes

(z1, z2, z3)→ (x1, x2, x3) being

x1 = λ1z1, x2 = λ2z2, x3 = λ3z3. (iii)

The constant stretches λ1, λ2 and λ3 are to be determined. The deformation gradient tensor

associated with (iii) is

F0 = Gradzx(z) = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (iv)
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For a tensor A associated with the homogeneous configuration we will interchangeably use

the notation A0 and A0. (The former is more convenient when, for example, we want to

show its components A0
ij, whereas the latter is preferred when, say, we want to write A−1

0 ).

Incompressibility requires

det F0 = λ1λ2λ3 = 1. (v)

Assume the material to be neo-Hookean. The Piola stress tensor S0 is then related to

the deformation gradient tensor F0 by the constitutive relation

S0 = µF0 − q0F
−T
0 , (vi)

where the constant q0 is the reactive pressure associated with the incompressibility constraint.

From (iv) and (vi), the Piola stress tensor S0 is

S0 = (µλ1 − q0λ
−1
1 ) e1 ⊗ e1 + (µλ2 − q0λ

−1
2 ) e2 ⊗ e2 + (µλ3 − q0λ

−1
3 ) e3 ⊗ e3. (vii)

Since this stress field is uniform, the equilibrium equation Divz S0(z) = o holds automat-

ically. In order to conform with the boundary conditions (i) we must have S0
22 = 0 and so

from (vii),

q0 = µλ2
2. (viii)

The remote prescribed loading condition (ii) requires S0
11 = −S, which by (vii) and (viii)

leads to the stress- stretch relation

S = µ
(
λ2

2λ
−1
1 − λ1

)
. (ix)

Thus we have

S0 = −S e1 ⊗ e1 + µ(λ3 − λ2
2λ
−1
3 ) e3 ⊗ e3.

The stretches are to be determined from (v), (ix) and one more condition pertaining to

either λ3 or S0
33. By leaving this condition unspecified we are able to describe several sub-

cases. For example, if the homogeneous deformation is one of plane strain in the z1, z2-plane,

one has λ3 = 1 and therefore it follows from (v) and (vii) that

λ2 = λ−1
1 , λ3 = 1, S0

33 = µ(1− λ−2
1 ). (x)

On the other hand if the body is in a state of uniaxial stress in the z1-direction, one similarly

finds using S0
33 = 0 that

λ2 = λ
−1/2
1 , λ3 = λ

−1/2
1 , S0

33 = 0. (xi)
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If instead the body is in a state of equi-biaxial stretch λ1 = λ3 one finds

λ2 = λ−2
1 , λ3 = λ1, S0

33 = µ(λ1 − λ−5
1 ). (xii)

The Cauchy stress tensor corresponding to (vii) is given by T0 = SoF
T
0 :

T0 = T e1 ⊗ e1 + λ3S
0
33 e3 ⊗ e3, where T := −Sλ1 = µ(λ2

1 − λ2
2). (xiii)

Given S > 0, we seek λ1, λ2, λ3 from (v), (ix) and either (x)1, (xi)1 or (xii)1.

Since the deformation has the form (iii), we see that the region occupied by the body in

the homogeneously deformed configuration is

x2 > 0, −∞ < x1 <∞; (xiv)

see the middle figure in Figure 5.27.

Figure 5.27: Coordinate systems: Left: reference configuration. Middle: Homogeneously deformed config-

uration. Right: Inhomogeneously deformed configuration.

We now seek a second deformation corresponding to the same loading (i.e. boundary

conditions). This deformation, which is necessarily inhomogeneous, takes the particle located

at z in the reference configuration to the location y in the deformed configuration:

y = F0z + û(z). (xv)

We continue to use the preceding stress-free configuration as the reference configuration.

Then the deformation gradient tensor, equilibrium equation and constitutive relation are

F = Gradzy, DivzS = o, S = µF− qF−T . (xvi)

One could of course use the homogeneously deformed configuration as the reference configu-

ration in which case the constitutive relation has to be modified in order to take into account

the stress in this reference configuration.
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Observe from (iii), (iv) and (xv) that y = x + û(z) and so û is the displacement from

the homogeneously deformed configuration to the inhomogeneously deformed configuration,

see Figure 5.25. As one might expect, it is convenient to change variables and express this

displacement field as a function of x rather than z by introducing the function

u(x) = û(z) where z = F−1
0 x. (xvii)

The deformation (xv) can then be expressed as

y = x + u(x). (xviii)

We shall limit attention to superposed displacement fields u of the plane strain form

u(x) = u1(x1, x2)e1 + u2(x1, x2)e2. (xix)

The inhomogeneous deformation can therefore be written out as

y1 = λ1z1 + u1(x1, x2),

y2 = λ2z2 + u2(x1, x2),

y3 = λ3z3,

 (xx)

where the xi’s are related to the zi’s by (iii). In the analysis going forward, we assume that

the inhomogeneous deformation is close to the homogeneous deformation in the sense that

ε := |gradxu| � 1. (xxi)

Accordingly we shall consistently drop terms that are of O(ε2). Observe that in previous

chapters we linearized the equations of finite elasticity about the reference configuration

whereas here we will be linearizing about the homogeneously deformed configuration; the

former therefore corresponds to a special case of the latter. In order to minimize the cum-

bersomeness of various expressions to follow, it will convenient to use a comma followed by a

subscript to indicate partial differentiation with respect to the corresponding x-coordinate,

for example to write

ui,j =
∂ui
∂xj

. (xxii)

We shall use this convention from hereon in the rest of this section.
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The components of the deformation gradient tensor with respect to the reference config-

uration are given by Fij = ∂yi/∂zj. From this, (xx) and (iii) one finds13

[F ] =


λ1 0 0

0 λ2 0

0 0 λ3

+


u1,1λ1 u1,2λ2 0

u2,1λ1 u2,2λ2 0

0 0 0

 . (xxiii)

Incompressibility requires14

1 = det F
(xxiii)

= 1 + u1,1 + u2,2 + O(ε2), (xxiv)

where we have used det F0 = 1. Thus to leading order, incompressibility requires

u1,1 + u2,2 = 0, for−∞ < x1 <∞, x2 ≥ 0. (xxv)

The components of F−1 can be readily calculated from (xxiii) to be15

[F ]−1 =


λ−1

1 0 0

0 λ−1
2 0

0 0 λ−1
3

+


−λ−1

1 u1,1 −λ−1
1 u1,2 0

−λ−1
2 u2,1 −λ−1

2 u2,2 0

0 0 0

+ O(ε2) . (xxvi)

Using (xxiii) and (xxvi) in the constitutive law S = µF− qF−T and linearizing leads to

S11 = −S + µ(λ2
1 + λ2

2)λ−1
1 u1,1 − λ−1

1 q̃,

S12 = µλ2 (u1,2 + u2,1) ,

S21 = µ(λ2
1u2,1 + λ2

2u1,2)λ−1
1 ,

S22 = 2µλ2u2,2 − q̃λ−1
2 ,

S33 = S0
33 − q̃λ−1

3 , S13 = S23 = S31 = S32 = 0.


(xxvii)

In arriving at (xxvii) we have dropped terms of O(ε2) and approximated the reactive pressure

as

q(x) = q0 + q̃(x), q̃ = O(ε). (xxviii)

13Note that Fij = ∂yi/∂zj = F 0
ij + ∂ui/∂zj = F 0

ij + (∂ui/∂xk)(∂xk/∂zj) = F 0
ij + (∂ui/∂xk)F 0

kj and so

F = F0 + HF0 where H = gradxu.
14Note that det F = det(I + H)F0 = det F0 det(I + H) = det(I + H) = 1 + trH + O(ε2).
15Note that F−1 = [(I + H)F0]−1 = F−1

0 (I + H)−1 = F−1
0 (I−H) + O(ε2).
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Upon using the chain rule we can write the equilibrium equation Divz S = o as Divx (SFT
0 ) =

o. Substituting (xxvii) into this leads to

q̃,1 = µ(λ2
1 + λ2

2)u1,11 + µλ2
2 (u1,22 + u2,12) ,

q̃,2 = µλ2
1u2,11 + µλ2

2 (u1,12 + 2u2,22) .

 (xxix)

The third equilibrium equation ∂S31/∂z1 +∂S32/∂z2 +∂S33/∂z3 = 0 yields ∂q̃/∂z3 = 0 which

tells us that

q̃(x) = q̃(x1, x2). (xxx)

In the far-field the Piola stress tensor S→ S0 and so we must have

uα,β → 0 for α, β = 1, 2, q̃ → 0 as |x| → ∞. (xxxi)

The traction-free boundary condition requires Se2 = 0 on z2 = 0 which by (xxvii) leads

to
u1,2 + u2,1 = 0,

2µλ2
2u2,2 − q̃ = 0,

 for x2 = 0. (xxxii)

In summary, the unknown fields u1(x1, x2), u2(x1, x2), q̃(x1, x2) must obey the incom-

pressibility equation (xxv), the equilibrium equations (xxix)1 and (xxix)2, the boundary

conditions (xxxii) at x2 = 0 and the decay condition (xxxi) in the far-field. Observe that

u1(x1, x2) = 0, u2(x1, x2) = 0, q̃(x1, x2) = 0 is one solution of this problem (corresponding

to the homogeneous deformation). If any non-trivial solutions exist we expect them to do

so at particular values of the applied stretch λ1 in which case this would be an eigenvalue

problem.

Simplification: Before solving the boundary value problem just formulated, it is possible

to simplify it in two ways.

First we eliminate the pressure field q̃ from the problem as follows. Differentiating (xxix)1

with respect to x2 and (xxix)2 with respect to x1 and equating the resulting expressions

eliminates q̃ from the field equations and leads to the differential equation

λ2
1u1,112 + λ2

2u1,222 − λ2
1u2,111 − λ2

2u2,122 = 0. (xxxiii)

Similarly q̃ can be eliminated from the boundary conditions as follows: since (xxxii) holds

along the boundary, i.e. for all x1, it may be differentiated with respect to x1. Thereafter

(xxix)1 can be used to eliminate ∂q̃/∂x1 from the result. This leads to

(λ2
1 + λ2

2)u1,11 + λ2
2u1,22 − λ2

2u2,12 = 0 for x2 = 0. (xxxiv)
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Thus in summary the displacement fields u1(x1, x2), u2(x1, x2) must obey the field equa-

tions (xxv) and (xxxiii), i.e.

u1,1 + u2,2 = 0,

λ2
1u1,112 + λ2

2u1,222 − λ2
1u2,111 − λ2

2u2,122 = 0

 for −∞ < x1 <∞, x2 ≥ 0, (xxxv)

and the boundary conditions (xxxii)1 and (xxxiv), i.e.

u1,2 + u2,1 = 0,

(λ2
1 + λ2

2)u1,11 + λ2
2u1,22 − λ2

2u2,12 = 0,

 for x2 = 0. (xxxvi)

In addition, in the far field

ui,j → 0 as x2 →∞ at each fixed x1. (xxxvii)

The problem can be simplified even further since the general solution of the incom-

pressibility equation (xxxv)1 can be written down in terms of an arbitrary scalar potential

φ(x1, x2) as

u1 = φ,2, u2 = −φ,1. (xxxviii)

Substituting this into the differential equation (xxxiii) leads to

λ2
1 φ,1111 + (λ2

1 + λ2
2) φ,1122 + λ2

2 φ,2222 = 0 for x2 > 0, −∞ < x1 <∞, (xxxix)

while the boundary conditions (xxxvi) yield

(λ2
1 + 2λ2

2)φ,112 + λ2
2φ,222 = 0 for x2 = 0, (XL)

φ,22 − φ,11 = 0 for x2 = 0. (XLI)

The boundary value problem (xxxix), (XL), (XLI) is in fact an eigenvalue problem. We are

interested in the values of λ1/λ2 for which it has a nontrivial solution φ(x1, x2).

Solution: We look for solutions of the differential equation (xxxix) that are (a) periodic in

the x1-direction (and therefore of the form eikx1) and (b) exponentially decaying away from

the free-surface (and therefore of the form eskx2 where ks < 0.) Thus we seek solutions of

the form

φ = eskx2+ikx1 , (XLII)
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where s and k are unknown constants. Without loss of generality we can assume k > 0.

Substituting (XLII) into (xxxix) leads to the following quartic equation for determining s:

λ2
2s

4 − (λ2
1 + λ2

2)s2 + λ2
1 = 0, (XLIII)

the roots of which are

s = ±1, ±λ1/λ2. (XLIV )

Since we want the displacement field to decay as x2 → +∞, and since the displacement

arising from (xxxviii), (XLII) involves the term eskx2 , k > 0, we discard the two positive

roots s = +1,+λ1/λ2.

Thus we have two linearly independent solutions, e−kx2+ikx1 and e−(λ1/λ2)kx2+ikx1 , of the

differential equation (xxxix). This leads us to seek a solution of the complete boundary-value

problem of the form

=
[
Ae−kx2 +Be−(λ1/λ2)kx2

]
eikx1 . (XLV )

Equation (XLV ) satisfies the equilibrium equation for any choice of the constants A and B.

Substituting (XLV ) into the boundary conditions (XL) and (XLI) yields a pair of algebraic

equations which we write in matrix form as λ2
1 + λ2

2 2λ1λ2

2 1 + λ2
1/λ

2
2

 A

B

 =

 0

0

 . (XLV I)

If (XLV I) is to have a nontrivial solution for A and B, the determinant of the 2× 2 matrix

must vanish and this requires(
λ1

λ2

)4

+ 2

(
λ1

λ2

)2

− 4

(
λ1

λ2

)
+ 1 = 0. (XLV II)

One root of this equation is λ1/λ2 = 1. However by (ix), this corresponds to S = 0 and

so we discard this root. We therefore cancel out the factor λ1/λ2 − 1 and obtain(
λ1

λ2

)3

+

(
λ1

λ2

)2

+ 3

(
λ1

λ2

)
− 1 = 0. (XLV III)

We are interested in the real positive roots λ1/λ2 of (L). Consider the function f(ξ) =

ξ3 + ξ2 + 3ξ − 1 for ξ ≥ 0 and note that f ′(ξ) > 0 for ξ > 0. Therefore f increases

monotonically with ξ. Since f(0) = −1 < 0 and f(1) = 4 > 0 it follows that f(ξ) has a
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unique positive zero in the interval (0, 1). This proves that equation (XLV III) has exactly

one real positive root. Numerical solution gives this root to be

λ1

λ2

≈ 0.295598 and so by (v), λ1 ≈
0.543689√

λ3

. (XLIX)

As noted previously in the context of (x), (xi) and (xii), our analysis covers several

sub-cases. Consider for example the case of plane strain where by (x),

λ2 = λ−1
1 , λ3 = 1. (L)

Then (XLIX) gives

λ1 = λcr ≈ 0.543689. (LI)

Thus we conclude that an inhomogeneous deformation of the form (xv) is possible if the

stretch λ1 has the value λcr, the corresponding value of stress Scr being given by (ix).

To determine the complete deformation we obtain the ratio A/B from (XLV I) and then

the displacement field from (xxxviii) and (XLV ). Observe that the constant k (which

represents the reciprocal of the wave length of the oscillations in the x1-direction) remains

arbitrary. This is because our problem statement for the semi-infinite body involves no

length scale.

The original solution of this problem is due to Biot. For a discussion of stability, see

Chen, Yang and Wheeler, and for an analysis not limited to neo-Hookean materials, see

Dowaikh and Ogden. For other modes of surface instability (such as creasing), see Cao and

Hutchinson. See M.K. Kang and R. Huang, Soft Matter, (2010), DOI: 10.1039/c0sm00335b,

for a treatment of wrinkling in a hydrogel.

5.7.2 An arbitrary small deformation superimposed on an arbi-

trary homogeneous finite deformation.

The preceding analysis can be carried out rather generally (and then specialized to the

specific problem of interest, whether it be the problem studied in the previous section or

some other problem). We now illustrate this by considering an arbitrary small deformation

superimposed on an arbitrary homogeneous deformation. Many of the results below hold

even if the deformation about which we are linearizing is not homogenous, see Problem 5.21.

We know that the natural stress measures to use when working on the reference config-

uration and the current configuration are the Piola stress tensor field S(z) and the Cauchy
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stress tensor field T(y) respectively. As we shall see below, it will be convenient to work

with a stress measure Σ(x) when working on the intermediate configuration.

Reference configuration

Homogeneously deformed configuration

Inhomogeneously deformed 
configuration

Figure 5.28: A homogeneous deformation takes z→ x. An inhomogeneous deformation takes z→ y. The

displacement of a particle from the homogeneously deformed configuration to the inhomogeneously deformed

configuration is u(x). The two deformed configurations are “close” to each other.

Consider a homogeneous deformation of the body

x = F0z (5.11)

that takes a particle located at z in the reference configuration to the location x in the

deformed configuration, the deformation gradient tensor F0 being constant. The material is

incompressible and so

det F0 = 1. (5.12)

Assuming the material to be an arbitrary homogeneous, incompressible elastic material, the

Piola stress tensor S0 is related to the deformation gradient tensor F0 by

S0 =
∂W

∂F

∣∣∣∣
F=F0

− q0F
−T
0 , (5.13)

where the constant q0 is the reactive pressure associated with the incompressibility constraint.

Since the stress field is uniform, the equilibrium equations hold automatically.

Now consider an inhomogeneous deformation

y = F0z + û(z), (5.14)
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in which the particle located at z in the reference configuration is carried to the location y

in the deformed configuration. Observe from (5.11) and (5.14) that y = x + û(z) and so û

is the displacement from the homogeneously deformed configuration to the inhomogeneously

deformed configuration, see Figure 5.28. As one might expect, it is convenient to change

variables and express this displacement field as a function of x rather than z by introducing

the function

u(x) = û(z) with x = F0z. (5.15)

The deformation (5.14) can now be written

y = x + u(x). (5.16)

When the context makes clear as to whether we are working with u(x) or û(z), we will omit

the hat.

Let ∇zu and ∇xu denote the displacement gradient tensors whose cartesian components

are

(∇zu)ij =
∂ui
∂zj

, (∇xu)ij =
∂ui
∂xj

. (5.17)

It will be convenient to let

H = ∇xu. (5.18)

By the chain rule,

∇zu = ∇xu F0 = HF0. (5.19)

The deformation gradient tensor associated with (5.14) (with respect to the reference con-

figuration) is

F = ∇zy = F0 +∇zu = F0 + H F0 = (I + H)F0, (5.20)

and the Jacobian determinant is

det F = det
[
(I + H)F0

]
= det(I + H), (5.21)

having used (5.12).

Going forward, we shall assume that

ε := |∇xu| = |H| � 1 (5.22)

and approximate all equations based on this, neglecting terms that are quadratic or smaller

in ε. Thus in particular the incompressibility requirement det F = det(I + H) = 1 gives, to

leading order,

tr H + O(ε2) = 0 ⇒ divx u + O(ε2) = 0. (5.23)
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Likewise from (5.20)

F−1 = F−1
0 (I + H)−1 = F−1

0 (I−H) + O(ε2), F−T = (I−HT )F−T0 + O(ε2). (5.24)

Turning next to the constitutive relation, we first let A(F) and B(F) be the 4-tensor

functions of F defined as the tensors with components

Aijk`(F) :=
∂2W (F)

∂Fij∂Fk`
, Bipkq(F) := Aijk`(F)FpjFq`, (5.25)

Observe that when evaluated at F = (I + H)F0 and linearized,

∂W

∂Fij
(F)

∣∣∣∣
F=(I+H)F0

=
∂W

∂Fij
(F0) + Aijk`(F0)

o

F q` Hkq + O(ε2).

In what follows we shall omit the argument F0 from the partial derivatives of W (including

A). Setting F = (I + H)F0 and

q = q0 + q̃, (5.26)

where q̃ is assumed to be O(ε), in the constitutive equation

S =
∂W

∂F
(F)− qF−T ,

and linearizing gives

Sij =
∂W

∂Fij
+ Aijk`

o

F q` Hkq − (q0 + q̃)(
o

F
−1
ji −Hpi

o

F
−1
jp ) =

= Soij + Aijk`

o

F q` Hkq − q̃
o

F
−1
ji + q0Hpi

o

F
−1
jp =

= Soij +
[
Aisk`

o

F q`

o

F ps Hkq − q̃δpi + q0Hpi

] o

F
−1
jp =

= Soij + [BipkqHkq + q0Hpi − q̃δpi]
o

F
−1
jp =

= Soij + Σip

o

F
−1
jp .

(5.27)

Thus

S = So + ΣF−T0 ,

where

Σ = BH + q0H
T − q̃I; (5.28)

ΣF−T0 is the perturbation of the Piola stress. Equation (5.28) is effectively the constitutive

relation for Σ.
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It is easy to show to O(ε2) that divzS = divzS0 + divz(ΣF−T0 ) = divz(ΣF−T0 ) = divx(Σ),

noting that in the last step the divergence is taken with respect to the homogeneously

deformed configuration. Thus the equilibrium equation divzS = 0 to leading order can be

written as 16

divxΣ = 0, (5.29)

for the stress tensor field Σ(x).

Thus in summary, the perturbed problem involves the fields u(x),H(x) and Σ(x) and

they obey the incompressibility equation (5.23), the equilibrium equation (5.29) and the

constitutive equation (5.28).

In order to recover what we had before, we now specialize (5.28) for the neo-Hookean material. It is

readily found from (5.25)1 and

W =
µ

2
(F · F− 1)

that

Aijk` = µδj`δik,

and therefore from (5.25)2 that

Bijpq = µBjqδip,

whence

BijpqHpq = µB0
jqHiq = µ(HB0)ij .

Equation (5.28) for the stress Σ now specializes to

Σ = µHB0 + q0H
T − q̃I = H(µB0 − q0I) + q0(H + HT )− q̃I = HT0 + q0(H + HT )− q̃I

and so we recover (xix).

When these equations are specialized to the plane strain perturbation (ixb), the traction-free boundary

condition on z2 = 0 and S→ −Se1 ⊗ e1 as |z| → ∞ one recovers the equations we had above.

In terms of components in an arbitrary fixed cartesian basis, (5.28) reads

Σij = Bijk`
∂uk
∂x`

+ q0
∂uj
∂xi
− q̃ δij. (5.30)

Note that since the deformation (5.11) is homogeneous, the elastic moduli Bijk` and the

scalar q0 are constants. Substituting (5.30) into the equilibrium equations ∂Σij/∂xj = 0 and

16As an exercise show that divzS̃ = divxΣ where S̃ = ΣF−T0 even if F0 is not a constant, i.e. if it is a

field F0(z).
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using the incompressibility equation ∂ui/∂xi = 0 leads to

Bijk`
∂2uk
∂xj∂x`

− ∂q̃

∂xi
= 0. (5.31)

This, together with the incompressibility equation ∂ui/∂xi = 0, are to be solved for ui(x)

and q̃(x).

Exercises: Problems 5.18, 5.19, 5.20 and 5.21.
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5.8 Exercises.

Problem 5.1. Consider a spherical elastic shell that undergoes a large (spherically symmetric) deformation

when subjected to an internal pressure p.

(I) First, model the shell as a two-dimensional entity (a membrane). Let r and R denote the radii of the

membrane in the deformed and reference configurations respectively; let σ be the circumferential force in

the membrane per unit deformed (circumferential) length; and let W be the elastic energy in the membrane

per unit deformed area. The constitutive relation for the energy is W = W(λ) where λ = r/R is the

circumferential stretch of the membrane.

(a) Use force balance to show that p = 2σ/r.

(b) Balance the rate of external working with the rate of increase of stored energy in a quasi-static motion

and show that

p =
2

r
W +

1

R
W ′, σ =

1

2
λW ′ +W. (i)

Remark: You may have seen these results in the context of a soap bubble with surface tension σ and the

surface energy W = constant.

(II) Now model the shell as a hollow spherical solid composed of an incompressible, isotropic material, whose

wall-thickness is small but positive. The quantities r and R introduced above now represent the mean radii in

the deformed and undeformed configurations, and let T (� R) denote the wall-thickness in the undeformed

configuration. Note by symmetry and incompressibility that λθ = λφ = λ, λr = λ−2 where λ = r/R is

the mean circumferential stretch. Let w(λ) denote the elastic energy in the shell per unit reference volume.

Show that w(λ) = λ2W(λ)/T . Substituting this into (i)1 gives

p =
T

R

w′(λ)

λ2
. (ii)

which coincides with equation (xv) on page 491 as it should.

Problem 5.2. Pressurized hollow circular cylinder. A thick-walled hollow circular tube has inner and outer

radii A and B respectively in the undeformed configuration. It is composed of an isotropic incompressible

elastic material. Determine the radii a and b of the tube in the deformed configuration when it is subjected

to an internal pressure p on the inner curved surface. Assume that particles do not displace in the axial

direction. Calculate the forces that must be applied on the two end faces of the tube in order to prevent

axial deformation.

Problem 5.3. Torsion. Consider the torsional deformation of an isotropic incompressible solid circular

cylindrical body as in Section 5.2 but now assume that no resultant axial force is applied on the two rigid

plates at its ends. (The axial stress Tzz need not be zero everywhere, only its resultant on a cross-section
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must vanish.) Under these conditions, in addition to twisting about the z-axis, the cylinder will change in

length (and therefore so will its radius). Thus now consider the deformation

r = r̂(R,Θ,Φ) = r(R), θ = θ̂(R,Θ,Φ) = Θ + αλZ, z = ẑ(R,Θ,Φ) = λZ.

Assume the material is neo-Hookean and that in the undeformed configuration the body has radius A. Derive

an algebraic equation in which λ is the only unknown. (The parameters µ, α and A are given.)

Problem 5.4. Combined axial and azimuthal shear of a tube. Consider a long hollow circular tube that in

a reference configuration has length L and inner and outer radii A and B respectively. The outer surface

R = B of the tube is held fixed. A rigid solid cylinder of radius A is inserted into the cavity and firmly

bonded to the hollow tube on their common interface R = A. An axial force F ez and a torque T ez are

applied on the rigid cylinder where ez is a unit vector parallel to the axis of the cylinder.

Suppose the hollow tube is elastic and is composed of a neo-Hookean material.

Use cylindrical polar coordinates (R,Θ, Z) and (r, θ, z) in the reference and deformed configurations

respectively. Assume that the resulting deformation is of the form

r = R, θ = Θ + φ(R), z = Z + w(R). (i)

If only the axial force was applied, we would take the rotation φ = 0; and likewise if only the torque was

applied, we would take the axial displacement w = 0. The deformation described by φ(R) is referred to as

an azimuthal shear, and that associated with w(R), an axial (or telescopic) shear.

(a) Determine the rotation and axial displacement of the rigid solid cylinder.

(b) Calculate the radial stress field Trr(r) to within an unknown constant. Explain how you might find

the constant but do not carry out any calculations to find it.

Solution:

Kinematics: From (i) and the formula for the deformation gradient tensor in cylindrical polar coordinates

(see Chapter 2.7),

F = er ⊗ eR +Rφ′eθ ⊗ eR + eθ ⊗ eΘ + w′ez ⊗ eR + ez ⊗ eZ .

According to (i), the axial displacement w(R) translates each cylindrical surface R = constant in the axial

direction leading to a simple shear with shearing direction ez and glide plane normal er; the (nondimensional)

amount of shear is w′(R). Moreover the circumferential rotation φ(R) rotates each cylindrical surface R =

constant about the z-axis leading to a simple shear with shearing direction eθ and glide plane normal er;

the (nondimensional) amount of shear is Rφ′(R). Denote these amounts of shear by

k1 = Rφ′(R), k2 = w′(R), (ii)

so that we can write F as

F = er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ + k1eθ ⊗ eR + k2ez ⊗ eR. (iii)
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Remark: One can factor (iii) and write it in the illuminating form

F = (I + k2ez ⊗ er)︸ ︷︷ ︸
F2

(I + k1eθ ⊗ er)︸ ︷︷ ︸
F1

(er ⊗ eR + eθ ⊗ eΘ + ez ⊗ eZ)︸ ︷︷ ︸
Q

where F1 describes a simple shear of amount k1 = Rφ′(R), shearing direction eθ and glide plane normal er;

F2 describes a simple shear of amount k2 = w′(R), shearing direction ez and glide plane normal er; and Q

is the rotation tensor that takes the basis {eR, eΘ, eZ} into the basis {er, eθ, ez}. Therefore the deformation

can be decomposed into a rotation Q followed by the simple shear F1 followed by the simple shear F2.

Since the (neo-Hookean) material is incompressible we must have det F = 1. Calculating the determinant

of F gives

det F = det[F ] = det


1 0 0

k1 1 0

k2 0 1

 = 1,

and so det F = 1 automatically. Therefore incompressibility imposes no restrictions on the functions φ(R)

and w(R).

The associated left Cauchy Green tensor is

B = FFT = I + k1(er ⊗ eθ + eθ ⊗ er) + k2(ez ⊗ er + er ⊗ ez)+

+k1k2(eθ ⊗ ez + ez ⊗ eθ) + k2
1eθ ⊗ eθ + k2

2ez ⊗ ez,

and so the matrix of components of B in the basis {er, eθ, ez} is

[B] =


1 k1 k2

k1 1 + k2
1 k1k2

k2 k1k2 1 + k2
2

 . (iv)

Stress and equilibrium. The components of B depend only on the r-coordinate (and not θ and z). For

simplicity let’s assume that the reactive stress q in the constitutive relation also depends only on r. Then,

it follows from the constitutive relation that the Cauchy stress components in cylindrical polar coordinates

also do not depend on θ and z. See the remark below on page 527 for an easier and direct way in which to

arrive at (xii) and (xiii) making use of the simplicity of the present problem. The equilibrium equations in

Chapter 3.10 (in the absence of body force) thus specialize to

dTrr
dr

+
Trr − Tθθ

r
= 0,

dTrθ
dr

+ 2
Trθ
r

= 0,
dTrz
dr

+
Trz
r

= 0. (v)

The second and third of these equations can be written as

d

dr
(r2Trθ) = 0,

d

dr
(rTrz) = 0,

which can be integrated to obtain

Trθ(r) =
c1
r2
, Trz(r) =

c2
r
, A ≤ r ≤ B, (vi)
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where c1 and c2 are constants of integration (to be found using the boundary conditions).

To find the boundary conditions at r = A we now consider the equilibrium of the rigid cylinder. Force

balance in the ez direction requires

F +

∫
S

t · ez dAy = 0, (vii)

where S is the interface r = A between the cylinders and t is the traction on the rigid cylinder at this

surface. It can be calculated using t = Tn, n = er and r = A (note that n points out of the rigid cylinder):

t = Trr(A)er + Trθ(A)eθ + Trz(A)ez. (viii)

Substituting (viii) into (vii) and using dAy = LAdθ leads to

F + LATrz(A)

∫ 2π

0

dθ = 0 ⇒ F + 2πLATrz(A) = 0,

where L is the length of S in the z-direction.This gives the boundary condition

Trz(A) = − F

2πAL
. (ix)

We next consider moment balance of the rigid cylinder about its axis. This requires

T +

∫
S

(y × t) · ez dAy = 0. (x)

Since y = rer + zez = Aer + zez at a point on S, we have

y × t = (Aer + zez)×
[
Trr(A)er + Trθ(A)eθ + Trz(A)ez

]
=

= ATrθ(A)ez − [ATrz(A)− zTrr(A)]eθ − zTrθ(A)er on S.

Substituting this into (x), using dAy = LAdθ and simplifying the integrals as above leads to

T + LA2Trθ(A)

∫ 2π

0

dθ = 0

from which we obtain the boundary condition

Trθ(A) = − T

2πA2L
. (xi)

On using the boundary condition (ix) in the stress field (vi)2 we get c2 = −F/(2πL) and so the shear

stress field Trz(r) in the elastic body is

Trz(r) = − F

2πrL
, A ≤ r ≤ B. (xii)

Similarly from (xi) and (vi)1 we find

Trθ(r) = − T

2πr2L
, A ≤ r ≤ B. (xiii)

Remark: A direct way in which to arrive at (xii) and (xiii) is as follows: Consider as a free body diagram

the solid rigid cylinder together with the portion of the elastic cylinder between the radii A and r. The area
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of the outer surface is 2πrL and the axial force due to the stress Tzr on it is 2πrLTzr. Thus force balance

in the axial direction gives

2πrLTzr + F = 0 ⇒ Tzr(r) = − F

2πrL
, A ≤ r ≤ B. (xii)

Similarly, the moment arm to this surface is r and therefore the moment about the z-axis due to the stress

Tθr is (2πrL)Tθr r. Thus moment balance about the z-axis is

2πr2LTθr + T = 0 ⇒ Tθr(r) = − T

2πr2L
, A ≤ r ≤ B. (xiii)

Constitutive relation. Since the constitutive relation for the Cauchy stress for a neo-Hookean material is

T = µB− qI,

we conclude that the matrix of components of T in the basis {er, eθ, ez} is

[T ] =


Trr Trθ Trz

Tθr Tθθ Tθz

Tzr Tzθ Tzz

 =


µ− q µk1 µk2

µk1 µ(1 + k2
1)− q µk1k2

µk2 µk1k2 µ(1 + k2
2)− q

 . (xiv)

Therefore, in particular,

Trr = µ− q, Tθθ = µ(1 + k2
1)− q, Trθ = µk1, Trz = µk2. (xv)

Substituting (ii), (xii) and (xiii) into (xv)3 and (xv)4 gives

µrφ′(r) = − T

2πr2L
, µw′(r) = − F

2πrL
. (xvi)

Since the outer wall of the hollow cylinder in fixed, we have the kinematic boundary conditions φ(B) =

0, w(B) = 0. Integrating (xvi) and using these boundary conditions gives

φ(r) =
T

4πµL

(
r−2 −B−2

)
, w(r) = − F

2πµL
ln(r/B), A ≤ r ≤ B. (xvii)

Therefore the rotation of the rigid shaft is

φ(A) =
T

4πµL

(
A−2 −B−2

)
, �

and its displacement in the axial direction is

w(A) =
F

2πµL
ln(B/A). �

(b) The only equilibrium equation remaining to be satisfied is

dTrr
dr

+
Trr − Tθθ

r
= 0. (xviii)

From (xv), (ii) and (xvii),

Trr − Tθθ = −µk2
1 = −µ

(
rφ′(r)

)2
= −µ

(
T

2πµr2L

)2
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and so the equilibrium equation (xviii) gives

dTrr
dr

= µ

(
T

2πµL

)2
1

r5
⇒ Trr = −µ

(
T

2πµL

)2
1

4r4
+ c︸︷︷︸

constant

. �

We need another boundary condition in order to determine the constant of integration. Since all (field

equations and) boundary conditions at r = A and r = B have been used, this condition will have to come

from information about the loading on, say, the flat end Z = 0 of the hollow cylinder. Since it is only a

constant scalar parameter that remains to be determined, the additional condition will be something like

the vanishing of some resultant force component on the hollow elastic cylinder at Z = 0 (rather than the

vanishing of the traction at each point on the boundary Z = 0). To calculate the resultant force one would

integrate SZZ on the flat end Z = 0, A ≤ R ≤ B (or the true traction on the deformed image of that

cross-section which is not a flat plane). Since from (xiv), Trr = µ − q and Tzz = µ(1 + k2
2) − q we can use

Tzz = µ(1 + k2
2)− µ+ Trr to calculate Tzz (and it will involve the same unknown constant c as above).

Problem 5.5. Internal pressure and axial loading of a circular tube. In a stress-free reference configuration,

a hollow circular cylindrical tube has inner and outer radii A and B respectively. It is composed of an

isotropic incompressible material. The tube is subjected to an internal pressure p and an axial force N and

undergoes a deformation of the axi-symmetric form

r = r(R), θ = Θ, z = ΛZ, (i)

where Λ is the (unknown) axial stretch of the tube. The pressure p and force N are given. Denote the

(unknown) inner and outer radii of the tube in the deformed configuration by a and b.

Derive three equations in which a, b and Λ are the only unknowns. You will find it convenient to let

λ = r/R and introduce the function

w(λ,Λ) = W ∗(λ−1Λ−1, λ,Λ), (ii)

because the principal stretches are λ−1Λ−1, λ,Λ.

Problem 5.6. Instability of a cube. Reconsider the “Rivlin cube problem” that we considered in Section

5.3 where a unit cube of homogeneous incompressible isotropic elastic material was subjected to normal

dead-load forces of magnitude F . Show for a Mooney-Rivlin material with stored-energy function

W (λ1, λ2, λ3) = α(λ2
1 + λ2

2 + λ2
3 − 3) + β(λ−2

1 + λ−2
2 + λ−2

3 − 3), (i)

where α > 0 and β > 0 are constants, that there can be solutions of the form

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, (ii)

with all three λi’s different, provided α and β are suitably restricted. What is the restriction?
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Problem 5.7. Instability of a thin sheet. [Experiments of this nature have been carried out by Treloar.]

Consider a body that in an unstressed reference configuration is a square sheet a× a× t, (a > t). The long

edges of the sheet are parallel to the x1- and x2-axes. Tensile normal forces F (per unit reference area)

act on the four edges x1 = ± a/2 and x2 = ± a/2 of the sheet (through the application of uniform normal

traction distributions). The two faces x3 = ± t/2 are traction-free. The sheet is made of a Mooney-Rivlin

material

W (λ1, λ2, λ3) =
µ

2

[
α
(
λ2

1 + λ2
2 + λ2

3 − 3
)

+ (1− α)
(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)]
, µ > 0, 0 < α ≤ 1. (i)

Assume the deformation to be a pure homogeneous stretch

y = Fx, F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (ii)

(a) Show that for all values of the force F there is a symmetric equilibrium configuration with λ1 = λ2.

(b) For a neo-Hookean material (α = 1) show that there are no asymmetric equilibrium configurations

with λ1 6= λ2.

(c) When α 6= 1 show that there is an asymmetric equilibrium configuration with λ1 6= λ2. At what value

of force does the asymmetric solution bifurcate from the symmetric solution?

(d) For what range of values of F is the symmetric solution stable?

Solution:

See (1) E. A. Kearsley, Asymmetric Stretching of a Symmetrically Loaded Elastic Sheet, International

Journal of Solids and Structures, 22(1986), issue 2, pp. 111-119, and (2) J. L. Ericksen, Introduction to the

Thermodynamics of Solids, Chapman Hall, 1991, Chapter 6.

The deformation is given by (ii) together with the incompressibility requirement

λ1λ2λ3 = 1. (iii)

Since the edges of the sheet in the deformed configuration have areas λ2aλ3t and λ1aλ3t, and the magnitudes

of the applied forces are Fat, the boundary conditions give

T =
F

λ2λ3
e1 ⊗ e1 +

F

λ1λ3
e2 ⊗ e2

(iii)
= Fλ1e1 ⊗ e1 + Fλ2e2 ⊗ e2. (iv)

The constitutive equation

Tii = λi
∂W

∂λi
− q (no sum on i) (v)

together with (i) and (iv) give

Fλ1 = −q + µαλ2
1 − µ(1− α)λ−2

1 ,

Fλ2 = −q + µαλ2
2 − µ(1− α)λ−2

2 ,

0 = −q + µαλ2
3 − µ(1− α)λ−2

3 .

 (vi)
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On eliminating q from (vi) we obtain

Fλ1 = µα(λ2
1 − λ2

3) + µ(1− α)(λ2
1 − λ2

3)λ2
2,

Fλ2 = µα(λ2
2 − λ2

3) + µ(1− α)(λ2
2 − λ2

3)λ2
1,

 (vii)

which can be written as

Fλ1

µα
=
[
1 + βλ2

2

]
(λ2

1 − λ2
3),

Fλ2

µα
=
[
1 + βλ2

1

]
(λ2

2 − λ2
3), (viii)

having set

β =
1− α
α

≥ 0.

The three equations (iii), (viii)1 and (viii)2 are to be solved for λ1, λ2 and λ3.

(a) When λ1 = λ2 the two equations in (viii) coincide, and after eliminating λ3 using (iii) we get the

following equation relating the force F to the stretch λ1:

F

µα
= h(λ1) := λ−5

1 (1 + βλ2
1)(λ6

1 − 1). (viiia)

Since h(λ1) → −∞ as λ1 → 0, h(λ1) → ∞ as λ1 → ∞ and h is continuous on (0,∞), it follows that the

range of the function h(λ1) is (−∞,∞) and therefore the equation h(λ1) = F/(µα) has at least one root

λ1(> 0) corresponding to each value of F . Thus symmetric solutions exist for all values of F .

(b) We next examine the solutions on the λ1, λ2-plane. Eliminating F from (viii) and simplifying leads to

(λ1 − λ2)
[
1 + λ3

1λ
3
2 + β(λ2

1 + λ1λ2 + λ2
2 − λ4

1λ
4
2)
]

= 0. (ix)

Clearly, a symmetric configuration

Csymm : λ1 = λ2, (x)

satisfies (ix). For a neo-Hookean material one has β = 0 (i.e. α = 1) in which case we see from (ix) that

the symmetric configuration is the only possible solution and so no asymmetric solutions are possible.

(c) On the other hand for β > 0 there is an asymmetric configuration, λ1 6= λ2, that according to (ix) is

described by

Casymm : 1 + λ3
1λ

3
2 + β(λ2

1 + λ1λ2 + λ2
2 − λ4

1λ
4
2) = 0. (xi)

The curves Csymm and Casymm on the λ1, λ2-plane are shown in Figure 5.29. The figure has been drawn

for β = 1/8 which corresponds to the value α = 8/9 in Treloar’s experiments. The curves intersect at the

critical stretch λcr found by setting λ1 = λ2 = λcr in (xi):

1 + λ6
cr + β(3λ2

cr − λ8
cr) = 0. (xii)

The corresponding critical value of force is found by setting λ1 = λcr in (viiia):

Fcr

µα
= λ−5

cr

[
1 + βλ2

cr

]
(λ6

cr − 1). (xiv)

When β = 1/8 equations (xii) and (xiv) give λcr ≈ 2.84 and Fcr/µα ≈ 5.69.
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Figure 5.29: The curves Csymm and Casymm corresponding to the symmetric and asymmetric configurations

of the sheet. The figure has been drawn for α = 8/9 in which case λcr
.
= 2.84.

We now derive relations between the force F and the through-thickness stretch λ3 for the two types

of solutions by returning to the three equations (iii), (viii)1 and (viii)2 and eliminating λ1 and λ2. (This

calculation is not needed to answer the questions asked in this problem). In the case of the symmetric

solution, we set λ1 = λ2 = λ
−1/2
3 in (viii)1 and find

F

µα
= λ

−3/2
3 (β + λ3)(1− λ3

3). (xiii)

To derive the corresponding relation in the asymmetric case λ1 6= λ2 we subtract (viii)2 from (viii)1 and

simplify to obtain

λ1 + λ2 =
F/µ

α+ (1− α)λ2
3

.

Similarly, adding (viii)1 and (viii)2 and simplifying gives

F

µ
(λ1 + λ2) =

[
α− (1− α)λ2

3

]
(λ1 + λ2)2 − 2λ−2

3 (1 + λ3
3)[αλ3 − (1− α)].

We now eliminate λ1 + λ2 from the two preceding equations to obtain the desired relation(
F

µα

)2

=
(1 + λ3

3)(β − λ3)(1 + βλ2
3)2

βλ4
3

. (xv)

(d) Stability: The potential energy of the system can be written as

Φ(λ1, λ2) =
1

2

[(
λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3

)
+ β

(
λ−2

1 + λ−2
2 + λ2

1λ
2
2 − 3

)]
− fλ1 − fλ2, (xvi)

where we have set f = F/(µα) and the elastic potential energy was obtained from (i) with λ3 = λ−1
1 λ−1

2 .

Thus

Φ1 =
∂Φ

∂λ1
=
(
λ1 − λ−3

1 λ−2
2

)
+ β

(
− λ−3

1 + λ1λ
2
2

)
− f,
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Φ2 =
∂Φ

∂λ2
=
(
λ2 − λ−3

2 λ−2
1

)
+ β

(
− λ−3

2 + λ2λ
2
1

)
− f,

Φ11 =
∂2Φ

∂λ2
1

=
(
1 + 3λ−4

1 λ−2
2

)
+ β

(
3λ−4

1 + λ2
2

)
,

Φ22 =
∂2Φ

∂λ2
2

=
(
1 + 3λ−4

2 λ−2
1

)
+ β

(
3λ−4

2 + λ2
1

)
,

Φ12 =
∂2Φ

∂λ1∂λ2
= 2λ−3

1 λ−3
2 + 2βλ1λ2.

Stability requires

Φ11 > 0, Φ11Φ22 − Φ2
12 > 0.

At the symmetric solution λ1 = λ2 this specializes to

Φ11 =
(
1 + 3λ−6

1

)
+ β

(
3λ−4

1 + λ2
1

)
, Φ22 =

(
1 + 3λ−6

1

)
+ β

(
3λ−4

1 + λ2
1

)
, Φ12 = 2λ−6

1 + 2βλ2
1.

Clearly Φ11 > 0. On the other hand

Φ11Φ22 − Φ2
12 = λ−6

1

[
1 + λ6

1 + β(3λ2
1 − λ8

1)
][

1 + 5λ−6
1 + 3β(λ−4

1 + λ2
1)
]
.

Thus Φ11Φ22 − Φ2
12 > 0 corresponds to

1 + λ6
1 + β(3λ2

1 − λ8
1) > 0;

cf. (xii). One can show that the function g(λ) = 1 + λ6 + β(3λ2 − λ8) is positive for λ < λcr and negative

for λ > λcr (and vanishes for λ = λcr of course). Therefore we conclude that the symmetric configuration is

stable for λ < λcr and unstable for λ > λcr.

Problem 5.8. Stability of the “Rivlin Cube” with respect to arbitrary perturbations. Reconsider the sta-

bility of the “Rivlin cube” studied in Section 5.3. There, we first determined the various pure homogeneous

deformations the body could undergo, and second, investigated whether these deformations minimized the

potential energy. In this latter calculation, we limited attention to virtual deformations that were homoge-

neous and coaxial with the pure homogeneous deformations we were studying. In the present problem, you

are asked to consider all virtual deformations.

In the “Rivlin cube” problem the unit cube is subjected to the dead loading s = SnR on ∂RR where S

is a given constant tensor. The associated deformation whose stability we want to study is

y(x) = Fx for x ∈ RR, (i)

where the constant tensor F has det F = 1 and

S =
∂W

∂F
(F)− qF−T . (ii)

In order to study the stability of a deformation (i), consider virtual deformations of the form

z(x) = y(x) + εη(x) = Fx + εη(x) for x ∈ RR. (iii)



534 CHAPTER 5. SOME NONLINEAR EFFECTS: ILLUSTRATIVE EXAMPLES

Here z(x) is the virtual deformation, y(x) is the deformation whose stability we wish the study, and εη(x)

is the virtual displacement. The associated virtual deformation gradient tensor is

G = ∇xz = F + ε∇xη. (iv)

Here and in what follows, a subscript, e.g. x, on ∇ indicates that the gradient is being taken with respect to

the position, e.g. x. In (iii), ε is a scalar parameter and η(x) is an arbitrary smooth function subject only

to the incompressibility requirement

det G = 1. (v)

The potential energy associated with a virtual deformation z(x) is

Φ =

∫
RR

W (∇xz)dVx −
∫
∂RR

SnR · z dAx.

It is convenient to incorporate the kinematic constraint (v) into the potential energy through a Lagrange

multiplier q, and to therefore consider

Φ =

∫
RR

(W (∇xz)− q det(∇xz)) dVx −
∫
∂RR

SnR · z dAx. (vi)

On substituting the virtual deformation (iii) into the potential energy (vi), and keeping η(x) fixed for

the moment, we can view the potential energy as a function of the scalar parameter ε:

Φ = Φ(ε). (vii)

Since z(x) = y(x) when ε = 0, see (iii), it follows that if y(x) is a minimizer of the potential energy then

ε = 0 is a minimizer of Φ(ε). This requires

dΦ

dε

∣∣∣∣
ε=0

= 0,
d2Φ

dε2

∣∣∣∣
ε=0

≥ 0. (viii).

It will be convenient in what follows to let

H := ∇yη = ∇xηF−1. (ix)

(a) Show that

det G = 1 + tr H + O(ε2) as ε→ 0, (x)

so that the incompressibility requirement (v) tells us that tr H = 0 + O(ε) as ε→ 0.

(b) Evaluate dΦ/dε and show that, in view of (ii), the first requirement (viii)1 holds automatically.

(c) Show that
d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
∂2W

∂Fij∂Fk`
(F)ηi,jηk,` − q(HiiHjj −HijHji)

]
dVx. (xi)

(d) Next consider a neo-Hookean material:

W =
µ

2
(F · F− 1), (xii)
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and show that (xi) now specializes to

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µBkjHijHik + qHijHji] dVx, (xiii)

where B = FFT .

(e) Now consider the stability of the cubic solution F = I. Recall that the loading is in fact an equi-triaxial

dead loading, i.e. S = S I. In this case (ii), (xii) gives q = µ− S. Show that

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
(2µ− S)εi,jεi,j + Sωi,jωi,j)

]
dVx, (xiv)

where we have set εij := 1
2 (ηi,j + ηj,i) and ωij := 1

2 (ηi,j − ηj,i).
Thus far we kept η(x) fixed. But in fact it is arbitrary, subject only to the requirement stemming

from incompressibility. Thus, for stability, it is necessary that the expression in the previous equation

be non-negative for all such ηi,j . Show from this that the cubic deformation is stable for 0 < S < 2µ.

And unstable for S > 2µ and S < 0. What is the nature of a virtual deformation that makes the

cubic configuration unstable in the case S < 0?

References:

– R, Hill, On uniqueness and stability in the theory of finite elastic strain, Journal of the Mechanics and

Physics of Solids, 5 (1957), pp. 229–241.

– R.S. Rivlin, Stability of pure homogeneous deformations of an elastic cube under dead loading, Quarterly

Journal of Applied Mathematics, 1974, pp. 265-271.

Problem 5.9. Stability of the “Rivlin cube” for an arbitrary isotropic material. In Section 5.3 we examined

the stability of a neo-Hookean cube subjected to an equi-triaxial dead loading (Piola traction). Generalize

that analysis to a cube composed of an arbitrary isotropic (unconstrained) elastic material by extremizing

Φ(F) = W (F)− S · F, (i)

over all geometrically admissible homogeneous deformations. Assume, in keeping with the equi-triaxial dead

loading, that

S =

3∑
i=1

Siei ⊗ ei, (ii)

and consider only deformations of the form y = Fx where

F =

3∑
i=1

λiei ⊗ ei, (iii)

i.e. where F and S are coaxial.

How would your analysis change if the material is incompressible?
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Problem 5.10. Cavitation. Derive a formula for the cavitation stress for a general incompressible isotropic

elastic material in plane strain by considering the growth of the cylindrical cavity in a tube of undeformed

inner and outer radii A and B. Under what conditions on w(λ) := W (λ−1, λ, 1) is the critical stress for

cavitation finite?

Problem 5.11. Pressurized spherical shell with radial inextensibility constraint. A hollow spherical shell

has inner and outer radii A and B respectively in the undeformed configuration. It is composed of an elastic

material whose strain energy function is of the form17 W (λ1, λ2, λ3). Very stiff fibers, that you can model

as inextensible, oriented in the radial direction have been embedded throughout the body. The shell is

subjected to an internal pressure p on the inner curved surface, the outer surface being traction-free. Derive

two algebraic equations in which the only unknowns are the radii a and b in the deformed configuration

(which one could in principle solve for a and b.)

Discuss the case where, in addition to the inextensibility constraint, the material is incompressible.

Problem 5.12. Steadily rotating cylinder. An incompressible solid circular cylinder has radius A and length

L in a reference configuration. Its mass density is ρ. The cylinder undergoes a steady rotation about its axis

of symmetry at the constant angular speed ω. Assume the motion to be described by

r = r(R), θ = Θ + ωt, z = λZ. (i)

Calculate the acceleration of a particle by differentiating y(x, t) with respect to time t at a fixed particle x,

i.e. by differentiating y(R,Θ, Z, t) = r er(θ) + zez at fixed R,Θ, Z.

Use incompressibility to determine r(R).

Suppose that the curved boundary of the cylinder is traction-free, and the resultant force on its two

ends are zero. Moreover, suppose the cylinder is composed of a generalized neo-Hookean material. Derive

an algebraic equation relating the axial stretch λ to the angular speed ω. Specialize your answer to a neo-

Hookean material. Note: Since inertial effects are being taken into account, you must use the equations of

motion (i.e. the equilibrium equations (3.95) with the term ρa added to the right-hand side where a = ÿ is

the acceleration). Neglect the body force due to gravity.

Solution: The position vector of a particle x at time t is

y(x, t) = r er(θ) + z ez, r = r(R), θ = Θ + ωt, z = λZ, (ii)

17Recall that the inextensibility of a fiber in direction mR is characterized by the constraint φ(C) = 0

where φ(C) = CmR ·mR − 1. This function φ(C) not an isotropic function. Thus, even if the strain energy

has the form W (λ1, λ2, λ3), the stress response will not be isotropic. We will see in Chapter 6 that CmR ·mR

is in fact the invariant I4 for an anisotropic material with one preferred direction.
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where x = ReR + ZeZ and

er = cos θ e1 + sin θ e2. (iii)

Differentiating y with respect to t at fixed x, (i.e. at fixed R,Θ, Z) gives the particle velocity:

ẏ(x, t)
(ii)
= r ėr = r

der
dθ

(θ) θ̇
(iii)
= r (− sin θ e1 + cos θ e2)ω. (iv)

Differentiating (iv) with respect to t gives the acceleration:

ÿ(x, t) = r (− cos θ e1 − sin θ e2)ω2 (iii)
= −rω2 er. � (v)

From (i) and (2.79) the left Cauchy-Green deformation tensor is

B = (r′(R))
2
er ⊗ er +

r2

R2
eθ ⊗ eθ + λ2ez ⊗ ez. (vi)

Since the material is incompressible, it is necessary that det B = 1 whence (assuming r′(R) > 0)

λr(R)r′(R) = R ⇒ λr2(R) = R2 + constant. (vii)

Since r = 0 at R = 0 the constant of integration in (vii) vanishes and so

r(R) = λ−1/2R. � (viii)

Remark: Alternatively and more easily, consider a part of the cylinder that has unit length and radius R

in the reference configuration. In the deformed configuration it has length λ and radius r. Equating the

volumes of this part in the two configurations gives πR2 = πr2λ from which (viii) follows. Equation (vi)

can now be written as

B = λ−1er ⊗ er + λ−1eθ ⊗ eθ + λ2ez ⊗ ez. (ix)

For a generalized neo-Hookean material W = W (I1), the constitutive relation (4.63) specializes to

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez, (x)

where

Trr = Tθθ = 2λ−1W ′(I1)− q, Tzz = 2λ2W ′(I1)− q. (xi)

Assume that q = q(r). The equations of motion (i.e. equations (3.95) with the term ρa added to the

right-hand side where a = ÿ is the acceleration) reduce to

dTrr
dr

+
Trr − Tθθ

r
= ρar

(v),(xi)1⇒ dTrr
dr

= −ρrω2. (xii)

Integrating this from r to a and using the boundary condition Trr(a) = 0 gives

���Trr(a)− Trr(r) = −1

2
ρω2(a2 − r2) ⇒ Trr(r) =

1

2
ρω2(a2 − r2). (xiii)

Here

a = λ−1/2A, (xiv)

is the radius of the cylinder in the rotating configuration; see (viii). The remaining boundary conditions

Trθ = Trz = 0 on the lateral surface hold automatically. From (xi),

Tzz − Trr = 2(λ2 − λ−1)W ′(I1) = λw′(λ) where w(λ) := W (λ2 + 2λ−1), (xv)
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and therefore after using (xiii),

Tzz(r) = λw′(λ) +
1

2
ρω2(a2 − r2). (xvi)

Since the resultant axial force on a cross-section vanishes,∫
A
Tzz dAy =

∫ a

0

2πrTzzdr = 0
(xvi)⇒ λw′(λ) +

1

4
ρω2a2 = 0, (xvii)

which after using (xiv) yields

λ2w′(λ) +
1

4
ρω2A2 = 0. � (xviii)

For a neo-Hookean material w(λ) = µ
2 (λ2 + 2λ−1 − 3) and so (xviii) specializes to

λ =

(
1− ρω2A2

4µ

)1/3

. �

Observe that as ω increases, the length λL of the cylinder decreases and its radius λ−1/2A increases. Ac-

cording to this model, the angular speed cannot exceed
√

4µ/(ρA2).

Problem 5.13. Oscillation of a tube. A hollow circular tube of infinite length has inner radius A and outer

radius B in a stress-free reference configuration. It is composed of a homogeneous, isotropic, incompressible

elastic material characterized by a strain energy function W ∗(λ1, λ2, λ3). The tube undergoes a cylindrically

symmetric plane strain motion

r = r(R, t), θ = Θ, z = Z for A ≤ R ≤ B, t ≥ 0, (i)

where (R,Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the reference and deformed configuration

respectively. The inner and outer curved boundaries of the tube are traction-free. Let

a(t) = r(A, t) and b(t) = r(B, t), (ii)

be the inner and outer radii of the tube at time t.

(a) Derive an ordinary differential equation in which a(t) is the only unknown.

(b) Specialize it to a neo-Hookean material.

(c) If at the initial instant a(0) = a0 6= A and ȧ(0) = 0, is the resulting motion periodic? If so, determine

the period of oscillation.

Solution:

J.K. Knowles, Large amplitude oscillations of a tube of incompressible elastic material, Quarterly of Applied

Mathematics, 18 (1960), pp. 71-77. For a related problem see J.K. Knowles, On a class of oscillations in the

finite deformation theory of elasticity, ASME Journal of Applied Mechanics, 29 (1962), pp. 283-286.

(a) Incompressibility requires πR2 − πA2 = πr2 − πa2 whence

r(R, t) =
[
R2 + a2(t)−A2

]1/2
, (iii)
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and so in particular

b(t) =
[
B2 + a2(t)−A2

]1/2
. (iv)

Let

λ(r, t) = r(R, t)/R (v)

be the circumferential stretch. The principal stretches are then

λr =
∂r

∂R
= λ−1, λθ = λ, λz = 1, (vi)

and the circumferential stretches at the inner and outer tube wall are

λa(t) = a(t)/A, λb = b(t)/B. (vii)

Equation (iii) can alternatively be obtained by integrating λrλθλz = (r/R)∂r/∂R = 1. Differentiating (iii)

with respect to t at fixed R gives the particle velocity

ṙ =
1

2

[
R2 + a2(t)−A2

]−1/2

2aȧ =
aȧ

r
, (viii)

which when differentiated again (with respect to t at fixed R) gives the particle acceleration

r̈ =
aä

r
+

(
1− a2

r2

)
ȧ2

r
. (ix)

The constitutive law for an isotropic incompressible material tells us that Tii = λi∂W
∗/∂λi− q (no sum

on i). Thus the radial and circumferential Cauchy stress components are

Trr = λ−1 ∂W
∗

∂λ1
− q, Tθθ = λ

∂W ∗

∂λ2
− q. (x)

Let w(λ) be the restriction of the strain energy function W ∗ to the class of deformations under consideration:

w(λ) := W ∗(λ−1, λ, 1), λ > 0. (xi)

Differentiating (xi) with respect to λ and using (x) then gives

Trr − Tθθ = −λw′(λ). (xii)

The radial equation of motion is
∂Trr
∂r

+
Trr − Tθθ

r
= ρr̈. (xiii)

Integrating (xiii) with respect to r from r = a to r = b and using the traction-free boundary conditions

yields

����Trr(b, t)−����Trr(a, t)−
∫ b

a

λw′(λ)

r
dr =

∫ b

a

ρr̈ dr, (xiv)

where we have used (xii). The right-hand side of (xiv) can be evaluated using (ix):∫ b

a

ρr̈ dr =

∫ b

a

ρ

[
ȧ2

r
+
aä

r
− a2ȧ2

r3

]
dr = ρ(ȧ2 + aä) ln(b/a) +

1

2
ρa2ȧ2

(
1

b2
− 1

a2

)
. (xv)
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We now aim to change dr to dλ in the left-hand side of (xiv). To this end we first note from (v) that

dλ

dR
=
Rdr/dR− r

R2

(v),(vi)
=

λ−1 − λ
R

. (xvi)

Thus the left-hand side of (xiv) can be written as∫ b

a

λw′(λ)

r
dr

(vi)1
=

∫ B

A

λw′(λ)

r
λ−1dR

(xvi)
=

∫ λb

λa

w′(λ)

r

R

λ−1 − λdλ
(v)
=

∫ λb

λa

w′(λ)

1− λ2
dλ. (xvii)

Finally substituting (xv) and (xvii) into (xiv) yields

ρaä ln

(
b2

a2

)
+ ρ

[
ln

(
b2

a2

)
+ a2

(
1

b2
− 1

a2

)]
ȧ2 =

∫ λb

λa

2w′(λ)

λ2 − 1
dλ. � (xviii)

In view of (iv) and (vii), this can be viewed as a differential equation for a(t).

In order to study (xviii) it is convenient to let

x(t) := a(t)/A = λa(t), (xix)

and to introduce the parameter

ξ := B2/A2 − 1 > 0. (xx)

From (iv) and (vii)2,

λ2
b =

b2

B2
=
x2 + ξ

1 + ξ
,

b2

a2
= 1 + ξ/x2,

a2

b2
− 1 = − ξ

ξ + x2
. (xxi)

On using (xix) and (xxi) we can write (xviii) as

x ln

(
1 +

ξ

x2

)
ẍ+

[
ln

(
1 +

ξ

x2

)
− ξ

ξ + x2

]
ẋ2 =

2

ρA2

∫ λb

x

w′(λ)

λ2 − 1
dλ,

which in turn can be written as

x ln

(
1 +

ξ

x2

)
ẋ
dẋ

dx
+

[
ln

(
1 +

ξ

x2

)
− ξ

ξ + x2

]
ẋ2 =

2

ρA2

∫ λb

x

w′(λ)

λ2 − 1
dλ,

and thus
1

x

d

dx

[
1

2
ẋ2x2 ln

(
1 +

ξ

x2

)]
=

2

ρA2

∫ λb

x

w′(λ)

λ2 − 1
dλ. (xxii)

(b) We now specialize (xxii) to a neo-Hookean material

W =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3).

Since

w(λ) =
µ

2
(λ2 + λ−2 − 2),

we have ∫ λb

x

w′(λ)

λ2 − 1
dλ =

µ

2

[
ln

(
λ2
b

x2

)
+

1

x2
− 1

λ2
b

]
.
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Substituting this into (xxii) yields

d

dx

[
1

2
ẋ2x2 ln

(
1 +

ξ

x2

)]
=

µ

ρA2

[
1

x
− x

λ2
b

+ x ln

(
λ2
b

x2

)]
where λb is given in terms of x by (xxi)1.

Integrating both sides of the preceding equation with respect to x yields

1

2
ẋ2x2 ln

(
1 +

ξ

x2

)
=

µ

ρA2

[
x2 − 1

2
ln

(
x2 + ξ

(1 + ξ)x2

)
− ξ

2

]
+ constant

which we can write as
1

2
ẋ2x2 ln

(
1 + ξ/x2

)
+ F (x) = c

where

F (x) :=
1

2

µ

ρA2
(1− x2) ln

(
1 + ξ/x2

1 + ξ

)
for x > 0,

and c is a constant. Observe that F is positive and decreases monotonically for 0 < x < 1; vanishes at x = 1;

and is again positive and increases monotonically for x > 1. Using the initial conditions

x0 := x(0) = a0/A, ẋ(0) = ȧ(0)/A = 0,

we get

c = F (x0) =
1

2

µ

ρA2
(1− x2

0) ln

(
1 + ξ/x2

0

1 + ξ

)
and so

1

2
ẋ2x2 ln

(
1 + ξ/x2

)
+ F (x) = F (x0). (xxiii)

(c) We can write (xxiii) as

ẋ2 = g(x) (xxiv)

where

g(x) =
2F (x0)− 2F (x)

x2 ln (1 + ξ/x2)
.

Since ẋ2 ≥ 0 it follows that we must have F (x(t)) ≤ F (x0) which then ensures that (xxiv) will give two

values, ẋ = ±√g, for each value of x. To show that equation (xxiv) describes a periodic motion, we must

show that it describes a closed curve (trajectory) on the x, ẋ-phase plane. It is only necessary for this that

there be exactly two distinct positive values of x for which F (x) = F (x0), i.e. ẋ = 0. Since F (x) decreases

monotonically for 0 < x < 1 with F (x) → ∞ as x → 0+ and F (1) = 0, it follows that the equation

F (x) = F (x0) has exactly one positive root < 1 for every value of F (x0) > 0. Similarly since F (x) increases

monotonically for x > 1 with F (1) = 0 and F (x)→∞ as x→∞, it follows that the equation F (x) = F (x0)

has exactly one root > 1 for every value of F (x0) > 0. (When an analogous analysis is carried out on

equation (xxii) for a general material w(λ), one finds that periodic oscillatory motions are possible if and

only if w(λ) obeys certain growth conditions on the strain energy function for λ → 0+ and → ∞; see the

paper Knowles (1960) referenced above.) The two roots x = xmin < 1 and x = xmax > 1 are the minimum

and maximum amplitudes of the oscillation. The period of the motion is

T = 2

∫ xmax

xmin

dx

ẋ
= 2

∫ xmax

xmin

√
x2 ln(1 + ξ/x2)

2F (x0)− 2F (x)
dx. �
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Problem 5.14. Eversion of a hollow sphere. In a stress-free reference configuration a body occupies a

spherical shell of inner radius R1 > 0 and outer radius R2 > R1. It is composed of an incompressible

isotropic elastic material with strain energy function W (I1, I2). The body is everted – turned inside out

– (say by cutting the body in half, everting each part, and then gluing the two halves together). In the

deformed configuration it occupies a spherical shell of inner radius r2 > 0 and outer radius r1 > r2. The

outer surface R = R2 of the undeformed shell maps into the inner surface r = r2 of the deformed shell and

the inner surface R = R1 of the undeformed shell maps into the outer surface r = r1 of the deformed shell.

Here R and r are the radial spherical polar coordinates in the undeformed and deformed configurations. The

inner and outer surfaces of the deformed sphere, r = r2 and r = r1 are traction-free. Determine r1 and r2.

J. L. Ericksen, Inversion of a perfectly elastic spherical shell, Zeitschrift für Angewandte Mathematik und

Mechanik, 35(1955), issue 9-10, pp. 382-385.

Problem 5.15. Eversion of a cylinder. In the reference configuration, the hollow circular cylindrical body

occupies the region A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −L/2 ≤ Z ≤ L/2. We are concerned with a deformation that

turns the body inside out (everts it) as sketched in Figure 5.30. (Imagine turning a sock inside out.)

P
P

P

P

Q

Q

Q

Q

R

R

R

R
S S

SS

Reference configuration

Everted configuration

Figure 5.30: Hollow circular cylinder in an unstressed reference configuration (top) and an everted configu-

ration (bottom). Note the locations of the particles P, Q, R and S in the two configurations. The deformation

has the form r = r(R), θ = Θ, z = −ΛZ. Observe that r(A) = b, r(B) = a and r(A) > r(B); also that as R

increases from A to B (point Q to point P in upper figure), r decreases from b to a (point Q to point P in

lower figure), indicating that r′(R) < 0. Corresponding material fibers in the two configurations are shown

in green and black; observe that, in addition to stretch, they have rotated by 180o about eθ.
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Figure 5.31: A segment of a rubber tube in unstressed (top) and everted (bottom) configurations; figure

taken from Truesdell [3]. The entire boundary of the tube is traction-free. Observe that the everted tube is

slightly longer, has slightly smaller diameter, and has flared ends.

In the deformed configuration it occupies the region a ≤ r ≤ b, 0 ≤ θ ≤ 2π, −`/2 ≤ z ≤ `/2. Using

cylindrical polar coordinates, the position of a particle in the reference and deformed configurations are

x = R eR + Z eZ , x = r er + z ez.

Assume the deformation describing the eversion has the form

r = r̂(R,Θ, Z) = r(R), θ = θ̂(R,Θ, Z) = Θ, z = −ΛZ, (i)

(where r(R) and Λ(> 0) are unknown); see Figure 5.30. According to this deformation the everted body is

also a hollow circular cylinder of some as yet unknown inner radius a, outer radius b and length ` = ΛL.

The deformation maps the undeformed cross-sectional plane Z = L/2 into z = −`/2 (and Z = −L/2 into

z = `/2). Since the inner surface R = A in the reference configuration is mapped into the outer surface r = b

in the deformed configuration, and likewise since the outer surface R = B goes into the inner surface r = a,

the deformation must be such that

r(A) = b, r(B) = a, (ii)

where A < B and r(A) > r(B). Observe also that as R increases monotonically from the value A to B

(point Q to point P in the upper figure), r decreases monotonically from the value b to a (point Q to point

P in lower figure), indicating that

r′(R) < 0 for A ≤ R ≤ B. (iii)

The two curved surfaces are given to be traction-free:

Trr(a) = Trr(b) = 0. (iv)

The assumed form (i) of the deformation requires the two flat ends of the tube to remain flat. This is only

possible if some suitable traction distribution acts on the two ends18 (and so Tzz will not be identically zero

18It the ends of the tube are traction-free, the everted tube will not be perfectly cylindrical in the deformed

configuration; its ends will be flared as shown in Figure 5.31.
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on z = ±`/2). The resultant axial force however is taken to vanish (imagine that the two ends of the tube

are attached to two rigid end-plates after eversion):

2π

∫ b

a

rTzz(r, z) dr = 0 for z = ±`/2. (v)

The material is incompressible and isotropic.

(a) Determine r(R) and Λ.

(b) Calculate the rotation tensor R (in the polar decomposition F = RU).

References:

1. R.S. Rivlin, Large elastic deformations of isotropic materials. VI Further results in the theory of

torsion, shear and flexure, Philosophical Transactions of the Royal Society of London, Series A. Math-

ematical and Physical Sciences. Volume 242 (1949), pp. 173-195.

2. P. Chadwick, The existence and uniqueness of solutions to two problems in the Mooney-Rivlin theory

for rubber, Journal of Elasticity, Volume 2, Issue 2, 1972, pp. 123 - 128.

3. C. Truesdell, Some challenges offered to analysis by rational thermomechanics: Lecture 1, in Con-

temporary Developments in Continuum Mechanics and Partial Differential Equations, Proceedings

of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de

Janeiro, 1977. Edited by G.M. de La Penha and L.A. Medeiros, North Holland, 1978, pp. 497-540.

Solution: Upon using (2.77), the deformation gradient tensor associated with the deformation (i) is

F = r′(R) er ⊗ er +
r(R)

R
eθ ⊗ eθ − Λez ⊗ ez.

Keeping (iii) in mind, the principal stretches, all positive, are

λr = −r′, λθ = r/R, λz = Λ. (vi)

(If you wish you can jump ahead to part (b) below and return here thereafter.) By incompressibility

λrλθλz = −Λr′(R)
r(R)

R
= 1 ⇒ r(R) =

[
a2 +

B2 −R2

Λ

]1/2
, (vii)

having enforced r(B) = a. From r(A) = b we get

b =
[
a2 +

B2 −A2

Λ

]1/2
, (vii)

and so the deformation (i), (vii)2 is fully determined once a and Λ have been found. Denote the hoop stretch

by

λ(R) :=
r(R)

R
, (viii)

so that in particular,

λ(B)
(ii)
=

a

B
=

α

N
and λ(A)

(ii)
=

b

A

(vii)
=

[
N2 − 1 + α2Λ

Λ

]1/2

where α :=
a

A
, N :=

B

A
. (ix)
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From (viii), (vi) and incompressibility we have

λr = λ−1Λ−1, λθ = λ, λz = Λ. (x)

From the constitutive relation Tii = λi ∂W
∗/∂λi − q (no sum on i) we have

Trr = λ−1Λ−1W ∗1 − q, Tθθ = λW ∗2 − q, Tzz = ΛW ∗3 − q, (xi)

where q(r) is the reaction stress due to incompressibility, and we are using the short-hand W ∗i = ∂W ∗/∂λi.

Finally, since all shear stress components vanish and normal stress components depend on r only and

not θ and z, the equilibrium equations (3.95) reduce to

dTrr
dr

+
Trr − Tθθ

r
= 0. (xii)

The problem can now be solved in principle as follows. Substituting (xi) into (xii) gives a first-order ordinary

differential equation for q(r) that, together with the boundary condition (iv)1 can be solved for q(r). The

remaining unknown parameters a and Λ can then be determined from the two algebraic equations resulting

from substituting (xi) into the boundary conditions (iv)2 and (v).

We can avoid determining q(r) by proceeding as follows, noting first from (xi) that

Trr − Tθθ = λ−1Λ−1W ∗1 − λW ∗2 , Tzz − Trr = ΛW ∗3 − λ−1Λ−1W ∗1 , (xiii)

where the right-hand sides of (xiii) are viewed as functions of r: W ∗i (Λ−1/λ(r), λ(r),Λ). We now substitute

(xiii)1 into (xii), integrate from r = a to r = b and use the boundary conditions (iv) to get∫ b

a

λW ∗2 − λ−1Λ−1W ∗1
r

dr = 0. (xiv)

Likewise, substituting (xiii)1 into (xii) and integrating from a to r and using the boundary condition (iv)1

gives

Trr =

∫ r

a

λW ∗2 − λ−1Λ−1W ∗1
r

dr, (xv)

(where r in the integrand here and below is a dummy variable of integration). Substituting this into (xiii)2

leads to

Tzz = ΛW ∗3 − λ−1Λ−1W ∗1 +

∫ r

a

λW ∗2 − λ−1Λ−1W ∗1
r

dr. (xvi)

Finally we use (xvi) in the boundary condition (v) to get∫ b

a

r

[
ΛW ∗3 − λ−1Λ−1W ∗1 +

∫ r

a

λW ∗2 − λ−1Λ−1W ∗1
r

dr

]
dr = 0. (xvii)

The only unknowns in (xiv) and (xvii) are the parameters a and Λ and so they can be found (provided these

two equations have positive roots a and Λ).

The equations (xiv) and (xviii) can be simplified as follows: recall that the principal stretches are

λ−1Λ−1, λ and Λ and so the restriction of W ∗ to the class of deformations at hand is

w(λ,Λ) := W ∗(λ−1Λ−1, λ,Λ), λ > 0,Λ > 0. (xviii)
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Thus
∂w

∂λ
= −λ−2Λ−1W ∗1 +W ∗2 ,

∂w

∂Λ
= −λ−1Λ−2W ∗1 +W ∗3 . (xix)

Moreover
dλ

dr

(viii)
=

d

dr

(
r

R(r)

)
=
R− rdR/dr

R2

(vi)1,(viii)
=

1 + λ/λr
R

(x)1
=

1 + λ2Λ

R
. (xx)

From (xix)1 and (xx) we see that the boundary condition (xiv) can be written as∫ b/A

a/B

1

1 + λ2Λ

∂w

∂λ
dλ = 0. (xxi)

Likewise from (xix)2 and (xx) we can write (xvi) as

Tzz = Λ
∂w

∂Λ
+ Trr

(xvii)
= Λ

∂w

∂Λ
+

∫ r/R

a/B

1

1 + λ2Λ

∂w

∂λ
dλ, (xxii)

and so the boundary condition (xvii) can be expressed as∫ b

a

[
rΛ
∂w

∂Λ
(λ(r),Λ) + r

∫ r/R

a/B

1

1 + λ2Λ

∂w

∂λ
dλ

]
dr = 0. (xxiii)

This is a second algebraic equation involving a and Λ. One now seeks to determine a and Λ from (xxii) and

(xxiii), after which the deformation is known from (i) and (vii)2.

For a neo-Hookean material we have

w(λ,Λ) =
µ

2

[
λ−2Λ−2 + λ2 + Λ2 − 3

]
,

in which case the formulae (xxi) and (xxiii) take the explicit forms

1

N2 − 1 + Λα2
− N2

Λα2
+ ln

[
N2(N2 − 1 + Λα2)

Λα2

]
= 0, (xxiv)

Λ3 − (N2 + Λα2)2

2Λα2(N2 − 1 + Λα2)
+ 1 = 0, (xxv)

where α and N were introduced in (ix). Chadwick [2] has shown that there exists precisely one pair of

positive numbers (α,Λ) that satisfy (xxiv), (xxv).

Motivated by the experiments described by Truesdell [3], suppose we take B = 0.5′′, B−A = 1/12′′ (and

L = 8′′) which gives N = B/A = 1.2. Following Chadwick [2] , we first solve (xxiv) for Λα2, next determine

Λ from (xxv), and finally circle back to determine α = a/A. This leads to Λ = 1.007′′ and a = 0.42′′.

(b) The deformation gradient tensor above can be written as

F = −λr er ⊗ er + λθ eθ ⊗ eθ − λzez ⊗ ez,

where the principal stretches λr = −r′, λθ = r/R, λz = Λ are all positive (as is necessary). Note that

det F > 0 and so F is nonsingular. However F is not positive definite and so is not the stretch tensor. The

right stretch tensor is the symmetric positive definite tensor

U = λr er ⊗ er + λθ eθ ⊗ eθ + λzez ⊗ ez,



5.8. EXERCISES. 547

and so the rotation tensor R = FU−1 is the proper orthogonal tensor

R = −er ⊗ er + eθ ⊗ eθ − ez ⊗ ez.

Since Reθ = eθ this represents a rotation about eθ. (Through what angle?)

Problem 5.16. Harmonic material. (Goriely et al.)

(a) Consider the cylindrically symmetric deformation of a hollow circular tube that has inner and outer

radii A and B in a stress-free reference configuration. It is composed of an arbitrary unconstrained

isotropic elastic material. The deformation is described by r = r(R), θ = Θ, z = Z where (R,Θ, Z) and

(r, θ, z) are the cylindrical polar coordinates of a particle in the reference and deformed configurations

respectively. Show that r(R) satisfies the ordinary differential equation

d

dR

(
R
∂W

∂λ1

)
− ∂W

∂λ2
= 0 for A ≤ R ≤ B, (i)

where W (λ1, λ2) := W ∗(λ1, λ2, 1), λ1 = r′(R) and λ2 = r(R)/R.

(b) The so-called Harmonic strain energy function is a model for a homogeneous, unconstrained, isotropic

elastic material. It is given by

W ∗(λ1, λ2, λ3) = F (j1) + ξ(j2 − 3) + η(j3 − 1), (ii)

where ξ and η are material constants and F (j1) is a constitutive function. Here

j1 = λ1 + λ2 + λ3, j2 = λ1λ2 + λ2λ3 + λ3λ1, j3 = λ1λ2λ3. (iii)

Determine the restrictions on F, ξ and η needed to ensure that the strain energy and stress vanish in

the reference configuration. Determine also the restrictions imposed by the Baker-Ericksen inequality.

(c) Show that in plane strain, this model can be reduced to

W (λ1, λ2) = f(i1)− α(i2 − 1), (iv)

where α is a material constant, f(i1) is a constitutive function, and

i1 = λ1 + λ2, i2 = λ1λ2. (v)

Determine (by specializing your answers to part (b)) the restrictions on f and α needed to ensure

that the strain energy and stress vanish in the reference configuration and that the Baker-Ericksen

inequalities hold.

(d) Solve equation (i) for the Harmonic material.

(e) Suppose that the outer radius B is infinite and that Trr(R)→ 0 as R→∞. Moreover, let Trr(A) =

−p < 0. Determine Tθθ(R) for R ≥ A. At which point R in the body, and at what values of pressure

p, does Tθθ(R) become unbounded.
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Problem 5.17. Limit point instability. (Goriely et al.) The strain energy function for the simplified isotropic

Fung model for soft tissue was given in (4.147) where µ > 0 and β > 0 are material constants.

Consider a thin-walled hollow sphere composed of this material. The “limit-point instability” refers to the

loss of monotonicity of the function p(λ) where p is the internal pressure and λ the mean circumferential

stretch.

Determine the critical value of the parameter β, say βcr, above which the limit point instability disappears.

Plot four curves of p versus λ corresponding to the four choices (a) β = 0, (b) β = βcr/2, (c) β = βcr and

(d) β = 1.5βcr.

Determine a realistic value of β for soft tissue from the literature, and reach a conclusion about the existence

of this instability in a Fung material (proposed as a model for aneurysm rupture).

For analyses of the limit point instability for other constitutive models, including less simplified Fung models,

see Chapter 8 of Cardiovascular Solid Mechanics by Jay Humphrey, Springer, 2002.

Solution: From the analysis in Section 5.5 (or see Problem 5.1) we know that the pressure-stretch relation is

p =
T

R

w′(λ)

λ2
where w(λ) := W ∗(λ−2, λ, λ), (i)

(and R and T are the mean radius and wall thickness in the reference configuration). On using the strain

energy function (4.147) for the isotropic Fung material this specializes to

pR

2µT
= p(λ) =

λ6 − 1

λ7
exp

[
β(2λ2 + λ−4 − 3)

]
. (ii)

To find a local extremum of p(λ) we set dp/dλ = 0 which leads to

β = h(λ) (iii)

where

h(λ) :=
λ4(λ6 − 7)

4(λ6 − 1)2
, λ > 0. (iv)

If there is a λ (> 1) at which dp/dλ = 0, then, given β, we must be able to solve the equation β = h(λ)

for a root λ > 1. One can verify that as λ increases, the function h(λ) increases monotonically from −∞
at λ = 1+ until it reaches the value h(λmax) at λ = λmax and then decreases monotonically to zero. Thus

β = h(λ) is solvable provided β ≤ h(λmax). By setting dh/dλ = 0 we find that λmax is a root of

λ12
max − 23λ6

max − 14 = 0 ⇒ λmax =

[
23 +

√
585

2

]1/6

.
= 1.693.

This gives h(λmax)
.
= 0.0668 and so the limit point instability exists provided

0 < β ≤ βcr where βcr
.
= 0.0668.
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Figure 5.32: Pressure p versus mean circumferential stretch λ for the isotropic Fung model for different

values of the constitutive parameter β. The limit point instability exists for β ≤ βcr.

Figure 5.32 shows plots of p versus λ according to (iii) for different values of β. According to Table 11.1

of Goriely (see reference on page 387) values of β in the range 3 < β < 20 provides a reasonable model for soft

biological tissues. Thus the isotropic Fung model in this range does not exhibit the limit point instability.

Problem 5.18. Surface instability. Reconsider the surface instability of a half-space as in Section 5.7 but

now consider an arbitrary isotropic incompressible material. Determine conditions for the onset of a surface

instability. Specialize your results to a Gent material.

Problem 5.19. Surface instability. Reconsider the surface instability of a half-space as in Section 5.7. Using

the same basis {e1, e2, e3} as there, now consider the following cases:

(a) Suppose the homogeneous configuration involves an equibiaxial stretch, i.e.

F0 = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, with λ1 = λ3.

(b) Suppose the homogeneous configuration involves a uniaxial stress, i.e.

F0 = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, T0 = Te1 ⊗ e1,

where T22 = T33 = 0.

Assume the material to be neo-Hookean. Determine the conditions (if any) under which a surface instability

occurs. Consider only plane strain perturbations where the displacement from the homogeneously deformed

configuration has the form u(x) = u1(x1, x2)e1 + u2(x1, x2)e2.
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Problem 5.20. Surface instability with surface tension. Recall that the “Biot Problem” – the instability

of a half-space under compression – did not involve a length-scale and so the critical value of stretch at

instability was independent of the wave number of the sinusoidal surface undulation. Thus the analysis did

not pick a particular wave number of the undulation at instability. In this problem you are to endow the

free-surface with (constant) surface tension γ (force per unit length). The ratio `0 := γ/µ then has the

dimension of length. You are to determine the critical stretch λ1 at instability. (Limit attention plane strain

deformations and a neo-Hookean solid.)

In the simplest model of surface tension, the traction-free boundary condition Tn = o at a free surface

is replaced by

Tn = −γκn, (i)

where κ is the (mean) curvature and n the unit outward normal vector, both associated with the deformed

surface.

Problem 5.21. Small deformation superposed on an arbitrary finite deformation. A body is composed of an

arbitrary unconstrained elastic material. It occupies a region RR in a homogeneous reference configuration

and a region R in deformed configuration-1. A particle z ∈ RR is taken to x0(z) ∈ R by the equilibrium

deformation-1:

x = x0(z).

The associated deformation gradient tensor is

F0 = ∇zx0(z).

The associated Cauchy stress tensor field T0(x) obeys the equilibrium equation

divx T0 = o.

Deformation-2 takes z→ ŷ(z) where

y = ŷ(z) = x0(z) + û(z),

with associated deformation gradient tensor

F = ∇zŷ(z) = F0 +∇zû(z).

Introduce the following representation of the displacement field (from configuration-1 to configuration-2)

u(x) := û(z) where x = x0(z),

with associated gradient

H = ∇xu(x).

Let deformation-2 be close to deformation-1 in the sense that

ε := |H| � 1.
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Let T be the Cauchy stress tensor associated with deformation-2 and it obeys the equilibrium equation

divyT = o.

Show that

(a) T = T0 + T̃ + O(ε2) where

T̃ = −tr H T0 + HT0 + T0H
T + CE,

C =
4

J0
FAFT , F := F0 � F0, Aijk` :=

∂2W (C0)

∂Cij∂Ck`
.

See Problem 1.64 for the definition and properties of the tensor product of two 2-tensors.

(b) divxT̃(x) = o.

(c) the 4-tensor C has the first and second minor symmetries and the major symmetry. See Problem 1.64

for the definition and some results concerning the minor and major symmetries of a 4-tensor.

Problem 5.22. Universal deformation. A deformation that can be maintained in equilibrium by the appli-

cation of surface tractions only, and no body forces, for arbitrary W is said to be a universal deformation.

Ericksen showed that for an unconstrained material the most general universal deformation is a homogenous

one; see Problem 4.17. For incompressible materials however there are certain additional universal defor-

mations (essentially because of the presence of the reaction pressure field q(x)). This problem is concerned

with one of them.

When studying the inflation, extension and twisting of a tube of an incompressible isotropic material we

encountered the following deformation:

r(R) =
√
c+R2/Λ, θ = Θ + αΛZ, z = ΛZ,

where c, α and Λ are constants. Here (R,Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the reference

and deformed configurations respectively. Show that any incompressible elastic body in equilibrium can

sustain this deformation purely by applying suitable tractions on its boundaries (with no body forces)19 .

This, therefore, is a universal deformation for an incompressible elastic material. In view of this, this is also

a possible deformation field for an incompressible anisotropic material.

References:

1. A. Goriely, A. Erlich and C. Goodbrake, C5.1 Solid Mechanics: Online problem sheets, https:

//courses.maths.ox.ac.uk/node/36846/materials, Oxford University, 2018.

2. R.W. Ogden, Chapter 5 of Non-Linear Elastic Deformations, Chapter 3, Dover, 1997.

3. D. J. Steigmann, Chapters 7 and 8 of Finite Elasticity Theory, Oxford, 2017.

19Of course the tractions that have to be applied will depend on the material.

https://courses.maths.ox.ac.uk/node/36846/materials
https://courses.maths.ox.ac.uk/node/36846/materials




Chapter 6

Anisotropic Elastic Solids.

Our treatment of anisotropy in this chapter is limited to that arising from the presence of

either one or two preferred directions, the former corresponding to transverse isotropy. For

a more complete treatment of anisotropy, see, for example, Spencer [7, 8].

6.1 One family of fibers. Transversely isotropic mate-

rial.

Consider a material with one preferred direction mR in the reference configuration. For

example this may be due to the presence of a family of fibers in that direction. For simplicity,

we will sometimes refer to a preferred direction as a “fiber direction” (even if there are no

fibers). In general, the fibers will not be inextensible.

The constitutive response functions for the Piola stress and strain energy function for

such a material will depend on both the deformation gradient tensor F and the fiber direction

mR:

S = Ŝ(F,mR), W = Ŵ (F,mR).

The elastic power identity S · Ḟ = Ẇ implies, as before, that

Ŝ(F,mR) =
∂Ŵ

∂F
(F,mR).

Material frame indifference requires that

Ŵ (F,mR) = Ŵ (QF,mR) for all orthogonal Q,

553
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keeping in mind that mR is a direction in the reference configuration and so Q does not

transform it. By the same argument as in Chapter 4, this holds if and only if the strain

energy function depends on the deformation through the right Cauchy-Green tensor. Thus,

there is a function W such that

Ŵ (F,mR) = W (C,mR), C = FTF,

and the Cauchy stress is related to the deformation through

T =
2

J
F
∂W

∂C
FT . (6.1)

Up to this point the anisotropy of the material has not had any (substantive) effect.

Now consider material symmetry. In the particular reference configuration at hand, the

material with the single preferred direction mR is transversely isotropic with respect to that

direction in the sense that the strain energy function is invariant under all rotations (of the

reference configuration) about mR and under reflection in the plane perpendicular to mR.

(The latter implies it is invariant to replacing mR by −mR). Thus the material symmetry

group for such a material is

G = {Q : QQT = I, QmR = ±mR}, (vi)

see Problem 1.11(b), and material symmetry tells us that

W (C,mR) = W (QCQT ,QmR) for all Q ∈ G, (vii)

and all symmetric positive definite tensors C. Note that in this step, Q acts on the reference

configuration and so it does transform mR. However in view of (vi) we can write this

equivalently as

W (C,mR) = W (QCQT ,±mR) for all Q ∈ G. (viii)

It is shown in Problem 6.1 that the following group of orthogonal tensors,

G ′ = {Q : QQT = I, QMQT = M} where M := mR ⊗mR, (6.2)

is identical1 to the group G defined by (vi). Thus we can replace G by G ′ in (viii). It is then

shown in Problem 6.2 that the strain energy function W (C,mR) obeys the invariance (viii)

over the set G ′ if and only if the function W̌ (C,M) obeys the invariance

W̌ (C,M) = W̌ (QCQT ,QMQT ) for all orthogonal tensors Q, (6.3)

1When mR → QmR note that M→ (QmR)⊗ (QmR) = Q(mR ⊗mR)QT = QMQT .
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where

W (C,mR) = W̌ (C,M), M := mR ⊗mR.

Note that (6.3) holds for all orthogonal Q not just those in G ′. Therefore the function W̆ is

jointly isotropic in both arguments.

The tensor M := mR ⊗ mR is referred to as the structural tensor (for transverse

isotropy). It characterizes the “internal structure” of the material in the reference configu-

ration.

Finally, it is claimed in Problem 6.3 that a strain energy function that obeys (6.3) can

be expressed as

W (C,M) = W̃ (I1, I2, I3, I4, I5), (6.4)

where
I1(C) = tr C, I2(C) = 1

2

[
(tr C)2 − tr C2

]
, I3(C) = det C,

I4(C,M) = C ·M, I5(C,M) = C2 ·M;

(6.5)

see Ericksen and Rivlin [1]. We would expect this list to also include I1(M), I2(M) and

I3(M), but recall from Problem 1.19 that I1(M) = 1 and I2(M) = I3(M) = 0. Moreover it

does not include C ·M2 since it is readily seen that C ·M2 = C ·M; this follows because

Mn = M for any positive integer n. It is sometimes convenient to express the invariants in

terms of mR by substituting M = mR ⊗mR into (6.5). This yields

I1 = tr C, I2 = 1
2

[
(tr C)2 − tr C2

]
, I3 = det C,

I4 = CmR ·mR, I5 = C2mR ·mR.

(6.6)

Strictly, the scalar-valued functions I4 and I5 are not invariants in the usual sense of invari-

ance (i.e. invariance over the set of all orthogonal tensors) though that term is often used.

Other authors refer to them as pseudo-invariants. Observe that

I4 = CmR ·mR = FTFmR ·mR = FmR · FmR = |FmR|2, (6.7)

and so I4 denotes the (square of the) stretch in the fiber direction mR. The fiber direction

in the deformed configuration is

m =
FmR

|FmR|
(6.7)
=

FmR√
I4

. (6.8)

Observe that:

I5 = CmR ·CmR = FTFmR · FTFmR
(6.8)
= I4 FTm · FTm = I4 FFTm ·m = I4 Bm ·m
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where m is the fiber direction in the deformed configuration.

From (6.1), (6.4) and the chain rule, the constitutive relation for the Cauchy stress tensor

can be written as

T =
2

J
F

[
5∑
i=1

∂W̃

∂Ii

∂Ii
∂C

]
FT . (6.9)

The terms ∂Ii/∂C for i = 1, 2, 3 were calculated previously when we considered isotropic

materials, while it is readily shown from (6.5)4,5 and (6.6)4,5 that

∂I4

∂C
= M = mR ⊗mR,

∂I5

∂C
= CM + MC = CmR ⊗mR + mR ⊗CmR. (6.10)

Observe that the two tensors ∂I4/∂C and ∂I5/∂C are symmetric (as they must be since

I4(·,M) and I5(·,M) are defined on the set of symmetric tensors). On substituting the

expressions for ∂Ii/∂C into (6.9) we get the following explicit form for the constitutive

relation for T:

T = 2JW3 I +
2

J
[W1 + I1W2] B − 2

J
W2B

2+

+
2

J
W4(FmR ⊗ FmR) +

2

J
W5

[
(FmR ⊗BFmR) + (BFmR ⊗ FmR)

]
,

(6.11)

where B = FFT and we have used the notation

Wi =
∂W̃

∂Ii
, i = 1, 2, . . . , 5. (6.12)

The Cauchy stress tensor given by (6.11) is automatically symmetric (as it must be since it

stemmed from (6.9) that yields a symmetric stress tensor). Observe also that the principal

directions of T and B no longer coincide in general. One can use (6.8) to express the

constitutive relation in terms of the direction m of the (stretched) fiber in the deformed

configuration.

If the material is incompressible, then

I3 = J2 = det F = 1

and the strain energy function has the form W = W̃ (I1, I2,��I3, I4, I5). We must drop the

term involving W3 from the constitutive relation (6.11) and replace it with the reaction

stress associated with the incompressibility constraint (i.e. a pressure −q I). This leads to

T = −qI + 2W1B + 2W2(I1B−B2) + 2W4(FmR ⊗ FmR)+

+2W5

[
(FmR ⊗BFmR) + (BFmR ⊗ FmR)

]
,

(6.13)
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having set J = 1 throughout.

If the fibers are inextensible, then

I4 = |FmR|2 = 1

and the strain energy function has the form W = W̃ (I1, I2, I3,��I4, I5). Now we must drop

the term involving W4 from the constitutive relation (6.11) and replace it with the reaction

stress associated with the inextensibility constraint, i.e. a uniaxial stress qm ⊗m in the

direction m – the fiber direction in the deformed configuration (see Problem 4.22 (a)). This

leads to

T = 2JW3 I +
2

J
[W1 + I1W2] B − 2

J
W2B

2+

+qm⊗m +
2

J
W5

[
(FmR ⊗BFmR) + (BFmR ⊗ FmR)

]
,

(6.14)

where m = FmR.

6.1.1 Example: pure homogeneous stretch of a cube.

Consider a rectangular block with its edges parallel to the basis vectors {e1, e2, e3}. The

material is incompressible and transversely isotropic with respect to the direction

mR = cos Θ e1 + sin Θ e2, 0 ≤ Θ ≤ π/2. (6.15)

Figure 6.1: Rectangular block in reference configuration occupied by a material involving one family of

fibers in the x1, x2-plane.

The body is subjected to the pure homogeneous deformation

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (6.16)



558 CHAPTER 6. ANISOTROPIC ELASTIC SOLIDS.

Since the material is incompressible

λ3 = λ−1
1 λ−1

2 . (6.17)

The image of the fiber mR in the deformed configuration is

FmR
(6.15),(6.16)

= λ1 cos Θ e1 + λ2 sin Θ e2. (6.18)

Let

m = cos θ e1 + sin θ e2, (6.19)

denote the direction of a fiber in the deformed configuration. Then, since FmR is parallel

to m, it follows from the two preceding equations that

λ1 cos Θ

cos θ
=
λ2 sin Θ

sin θ
⇒ tan θ =

λ2

λ1

tan Θ. (6.20)

This gives the fiber orientation θ in the deformed configuration. In particular it tells us

how θ varies with the deformation (unless, Θ = 0 or π/2 in which case the angle θ in the

deformed configuration does not depend on the deformation and remains at θ = Θ).

We now calculate the terms in the constitutive relation (6.13). From B = FFT and (6.18)

we find

FmR ⊗ FmR = λ2
1 cos2 Θe1 ⊗ e1 + λ1λ2 cos Θ sin Θ(e1 ⊗ e2 + e2 ⊗ e1) + λ2

2 sin2 Θe2 ⊗ e2,

FmR ⊗BFmR + BFmR ⊗ FmR = 2λ4
1 cos2 Θ e1 ⊗ e1 + 2λ4

2 sin2 Θ e2 ⊗ e2+

+λ1λ2(λ2
1 + λ2

2) cos Θ sin Θ (e1 ⊗ e2 + e2 ⊗ e1).

The invariants (6.6) specialize for the deformation (6.16), (6.17) and fiber direction (6.15) to

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2, (6.21)

I4 = λ2
1 cos2 Θ + λ2

2 sin2 Θ, I5 = λ4
1 cos2 Θ + λ4

2 sin2 Θ. (6.22)

Note that I4 and I5 are not symmetric in λ1, λ2 in general. Consequently, in contrast to the

isotropic case, if we replace the I’s in the strain energy function W with the λ’s using (6.21),

(6.22), the resulting expression will not be invariant to a change λ1 ↔ λ2.

The constitutive relation (6.13) now gives

T11 = −q + 2W1λ
2
1 + 2W2(I1λ

2
1 − λ4

1) + 2W4λ
2
1 cos2 Θ + 4W5λ

4
1 cos2 Θ,

T22 = −q + 2W1λ
2
2 + 2W2(I1λ

2
2 − λ4

2) + 2W4λ
2
2 sin2 Θ + 4W5λ

4
2 sin2 Θ,

T33 = −q + 2W1λ
2
3 + 2W2(I1λ

2
3 − λ4

3),

T12 = 2[W4 +W5(λ2
1 + λ2

2)]λ1λ2 sin Θ cos Θ, T23 = T31 = 0.

(6.23)
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Observe that in contrast to the isotropic case, the shear stress2 T12 6= 0. This shear stress is

required in order to maintain the deformation (6.16). Thus the deformation (6.16) cannot

be sustained (for example) by a state of uniaxial stress T = T11e1 ⊗ e1. Note also that the

directions e1, e2 are not principal directions for T though they are principal directions for

B. This too is a consequence of anisotropy.

As we have done repeatedly in the isotropic case, it is natural to introduce the restriction

of the strain energy function W to the setting at hand by introducing the function

w(λ1, λ2,Θ) := W (I1, I2, I4, I5), (6.24)

where the invariants have the expressions in (6.21) and (6.22). As noted previously, w(λ1, λ2,Θ)

6= w(λ2, λ1,Θ) due to the anisotropy. Differentiating w with respect to its arguments and

keeping (6.24), (6.21), (6.22) and (6.23) in mind shows that (Ogden [5])

T11 − T33 = λ1
∂w

∂λ1

, T22 − T33 = λ2
∂w

∂λ2

, T12 =
λ1λ2

λ2
2 − λ2

1

∂w

∂Θ
, (6.25)

where it should be kept in mind that T11 and T22 are not principal stresses.

To illustrate the response described by (6.23) consider the particular material

W =
µ

2
(I1 − 3) +

µβ

2
(I4 − 1)2, µ > 0, β > 0, (i)

and the special case of plane strain with vanishing normal stress T22 = 0:

λ3 = 1, T22 = 0. (ii)

Note that T33 6= 0 and therefore this is not a state of uniaxial stress. Incompressibility gives

λ2 = λ−1 where we have set λ1 = λ, and (6.21) and (6.22) specialize to

I1 = λ2 + λ−2 + 1, I4 = λ2 cos2 Θ + λ−2 sin2 Θ. (iii)

Setting T22 = 0 in (6.23)2 allows one to solve for q and use the result to eliminate q from

(6.23)1. This leads to

T11/µ = λ2 − λ−2 + 2β
[
λ4 cos4 Θ− λ−4 sin4 Θ− λ2 cos2 Θ + λ−2 sin2 Θ

]
,

T12/(2µβ) =
[
λ2 cos2 Θ + λ−2 sin2 Θ− 1

]
sin Θ cos Θ = λ−2(λ2 − 1)(λ2 − tan2 Θ) sin Θ cos3 Θ.

(iv)

2It does vanish in the special cases Θ = 0 or Θ = π/2, i.e. when the fibers are oriented in one of the

principal directions for B.
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The stress component T33 needed to maintain the plane strain deformation is given by (6.23)3.

Figure 6.2(a) shows plots of the normal stress T11/µ versus λ for three different values of the

anisotropy parameter β; while Figure 6.2(b) shows plots of the shear stress T12/(2µβ) versus

λ for three different values of the fiber angle Θ.

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6

0 .0 5

0 .1 0

0 .1 5

0 .2 0

1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7

5

1 0
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Figure 6.2: Variation of the normal and shear stress components T11 and T12 with the stretch λ1 = λ for

the material described by (i) under conditions where λ3 = 1 and T22 = 0.

Figure 6.3: Schematic plots of the square of the fiber stretch (I4) versus the imposed stretch (λ). The left

and right figures correspond to the cases 0 < Θ < π/4 and π/4 < Θ < π/2 respectively.

Equation (iii)2 can be rewritten equivalently as

I4 = 1 + (1− λ−2)(λ2 − tan2 Θ) cos2 Θ. (v)

Figure 6.3 shows plots of I4 – the square of the fiber stretch – versus the imposed stretch

λ (= λ1). Consider the left-hand figure corresponding to the case 0 < Θ < π/4 (in which

event tan Θ < 1). When λ increases monotonically from unity, I4 starts from the value 1

and increases monotonically, eventually tending to infinity as λ → ∞. On the other hand
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when λ decreases monotonically from the value 1, the fiber stretch starts from the value 1

and initially decreases until it reaches a minimum at λ =
√

tan Θ. It increases monotonically

thereafter, passing through the value 1 (again) when λ = tan Θ and tending to infinity as

λ→ 0+; the fact that the fibers initially contract in this case (before subsequently elongating)

can be intuitively seen by visualizing fibers that are almost horizontal initially. The right-

hand figure corresponds to the case π/4 < Θ < π/2 (tan Θ > 1) where a similar sort of

behavior is seen, with λ > 1 and λ < 1 reversed. When Θ = π/4, the fiber elongates for all

values of λ.

The minimum value of I4 in Figure 6.3 is I4 = 1 − (cos Θ − sin Θ)2. Note from (6.20)

that the fiber angle in the deformed configuration is θ = π/2−Θ when λ = tan Θ.

Observe from (iv)2 that the shear stress T12 vanishes at the two values of stretch λ = 1

and λ = tan Θ at which the fiber stretch is unity.

6.2 Two families of fibers.

There are many examples of materials involving two families of fibers, biological tissue with

collagen fibers being one. Let the fiber directions (in the reference configuration) be mR

and m′R. Then the strain energy function will depend on, see Spencer [7, 8], the invariants

I1, I2, I3, the invariants I4 and I5 associated with the first family of fibers, the analogous

invariants I6 and I7 for the second family of fibers,

I6 = Cm′R ·m′R I7 = C2m′R ·m′R, (6.26)

and the invariants I8 and I9 that couple mR and m′R:

I8 = Cm′R ·mR, I9 = (mR ·m′R)2. (6.27)

Thus the strain energy function has the form

W = W̃ (I1, I2, . . . , I8), (6.28)

where we have omitted I9 since it does not involve the deformation gradient3. We remark

that the form in which I8 has been written is not invariant4 to the replacement of mR by−mR

3In view of the forms of I4 to I8, one might expect the quantity C2mR ·m′R to also appear in this list of

invariants. In Problem 6.4 you are asked to show that this quantity can be expressed in terms of the other

invariants.
4Or said differently, it has not been written as a function of C,M and M′.
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(while keeping m′R fixed). This can be addressed by working with, for example, (Cm′R ·mR)2

or (Cm′R ·mR)(mR ·m′R). Note also that, in contrast to I4, I5, I6 and I7, the invariant I8 6= 1

in the reference configuration.

From (6.1), (6.28) and the chain rule, together with (6.6), (6.26) and (6.27), the consti-

tutive equation for T (assuming the material to be incompressible) reads

T = −qI + 2W1B + 2W2(I1B−B2)+

+2W4FmR ⊗ FmR + 2W6Fm′R ⊗ Fm′R+

+2W5(FmR ⊗BFmR + BFmR ⊗ FmR) + 2W7(Fm′R ⊗BFm′R + BFm′R ⊗ Fm′R)+

+W8(FmR ⊗ Fm′R + Fm′R ⊗ FmR)

(6.29)

where we have set Wi = ∂W̃/∂Ii, i = 1, . . . 8.

Keep in mind that I4 = CmR ·mR and I6 = Cm′R ·m′R are corresponding quantities

for the two families of fibers. Thus if the two families are mechanically equivalent then the

energy should be unaffected by an exchange of I4 and I6. The same goes for I5 and I7. Thus

for two mechanically equivalent families of fibers the strain energy function must have the

property

W̃ (I1, I2, I4, I5, I6, I7, I8) = W̃ (I1, I2, I6, I5, I4, I7, I8) = W̃ (I1, I2, I4, I7, I6, I5, I8). (6.30)

There are many strain energy functions that have been proposed in the literature for

modeling soft biological tissues. One example is

W̃ (I1, I4, I6) =
µ1

2
(I1− 3) +

1

2

µ4

k4

[
exp[k4(I4− 1)2]− 1

]
+

1

2

µ6

k6

[
exp[k6(I6− 1)2]− 1

]
, (6.31)

where µ1, µ4, µ6, k1, k4, k6 are material constants, see Holzapfel et. al. [4]. If the two families

of fibers are mechanically equivalent, one would take µ4 = µ6 and k4 = k6. Observe that

(6.31) has the neo-Hookean form for the I1 term while the terms involving I4, I6 are of the

Fung form (Section 4.7). If I4 − 1 and I6 − 1 are small, this can be replaced by

W̃ =
µ1

2
(I1 − 3) +

µ4

2
(I4 − 1)2 +

µ6

2
(I6 − 1)2; (6.32)

the special case of this described by (6.51) below is known as the “standard fiber reinforcing

model”.
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6.2.1 Example: pure homogeneous stretch of a cube.

Consider a rectangular block with its edges parallel to the basis vectors {e1, e2, e3}. The ma-

terial is incompressible and involves two families of fibers that, in the reference configuration,

are

mR = cos Θ e1 + sin Θ e2, m′R = cos Θ e1 − sin Θ e2; (6.33)

see Figure 6.4. This material is orthotropic with the symmetry planes coinciding with the

three coordinate planes.

Figure 6.4: Region occupied (in a reference configuration) by an incompressible rectangular block with

two families of fibers in the x1, x2-plane.

The body is subjected to a homogeneous deformation

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (6.34)

Since the material is incompressible,

λ3 = λ−1
1 λ−1

2 . (6.35)

Let the fiber directions in the deformed configuration be denoted by

m = cos θ e1 + sin θ e2, m′ = cos θ e1 − sin θ e2. (6.36)

Since FmR = λ1 cos Θ e1 +λ2 sin Θ e2 and Fm′R = λ1 cos Θ e1−λ2 sin Θ e2 it is readily shown

that the fiber angle in the deformed configuration is given by

tan θ =
λ2

λ1

tan Θ; (6.37)

see (6.20).
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The invariants specialize, for the deformation (6.34), (6.35) and fiber directions (6.33),

to

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2, (6.38)

I4 = I6 = λ2
1 cos2 Θ + λ2

2 sin2 Θ, (6.39)

I5 = I7 = λ4
1 cos2 Θ + λ4

2 sin2 Θ, (6.40)

I8 = λ2
1 cos2 Θ− λ2

2 sin2 Θ. (6.41)

The constitutive relation (6.29) now gives

T11 = −q+2W1λ
2
1+2W2(I1λ

2
1−λ4

1)+2(W4+W6+W8)λ2
1 cos2 Θ+4(W5+W7)λ4

1 cos2 Θ, (6.42)

T22 = −q+2W1λ
2
2+2W2(I1λ

2
2−λ4

2)+2(W4+W6−W8)λ2
2 sin2 Θ+4(W5+W7)λ4

2 sin2 Θ, (6.43)

T33 = −q + 2W1λ
2
3 + 2W2(I1λ

2
3 − λ4

3). (6.44)

T12 = 2[W4 −W6 + (W5 −W7)(λ2
1 + λ2

2)]λ1λ2 sin Θ cos Θ, T23 = T31 = 0, (6.45)

Observe from (6.45) that the shear stress T12 6= 0 in general and so the principal directions

of T do not coincide with those of B. However note from (6.39) and (6.40) that I4 = I6 and

I5 = I7. Therefore if the two fiber families are mechanically equivalent, i.e. if (6.30) holds,

then W4 = W6 and W5 = W7. In this case (6.45) gives T12 = 0 (as one would expect).

Again, it is natural to introduce the restriction of the strain energy function W to the

setting at hand by introducing the function

w(λ1, λ2,Θ) = W (I1, I2, I4, I5, I6, I7, I8), (6.46)

where the invariants are expressed in terms of λ1, λ2,Θ by (6.38), (6.39), (6.40) and (6.41).

Note that w(λ1, λ2,Θ) 6= w(λ2, λ1,Θ) due to anisotropy. Differentiating w with respect to

λ1 and λ2 shows that (Ogden [5])

T11 − T33 = λ1
∂w

∂λ1

, T22 − T33 = λ2
∂w

∂λ2

, (6.47)

keeping in mind that T11 and T22 are not principal stresses. The direct analog of (6.25)3

does not hold.

Remark: In contrast to Problem 2.3, the fibers here are not constrained to being inextensible.

In Section 6.2.2 we shall consider the inextensible case.
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Remark: In certain materials one may wish to allow fibers to elongate but not to shorten.

Since the fiber stretch is |FmR| = |Fm′R| = [λ2
1 cos2 Θ + λ2

2 sin2 Θ]1/2, in such a situation one

must constrain the stretches to obey

λ2
1 cos2 Θ + λ2

2 sin2 Θ ≥ 1. (6.48)

Suppose now that the fiber families are mechanically equivalent and therefore that the

shear stress T12 vanishes automatically. Suppose further that the boundary conditions on

the block lead to a state of uniaxial stress5: T = T11 e1⊗ e1. Setting T22 = T33 = 0 in (6.47)

gives

T11 = λ1
∂w

∂λ1

,
∂w

∂λ2

= 0. (6.49)

The second of these is an equation involving the two stretches λ1 and λ2 (and Θ). If it can be

solved (in principle) for λ2, we would have a relation λ2 = λ2(λ1,Θ) between the axial stretch

λ1 and the transverse stretch λ2. (The third principal stretch is λ3 = λ−1
1 λ−1

2 .) Substituting

this back into the first equation in (6.49) gives the following stress-stretch relation between

T11 and λ1

T11 = T11(λ1) = λ1
∂w

∂λ1

(λ1, λ2,Θ)

∣∣∣∣
λ2=λ2(λ1,Θ)

. (6.50)

To illustrate the response in uniaxial stress6 consider the so-called “standard fiber rein-

forcing model”,

W =
µ

2
(I1 − 3) +

µβ

2

[
(I4 − 1)2 + (I6 − 1)2

]
, µ > 0, β > 0. (6.51)

This is the special case of (6.32) with

µ1 = µ, µ4 = µ6 = βµ. (6.52)

Since this strain energy function obeys (6.30) the two fiber families are mechanically equiv-

alent. Observe that the parameter β > 0 effectively characterizes the stiffness of the fibers

(due to both the actual fiber stiffness and the concentration of fibers). Large β corresponds

to stiff fibers.

The relation between the transverse stretch λ2 and the longitudinal stretch λ1 as given

by (6.49)2 specializes for the material (6.51) to the following cubic equation for λ2
2:

4β sin4 Θλ6
2 +

[
1 + 4β(λ2

1 cos2 Θ− 1) sin2 Θ
]
λ4

2 − λ−2
1 = 0. (6.53)

5Note that the deformation (6.34) would not be compatible with a state of uniaxial stress in the e1-

direction if T12 6= 0.
6Based on Chapter 11 of Goriely [2] .
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In principle, one solves this for λ2 to get

λ2 = λ2(λ1,Θ). (6.54)

Suppose we want to calculate the Poisson’s ratio at infinitesimal deformations that measures

the contraction in the x2-direction with respect to the stretch in the x1-direction. This is

given by −dλ2/dλ1 evaluated at the undeformed configuration λ2 = 1. (Why?) Differenti-

ating (6.53) with respect to λ1 gives

24β sin4 Θλ5
2

dλ2

dλ1

+
[
8βλ1 cos2 Θ sin2 Θ

]
λ4

2 +
[
1+4β(λ2

1 cos2 Θ−1) sin2 Θ
]

4λ3
2

dλ2

dλ1

+2λ−3
1 = 0.

Solving this for dλ2/dλ1 and evaluating the result at λ1 = λ2 = 1 leads to

dλ2

dλ1

∣∣∣∣
λ1=1

= −1 + 4β cos2 Θ sin2 Θ

2 + 4β sin4 Θ
. (6.55)

The (negative) of this gives the particular Poisson’s ratio we sought as a function of the fiber

angle Θ. Observe that if β = 0, corresponding to a neo-Hookean material, this reduces to

the classical value 1/2. At the other extreme, in the limit β →∞, this reduces to the value

found previously in Problem 2.3 for rigid fibers. Observe that for all values of the anisotropy

parameter β, this Poisson ratio has the value 1/2 at the particular fiber angle Θ∗ given by7

tan Θ∗ =
√

2 Θ∗ ≈ 54.74o. (6.56)

Since the material is anisotropic, (6.55) is not the Poisson’s ratio that measures the

contraction in the x3-direction with respect to the x1-direction. To determine that, we

differentiate λ3 = λ−1
1 λ−1

2 (λ1) with respect to λ1 and evaluate the result at λ1 = 1. This

leads to
dλ3

dλ1

∣∣∣∣
λ1=1

= −1− 4β cos2 Θ sin2 Θ + 4β sin4 Θ

2 + 4β sin4 Θ
. (6.57)

Again, observe that if β = 0, corresponding to a neo-Hookean material, this reduces to the

classical value 1/2. At the other extreme, in the limit β → ∞, it reduces to the value we

found in Problem 2.3 for rigid fibers. Again, for all values of the anisotropy parameter β,

this Poisson ratio also has the value 1/2 at the particular fiber angle Θ∗ given by (6.56).

The relation between the stress T11 and stretch λ1 is now found from (6.50), (6.32), (6.46)

and (6.52) :

T11 = T11(λ1) = µ
[
λ2

1 − λ−2
1 λ−2

2 + 4β(λ2
1 cos2 Θ + λ2

2 sin2 Θ− 1)λ2
1 cos2 Θ

]
(6.58)

7This angle appears in various other contexts and is referred to as the “magic angle”.
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with λ2 = λ2(λ1,Θ) given by (6.54). The graph of T̂11(λ1) versus λ1 describes the stress-

stretch behavior in uniaxial stress.

To find the effective Young’s modulus at infinitesimal deformations (for stress in the par-

ticular direction under consideration) we differentiate (6.58) with respect to λ1 and evaluate

the result at λ1 = λ2 = 1. This yields

Eeff(Θ) =
dT11

dλ1

∣∣∣∣
λ1=1

= 4µ+ 8βµ cos4 Θ + 2µ(1 + 4β sin2 Θ cos2 Θ)
dλ2

dλ1

∣∣∣∣
λ1=1

,

which upon using (6.55) simplifies to

Eeff(Θ) =
dT11

∂λ1

∣∣∣
λ1=1

= µ
4[3 + 5β + 3β cos 4Θ]

4 + 3β − 4β cos 2Θ + β cos 4Θ
. (6.59)

This gives the effective Young’s modulus of the material (in the particular direction under

consideration) as a function of the fiber angle Θ. If β = 0, corresponding to a neo-Hookean

material, (6.59) yields

Eeff(Θ) = 3µ, (6.60)

which coincides with the value of Young’s modulus we found previously; see discussion below

in (4.92). At the other extreme when β → ∞, corresponding to rigid fibers, the limiting

value of Eeff(Θ) agrees with what we will find in Section 6.2.2. One can readily verify that

the effective Young’s modulus (6.59) is independent of the anisotropy parameter β at the

particular fiber angle given by (6.56) and has the value 3µ.

It is interesting to examine the variation of the effective Young’s modulus with the fiber

angle. It is readily found that the maximum value of Eeff(Θ) (as a function of the fiber angle

Θ) occurs at Θ = 0 corresponding to the case when the fibers are parallel to the stressing

direction. Its value is

Eeff

∣∣∣
max

= Eeff(0) = µ(3 + 8β). (6.61)

When the fibers are perpendicular to the stressing direction, Θ = π/2, one finds

Eeff(π/2) = µ
3 + 8β

1 + 2β
. (6.62)

This, however, turns out not to be the minimum value of Eeff(Θ). It is not difficult to show

that the minimum value occurs when the fiber angle has the value Θ∗ given by (6.56) and

that this value is

Eeff

∣∣∣
min

= Eeff(Θ∗) = 3µ. (6.63)

Figure (6.5) shows the graph of Eeff(Θ) versus Θ where the figure has been drawn for

β = 1.
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Figure 6.5: Effective Young’s modulus as a function of fiber angle. Figure drawn for β = 1.

6.2.2 Inextensible fibers.

Consider again the problem studied in Section 6.2.1 but now assume the fibers to be inex-

tensible. The kinematics of this problem was analyzed previously in Problem 2.3.

The constitutive relation for a material with two families of fibers is given by (6.29). If

the fibers are inextensible, then I4 = |FmR|2 = 1 and I6 = |Fm′R|2 = 1 and so the strain

energy function has the form W = W̃ (I1, I2, I5, I7, I8) having also assumed the material

to be incompressible. The terms involving W3, W4 and W6 in the constitutive relation

must be omitted, and the reaction stresses arising due to the constraints must be included.

We know from Problem 4.22(a) that the reaction stress associated with inextensibility is

a uniaxial stress in the direction of the deformed fibers (and a hydrostatic stress due to

incompressibility). Therefore (6.29) is replace by

T = −qI + q4FmR ⊗ FmR + q6Fm′R ⊗ Fm′R + 2W1B + 2W2(I1B−B2)+

+2W5(FmR ⊗BFmR + BFmR ⊗ FmR) + 2W7(Fm′R ⊗BFm′R + BFm′R ⊗ Fm′R)+

+W8(FmR ⊗ Fm′R + Fm′R ⊗ FmR)

(6.64)

where q is due to incompressibility, q4 is due to inextensibility of the mR-fibers and q6 is due

to inextensibility of the m′R-fibers.

For illustrative purposes consider the strain energy function (6.31), but now omit the
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terms involving I4 and I6:

W =
µ

2
(I1 − 3), µ > 0. (6.65)

The constitutive relation (6.64) for the Cauchy stress now simplifies to

T = −qI + µB + q4FmR ⊗ FmR + q6Fm′R ⊗ Fm′R. (6.66)

As in Section 6.2.1, consider a rectangular block of the material with its edges parallel

to the basis vectors {e1, e2, e3}. The material is incompressible and involves two families of

inextensible fibers that, in the reference configuration are oriented as in (6.33); see Figure

6.4.

The body is subjected to a homogeneous deformation y = Fx where F is given by (6.34).

It follows from (6.33) and (6.34) that

FmR = λ1 cos Θ e1 + λ2 sin Θ e2, Fm′R = λ1 cos Θ e1 − λ2 sin Θ e2, (6.67)

and so inextensibility requires

I4 = I6 = |FmR| = |Fm′R| = λ2
1 cos2 Θ + λ2

2 sin2 Θ = 1. (6.68)

Since the material is incompressible,

λ3 = λ−1
1 λ−1

2 . (6.69)

Thus we have two constraints on the principal stretches. The kinematics of this problem was

analyzed in detail in Problem 2.3. In particular, we found that the stretch λ1 is restricted to

the range 0 < λ1 < 1/ cos Θ and solving (6.68) and (6.69) for λ2 and λ3 in terms of λ1 led to

λ2 =
(1− λ2

1 cos2 Θ)1/2

sin Θ
, λ3 =

sin Θ

λ1(1− λ2
1 cos2 Θ)1/2

, 0 < λ1 < 1/ cos Θ. (6.70)

Graphs of λ2 and λ3 versus λ1 for 1 < λ1 < 1/ cos Θ are shown in Figure 6.6. Observe that

λ3 is not a monotonic function of λ1. The slopes of these curves at λ1 = 1 are the negatives

of the Poisson’s ratios (which, for the extensible case, we found previously).

We next turn to the relation between T11 and λ1. It follows from (6.34) and (6.67) that

B = FFT = λ2
1e1 ⊗ e1 + λ2

2e2 ⊗ e2 + λ2
3e3 ⊗ e3, (6.71)

FmR⊗FmR = λ2
1 cos2 Θ e1⊗e1+λ1λ2 sin Θ cos Θ(e1⊗e2+e2⊗e1)+λ2

2 sin2 Θ e2⊗e2, (6.72)
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,

Figure 6.6: Transverse stretches λ2 and λ3 versus longitudinal stretch λ1 in uniaxial stress according to

(6.70) for the block shown in Figure 6.4. Figure has been drawn for Θ = 3π/8.

Fm′R⊗Fm′R = λ2
1 cos2 Θ e1⊗e1−λ1λ2 sin Θ cos Θ(e1⊗e2+e2⊗e1)+λ2

2 sin2 Θ e2⊗e2, (6.73)

which when substituted into the constitutive relation (6.66) gives

T11 = −q + µλ2
1 + (q4 + q6)λ2

1 cos2 Θ, (6.74)

T22 = −q + µλ2
2 + (q4 + q6)λ2

2 sin2 Θ, (6.75)

T33 = −q + µλ2
3, (6.76)

T12 = [q4 − q6]λ1λ2 sin Θ cos Θ, T23 = T31 = 0. (6.77)

Suppose now that the boundary conditions on the body lead to a state of uniaxial stress:

T = T e1 ⊗ e1, (6.78)

where T is the component of Cauchy stress in the loading direction. On setting T22 = 0, T33 =

0 and T12 = 0 in (6.75), (6.76), (6.77) we find

q4 = q6 =
µ(λ2

3 − λ2
2)

2λ2
2 sin2 Θ

, q = µλ2
3. (6.79)

Substituting (6.79) into (6.74) gives the stress T :

T/µ = (λ2
1 − λ2

3) +

[
λ2

3

λ2
2

− 1

]
λ2

1 cos2 Θ

sin2 Θ
(6.80)

Finally we substitute for λ2 and λ3 from (6.70) to get

T/µ =
sin2 Θ− cos2 Θ

sin2 Θ
λ2

1 +
sin2 Θ(2λ2

1 cos2 Θ− 1)

λ2
1(1− λ2

1 cos2 Θ)2
. (6.81)
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Figure 6.7 shows a plot of T versus λ1. The figure has been drawn for Θ = π/3.

Differentiating (6.81) with respect to λ1 and evaluating the result at λ1 = 1 gives the

effective Young’s modulus (in the direction under consideration):

Eeff(Θ) = 4µ
5 + 3 cos 4Θ

3− 4 cos 2Θ + cos 4Θ
. (6.82)

This agrees with the limit β → ∞ of the result (6.59) we got in the case of the extensible

fibers. Observe that Eeff(Θ) → ∞ as Θ → 0 corresponding to the rigid fibers being in the

x1–direction. When the fibers are perpendicular to the x1-direction we get Eeff(π/2) = 4µ.

Figure 6.7: Stress T11-stretch λ1 curve in uniaxial stress according to (6.81) for the block shown in Figure

6.4.

6.2.3 Inflation, extension and twisting of a thin-walled tube.

Consider a thin-walled tube of mean radius R, wall thickness T and length L in the reference

configuration8. Its two ends are closed. We are told that T � R. The tube wall involves

two in-plane families of fibers. They are inclined, in the reference configuration, at angles Φ

and −Ψ from the circumferential direction as shown in Figure 6.11:

mR = cos Φ eΘ + sin Φ eZ , m′R = − cos Ψ eΘ + sin Ψ eZ . (6.83)

The fibers are not necessarily mechanically equivalent and they are not necessarily oriented

symmetrically with respect to the tube, i.e. Φ 6= Ψ. The tube is subjected to an internal

8The corresponding problem for a thick-walled cylinder is considered in Problem 6.7.
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pressure p, twisting moment (torque) M and axial force F . This loading expands the tube

to a mean radius r, elongates it to a length ` and rotates one end of the tube with respect

to the other by an angle α`. Let t be the wall thickness in the deformed configuration.

R

R

Figure 6.8: In the reference configuration the fiber directions mR and m′R, locally, at each point in the

tube, lie in the Θ, Z-plane as shown.

Let λ = r/R and Λ = `/L be the mean circumferential and axial stretches of the tube.

The volumes of the circular part of the tube before and after deformation are 2πRTL and

2πrt` respectively and so, since the material is incompressible, 2πRTL = 2πrt`. Thus

r = λR, ` = ΛL, t = λ−1Λ−1T. (6.84)

Assume that the deformation that takes (R,Θ, Z)→ (r, θ, z) has the form

r = r(R), θ = Θ + αΛZ, z = ΛZ. (6.85)

The associated deformation gradient tensor is

F = λ−1Λ−1er ⊗ eR + λ eθ ⊗ eΘ + αΛ reθ ⊗ eZ + Λez ⊗ eZ , (6.86)

where incompressibility has been used in writing the first term. The left Cauchy Green

tensor is

B = FFT = λ−2Λ−2er⊗er+(λ2+α2Λ2r2)eθ⊗eθ+Λ2ez⊗ez+αΛ2 r(eθ⊗ez+ez⊗eθ), (6.87)

The vectors FmR,Fm′R, tensors FmR⊗FmR,Fm′R⊗Fm′R and invariants I1, I4 and I6 can

now be readily calculated:

FmR = (λ cos Φ + rΛα sin Φ)eθ + Λ sin Φez, (6.88)
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Fm′R = (−λ cos Ψ + rΛα sin Ψ)eθ + Λ sin Ψez, (6.89)

FmR ⊗ FmR = (λ cos Φ + rΛα sin Φ)2eθ ⊗ eθ + Λ2 sin2 Φez ⊗ ez+

+(λ cos Φ + rΛα sin Φ)Λ sin Φ(ez ⊗ eθ + eθ ⊗ ez).
(6.90)

Fm′R ⊗ Fm′R = (−λ cos Ψ + rΛα sin Ψ)2eθ ⊗ eθ + Λ2 sin2 Ψez ⊗ ez+

+(−λ cos Ψ + rΛα sin Ψ)Λ sin Ψ(ez ⊗ eθ + eθ ⊗ ez).
(6.91)

I1 = tr B = λ−2Λ−2 + λ2 + α2λ2Λ2R2 + Λ2,

I4 = |FmR|2 = λ2(cos Φ + αΛR sin Φ)2 + Λ2 sin2 Φ,

I6 = |Fm′R|2 = λ2(− cos Ψ + αΛR sin Ψ)2 + Λ2 sin2 Ψ.

 (6.92)

The constitutive relation

T = −qI + 2W1B + 2W4FmR ⊗ FmR + 2W6Fm′R ⊗ Fm′R (6.93)

together with (6.87), (6.90), (6.91) and (6.92) can be used to calculate the stress components

Trr, Tθθ, Tzz and Tzθ (the remaining two stress components Trθ and Trz vanish). This leads

to the following expression where we have eliminated the reactive pressure q by subtracting

the normal stress Trr from the other two normal stresses Tθθ and Tzz:

Tθθ − Trr = 2(λ2 + α2λ2Λ2R2 − λ−2Λ−2)W1 + 2λ2(cos Φ +RΛα sin Φ)2W4+

+2λ2(− cos Ψ +RΛα sin Ψ)2W6,

Tzz − Trr = 2(Λ2 − λ−2Λ−2)W1 + 2Λ2 sin2 ΦW4 + 2Λ2 sin2 ΨW6

Tθz = 2αRλΛ2
[
W1 + sin2 ΦW4 + sin2 ΨW6

]
+ λΛ [sin 2ΦW4 − sin 2ΨW6] .

(6.94)

By exploiting the symmetry of the problem and the fact that the tube is thin-walled, we

can use the equilibrium equations to derive approximate expressions for the stress compo-

nents, exactly as we did in the isotropic case. This leads to

Tθθ ≈
pr

t
, Tzz ≈

F + πr2p

2πrt
Tzθ ≈

M

2πr2t
, Trr ≈ −

p

2
, (6.95)

where the term πr2p in Tzz arises because the two ends of the tube are closed. Note that,

due to the factor 1/t in Tθθ and Tzz these two normal stress components are significantly

larger than Trr.
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Finally, combining (6.94) with (6.95) and dropping Trr leads to

pr

t
= 2(λ2 + α2λ2Λ2R2 − λ−2Λ−2)W1 + 2λ2(cos Φ + αΛR sin Φ)2W4+

+2λ2(− cos Ψ + αΛR sin Ψ)2W6,

F + πr2p

2πrt
= 2(Λ2 − λ−2Λ−2)W1 + 2Λ2 sin2 ΦW4 + 2Λ2 sin2 ΨW6,

M

2πr2t
= 2αλΛ2R

[
W1 + sin2 ΦW4 + sin2 ΨW6

]
+ λΛ [sin 2ΦW4 − sin 2ΨW6] .

(6.96)

Given p, F and M , the three equations (6.96) are to be solved for λ,Λ and α. Various special

cases can be examined. For example, suppose we do not apply a twisting moment M . The

third equation in (6.96) must still hold with zero on its left hand side; the rotation α of the

tube will not be zero in general.
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6.3 Worked Examples and Exercises.

Problem 6.1. Let M denote the tensor

M = mR ⊗mR, (6.97)

where mR is a unit vector. Show that

QmR = ±mR, (6.98)

for an orthogonal tensor Q if and only if

QMQT = M. (6.99)

An important consequence of this is that the groups

G = {Q : QQT = I, QmR = ±mR } and G′ = {Q : QQT = I, QMQT = M } (6.100)

are identical.

Problem 6.2. Keeping in mind that the strain energy function is invariant to replacing mR by −mR, let

W (C,mR) = W̆ (C,mR ⊗mR). (i)

Show that

W (C,mR) = W (QCQT ,QmR) for all Q ∈ G, (ii)

if and only if

W̆ (C,mR ⊗mR) = W̆
(
QCQT ,Q(mR ⊗mR)QT

)
for all orthogonal Q. (iii)

Here G is the material symmetry group for transverse isotropy given in (6.100). Note that the second

statement holds for all orthogonal Q not just those in G. Therefore the function W̆ is jointly isotropic in

both arguments.

Problem 6.3. Show that W̆ (C,M) = W̆ (QCQT ,QMQT ) for all orthogonal Q if and only if there is a

function W̃ such that

W̆ (C,M) = W̃ (I1, I2, I3, I4, I5), (6.101)

where

I1(C) = tr C, I2(C) = 1
2

[
(tr C)2 − tr C2

]
, I3(C) = det C,

I4(C,M) = C ·M, I5(C,M) = C2 ·M.

(6.102)

Remark 1: Observe that one can equivalently write

I4 = C ·M = CmR ·mR I5 = C2 ·M = C2mR ·mR. (6.103)

For a proof, see Chapter 5 of Steigmann [9].
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Problem 6.4. In the case of a material involving two families of fibers, it was claimed in Section 6.2 that

the strain energy function depended on (in addition to I1, I2, I3) the invariants

I4 = CmR ·mR, I5 = C2mR ·mR, I6 = Cm′R ·m′R, I7 = C2m′R ·m′R,

and the coupling term

I8 = Cm′R ·mR.

In view of the forms of I4, I5, I6, I7 and I8, one might expect the quantity C2m′R ·mR to also appear in this

list of invariants. Show that C2m′R ·mR can be written in terms of the other invariants.

Problem 6.5. An incompressible body occupies a unit cube in the reference configuration with its edges

parallel to the coordinate axes. The body contains one family of fibers in planes parallel to the x1, x2-plane,

oriented at an angle Θ from the x1-axis. The body is subjected to a uniform stress T = Te1⊗e1 +T33e3⊗e3.

The value of T is given while that of T33 is such that the deformation is a plane strain in the x1, x2-plane,

i.e. λ3 = 1. Note that in contrast to the problem considered in Section 6.1.1, here we have T12 = 0. Because

of anisotropy, the deformation will involve a (to-be-determined) amount of shear k and so assume that the

deformation has the form

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3 + ke1 ⊗ e2. (i)

The material is characterized by the strain energy function

W =
µ

2
(I1 − 3) +

µβ

2
(I4 − 1)2, µ > 0, β > 0. (ii)

Derive two algebraic equations involving λ1 and k as the only unknowns.

Now suppose the deformation is infinitesimal. Linearize the pair of equations you found and thus

calculate the amount of shear k as a function of T (and µ, β and Θ).

Explore various limiting cases, e.g. β → 0, β → ∞,Θ → 0, etc. Assuming T > 0, when is k > 0 and

when is it < 0?

Solution

In view of incompressibility we require det F = λ1λ2 = 1 and so we set λ1 = λ and λ2 = λ−1. The

deformation gradient tensor can then be written as

F = λe1 ⊗ e1 + ke1 ⊗ e2 + λ−1e2 ⊗ e2 + e3 ⊗ e3. (iii)

Thus

B = FFT = (λ2 + k2)e1 ⊗ e1 + kλ−1(e1 ⊗ e2 + e2 ⊗ e1) + λ−2e2 ⊗ e2 + e3 ⊗ e3, (iv)

FmR = (λ cos Θ + k sin Θ)e1 + λ−1 sin Θe2, (v)
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Figure 6.9: Rectangular block in reference configuration occupied by a material involving one family of

fibers in the x1, x2-plane.

I4 = |FmR|2 = λ2 cos2 Θ + λ−2 sin2 Θ + 2kλ sin Θ cos Θ + k2 sin2 Θ, (vi)

FmR ⊗ FmR = (λ cos Θ + k sin Θ)2e1 ⊗ e1 + +λ−2 sin2 Θe2 ⊗ e2+

+(sin Θ cos Θ + kλ−1 sin2 Θ)(e1 ⊗ e2 + e2 ⊗ e1)
(vii)

The constitutive equation is

T = −qI + 2W1B + 2W4(FmR ⊗ FmR),

so that on using (iv) and (vii),

T11 = −q + 2W1(λ2 + k2) + 2W4(λ cos Θ + k sin Θ)2 = T, (viii)

T22 = −q + 2W1λ
−2 + 2W4λ

−2 sin2 Θ, (ix)

T12 = 2W1kλ
−1 + 2W4(sin Θ cos Θ + kλ−1 sin2 Θ). (x)

The shear stress components T23 and T31 vanish automatically. We are told that T22 = 0. Thus we can use

(ix) to eliminate q from (viii). We are also told that T12 = 0. Thus we are led to the pair of equations

(λ2 + k2 − λ−2) + 2β(I4 − 1)
[
(λ cos Θ + k sin Θ)2 − λ−2 sin2 Θ

]
= T/µ,

kλ−1 + 2β(I4 − 1)(sin Θ cos Θ + kλ−1 sin2 Θ) = 0,

 � (xi)

having used (ii) and recalling (vi).

Now suppose the deformation is infinitesimal. In this case λ− 1 and k are small. Letting λ = 1 + ε we

approximate the various terms in (xi) to leading order:

λ2 − λ−2 + k2 = (1 + ε)2 − (1 + ε)−2 + . . . = 4ε+ . . .

I4 = (1 + ε)2 cos2 Θ + (1 + ε)−2 sin2 Θ + 2k sin Θ cos Θ + . . . = 1 + 2ε cos 2Θ + k sin 2Θ + . . .

(λ cos Θ + k sin Θ)2 − λ−2 sin2 Θ = cos 2Θ + . . .

kλ−1 = k + . . .
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(sin Θ cos Θ + kλ−1 sin2 Θ) = sin Θ cos Θ + . . . =
1

2
sin 2Θ + . . .

Substituting these expressions into (xi) yields the pair of linear algebraic equations for ε and k:

2
[
2 + β + β cos 4Θ

]
ε+ βk sin 4Θ = T/µ,

(2 + β − β cos 4Θ)k + 2βε sin 4Θ = 0.


Solving for k gives

k = −1

4

β sin 4Θ

1 + β

T

µ
. �

Discussion: Assuming T > 0, we see that

k



= 0 for Θ = 0,

< 0 for 0 < Θ < π/4,

= 0 for Θ = π/4,

> 0 for π/4 < Θ < π/2,

= 0 for Θ = π/2.

Also, we have k → 0 when β → 0 and

k → −1

4
sin 4Θ

T

µ
when β →∞.

In view of (ii), we can view the respective cases of large and small β as corresponding to strong and weak

degrees of anisotropy.

Problem 6.6. In the reference configuration a thin-walled tube has mean radius R, wall thickness T � R

and length L. Its two ends are closed. The tube wall involves a single in-plane family of fibers. At each

point of the tube wall, they lie in the Θ, Z-plane, oriented at an angle Φ with respect to the circumferential

Θ-direction as shown in Figure 6.10:

mR = cos Φ eΘ + sin Φ eZ .

The tube is subjected to an internal pressure p and an axial force F . This loading will, in general, expand

the tube to a mean radius r, elongate it to a length ` and rotate one end of the tube with respect to the other

by an angle α`. Assume the material to be incompressible and characterized by the strain energy function

W (I1, I4) =
µ

2
(I1 − 3) +

µβ

2
(I4 − 1)2, µ > 0, β > 0.

With F = 0, plot a graph of the twist angle α versus p. Does α vary monotonically with p (i.e. does the

tube reverse its twist direction at some p)? Is there a value of F for which α = 0?
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R

Figure 6.10: In the reference configuration the fiber direction mR, locally, at each point in the tube wall,

lies in the Θ, Z-plane as shown.

Problem 6.7. Consider a hollow (thick-walled) circular cylindrical tube with closed ends. It has inner radius

A, outer radius B and length L in a reference configuration and is subjected to an internal pressure p, axial

force F and twisting moment (torque) M . The tube is made of an incompressible material involving two

families of fibers that lie, locally at each point, in the Θ, Z-plane, oriented at different angles Φ and Ψ with

respect to the circumferential Θ-direction as shown in Figure 6.11. Formulate the problem and derive the

equations to be solved to determine the resulting radial expansion, axial elongation and twist angle of the

tube.

R

R

Figure 6.11: In the reference configuration the fiber directions mR and m′R, locally, at each point in the

tube, lie in the Θ, Z-plane as shown.
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Chapter 7

A Two-Phase Elastic Material: An

Example.

7.1 A material with cubic and tetragonal phases.

We shall use the terms “energy-well” and “local minimum” interchangeably in this chapter

and so we will say that the strain energy function W (C) has an energy-well at C = C∗ if

W (C) has a local minimum at C = C∗:

∂W

∂Cij

∣∣∣∣
C=C∗

= 0,
∂2W

∂Cij∂Ck`

∣∣∣∣
C=C∗

HijHk` > 0, (7.1)

for all symmetric tensors H 6= 0. Note from the constitutive relation for stress and (7.1)1 that

the body is necessarily stress-free at an energy-well. The particular strain energy functions

considered previously had energy-wells at C = I corresponding to the reference configuration.

In this section we construct a strain energy function with multiple energy-wells, i.e.

multiple local minima. Each energy-well describes a “phase” of the material and multi-well

strain energy functions describe materials that can exist in more than one phase. It should

be noted that the multiple phases here are all solid phases. Figure 7.1 depicts a particular

crystalline solid that has a cubic lattice in one phase and a tetragonal lattice in another

phase as is the case for certain alloys of In-Tl, Mn-Ni and Mn-Cu.

Temperature plays an important role in the study of such materials. In our present

discussion we hold the temperature fixed at the so-called transformation temperature. At

this temperature, the heights of the different energy-wells are the same, i.e. the values of W

581
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ao
ao

ao

c

a

a

Figure 7.1: One phase has a face-centered cubic lattice with lattice parameters ao × ao × ao, the other a

face-centered tetragonal lattice with lattice parameters a×a× c. The unit vectors {c1, c2, c3} are associated

with the cubic directions. Solely for purposes of clarity, the atoms at the vertices are depicted by filled dots

while those at the centers of the faces are shown by open dots.

are the same at all local minima. Thus we might say that there is no preferred phase at this

temperature. Above the transformation temperature, one phase will have lower energy than

the other, while this will switch below the transformation temperature. This is illustrated

in Figure 7.5 where, at high temperatures the energy-well at ε = 0 has lower energy than

the other two energy-wells, while the reverse is true at low temperatures. The temperature-

dependent version of the material in this chapter can be found in Abeyaratne et al. [1].

Consider a material that can exist in two phases, a cubic phase and a tetragonal phase.

Let a0×a0×a0 and a×a×c be the respective lattice parameters of the cubic and tetragonal

lattices, and let {c1, c2, c3} denote fixed unit vectors in the cubic directions. The deformation

from the cubic phase to the tetragonal phase is achieved by stretching the cubic lattice

equally in two of the cubic directions and unequally in the third direction, see Figure 7.1,

the associated stretches being α, α and β:

α =
a

a0

> 1, β =
c

a0

.

Since we can impose the unequal stretch β on any one of the ck-directions, k = 1, 2, 3,

(and the stretch α on the remaining two cubic directions), there are three ways in which to

stretch the cubic lattice into the tetragonal lattice as depicted in Figure 7.2. We say there

are three variants of the tetragonal phase. With the cubic phase taken to be the reference

configuration, the three variants are characterized by the stretch tensors U1,U2,U3 whose
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components in the basis {c1, c2, c3} are

[U1] =

 β 0 0

0 α 0

0 0 α

 , [U2] =

 α 0 0

0 β 0

0 0 α

 , [U3] =

 α 0 0

0 α 0

0 0 β

 . (7.2)

It will be useful for subsequent calculations to note that

U1 = β c1 ⊗ c1 + α c2 ⊗ c2 + α c3 ⊗ c3. (7.3)

Figure 7.2: Cubic phase and three variants of the tetragonal phase. Observe that one cannot rigidly rotate

one tetragonal variant in such a way as to make the “atoms” P,Q,R,S coincide with the locations of these

same atoms in a different tetragonal variant.

We now construct an explicit strain-energy function W (C) that can be used to describe

such a material. It therefore has local minima at C = I,U2
1,U

2
2 and U2

3. According to

the claim in the exercise below, a function W (C) that has an energy-well at C = U2
1, will

automatically have energy-wells at C = U2
2 and U2

3 in view of material symmetry.

Exercise: Show using material symmetry, that if W (C) has a local minimum at any one of the tensors Ck,

then W will automatically have energy-wells at the remaining two Ck’s where Ck = U2
k, k = 1, 2, 3.

Following Ericksen [2, 3, 4] we write the strain-energy function as a function of the Green

Saint-Venant strain tensor E = 1
2
(C − I). It must have energy-wells at E = 0,E1,E2 and
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E3 where Ek = 1
2
(Ck − I) = 1

2
(U2

k − I). Since we have taken the reference configuration

to coincide with the cubic phase, the strain-energy function W (E) (with respect to that

configuration), must possess cubic symmetry. It is known (see, for example, Smith and

Rivlin [5] and Green and Adkins [6]) that, to have cubic symmetry, W must be a function

of the “cubic invariants” ik(E):

i1 = E11 + E22 + E33, i2 = E11E22 + E22E33 + E33E11,

i3 = E11E22E33, i4 = E12E23E31,

i5 = E2
12 + E2

23 + E2
31, . . . etc.,

(7.4)

where Eij refers to the i, j-component of E in the cubic basis {c1, c2, c3}. The number of

invariants in this list depends on the particular cubic sub-class under consideration (see, e.g.,

Section 1.11 of Green and Adkins [6]) but the analysis below is valid for all of them.

For temperatures close to the transformation temperature, Ericksen [2, 3, 4] has argued

based on experimental observations that, as a first approximation, (a) all of the shear strain

components (in the cubic basis) vanish and (b) the sum of the normal strains also vanishes.

Accordingly he suggested a kinematically constrained theory based on the two constraints

i1 = E11 + E22 + E33 = 0, i5 = E2
12 + E2

23 + E2
31 = 0. (7.5)

In this case, the only two nontrivial strain invariants among those in the preceding list

are i2 and i3 and so we take W = W (i2, i3). The constraint i1 = 0 can be written as

E33 = −E11 − E22 and so we can eliminate E33 from i2 and i3 to obtain

i2 = −E2
11 − E11E22 − E2

22, i3 = −E2
11E22 − E11E

2
22. (7.6)

Note that the constraint i1 = 0 implies tr E = 0 and so in particular tr E1 = 0. Therefore

the lattice stretches α and β must be related by 2α2 + β2 = 3.

Let us start by considering a one-phase material involving only the cubic phase. Then

the only local minimum of W (E) is at E = 0. The simplest form of W to consider is a

polynomial in the components of E, and in order to have one local minimum its degree must

be (at least) quadratic. Thus consider

W (E) = c0 + c2i2, (7.7)

where c0 and c2 are constants and the invariant i2 is given by (7.6)1. The first derivatives of

W (E11, E22) are

∂W

∂E11

= −c2(2E11 + E22),
∂W

∂E22

= −c2(2E22 + E11), (7.8)



7.1. MATERIAL WITH CUBIC AND TETRAGONAL PHASES 585

and they vanish at E = 0. Thus W has an extremum at E = 0. To ensure that this is a

local minimum, we calculate the second derivatives of W (E11, E22):

∂2W

∂E2
11

= −2c2,
∂2W

∂E2
22

= −2c2,
∂2W

∂E11∂E22

= −c2. (7.9)

The extremum is a local minimum if the Hessian matrix W11 W12

W12 W22

 where Wij =
∂2W

∂Eii∂Ejj
(no sum on i and j), (7.10)

evaluated at E = 0 is positive definite. It is easily seen that this requires c2 < 0. Thus the

strain energy function (7.7), (7.6)1 with c2 < 0 has a local minimum at E = 0 (and this

local minimum is unique). A contour plot of this energy is shown in Figure 7.3. Note the

energy-well at E = 0.

Figure 7.3: Constant energy contours on the E11, E22-plane for the one-phase strain energy function (7.7),

(7.6)1 with c2 < 0. Observe the single energy-well at E = 0.

We now return to the two-phase material of interest. This energy function must have

one energy well at E = 0 (the cubic phase) and another at E = E1 (the tetragonal phase).

Here

E1 =
1

2
(U2

1 − I)
(7.3)
=

1

2
(β2 − 1) c1 ⊗ c1 +

1

2
(α2 − 1) c2 ⊗ c2 +

1

2
(α2 − 1) c3 ⊗ c3. (7.11)
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The simplest form ofW to consider is again a polynomial in the components of E, but in order

to endow it with two distinct local minima, its degree must be at least quartic. It follows

from (7.4) and (7.5) that the most general quartic polynomial of the form W = W (i2, i3) is

W = c0 + c2i2 + c3i3 + c22i
2
2, (7.12)

where the ci’s are constants1. From (7.6) and (7.12), the first and second partial derivatives

of W (E11, E22) with respect to the strain components are

∂W

∂E11

= −c2(2E11 + E22)− c3(2E11E22 + E2
22) + 2c22(E2

11 + E11E22 + E2
22)(2E11 + E22),

∂W

∂E22

= −c2(2E22 + E11)− c3(2E11E22 + E2
11) + 2c22(E2

11 + E11E22 + E2
22)(2E22 + E11),

(7.13)
∂2W

∂E2
11

= −2c2 − 2c3E22 + 6c22(2E2
11 + 2E11E22 + E2

22),

∂2W

∂E2
22

= −2c2 − 2c3E11 + 6c22(2E2
22 + 2E11E22 + E2

11),

∂2W

∂E11∂E22

= −c2 − 2c3(E11 + E22) + 6c22(E2
11 + 2E11E22 + E2

22).

(7.14)

Of the multiple local minima of W , one must be at E = 0 corresponding to the cubic

phase. It is seen immediately from (7.13) that the first derivatives of W (E11, E22) vanish

automatically at E = 0. Evaluating the Hessian matrix at E = 0 shows that it is positive

definite provided

c2 < 0. (7.15)

A second local minimum of W (E) is at the strain E1 given by (7.11). A straightfor-

ward calculation based on substituting (7.11) into (7.13) shows that the first derivatives of

W (E11, E22) vanish at E1 provided

c2 = −pc3 + 6p2c22, (7.16)

where we have set

p :=
1

2
(α2 − 1) > 0. (7.17)

In order to ensure that this extremum is a local minimum, we evaluate the second derivatives

of W at E = E1 using (7.14). The positive definiteness of the associated Hessian matrix is

found to require

12pc22 > c3 > 0. (7.18)

1When thermal effects are taken into account the ci’s will be functions of temperature.
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Finally, since we are working at the transformation temperature where the heights of the

energy-wells are the same, we need W (0) = W (E1). Calculating these two values of the

energy from (7.12) and equating them leads to

c3 = 9pc22. (7.19)

Combining all of the preceding requirements (7.15), (7.16), (7.18) and (7.19) leads to the

strain energy function

W = c0 + c22

[
− 3p2i2 + 9pi3 + i22

]
, (7.20)

where

c22 > 0, p =
1

2
(α2 − 1). (7.21)

Figure 7.4: Constant energy contours on the E11, E22-plane for the strain energy function (7.20), (7.21).

Observe the presence of the cubic phase energy-well at E = 0 surrounded by the three tetragonal phase

energy-wells at E = E1,E2,E3.

Figure 7.4 shows the equal energy contours of the strain-energy function (7.20), (7.21)

on the E11, E22-plane. It shows the cubic energy-well at the origin E = 0 surrounded by the

three tetragonal energy-wells at E = E1,E2 and E3. The values of the material parameters
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Figure 7.5: A one-dimensional cross-section of the energy (7.20), (7.21) along the path (7.22) in strain-

space. The figure plots w(ε) = W (Ê(ε)) versus strain ε at three constant temperatures. The analysis in these

notes were limited to the transformation temperature θT where the wells have the same height. We have

included the corresponding plots, both above and below the temperature θT , taken from [1]. The material

parameters underlying this plot are the same as those associated with the previous figure.

associated with this figure were chosen solely on the basis of obtaining a fairly clear contour

plot.

In order to draw a one-dimensional cross-section of the energy (7.20), (7.21) consider the

following path in strain space

E = Ê(ε) = pε2c1⊗ c1 +
1

2
pε(3− ε)c2⊗ c2−

1

2
pε(3 + ε)c3⊗ c3, −1.5 < ε < 1.5, (7.22)

where ε is a parameter. Observe that Ê(0) = 0, Ê(−1) = E2, Ê(1) = E3 so that this path

passes through the cubic well and two of the tetragonal wells. The energy along this path is

w(ε) := W (Ê(ε)) and Figure 7.5 shows a plot of w(ε) versus ε (the curve labelled θ = θT ).

The calculations in this chapter were carried out at the transformation temperature (θ = θT )

where the three energy-wells have the same height. Figure 7.5 taken from Abeyaratne et al.

[1] shows the results for two other temperatures as well, one > θT and the other < θT .

The strain-energy function (7.20) captures the key qualitative characteristics of a material

that exists in cubic and tetragonal phases. However, due to the restrictive nature of the

kinematic constraints (7.5), it fails to provide a quantitatively accurate model. The natural

generalization of (7.20) is therefore to relax these constraints by using Lagrange multipliers
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c5 and c11 and to replace (7.12) by

W = c0 + c2I2 + c3I3 + c22I
2
2 + c5I5 + c11I

2
1 . (7.23)

R.D. James (unpublished2) has shown that the response predicted by this generalized form

of W is in reasonable quantitative agreement with the observed behavior of In-Tl.

Remark: A strain energy function for a Cu-Al-Ni alloy can be found in Vedantam and

Abeyaratne [8]. This alloy can exist in a cubic phase as well as six variants of a orthorhombic

phase.

Remark: In Problem 2.35 you looked at the kinematics of a piecewise homogeneous deforma-

tion that involved the cubic phase on one side of a planar interface and a tetragonal variant

on the other.
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Chapter 8

A Micromechanical Constitutive

Model

Continuum theory says that an elastic material is characterized by a strain energy function

W (C). If additional information on material symmetry is available, this can be reduced

further, for example to the form W (I1(C), I2(C), I3(C)) for an isotropic material. However,

that is as far as the theory goes. The examples of explicit functions W given in Section

4.7 (corresponding, for example, to the Blatz-Ko or Fung models) are “phenomenological

models” of particular elastic materials, i.e. the functional form of W is laid out at the outset

at the continuum level, and subsequent laboratory experiments are used to refine it.

On the other hand the macroscopic (or continuum) behavior of a material reflects its

underlying microscopic behavior. If one could describe the processes at the microscopic

scale, and knew how to homogenize them across scales, one could then infer the response at

the macroscopic scale. When this is possible, the continuum model so developed captures

the microscopic physics.

In this chapter we start at the atomistic scale and develop an explicit form for the strain

energy function W (C) for a crystalline solid. The atomistic model we use is the simplest

conceivable one, and our purpose is merely to illustrate how one might develop continuum

models from microscale models.

A second example that rightfully belongs here is the derivation of the strain energy

function for rubber-like materials based on a polymer chain model. Unfortunately, the strain

energy of such materials turns out to be dominated by its entropy, and since we have not

591
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considered thermodynamics in these notes (at least not beyond the brief discussion in Section

9.2), we are not able to describe those calculations here, not without a lot of preliminary

work. The interested reader may look at Volume II in this series on notes.

8.1 Example: Lattice Theory of Elasticity.

The notes in this section closely follow the unpublished lecture notes of Professor Kaushik

Bhattacharya of Caltech. I am most grateful to him for sharing them with me. The original

calculations are due to Cauchy, see Love [3].

The aim of this section is to illustrate how a simple atomistic model of a crystalline solid

can be used to derive explicit continuum scale constitutive response functions T̂ and Ŵ

for the Cauchy stress and the strain energy function in terms of the deformation gradient

tensor. We will see that the expressions to be derived automatically satisfy the requirements

of material frame indifference, material symmetry and the dissipation inequality. Moreover

we find that the traction - stress relation t = Tn and the symmetry condition T = TT

hold automatically. The expressions for T̂ and Ŵ that we derive are explicit in terms of the

lattice geometry and the interatomic force potential; see (8.11) and (8.16).

8.1.1 A Bravais Lattice. Pair Potential.

A Bravais lattice L is an infinite set of points in R3 generated by translating a point yo
through three linearly independent vectors {`1, `2, `3}: i.e.,

L(`1, `2, `3) =
{
y : y ∈ R3, y = yo + νi`i for all integers ν1, ν2, ν3

}
. (8.1)

The lattice vectors {`1, `2, `3} define a unit cell. Note the distinction between the lattice L,

which is an infinite set of periodically arranged points in space, and the lattice vectors. In

particular, it is generally possible to generate the same lattice L from more than one set of

lattice vectors, i.e., a given set of lattice vectors generates a unique lattice, but the converse

is not necessarily true. More on this later. We shall take the orientation of the lattice vectors

to be right-handed so that in particular, the volume of the unit cell is

vol (unit cell) = (`1 × `2) · `3 > 0. (8.2)

The neighborhood of any lattice point, say yA, is identical to that of any other lattice

point, say yC . To see this we simply note that if yB is any third lattice point, then there
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necessarily is a fourth lattice point yD such that yD − yC = yB − yA. Thus the position of

yB relative to yA is the same as the position of yD relative to yC . Any two lattice points

yA and yC of a Bravais lattice are therefore geometrically equivalent. Bravais lattices can

represent only monoatomic lattices; in particular, no alloy is a Bravais lattice1.

We will ignore lattice vibrations and assume that the atoms are located at the lattice

points. Therefore the calculations we carry out are valid at zero degrees Kelvin.

!"#$%&'()*"+ ,-./'(&01&2&.'()*"+

1 2 3

2 3

ρ ρ 0
1 2 3

1 2 3

1 2 3

φ(ρ) ρ ρ0 0
1 2 3

1 2 3

φ(ρ) ρ ρ0 0

1 2 3

φ(ρ) ρ ρ0 0

Figure 8.1: Examples of lattices in R2 and R3.

In the simplest model of interatomic interactions one assumes the existence of a pair

potential φ(ρ) such that the force exerted by atom A on atom B, say fA,B, is the gradient of

this potential:

fA,B = −∇yφ(|y|)
∣∣∣
y=yB−yA

= −φ′(|yB − yA|)
yB − yA
|yB − yA|

. (8.3)

In this model the force exerted by one atom on the other depends solely on the relative

positions of those two atoms and is independent of the positions of the surrounding atoms.

Note that the force (8.3) is a central force in that it acts along the line joining those two

atoms. Also observe that if the distance ρ between the atoms is such that φ′(ρ) < 0, then

the force between them is repulsive; if φ′(ρ) > 0 it is attractive. Finally, observe from (8.3)

that fA,B = −fB,A so that the force exerted by atom A on atom B is equal in magnitude

and opposite in direction to the force applied by atom B on atom A.

Figure 8.2 shows a graph of a typical pair-potential φ(ρ) versus the distance ρ between

the pair of atoms. Note that the associated force is repulsive at short distances (< ρo) and

attractive at large distances (> ρo).

1Even some monoatomic lattices – e.g. a hexagonal close-packed lattice – cannot be represented as a

Bravais lattice.
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φ(ρ) ρ ρ0 0

3

0 0

Figure 8.2: Typical graph of the pair-potential φ.

Several of the calculations to follow will involve infinite sums of terms involving φ, φ′

and φ′′ over all lattice points; it is necessary to ensure that these sums converge to finite

values. This requires that φ(ρ)→ 0 fast enough as ρ→∞. We assume that φ possesses the

requisite2 decay rate.

Because of the periodicity and symmetry of a Bravais lattice, if yA and yB are any two

lattice points, there necessarily is a third lattice point yC which is such that yA − yB =

−(yA − yC). Therefore according to the force law (8.3), the forces exerted on atom A by

atoms B and C are equal in magnitude and opposite in direction. Consequently for each

atom B that exerts a force on atom A, there is another atom C that exerts an equal and

opposite force on A. Thus a Bravais lattice is always in equilibrium.

8.1.2 Homogenous Deformation of a Bravais Lattice.

Most, but not all, of the discussion to follow will be carried out entirely on the deformed

lattice. There will however be a few occasions when we wish to consider a reference lattice

2To determine the required decay rate, one can consider a sphere of radius, say ρ, and separate the infinite

sum over the entire lattice into a finite sum over the finite number of lattice points in the interior of the

sphere plus a sum over the infinite number of lattice points in the exterior of the sphere. An upper bound for

the second term can then be written by replacing the sum by an integral (over the entire three dimensional

region exterior to the sphere). Convergence of the integral guarantees convergence of the sum. For example

the energy (8.16) will converge if the integral of ρ2φ(ρ) over the interval [ρ,∞) converges, which would be

true if φ→ 0 faster than ρ−3 as ρ→∞.
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Figure 8.3: Homogeneous deformation of a lattice. The lattice vectors {`o1, `o2} of the reference lattice are

mapped by F into the lattice vectors {`1, `2} of the deformed lattice.

and for this purpose we consider a second Bravais lattice L0:

L(`o1, `
o
2, `

o
3) =

{
x : x ∈ R3, x = xo + νi`

o
i for all integers ν1, ν2, ν3

}
where the lattice vectors {`o1, `o2, `o3} define a unit cell of the reference lattice. Since each set of

lattice vectors is linearly independent, there is a nonsingular tensor F that maps {`o1, `o2, `o3}
→ {`1, `2, `3}:

`i = F`oi , i = 1, 2, 3. (8.4)

This is illustrated in Figure 8.3.
i i
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Figure 8.4: The deformation y(x) carries the three dimensional region R0 into R. The figure shows

blown-up views of infinitesimal neighborhoods of x and y(x). The mapping of the lattice vectors is assumed

to be described by Grad y(x) (= ∇y(x)) as depicted in the figure.

Suppose that we associate a (continuum) body with the lattice. The lattices L0 and

L are associated with two configurations of the body. Let y(x) be the deformation of the
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continuum that maps R0 into R. The deformation gradient tensor is ∇y(x). As discussed

in Section 2.3, ∇y(x) maps material fibers of the continuum from the reference to the

deformed configurations. The tensor F introduced above maps the reference lattice vectors

to the deformed lattice vectors through (8.4). The Cauchy-Born hypothesis (rule) states that

the “continuum deforms with the lattice” in the sense that ∇y(x) = F. This is illustrated

in Figure 8.4.

8.1.3 Traction and Stress.

We now establish a notion of traction and then derive an explicit expression for it in terms

of the interatomic forces. Let P be an arbitrary plane through the lattice and let n denote a

unit vector normal to P . Let L+ and L− denote the two subsets of the lattice L that are on,

respectively, the side into which and the side away from which n points; see Figure 8.5. Let

A be a subregion of the plane P . Consider two lattice points y+ ∈ L+ and y− ∈ L− such

that the line joining them intersects the subregion A; see Figure 8.5. By summing the forces

between all such pairs of atoms, we can associate a force with the region A. The traction t

can then be defined as the normalization of this force by the area of A:

t(A) =
1

area (A)

∑
f i,j =

1

area (A)

∑
−φ′(|y− − y+|)

y− − y+

|y− − y+|
, (8.5)

where the summation is carried out over all y+ ∈ L+ and y− ∈ L− which are such that the

line joining y+ to y− intersects A.

For (8.5) to be useful, we need to characterize the range of summation in a simpler form.

First, since y− and y+ are lattice points, it follows that there are integers {ν1, ν2, ν3} for

which y− − y+ = νi`i. Conversely, given any three integers {ν1, ν2, ν3} which are such that

(νi`i) · n < 0 (which simply means that the vector νi`i points in the −n direction), there

exist pairs (note plural) of lattice points y+ ∈ L+ and y− ∈ L− such that y− − y+ = νi`i;

of these, the number of pairs whose line of connection intersects A can be estimated to be

N =
volume of the (non-prismatic) cylinder with base A and generator νi`i

volume of the unit cell

=
area (A) |(νi`i) · n|

(`1 × `2) · `3

= −area (A)
(νi`i) · n

(`1 × `2) · `3

,

(8.6)

when the area of A is sufficiently large3; see Figure 8.6. In the last step we have used the

3In a homogeneously deformed continuum, the traction on the plane P would be uniform, i.e. it would
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Figure 8.5: A plane P separating the lattice into two parts L+ and L−. The two lattice points y+ ∈ L+

and y− ∈ L− are such that the line joining them intersects the subregion A ⊂ P.
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Figure 8.6: (a) Two lattice points y+ ∈ L+ and y− ∈ L−: y−−y+ = νi`i for some integers ν1, ν2, ν3. (b)

Non-prismatic cylinder whose base is A and generator is νi`i.

fact that (νi`i) · n < 0. Given the triplet of integers {ν1, ν2, ν3}, equation (8.6) gives the

corresponding number of pairs of points whose line of connection intersects A.

We can now evaluate the summation in (8.5) in two steps: first, for given {ν1, ν2, ν3} with

(νi`i) · n < 0, we sum over all pairs of lattice points y− and y+ which have y− − y+ = νi`i

and where the line connecting them intersects A. Then, we sum over all triplets of integers

be the same at all point on P. The lattice at hand has a uniform geometry and we want (8.5) to be related

to the continuum notion of traction. This requires that the right-hand side of (8.5) be independent of the

size of A. This in turn requires that the subregion A be sufficiently large.
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{ν1, ν2, ν3} obeying (νi`i) · n < 0. This leads to

t(A) =
1

area (A)

∑
{ν1, ν2, ν3} 3
(νi`i) · n < 0

−φ′(|νp`p|)
νi`i
|νk`k|

N . (8.7)

Substituting (8.6) into this yields

t(A) =
1

(`1 × `2) · `3

∑
{ν1, ν2, ν3} 3
(νi`i) · n < 0

φ′(|νp`p|)
νi`i
|νk`k|

(νj`j) · n . (8.8)

Finally, observe that if we change {ν1, ν2, ν3} → {−ν1,−ν2,−ν3}, the term within the sum-

mation sign remains unchanged though (νi`i) · n changes sign. Therefore, the sum above

with the restriction (νi`i) ·n < 0 equals one-half the sum without this restriction. Therefore

we obtain the following expression for the traction on the plane P :

t(A) =

 1

2(`1 × `2) · `3

∑
{ν1,ν2,ν3}

φ′(|νp`p|)
(νi`i)⊗ (νj`j)

|νk`k|

n (8.9)

where the summation is taken over all triplets of integers {ν1, ν2, ν3}.

Observe that the traction given by (8.9) depends linearly on the unit normal vector n.

This suggests that we define the Cauchy stress tensor T by

T =
1

2(`1 × `2) · `3

∑
{ν1,ν2,ν3}

φ′(|νp`p|)
(νi`i)⊗ (νj`j)

|νk`k|
. (8.10)

Note that t = Tn. Moreover T = TT as required by the balance of angular momentum.

Given a Bravais lattice and a pair potential, equation (8.10) provides an explicit formula for

the stress. It involves the geometry of the deformed lattice and the pair-potential.

Finally we provide a representation for T in terms of a referential lattice by replacing the

deformed lattice vectors {`1, `2, `3} in (8.10) by reference lattice vectors. To this end, con-

sider a reference lattice defined by lattice vectors {`o1, `o2, `o3}. The lattice vectors {`o1, `o2, `o3}
of the reference lattice are related to the lattice vectors {`1, `2, `3} of the deformed lattice

through the nonsingular tensor F where `i = F`oi . The stress (in the deformed lattice) given

by (8.10) can now be written in terms of the referential lattice vectors and F as

T = T̂(F) =
1

2(F`o1 × F`o2) · F`o3
∑

{ν1,ν2,ν3}

φ′(|νp F`op|)
(νi F`

o
i )⊗ (νj F`oj)

|νk F`ok|
. (8.11)
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This provides an explicit formula for the stress response function T̂ in terms of the referential

lattice, the tensor F, and the pair potential. If we associate a continuum with this lattice

and invoke the Cauchy-Born hypothesis, F would be the deformation gradient tensor.

8.1.4 Energy.

We begin by calculating the energy of a single atom located at a lattice point y. The energy

associated with the pair of atoms located at y and ξ is φ(|y− ξ|). Assume that this energy

is equally shared by the two atoms. Then, the energy of the atom located at y due to its

interaction with all other atoms of the lattice is

1

2

∑
ξ ∈ L
ξ 6= y

φ(|y − ξ|) =
1

2

∑
{ν1,ν2,ν3}

φ(|νi `i|). (8.12)

Observe that this energy does not depend on y, reflecting the fact that the lattice is uniform

and the energy of each atom is the same. Now consider the energy associated with some

region R of three dimensional space. If R is sufficiently large, the number of lattice points

in R is
vol (R)

(`1 × `2) · `3

(8.13)

where the denominator denotes the volume of the unit cell. Therefore the energy associated

with the region R is given by the product of the two preceding expressions:

vol (R)

(`1 × `2) · `3

1

2

∑
{ν1,ν2,ν3}

φ(|νi `i|). (8.14)

On dividing by vol (R), we get the energy per unit deformed volume. Thus, given a Bravais

lattice and a pair potential, equation (8.14) provides an explicit formula for the energy per

unit deformed volume. It involves the geometry of the deformed lattice and the pair-potential.

Finally we express this in terms of a referential lattice. Consider the lattice defined

by lattice vectors {`o1, `o2, `o3} that are related to the deformed lattice vectors by `i = F`oi .

Substituting `i = F`oi and using the fact that the volumes of R and its pre-image Ro in the

reference configuration are related by vol(R) = det F vol(Ro) allows us to write (8.14) as

vol (Ro) det F

(F`o1 × F`o2) · F`o3
1

2

∑
{ν1,ν2,ν3}

φ(|νi F`oi |). (8.15)
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Finally, on using the identity (Aa×Ab) ·Ac = det A (a× b) · c and dividing by vol(Ro),

we obtain the following expression for the energy per unit referential volume:

Ŵ (F) =
1

(`o1 × `o2) · `o3
1

2

∑
{ν1,ν2,ν3}

φ(|νi F`oi |). (8.16)

This provides an explicit formula for the strain energy response function Ŵ in terms of the

referential lattice, the tensor F, and the pair potential. If we associate a continuum with

this lattice and invoke the Cauchy-Born hypothesis, F would be the deformation gradient

tensor.

Note from (8.16) and (8.4) that the function Ŵ and the tensor F both depend on the

choice of reference lattice vectors. However, the energy of the deformed lattice does not

depend on the choice of reference lattice vectors. Therefore the way in which F and Ŵ

depend on the reference lattice vectors must balance each other out such that the value of

Ŵ is independent of the choice of reference lattice vectors.

It is shown in Problem 8.2 that the stress response function (8.11) derived previously and

the energy response function (8.16) are related automatically through the relation

T̂(F) =
1

det F

∂Ŵ

∂F
(F) FT (8.17)

which is precisely what the continuum theory requires based on an elastic material being

dissipation-free.

8.1.5 Material Frame Indifference.

It is shown in Problem 8.1 that the constitutive response function T̂(F) defined by (8.11)

automatically obeys the relation

T̂(QF) = QT̂(F)QT

for all proper orthogonal tensors Q as would be required by material frame indifference in

the continuum theory.

It can similarly be verified that the energy response function (8.16) has the property that

Ŵ (F) = Ŵ (QF)

for all proper orthogonal tensors Q. This shows that Ŵ is automatically consistent with

material frame indifference.
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8.1.6 Linearized Elastic Moduli. Cauchy Relations.

In Problem 8.3 we shall linearize the constitutive quantities (8.16) and (8.17) to the special

case of infinitesimal deformations. This leads to the constitutive relation of linear elasticity

with the material being characterized by an elasticity tensor C. In fact, equation (8.35) of

Problem 8.3 provides an explicit formula for the components Cijk` of the elasticity tensor in

terms of the referential lattice and the pair potential.

The elastic moduli obtained in this way exhibit the symmetries

Cijk` = Ck`ij = Cjik` = Cij`k, (8.18)

just as required by the continuum theory; see (4.154). However in addition, Cijk` given by

(8.35) also possesses the symmetry

Cijk` = Ci`kj (8.19)

which is not required by the continuum theory. The symmetries (8.19) obtained from the

present lattice model are known as the Cauchy relations. The Cauchy relations are known

to be not obeyed by most elastic materials4 and this is therefore a limitation of the lattice

theory formulated here. This limitation is directly related to the use of a pair-potential to

model interatomic interactions. More realistic interatomic interaction models remove this

limitation.

8.1.7 Lattice and Continuum Symmetry.

Since the stress and strain energy response functions T̂ and Ŵ given by (8.11) and (8.16) were

derived from lattice considerations, they inherit the appropriate invariance characteristics

associated with the symmetry of the underlying lattice. In this section we address three

issues:

1. We examine the geometric invariance characteristics of a Bravais lattice and construct

its “lattice symmetry group”.

2. We show that the lattice symmetry group plays the role of the material symmetry

group for the response functions T̂ and Ŵ derived above.

4For example, for an isotropic material, the Cauchy relations imply that the Poisson ratio must always

be 0.25.
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3. We remark on the suitability of using the lattice symmetry group to characterize the

symmetry of a continuum.

1 = ∇y(x) 0
1 2 = ∇y(x) 0

2

L+ L− y+ y− A P

νi i

(1)
1

(1)
2

(1)
3

1 2 = ∇y(x) 2

y+ y− A P

νi i

(1)
2

(1)
3

(2)
2

(2)
3

νi i

(1)
1

(1)
2

(2)
1

(2)
2

∂D+
t = S+

t ∪ S

(1)
1

(1)
2

(1)
3

(2)
1

(2)
2

(2)
3

∂D+
t = S+

t ∪ S t

∂D−
t = S−

t ∪ S t

Figure 8.7: Two sets of lattice vectors that describe the same lattice.

Characterizing the symmetry of a Bravais lattice: First observe that because of its

inherent symmetry, more than one set of lattice vectors may generate the same lattice. For

example, the two-dimensional lattice shown in Figure 8.7 is generated by both {`(1)
1 , `

(1)
2 }

and {`(2)
1 , `

(2)
2 }. Observe that

`
(2)
1 = `

(1)
1 ,

`
(2)
2 = `

(1)
1 + `

(1)
2 ,

(8.20)

so that the 2 × 2 matrix [µ], whose elements relate the two sets of lattice vectors through

`
(2)
i = µij`

(1)
j , is  1 0

1 1

 . (8.21)

Note that the elements of [µ] are integers and that det [µ] = 1.

In general, let L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) be the lattice generated by a given set of lattice vectors

{`(1)
1 , `

(1)
2 , `

(1)
3 }. Suppose that {`(2)

1 , `
(2)
2 , `

(2)
3 } is a second5 set of lattice vectors that generates

this same lattice, i.e.

L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) = L(`

(2)
1 , `

(2)
2 , `

(2)
3 ).

One can show that two sets of lattice vectors generate the same lattice if and only if the

matrix [µ], whose elements relate the two sets of lattice vectors through

`
(2)
i = µij`

(1)
j , (8.22)

5 We shall only consider lattice vector sets that have the same orientation.



8.1. EXAMPLE: LATTICE THEORY OF ELASTICITY. 603

has elements that are integers and whose determinant is 1.

An alternative more useful way in which to characterize symmetry is as follows: given a

set of lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 } and the associated Bravais lattice L = L(`

(1)
1 , `

(1)
2 , `

(1)
3 ),

let G(L) denote the set of all nonsingular tensors H that map {`(1)
1 , `

(1)
2 , `

(1)
3 } into a set of

vectors {H`(1)
1 ,H`

(1)
2 ,H`

(1)
3 } that generate the same lattice:

L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) = L(H`

(1)
1 ,H`

(1)
2 ,H`

(1)
3 ) for all H ∈ G(L).

It follows from (8.22) that G(L) admits the representation

G(L) =
{

H : H`
(1)
i = µij `

(1)
j for all µij that are integers with det [µ] = 1

}
. (8.23)

Two sets of lattice vectors generate the same lattice if and only if

`
(2)
i = H`

(1)
i , i = 1, 2, 3, (8.24)

where H ∈ G(L). This is equivalent to (8.22). Despite the presence of the lattice vectors

on the right hand side of (8.23), by its definition, G(L) depends on the lattice but not on

the particular set of lattice vectors used to represent it. The set G(L) can be shown to be a

group. It characterizes the symmetry of the lattice L and may be referred to as the “lattice

symmetry group”.

It is shown in Problem 8.5 that

det H = 1 for all H ∈ G(L). (8.25)

As a consequence, note that the volumes of the unit cells formed by lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 }

and {`(2)
1 , `

(2)
2 , `

(2)
3 } are equal if the lattice vectors are related through a symmetry transfor-

mation:

(`
(2)
1 × `(2)

2 ) · `(2)
3 = (`

(1)
1 × `(1)

2 ) · `(1)
3 (8.26)

provided

`
(2)
i = H`

(1)
i , H ∈ G(L). (8.27)

Symmetry of the response functions T̂ and Ŵ : As noted at the beginning of this

subsection, since the stress and strain energy response functions T̂ and Ŵ given by (8.11)

and (8.16) were derived from lattice considerations, they inherit the appropriate invariance

characteristics associated with the symmetry of the underlying lattice. We shall now verify

this claim and show, for example, that

Ŵ (F) = Ŵ (FH) for all H ∈ G(Lo) (8.28)
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where G(Lo) is the lattice symmetry group (8.23) of the reference lattice Lo and Ŵ is the

strain energy response function (8.16).

Recall from Section 4.4 that when examining symmetry in the continuum theory, we

considered a deformed configuration χ and two reference configurations χ1 and χ2. We

were interested in the special case when a symmetry transformation took χ1 → χ2. In

the lattice theory we analogously consider a deformed lattice L that is generated by lattice

vectors {`1, `2, `3} and two reference lattices L1 and L2 that are generated by lattice vectors

{`(1)
1 , `

(1)
2 , `

(1)
3 } and {`(2)

1 , `
(2)
2 , `

(2)
3 }. We are interested in the special case when a symmetry

transformation takes {`(1)
1 , `

(1)
2 , `

(1)
3 } to {`(2)

1 , `
(2)
2 , `

(2)
3 } in which case the reference lattices L1

and L2 are identical: L1 = L2.

Let {`(1)
1 , `

(1)
2 , `

(1)
3 } be a set of lattice vectors characterizing a reference lattice L1, and let

Ŵ1 be the stored energy response function with respect to this reference lattice:

Ŵ1(F) =
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(1)
i |). (8.29)

Let {`(2)
1 , `

(2)
2 , `

(2)
3 } be another set of lattice vectors characterizing a (possibly different) ref-

erence lattice L2, and let Ŵ2 be the stored energy response function with respect to this

reference lattice:

Ŵ2(F) =
1

(`
(2)
1 × `(2)

2 ) · `(2)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |). (8.30)

If the two sets of reference lattice vectors are related by (8.22), or equivalently by (8.24),

then they generate the same reference lattice (L1 = L2) in which case

Ŵ1(F) = Ŵ2(F). (8.31)

It then follows from (8.29) and (8.24) that

Ŵ1(FH) =
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi FH`
(1)
i |)

=
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |)

=
1

(`
(2)
1 × `(2)

2 ) · `(2)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |)

= Ŵ2(F)



8.1. EXAMPLE: LATTICE THEORY OF ELASTICITY. 605

where in the penultimate step we have used (8.26) and in the ultimate step we have used

(8.30). It follows from this and (8.31) that

Ŵ1(FH) = Ŵ1(F) for all nonsingular F and all H ∈ G(L1).

Similarly one can show that

T̂1(F) = T̂1(FH) for all H ∈ G(L1) . (8.32)

Thus the stress response function T̂ and the energy response function Ŵ derived from the

present lattice theory, i.e. (8.11) and (8.16), are invariant under the group of transformations

G(Lo) that map the reference lattice back onto itself.

The lattice symmetry group and the symmetry of a continuum. Suppose that the

lattice underlying the reference configuration of some elastic solid is a known Bravais lattice

L0. However, suppose that one does not adopt the elementary pair potential model for

interatomic interactions but arrives at a form for the strain energy function Ŵ (F) by some

other method, i.e. consider a strain energy response function Ŵ (F) for the lattice that is

not given by (8.16).

Even though the pair potential model for interatomic interactions was not used, the un-

derlying lattice is (by assumption) a known Bravais lattice. Thus in particular the symmetry

of the lattice is characterized by a known lattice symmetry group G(Lo). Should one require

that the continuum model exhibit all of the symmetries of the lattice? i.e. should we require

Ŵ (FH) = Ŵ (F) for all H ∈ G(Lo)? (8.33)

The generally accepted answer is “no”: the material symmetry group of the continuum

should be a suitable subgroup of G(Lo). This is based on the fact that in addition to rotations

and reflections, the lattice symmetry group G(Lo) contains finite shears as well. For example

consider (8.20), (8.21). In view of (8.21) one sees that the transformation from {`(1)
1 , `

(1)
2 }

to {`(2)
1 , `

(2)
2 } is a simple shear. Such shears cause large distortions of the lattice and are

usually associated with lattice slip and plasticity. It is natural therefore to exclude these

large shears when modeling elastic materials.

Based on the work of Ericksen & Pitteri (see Bhattacharya) the appropriate material

symmetry group of the continuum should be the subgroup of rotations in G(Lo):

P(Lo) = {R : R ∈ SO(3), R ∈ G(Lo)} . (8.34)
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Thus we would require Ŵ (FR) = Ŵ (F) for all R ∈ P(Lo) instead of the more stringent

requirement (8.33). P(Lo) is called the “point group” or “ Laue group” of the lattice. It is

the group of rotations which map the lattice6 back into itself. The point group associated

with any Bravais lattice is a finite group.

8.1.8 Worked Examples and Exercises.

Problem 8.1. Show that the stress response function T̂(F) given explicitly in (8.11) automatically satisfies

the condition T̂(QF) = QT̂(F)QT for all proper orthogonal tensors Q. (Therefore this T̂(F) is automatically

material frame indifferent.)

Solution: From (8.11),

T(QF) =
1

2(QF`o1 ×QF`o2) ·QF`o3

∑
{ν1,ν2,ν3}

[
φ′(|νp QF`op|) .

(νi QF`oi )⊗ (νj QF`oj)

|νk QF`ok|

]
. (a)

By using the vector identity (Aa×Ab) ·Ac = det A (a× b) · c and the fact that det Q = 1 we can write

(QF`o1 ×QF`o2) ·QF`o3 = (F`o1 × F`o2) · F`o3 . (b)

Next, since Q is orthogonal, it preserves length, i.e. |Qy| = |y| for all vectors y, and consequently

|νi QF`oi | = |νi F`oi | . (c)

Finally, in view of the vector identity (Aa)⊗ (Bb) = A(a⊗ b)BT can write

(νiQF`oi )⊗ (νiQF`oi ) = Q
(
(νi F`oi )⊗ (νj F`oj)

)
QT . (d)

Therefore we can simplify (a) by using (b), (c) and (d) to get

T(QF) =
1

2(F`o1 × F`o2) · F`o3
Q

 ∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`oi )⊗ (νj F`oj)

|νk F`ok|

]QT

= QT(F)QT .

Problem 8.2. Show that the Cauchy stress response function T̂(F) given explicitly by (8.11) and the strain

energy response function Ŵ (F) given explicitly by (8.16) are automatically related by

T̂(F) =
1

det F

∂Ŵ

∂F
(F) FT .

6For example, the point group of a simple cubic lattice consists of the 24 rotations that map the unit

cube back into itself.
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(Therefore the stress and strain energy response functions provided by the lattice theory automatically satisfy

the relation imposed by the dissipation inequality; see Section 4.2.1 on page 346.)

Solution: Differentiating (8.16) with respect to F gives

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
=

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(
∂

∂F
(|νi F`oi |)

)]
. (a)

The following identity can be readily verified for an arbitrary vector y:

∂

∂F
(|Fy|) =

1

2|Fy|
∂

∂F
(|Fy|2) =

1

2|Fy|
∂

∂F

(
Fy · Fy

)
=

1

2|Fy|
(

2Fy ⊗ y
)
,

from which it follows that
∂

∂F
(|νp F`op|) =

1

|νk F`ok|
[
(νi F`oi )⊗ νj `oj

]
. (b)

Substituting (b) into (a) yields

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
=

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`oi )⊗ νj `oj
|νk F`ok|

]
,

from which it follows that

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
FT =

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`oi )⊗ νj F`oj
|νk F`ok|

]
. (c)

Finally, because of the identity (Aa × Ab) · Ac = det A (a × b) · c, we see from (c) and (8.11) that the

relation (8.17) between T̂ and Ŵ holds.

Problem 8.3. Derive an explicit expression for the elasticity tensor C of linear elasticity by linearization of

the results of this chapter. Show that the resulting components Cijk` posses the usual symmetries

Cijk` = Ck`ij = Cjik` = Cij`k, (a)

as well as the additional symmetry

Cijk` = Ci`kj (b)

known as the Cauchy relations.

Solution: We first show that the energy response function Ŵ given by (8.16) depends on F only through

the Cauchy-Green tensor C = FTF; thereafter we determine the components of the elasticity tensor C by

recalling that

Cijk` =
∂2W (C)

∂Cij ∂Ckl

∣∣∣∣
C=I

.

The fact that Ŵ depends on F only through C follows from

|νi F`0
i | =

(
(νi F`0

i ) · (νi F`0
i )
)1/2

=
(
FTF(νi `

0
i ) · νi `0

i

)1/2

=
(
C(νi `

0
i ) · νi `0

i

)1/2
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whence we can write (8.16) as

W (C) =
1

2(`0
1 × `0

2) · `0
3

∑
{ν1,ν2,ν3}

φ
(

(C(νi `
0
i ) · νi `0

i )
1/2
)
.

In order to calculate the elasticity tensor we must calculate the second derivative of W with respect to

C and then evaluate it in the reference configuration where C = I. In order to simplify the writing it is

convenient to introduce the notation

α = 2(`0
1 × `0

2) · `0
3, y = νi `

0
i , ρ(C) = (Cy · y)1/2 ,

so that

W (C) =
1

α

∑
{ν1,ν2,ν3}

φ(ρ(C)).

It is straightforward to show that
∂ρ(C)

∂Ck`
=

yk y`
2ρ(C)

.

Therefore the first derivative of W is

∂W

∂Ck`
(C) =

∑
{ν1,ν2,ν3}

1

α
φ′(ρ(C))

∂ρ(C)

∂Ck`
=

∑
{ν1,ν2,ν3}

1

2αρ(C)
φ′(ρ(C)) yk y` .

The second derivative can be calculated similarly by differentiating this once more, which leads after some

calculation to

∂2W (C)

∂Cij ∂Ck`
=

∑
{ν1,ν2,ν3}

1

4αρ2(C)

(
φ′′(ρ(C))− 1

ρ(C)
φ′(ρ(C))

)
yi yj yk y` .

In order to calculate the components of the elasticity tensor we set C = I, ρ(C) = ρ(I) = |y| in the

preceding expression to obtain

Cijk` =
∂2W (I)

∂Cij ∂Ck`

∣∣∣∣
C=I

=
1

2(`0
1 × `0

2) · `0
3

∑
{ν1,ν2,ν3}

1

4|y|2
(
φ′′(|y|)− 1

|y|φ
′(|y|)

)
yi yj yk y` (8.35)

where the vector y = νi`i. The right-hand side of this is invariant with respect to the change of any pair of

subscripts, and therefore so is the left-hand side. This establishes the symmetries (a) and (b).

Problem 8.4. Show that two sets of lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 } and {`(2)

1 , `
(2)
2 , `

(2)
3 } generate the same

lattice if and only if the matrix [µ], whose elements relate the lattice vectors through

`
(2)
i = µij`

(1)
j ,

has elements that are integers and has determinant 1.
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Problem 8.5. Let H be any member of the lattice symmetry group G(L) defined in (8.23). Show that

det H = 1.

Solution: Substitute

H`
(1)
i = µij`

(1)
j

into the vector identity

(H`
(1)
1 ×H`

(1)
2 ) ·H`(1)

3 = det H (`
(1)
1 × `

(1)
2 ) · `(1)

3

and expand out the result. This leads to

det [µ] = det H

after making use of the fact that

(`
(1)
1 × `

(1)
2 ) · `(1)

3 = (`
(1)
2 × `

(1)
3 ) · `(1)

1 = (`
(1)
3 × `

(1)
1 ) · `(1)

2

where each of these expressions represents the volume of the unit cell. Finally, since det [µ] = 1 it follows

that det H = 1.
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Chapter 9

Brief Remarks on Coupled Problems

While the theory and problems dealt with in these notes have been focused on the purely me-

chanical theory of an elastic solid, there are many settings in which elasticity is coupled with

other physical phenomena. For example thermoelasticity involves the coupling of mechanical

and thermal effects, while mechanical and electrical effects are coupled in piezoelectricity.

To adequately deal with such coupled phenomena would require several more chapters

which is beyond the scope of these notes. However, given the current interest of many stu-

dents in “coupled problems”, I will provide a very brief introduction to the formalism by

which one sets-up such theories. Common to each of these settings is

(a) identifying the additional fields involved;

(b) identifying the additional governing physical principles;

(c) deriving the additional field equations from (b);

(d) stating the (primitive) form of the constitutive relations; and

(e) simplifying the form of the constitutive relations using the dissipation inequality. Re-

call that in Section 4.2.1 we briefly touched on using the dissipation inequality to

simplify a constitutive relation.

For example, modeling thermoelasticity requires that in addition to the deformation

y(x, t), the deformation gradient F(x, t) and stress S(x, t), one also consider the heat flux

q(x, t), internal energy ε(x, t), temperature θ(x, t) and entropy η(x, t), at least some of

which would have to be determined when solving an initial-boundary value problem. The

additional physical principles in this case are the first and second laws of thermodynamics.

611
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In general, one cannot solve a mechanical problem to find y(x, t),F(x, t) and S(x, t) and a

separate thermal problem to find the remaining fields. This is because the mechanical and

thermal fields are coupled: for example, the constitutive relation for stress depends on both

the deformation and the temperature, and the first law of thermodynamics involves both the

rate of working of the stress and the rate of heat flux.

As a second example consider a piezoelectric solid. Here one has the following additional

fields (in electrostatics): the electric potential ϕ(x, t), electric field E(x, t) and electric dis-

placement D(x, t) and one must take into account Maxwell’s equations as well as the laws

of thermodynamics when setting up the theory.

In the rest of this chapter I will briefly illustrate the underlying mathematical formalism

through two examples: hydrogels and thermoelasticity. In each example we will go through

steps (a)− (e). Piezoelectric materials will not be touched on since most such materials are

ceramics that undergo very small strains. They are treated in Chapter 4 of Volume IV which

concerns the linear(ized) theory of elasticity.

We will be using a referential formulation throughout. As usual, the body occupies a

region RR in a reference configuration and an arbitrary part of the body occupies a region

DR ⊂ RR. The position vector of a particle in the reference configuration is x and at time t

during a motion is y(x, t). Whenever we say “per unit volume” or “per unit area” we mean

“per unit reference volume” or “per unit reference area” unless explicitly stated otherwise.

The deformation gradient tensor is F = ∇y and the Piola stress tensor is S. A superior dot,

such as in Ḟ, denotes the time derivative (with x held fixed – the material time derivative).

All processes are assumed to be quasi-static in that inertial effects are neglected. Thus we

do not account for linear and angular momentum and kinetic energy.

9.1 Hydrogels:
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4. F.P. Duda, A.C. Souza and E. Fried, A theory for species migration in a finitely strained solid with

application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), pp. 515-529.

A hydrogel is essentially an elastic polymer through which a solvent, usually water,

diffuses. In what follows we shall speak of a “polymer” (an elastic solid) and a “solvent” (an

inviscid fluid) that can move in and out of the polymer. One speaks of the swelling of the

hydrogel as it absorbs the solvent. We do not use mixture theory (at least not explicitly)

and so speak only of a single effective continuum.

A part P of the body is “material” with respect to the elastic solid in the sense that the

same set of polymer particles are associated with P at all times. Solvent particles however

may diffuse in and out of DR. Often, the reference configuration is taken to correspond to a

dry stress-free state of the polymer, but that particular choice doesn’t affect the development

below.

In addition to the basic fields of deformation y(x, t), deformation gradient F(x, t) and

stress S(x, t), the theory now involves the concentration cR(x, t) of the solvent, the flux

jR(x, t) of the solvent across a surface, and the chemical potential of the solvent µ(x, t). Let

cR(x, t) be the referential solvent concentration so that the number of solvent molecules in

DR at time t is ∫
DR

cR(x, t) dVx.

The number of solvent molecules crossing a unit area of the boundary ∂DR in unit time and

entering DR is −jR · nR where jR(x, t) is the referential solvent flux vector (and nR is a unit

outward pointing normal vector on ∂DR). The total rate at which the solvent enters DR

across ∂DR is thus ∫
∂DR

−jR · nR dAx.

The bulk supply of solvent molecules per unit volume per unit time (from sources outside the

body) is denoted by rR(x, t), and so the rate at which solvent molecules directly enter the

interior of DR (in contrast to diffusing across its boundary) is∫
DR

rR(x, t) dVx.

The role of rR is similar to that of the mechanical body force bR in that it is usually

prescribable. Finally, let µ(x, t) denote the chemical potential of the solvent. It represents

the energy per solvent molecule and so the rate of increase of the chemical energy of DR due
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to the influx of solvent molecules is∫
∂DR

−µ jR · nR dAx +

∫
DR

µ rR dVx.

9.1.1 Basic mechanical equations. Balance laws and field equa-

tions.

Force and moment equilibrium require the usual balance laws∫
∂DR

SnR dAx +

∫
DR

bR dVx = 0,

∫
∂DR

y × (SnR) dAx +

∫
DR

y × bR dVx = 0,

that lead to the usual field equations

Div S + bR = 0, SFT = FST . (9.1)

9.1.2 Basic chemical equation. Balance law and field equation.

The conservation of solvent molecules requires that

d

dt

∫
DR

cR dVx =

∫
∂DR

−jR · nR dAx +

∫
DR

rR dVx. (9.2)

The left-hand side represents the rate of increase of the number of solvent molecules in DR.

The first term on the right-hand side denotes the number of solvent molecules entering DR

across its boundary while the second term is the number of solvent molecules added to its

interior, both per unit time. Equation (9.2) must hold for all DR and so localization leads

to the field equation

ċR + Div jR = rR. (9.3)

This must hold at each particle at each time.

9.1.3 Dissipation inequality.

The dissipation inequality states that the rate of increase of free energy of DR cannot exceed

the rate at which mechanical work is done on DR plus the rate at which chemical energy is

added to DR. Thus the dissipation inequality requires that∫
∂DR

SnR ·v dAx+

∫
DR

bR ·v dVx+

∫
∂DR

−µjR ·nR dAx+

∫
DR

µrR dVx ≥
d

dt

∫
DR

ψ dVx, (9.4)
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for all subregions DR ⊂ RR. Here v(x, t) = ẏ(x, t) is the particle velocity. The first two

terms represent the rate of working by the boundary traction and the body force, while the

next two terms denote the influx of chemical energy. The free energy (per unit volume) has

been denoted by ψ so that ∫
DR

ψ dVx

is the total free energy of DR at time t. Its counterpart in the purely mechanical theory is

the strain energy function W .

We can simplify (9.4) by converting the surface integrals to volume integrals using the

divergence theorem and then making use of the field equations (9.1) and (9.3). This leads

to ∫
DR

(
S · Ḟ− jR ·Gradµ+ µċR − ψ̇

)
dVx ≥ 0. (9.5)

Localization of (9.5) yields

S · Ḟ− jR · ∇µ+ µċR − ψ̇ ≥ 0. (9.6)

This is the local form of the dissipation inequality and it is required to hold at each point in

the body at each time.

9.1.4 Constitutive equations:

Suppose that the material is characterized by the following set of constitutive relations1:

ψ = ψ(F, cR), S = S(F, cR), µ = µ(F, cR), jR = jR(F, cR,∇µ). (9.7)

This is the primitive form of the constitutive equations. It can be simplified (reduced) using

the dissipation inequality as follows:

First note from (9.7)1 that

ψ̇ =
∂ψ

∂F
· Ḟ +

∂ψ

∂cR

ċR.

Therefore we can write the dissipation inequality (9.6) as[
S(F, cR)− ∂ψ

∂F
(F, cR)

]
· Ḟ +

[
µ(F, cR)− ∂ψ

∂cR

(F, cR)

]
ċR − jR(F, cR,∇µ) · ∇µ ≥ 0. (9.8)

1See also Problem 9.1.1 on page 618.
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Since (9.8) must hold in all processes, and therefore for all Ḟ and ċR, and since the terms

within the square brackets do not involve Ḟ and ċR, it follows that those terms must vanish2.

This leads to the following constitutive relations for S and µ:

S =
∂ψ

∂F
(F, cR),

µ =
∂ψ

∂cR

(F, cR).

 (9.9)

The dissipation inequality (9.8) now reduces to

jR(F, cR,g) · g ≤ 0 (9.10)

for all vectors g. The argument used in getting to (9.9) and (9.10) from (9.7) and (9.6) is

known as the Coleman-Noll argument.

Thus a hydrogel is characterized by the free energy ψ(F, cR) and the solvent flux law

jR(F, cR,∇µ) where the latter must be consistent with (9.10). An example of the latter is

jR(F, cR,∇µ) = −M(F, cR)∇µ, (9.11)

where (9.10) requires the “mobility tensor” M to be positive semi-definite. This is the

well-known Fick’s law.

Exercise: Show that material frame indifference implies

ψ = ψ(C, cR), µ = µ(C, cR),

where C = FTF and that

S = 2F
∂ψ

∂C
(C, cR).

As a consequence of this, moment balance, (9.1)2, holds automatically.

Thus in summary, a boundary-initial value problem for a body composed of a hydrogel

involves specifying the body force bR(x, t), the solvent supply rR(x, t), the material char-

acterizations ψ(F, cR) and jR(F, cR,∇µ) and suitable initial and boundary conditions (both

mechanical and chemical)3. Substituting (9.9)2 and (9.11) into (9.3) gives a scalar partial

differential equation involving y(x, t) and cR(x, t), often referred to casually as the “diffu-

sion equation”. Similarly substituting (9.9)1 into the equilibrium equation (9.1)1 gives three

scalar (or one vector) partial differential equation. These equations are to be solved for

y(x, t) and cR(x, t).

2See Section 4.2.1 for more details on this argument.
3See Problem 9.1 for an example.
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9.1.5 Alternative form of the constitutive relation.

Exercise: Suppose that you wanted to express the constitutive relations as functions of F and µ (instead of

F and cR) and therefore took the primitive form of the constitutive relations to be

ψ = ψ(F, µ), S = S(F, µ), cR = cR(F, µ), jR = jR(F, µ,Gradµ). (9.12)

Can you use the dissipation inequality (9.6) to simplify these constitutive relations?

As you would have discovered from this exercise, one cannot directly use (9.6) to reduce

constitutive response functions of the form (9.12). Since (9.6) involves Ḟ and ċR it favors

constitutive characterizations in terms of F and cR. This suggests that if we want to consider

constitutive relations that are functions of F and µ we should seek to rewrite the dissipation

inequality in terms Ḟ and µ̇.

This is achieved by introducing the function

ω := ψ − µcR. (9.13)

The transformation from ψ → ω is called a Legendre transformation and ω is the Legendre

transform of ψ with respect to µ and cR. In the present setting ω is referred to as the grand

canonical energy. The dissipation inequality (9.6) can be written in terms of ω as

S · Ḟ− cRµ̇− ω̇ − jR ·Gradµ ≥ 0. (9.14)

Now consider constitutive relations of the primitive form

ω = ω(F, µ), S = S(F, µ), cR = cR(F, µ), jR = jR(F, µ,∇µ). (9.15)

Since,

ω̇ =
∂ω

∂F
· Ḟ +

∂ω

∂µ
µ̇,

(9.14) can be written as[
S− ∂ω

∂F

]
· Ḟ−

[
cR +

∂ω

∂µ

]
µ̇− jR · ∇µ ≥ 0.

The Coleman-Noll argument now tells us that

S =
∂ω

∂F
(F, µ), cR = −∂ω

∂µ
(F, µ),

together with jR(F, µ,g) · g ≤ 0.
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Problem 9.1.1. In the constitutive ansatz (9.15) we did not treat all of the constitutive response functions

symmetrically: we allowed jR to depend on ∇µ but not ω,S and cR. Carry out an analysis that starts from

the following set of primitive constitutive relations:

ω = ω(F, µ,∇µ), S = S(F, µ,∇µ), cR = cR(F, µ,∇µ), jR = jR(F, µ,∇µ),

and use the Coleman-Noll argument to show that ω,S and cR must in fact be independent of ∇µ.

9.2 Thermoelasticity.
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In addition to the basic fields of deformation y(x, t), deformation gradient F(x, t) and

stress S(x, t), one now has to account for the following fields: temperature θ(x, t), heat flux

qR(x, t), entropy η(x, t) and internal energy ε(x, t). The additional physical principles to

be considered are the first and second laws of thermodynamics. The amount of heat that

crosses a unit area of the boundary ∂DR in unit time and enters DR is −jR ·nR where jR(x, t)

is the referential heat flux vector (and nR is a unit outward pointing normal vector on ∂DR).

The total rate at which heat enters DR across ∂DR is thus∫
∂DR

−qR · nR dAx.

The bulk supply of heat per unit volume per unit time (from sources outside the body) is

denoted by rR(x, t) and so the rate at which heat directly enters the interior of DR is∫
DR

rR(x, t) dVx.

Its role is similar to that of the mechanical body force bR in that we can usually take it to

be prescribable. Let η(x, t) be the entropy per unit volume so that the total entropy in DR

http://web.mit.edu/abeyaratne/lecture_notes.html
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at time t is ∫
DR

η(x, t) dVx.

Finally, let ε(x, t) denote the internal energy per unit volume. The total internal energy in

DR is ∫
DR

ε dVx.

9.2.1 Basic mechanical equations.

As before, force and moment equilibrium require the usual balance laws∫
∂DR

SnR dAx +

∫
DR

bR dVx = 0,

∫
∂DR

y × (SnR) dAx +

∫
DR

y × bR dVx = 0,

that lead to the associated field equations

Div S + bR = 0, SFT = FST . (9.16)

9.2.2 First law of thermodynamics.

The first law of thermodynamics requires∫
∂DR

SnR ·v dA+

∫
DR

bR ·v dV +

∫
∂DR

−qR ·nR dA+

∫
DR

rR dV =
d

dt

∫
DR

ε dV , (9.17)

where v(x, t) = ẏ(x, t) is the particle velocity. The first two terms on the left-hand side

represent the rate of mechanical working by the traction on ∂DR and the body force on

DR respectively. The third and fourth terms quantify the heat supplied to DR across its

boundary and to its interior respectively. The right-hand side is the rate of increase of

internal energy. (Since we are considering quasi-static processes and accordingly neglected

inertia in the equations of motion, we must neglect kinetic energy in the right-hand side of

(9.17).)

We can localize (9.17) by converting the surface integrals to volume integrals using the

divergence theorem and then making use of the field equations (9.16). This leads to the local

form of the first law,

S · Ḟ−Div qR + rR = ε̇, (9.18)

which is to hold at each point in the body and each time. Equation (9.18) is frequently

referred to as the energy equation.
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9.2.3 Dissipation inequality. The second law of thermodynamics.

Note that the temperature θ did not enter into the first law of thermodynamics.

Turning next to the second law, entropy accompanies the flow of heat. Specifically, we

take the flow of entropy per unit area per unit time into DR across its boundary to be

(−qR/θ) · nR and the flow directly into the interior of DR per unit volume per unit time to

be rR/θ. Here θ > 0 is the absolute temperature. The total entropy in DR is given by the

volume integral of η. However the rate of increase of entropy and the inflow of entropy need

not be balanced. The second law of thermodynamics states that the increase in entropy

cannot be less than the inflow of entropy, i.e.

d

dt

∫
DR

η dVx ≥
∫
∂DR

(−qR · nR)

θ
dAx +

∫
DR

rR

θ
dVx . (9.19)

Thus (when the strict inequality holds) there is a net production of entropy. The entropy

inequality plays the role here that the dissipation inequality played in the preceding section.

The entropy inequality (9.19) can be written after using the divergence theorem as∫
DR

{η̇ + Div(qR/θ)− rR/θ} dVx ≥ 0. (9.20)

This must hold for all DR and so may be localized to obtain

θη̇ − 1

θ
(qR · ∇θ) + Div qR − rR ≥ 0. (9.21)

This local form of the entropy inequality must hold at each point in the body at each time.

9.2.4 Constitutive equations:

We now turn to the constitutive relations. In order to make use of (9.21) in our analysis we

need to eliminate the heat supply term rR (and ideally bring in the stress S). This can be

achieved by using the energy equation which leads us to

θη̇ + S · Ḟ− ε̇− 1

θ
(qR · ∇θ) ≥ 0. (9.22)

Note the presence of Ḟ and η̇ in (9.22) and recall the remark in the first paragraph of

Section 9.1.5. Accordingly, suppose that the material is characterized by the following set of
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constitutive relations:

ε = ε(F, η), S = S(F, η), θ = θ(F, η), qR = qR(F, η,∇θ). (9.23)

The entropy inequality (9.22) can now be used to reduce these relations to simpler forms

using the Coleman-Noll argument. By (9.23)1,

ε̇ =
∂ε

∂F
· Ḟ +

∂ε

∂η
η̇,

and so we can write the entropy inequality as[
θ(F, η)− ∂ε

∂η
(F, η)

]
η̇ +

[
S(F, η)− ∂ε

∂F
(F, η)

]
· Ḟ− 1

θ
(qR · ∇θ) ≥ 0. (9.24)

Since (9.24) must hold in all processes, and therefore for all Ḟ and η̇, and since the terms

within the square brackets do not involve Ḟ and η̇, it follows that those terms must vanish.

This leads to the following constitutive relations for θ and S:

θ =
∂ε

∂η
(F, η), S =

∂ε

∂F
(F, η), (9.25)

and the entropy inequality (9.24) reduces to

qR(F, η,g) · g ≤ 0, (9.26)

which is to hold for all vectors g.

Thus a thermoelastic material is characterized by the internal energy ε(F, η) and the heat

flux law qR(F, η,∇θ) where the latter must be consistent with (9.26). An example of the

latter is

qR(F, η,∇θ) = −K(F, η)∇θ, (9.27)

where (9.26) requires the heat conductivity tensor K to be positive semi-definite.

9.2.5 Alternative form of the constitutive relation.

Suppose that we wish to express the constitutive relations as functions of F and θ (instead

of F and η). In order to develop this form of the constitutive relations we must trade the

term η̇ in (9.22) for θ̇ and this is achieved by introducing the Legendre transform of ε with

respect to η and θ defined by

ψ = ε− θη; (9.28)
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ψ is called the Helmholtz free energy per unit volume. In terms of ψ, one may rewrite (9.22)

as

−ηθ̇ + S · Ḟ− ψ̇ − 1

θ
(qR · ∇θ) ≥ 0.

Now suppose that we want to construct constitutive relations in the form

ψ = ψ(F, θ), S = S(F, θ), η = η(F, θ), qR = qR(F, θ,∇θ).

Since

ψ̇ =
∂ψ

∂F
· Ḟ +

∂ψ

∂θ
θ̇,

the preceding entropy inequality yields[
−η − ∂ψ

∂θ

]
θ̇ +

[
S− ∂ψ

∂F

]
· Ḟ− 1

θ
(qR · ∇θ) ≥ 0. (9.29)

The Coleman-Noll argument thus allows us to write the constitutive relations as

η = −∂ψ
∂θ

(F, θ), S =
∂ψ

∂F
(F, θ), (9.30)

and the entropy inequality reduces to

qR(F, θ,g) · g ≤ 0. (9.31)

Thus a thermoelastic material is characterized by the Helmholtz free energy ψ(F, θ) and

the heat flux law qR(F, θ,∇θ) where the latter must be consistent with (9.31). An example

of the latter is

qR(F, θ,∇θ) = −K(F, θ)∇θ, (9.32)

where K is the positive semi-definite heat conductivity tensor. This is the familiar Fourier’s

law. The Helmholtz free energy function ψ(F, θ) here is the counterpart of the strain energy

function W (F) of the purely mechanical theory.

Thus in summary, a boundary-initial value problem for a thermoelastic body involves

specifying the body force bR(x, t), the heat supply rR(x, t), the material characterizations

ψ(F, θ) and qR(F, θ,∇θ) and suitable initial and boundary conditions (both mechanical

and thermal). One then solves the field equations (9.16), (9.18) subject to the constitutive

relations (9.30), (9.32) in order to determine the deformation y(x, t) and the temperature

θ(x, t) .
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9.2.6 Worked examples.

Problem 9.2.1. Consider a one-dimensional setting where a thermoelastic material is char-

acterized by the Helmholtz free energy

ψ = ψ(λ, θ), (i)

and the heat conduction law

q = −K(λ, θ)
∂θ

∂x
, (ii)

where K > 0 is a constant and for simplicity have dropped the R from qR. Here λ is the

stretch. Write down and simplify the one-dimensional counterparts of the general equations

developed above.

Solution: Partial differentiation with respect to λ and θ will be denoted by subscripts while

partial differentiation with respect to x and t will be displayed explicitly.

The counterparts of the constitutive equations (9.30)2 and (9.30)1 for stress and entropy

are

σ = ψλ(λ, θ), (iii)

η = −ψθ(λ, θ), (iv)

and the equilibrium equation and energy equation corresponding to (9.16)1 and (9.18) read

∂σ

∂x
+ b = 0, (v)

σ
∂λ

∂t
− ∂q

∂x
=
∂ε

∂t
. (vi)

For convenience we have taken the bulk heat supply to vanish, rR = 0, and have dropped

the subscript R from bR. Here ε is the internal energy and it is related to the Helmholtz free

energy ψ by

ψ = ε− θη. (vii)

The one-dimensional counterpart of the entropy inequality (9.31) is

q
∂θ

∂x
≤ 0. (viii)

We first simplify the energy equation (vi):

σ
∂λ

∂t
− ∂q

∂x

(vi)
=

∂ε

∂t

(vii)
=

∂ψ

∂t
+ η

∂θ

∂t
+ θ

∂η

∂t

(i)
= ψλ

∂λ

∂t
+ ψθ

∂θ

∂t
+ η

∂θ

∂t
+ θ

∂η

∂t
=

(iii),(iv)
= σ

∂λ

∂t
− η∂θ

∂t
+ η

∂θ

∂t
+ θ

∂η

∂t
,
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which reduces to

−∂q
∂x

= θ
∂η

∂t
.

Substituting (ii) and (iv) into this gives

∂

∂x

(
K
∂θ

∂x

)
= −θψθθ

∂θ

∂t
− θψλθ

∂λ

∂t
. � (ix)

The equilibrium equation (v) in view of the constitutive relation (iii) can be written as

ψλλ
∂λ

∂x
+ ψλθ

∂θ

∂x
+ b = 0. � (x)

Equations (ix), (x) are two partial differential equations for the stretch λ(x, t) and the tem-

perature θ(x, t).

Problem 9.2.2. Consider the particular thermoelastic material characterized by

ψ(λ, θ) =
1

2
µ(λ− 1)2 − cβ(θ − θ0)(λ− 1)− c θ ln(θ/θ0), (xi)

K(λ, θ) = K (constant), (xii)

where θ0 is a fixed (“reference”) temperature and µ, c, β and K are constant material param-

eters. Further reduce the equations obtained in Problem 9.2.1. Interpret the four material

parameters µ, c,K and β.

Solution: Observe that ψ = 0 when λ = 1 and θ = θ0. From (iii) and (ix) the constitutive

relation for stress is

σ = µ(λ− 1)− cβ(θ − θ0). (xiii)

The parameter µ is therefore the elastic modulus. On writing (xiii) as

λ− 1 =
σ

µ
+
cβ

µ
(θ − θ0)

we see that cβ/µ is the coefficient of thermal expansion. Observe from (xiii) that σ = 0

when λ = 1 and θ = θ0.

Since q = −K ∂θ/∂x, K is the thermal conductivity.

The various second derivatives of ψ(λ, θ) can be calculated from (xi). They are

ψλλ = µ, ψλθ = −cβ, ψθθ = −c/θ. (xiv)
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Substituting (xiv) into the energy equation (ix) yields

K
∂2θ

∂x2
= c

∂θ

∂t
+ cβθ

∂λ

∂t
. � (xv)

Observe that in general, the energy equation involves both the stretch and the temperature

(and that the stretch drops out only if β = 0). If β = 0 this simplifies to

K
∂2θ

∂x2
= c

∂θ

∂t
,

the so-called heat equation.

If one calculates the internal energy using ε = ψ + θη = ψ − θψθ and (i), one finds

ε =
1

2
µ(λ− 1)2 − cβθ0(λ− 1) + c θ.

Therefore c = ∂ε(λ, θ)/∂θ and so c can be identified with the specific heat of the material

(or more accurately the specific heat at constant stretch).

Substituting (xi) into (x) allows us to write the equilibrium equation as

µ
∂λ

∂x
− cβ ∂θ

∂x
+ b = 0. � (xvi)

Finally, if we write the one-dimensional motion as

y = y(x, t) = x+ u(x, t)

where u(x, t) is the displacement, the stretch is

λ = 1 +
∂u

∂x
.

Therefore the energy equation (xv) and the equilibrium equation (xvi) can be written as

K
∂2θ

∂x2
= c

∂θ

∂t
+ cβθ

∂2u

∂t∂x
, µ

∂2u

∂x2
− cβ ∂θ

∂x
+ b = 0. �

This is a pair of coupled partial differential equations for u(x, t) and θ(x, t).
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9.3 Exercises.

Problem 9.1. Consider a one-dimensional setting where the body (the hydrogel) occupies the region RR =

[0, L] in a reference configuration. Perhaps it is a slab of thickness L that is infinite in its other dimensions.

On one side of the body, the region x > L, is an infinite reservoir of solvent at the fixed chemical potential

µ∞ and pressure p∞. Therefore

µ(L, t) = µ∞, σ(L, t) = −p∞ for t > 0. (i)

The left-hand end of the body is fixed and so the displacement there is zero; moreover it is impermeable to

the solvent and so the solvent flux there vanishes:

u(0, t) = 0, jR(0, t) = 0 for t > 0. (ii)

Initially, the body is undeformed which tells us that the displacement vanishes; it is also dry which implies

that the solvent concentration vanishes:

u(x, 0) = 0, cR(x, 0) = 0 for 0 < x < L. (iii)

Equations (i) and (ii) are the boundary conditions, (iii) are the initial conditions. (Question: do you also

need to know whether the body is at rest at the initial instant so that u̇(x, 0) = 0?) Ignore any solvent

supply and body force: rR = 0, bR = 0.

Write down the one-dimensional counterparts of the general equations for a hydrogel given in Section 9.1.

Take the hydrogel to be characterized by a free energy function ψ(λ, cR) and a solvent flux law jR = −M ∂µ
∂x

where the mobility M > 0 is a constant. You may choose an explicit (not unreasonable) function ψ(λ, cR).

Note: if you decide to use the function ψ given in Problem 9.5 keep in mind that it is for a material with

the constraint det F = 1 + νcR.

Calculate the displacement and solvent concentration u(x, t) and cR(x, t) for 0 ≤ x ≤ L, t > 0. What

happens when t→∞?

Problem 9.2. Formulation of the equations for a hydrogel with respect to the current configuration. A part

P of the body occupies a region Dt at time t and y is the position vector of a particle in that configuration.

(a) Let c(y, t) denote the solvent concentration per unit current volume so that the number of solvent

molecules in Dt at time t is ∫
Dt
c(y, t) dVy.

Show that

cR = cJ where J = det F.



9.3. EXERCISES. 627

(b) Let j(y, t) be the solvent flux vector characterizing the number of solvent molecules per unit current

area crossing into Dt in unit time across its boundary so that the total solvent flux across ∂Dt is∫
∂Dt
−j · n dAy.

Here n is the unit outward-pointing normal vector on the boundary ∂Dt. Show that

jR = J F−1j.

(c) Let r(y, t) be the number of solvent molecules per unit current volume directly entering the interior

of Dt per unit time (from sources outside the body). Show that

rR = rJ where J = det F.

(d) Show that the conservation of solvent molecules requires the balance law

d

dt

∫
Dt
c dVy =

∫
∂Dt
−j · n dAy +

∫
Dt
r dVy, (9.33)

whose associated field equation is

∂

∂t
c(y, t) + div (cv) + div j = r. (9.34)

(e) If µ(y, t) is the chemical potential of a solvent molecule show that the rate of increase of chemical

energy of Dt due to the influx of solvent molecules is∫
∂Dt
−µj · n dAy +

∫
Dt
µr dVy,

and thus show that the dissipation per unit current volume, ∆(y, t), obeys the following global in-

equality ∫
D∆ dVy

def
=

∫
∂D

Tn · v dAy +

∫
D

b · v dVy+

+

∫
∂D
−µj · n dAy +

∫
D
µr dVy −

d

dt

∫
D
ψ/J dVy ≥ 0

(9.35)

where bR = Jb and T is the Cauchy stress tensor. Show that the local version of this inequality is

T · L− j · gradµ+ µċ+ µcdiv v ≥ 1

J
ψ̇ (9.36)

Problem 9.3. Current polymer volume fraction. Let φ be the volume of polymer per unit volume in the

current configuration. Show that

φ = 1− νcR
det F

, (9.37)

where ν is the volume of a solvent molecule (assumed to be the same in any configuration).
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Problem 9.4. Suppose that the polymeric matrix itself is incompressible (and the volume ν of a solvent

molecule is the same in all configurations). This does not mean that the volume of a material region Dt
does not increase, rather, that it increases solely due to the addition of solvent molecules. Show that the

following relation between the deformation and solvent concentration,

det F = 1 + νcR, (9.38)

is consistent with this constraint.

Problem 9.5. Recall that in the purely mechanical theory, the constitutive relation for stress,

S =
∂W

∂F
,

had to be modified if the body could only undergo motions in which J = det F = 1 (i.e. if it was incom-

pressible). Carry out a similar modification to the constitutive relations for a hydrogel if it can only undergo

processes in which det F = 1 + νcR and show that

S =
∂ψ

∂F
− pJF−T , µ =

∂ψ

∂cR
+ pν,

where the constant ν is the volume of a solvent molecule.

Remark 1: Note that the constraint det F = 1 + νcR is not purely kinematic since it involves both the

deformation and the solvent concentration.

Remark 2: The Helmholtz free energy function for a hydrogel is frequently taken to have the specific form

ψ(F, cR) = W (F) + µRcR + ψm(cR) where ψm(cR) = kBθcR

[
ln

(
νcR

1 + νcR

)
+

χ

1 + νcR

]
.

Here the constant parameter µR is the chemical potential of the pure solvent (in the absence of the poly-

mer), ψm(cR) is the chemical potential “due to mixing” and the constant χ is known as the Flory-Huggins

parameter. The separable form of ψ into one part that depends on F and not cR and a second part that

depends on cR and not F might lead one to expect the mechanical and chemical problems to be decoupled.

This is incorrect – they are in fact coupled through the constraint det F = 1 + νcR.



Chapter 10

Introduction to Variational Methods

“ . . . nothing in all of the world will occur in which no maximum or minimum

rule is somehow shining forth . . .”. Leonhard Euler, 1744.

10.1 Preliminary remarks.

Numerous problems in physics can be formulated as mathematical problems in optimization.

For example in optics, Fermat’s principle states that the path taken by a ray of light in

propagating from one point to another is the path that minimizes the travel time. If a

(non-planar) wire loop is dipped into soapy water, the soap film that forms across the loop

is the one that minimizes the surface energy (which under most circumstances is equivalent

to minimizing the surface area of the soap film).

Many equilibrium problems in mechanics involve finding a configuration that minimizes

the potential energy of the system. For example a heavy elastic cable that hangs under

gravity between two fixed pegs adopts the shape that, from among all possible shapes,

minimizes the potential energy of the system (comprised of the sum of the gravitational and

elastic potential energies). Or, if we subject a slender, straight, column to a compressive

axial force, its deformed configuration is the one that minimizes the total energy of the

system that, depending on the load, may be straight or bent (buckled).

This chapter is focused on the Principle of Minimum Potential Energy, a principle that

is intimately related to the notion of stability. The principle is presented in Section 10.3 and

several applications are described by the worked examples in Section 10.4. Some of these

629
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examples are concerned with obtaining approximate solutions to problems (e.g. nonsym-

metric cavitation and end-effects in a bar in the spirit of Saint-Venant). We also revisit the

stability of the Rivlin cube. In Section 10.5 we describe the Virtual Work Principle and the

weak formulation of a problem. We do not address the Complementary Energy Principle;

the reader can find a discussion of this in Section 5.4.3 of Ogden [3].

We start this chapter with a very brief and informal introduction to the calculus of

variations, the main mathematical tool underlying minimization principles. We will not

address several important issues. A somewhat more detailed treatment can be found in

Chapter 7 of Volume I. The student unfamiliar with this topic could read a book dedicated

to this subject, e.g. Gelfand and Fomin [1] or Troutman [5]. The appendix in Section 10.7

makes a few remarks on local versus global minimizers and weak versus strong minimizers.

10.2 A brief introduction to the calculus of variations.

Problems addressed by the calculus of variations involve a scalar-valued quantity Φ, such as

the energy, that depends on a function z(x) characterizing a possible configuration of the

system, and from among all possible configurations z(x) we want to find the particular one,

say y(x), that minimizes Φ. Note that the scalar-valued quantity Φ is defined on a set of

functions; we shall denote this set by A (“A” for admissible). One refers to Φ as a functional

and we write Φ{z}. Thus Φ{z} is defined for all z ∈ A and takes values in R. We are

interested in the particular function y ∈ A that minimizes Φ over A:

Φ{z} ≥ Φ{y} for all z ∈ A.

As a specific example, consider the so-called Brachistochrone Problem. Two given points

(0, h) and (1, 0) in the x, y-plane (with h > 0) are to be joined by a smooth wire as depicted

in Figure 10.1. A bead is released from rest from the point (0, h) and slides along the wire

due to gravity. For what shape of wire is the travel time T from (0, h) to (1, 0) least? One

can show that this travel time is given by

T{w} =

∫ 1

0

√
1 + (w′(x))2

2g(h− w(x))
dx, (10.1)

where w(x), 0 ≤ x ≤ 1, describes the shape of the wire; necessarily, w(0) = h and w(1) = 0.

Observe that T{w} is scalar-valued and it is defined on a certain set of functions w: it is
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a functional. Our task is to find, from among all such functions w, the one that minimizes

T{w}.

Figure 10.1: Curve joining (0, h) to (1, 0) along which a bead slides under gravity.

This minimization takes place over a set of functions w, and in order to complete the

formulation of the problem one must characterize this set of admissible functions (or test

functions). A generic curve is described by a function w(x), 0 ≤ x ≤ 1. Since we are

only interested in curves that pass through the points (0, h) and (1, 0) we must require that

w(0) = h,w(1) = 0. Finally, we do not want to consider curves that are discontinuous or

have corners and so limit attention to functions that are continuous and have a continuous

slope, i.e. w and w′ are both continuous on [0, 1]. Thus the set A of admissible functions

that we wish to consider is1

A =
{
w ∈ C1[0, 1] : w(0) = h, w(1) = 0

}
. (10.2)

Our task is to minimize2 T{w} over the set A.

One can consider various variants of the Brachistochrone problem. For example, the

length of the curve joining the two points might be prescribed, in which case the minimization

is to be carried out subject to the constraint that the length is given. Or perhaps the position

of the left-hand end is prescribed as above but the right-hand end of the wire might be allowed

to lie anywhere on the vertical line through x = 1. Or, there might be some prohibited region

of the x, y-plane through which the path is disallowed from passing. And so on.

1A function w(x) here is defined for x ∈ [0, 1] and its value is a real number. Thus w maps the interval

[0, 1] into real numbers and this is written as w : [0, 1] 7→ R. We have omitted writing this in (10.2).
2Since the path with the shortest distance between two points is the straight line that joins them, it is

natural to wonder whether a straight line is also the curve that gives the minimum travel time. To investigate

this consider (a) a straight line and (b) a family of circular arcs joining (0, h) to (1, 0). Use (10.1) to calculate

the travel time for each of these paths and show that the straight line is not the path that gives the least

travel time.
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Generalizing (10.1), the simplest problem in the calculus of variations involves finding a

function u(x) that minimizes a functional F{w} of the form3

F{w} =

∫ 1

0

f(x,w,w′)dx

over a set of admissible test functions A. The admissible functions w are subject to certain

conditions including: smoothness requirements, possibly (but not necessarily) boundary

conditions at both ends x = 0, 1, and possibly (but not necessarily) side constraints of

various forms. Our interest is in finding a function u ∈ A such that

F{w} ≥ F{u} for all w ∈ A.

10.2.1 Minimizing a functional.

Consider a function4 f(x, y, z) with continuous first and second partial derivatives with

respect to its arguments. Let F be the functional

F{w} =

∫ 1

0

f(x,w(x), w′(x)) dx, (10.3)

defined for all functions w in the admissible set

A = {w ∈ C1[0, 1] : w(0) = a, w(1) = b}. (10.4)

Let u(x) ∈ A be a minimizer of (10.3) so that

F{w} ≥ F{u} for all w ∈ A.

Now consider the family of admissible functions w(x; ε) = u(x)+εη(x) for some sufficiently

smooth function η(x) and scalar ε ∈ [−ε0, ε0]. We only consider functions η(x) that do not

3From (10.1), the function f(x, y, z) in the brachistochrone problem is

f(x, y, z) =

√
1 + z2

2g(h− y)
.

4For example the function f corresponding to the brachistochrone problem is, from (10.1),

f(x, y, z) =

√
1 + z2

2g(h− y)
.
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Figure 10.2: Two neighboring functions u(x) and u(x) + εη(x) passing through (0, a) and (1, b). The

function εη(x) corresponds to the difference between the two curves in the figure.

depend on ε. As a consequence, at each x, the values of the function w(x, ε) and its first

derivatives approach those of u(x) as ε→ 0. Such a variation is said to be a weak variation

and the extremum a weak extremum; see the Appendix in Section 10.7. The difference

between the two curves in Figure 10.2 corresponds to the function εη(x). Since u(x) and

u(x) + εη(x) are both admissible, each obeys the boundary conditions in (10.4),

u(0) = a, u(1) = b,

u(0) + εη(0) = a, u(1) + εη(1) = b,

 for all ε ∈ [−ε0, ε0], (10.5)

and so η(x) satisfies the boundary conditions

η(0) = 0, η(1) = 0. (10.6)

An admissible variation is any smooth enough function η(x) conforming to (10.6) and the

set of all admissible variations is

V = {η ∈ C1[0, 1] : η(0) = η(1) = 0}. (10.7)

Since u is a minimizer, it is necessary that

F{u+ εη} ≥ F{u} for all η ∈ V , ε ∈ [−ε0, ε0]. (10.8)

On keeping η ∈ V fixed for the moment, the minimizer u ∈ A being of course fixed, we

can transform this minimization problem to the (familiar) problem in calculus of minimizing
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a scalar-valued function of a scalar variable ε. To this end we introduce the function F (ε)

defined by

F (ε) := F{u+ εη} =

∫ 1

0

f(x, u+ εη, u′ + εη′) dx, −ε0 < ε < ε0. (10.9)

It follows from (10.8) and (10.9) that F (ε) ≥ F (0) for −ε0 < ε < ε0 and therefore that F (ε)

has a local minimum at ε = 0. Thus we must have

F ′(0) =
d

dε
F (ε)

∣∣∣∣
ε=0

= 0, F ′′(0) =
d2

dε2
F (ε)

∣∣∣∣
ε=0

≥ 0. (10.10)

Explicitly calculating the first derivative,

d

dε
F (ε) =

d

dε

(∫ 1

0

f(x, u+ εη, u′ + εη′) dx

)
=

∫ 1

0

(
∂f

∂u
η +

∂f

∂u′
η′
)
dx,

where the terms ∂f/∂u and ∂f/∂u′ are evaluated at (x, u + εη, u′ + εη′). By setting ε = 0

and using (10.10)1 we get the necessary condition

d

dε
F (ε)

∣∣∣∣
ε=0

=

∫ 1

0

[
∂f

∂u
(x, u, u′) η +

∂f

∂u′
(x, u, u′) η′

]
dx = 0, (10.11)

where the terms ∂f/∂u and ∂f/∂u′ have now been evaluated at (x, u, u′) as shown.

Thus far we held η ∈ V fixed. We now take advantage of the fact that (10.11) must in

fact hold for all η ∈ V , and use this to eliminate η. To this end we aim to integrate (10.11)

by parts so as to trade the term η′ for η, and in preparation for this we write the preceding

equation as ∫ 1

0

[
∂f

∂u
η +

d

dx

(
∂f

∂u′
η

)
− d

dx

(
∂f

∂u′

)
η

]
dx = 0.

Integrating the middle term gives∫ 1

0

[
∂f

∂u
η − d

dx

(
∂f

∂u′

)
η

]
dx +

[
∂f

∂u′
η

]1

0

= 0. (10.12)

Since this holds for all admissible variations η ∈ V , and since η(0) = η(1) = 0, we are thus

led to ∫ 1

0

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
η dx = 0 for all η ∈ V . (10.13)
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Fundamental lemma of the calculus of variations: By specializing the localization result in Problem 1.42 to

a function of a single scalar variable, we have the following result: let p(x) be a continuous function on [0, 1]

and suppose that ∫ 1

0

p(x)n(x)dx = 0

for all continuous functions n(x) with n(0) = n(1) = 0. Then

p(x) = 0 for 0 < x < 1;

see Lemma 1 in Chapter 1 of Gelfand and Fomin [1] for a proof.

Since (10.13) holds for all η ∈ V , it follows from the fundamental lemma of the calculus

of variations that the term in square brackets in (10.13) must vanish at each point in the

interval over which the integral is being taken, i.e.

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0 for 0 < x < 1. (10.14)

This is referred to as the Euler-Lagrange equation (or the Euler equation) associated

with the functional (10.3). The minimizer u(x) is found by solving this second order ordinary

differential equation together with the boundary conditions u(0) = a, u(1) = b.

Observe that the functional (10.3) is well-defined for functions w(x) that are continuous

and have continuous first derivatives. This is the smoothness we insisted on in (10.4). How-

ever the Euler-Lagrange equation (10.14) involves the second derivative of the minimizing

function u(x). The fact that d
dx
fu′ exists is guaranteed by Lemma 4 in Chapter 1 of Gelfand

and Fomin [1].

A word of caution about notation: In writing ∂f/∂u and ∂f/∂u′ we treat u and u′ as

independent variables in f(x, u, u′). More precisely, with f(x, y, z) being the underlying

function, we are writing

∂f

∂u
:=

∂f

∂y

∣∣∣∣
(x,y,z)=(x,u,u′)

and
∂f

∂u′
:=

∂f

∂z

∣∣∣∣
(x,y,z)=(x,u,u′)

.

On the other hand d/dx refers to differentiating f(x, u(x), u′(x)) with respect to x.

10.2.2 Worked examples.

Problem 10.2.1. Consider the system depicted in Figure 10.3 where an elastic string is stretched to some

(large) tension T and its ends are attached to the fixed points (0, 0) and (L, 0). The x-axis is chosen as
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shown in the figure. A distributed force (per unit length5) b(x) is applied along the string and the string

rests on an elastic foundation of stiffness (per unit length) k(x).

Figure 10.3: A stretched elastic string attached to an elastic foundation carrying a distributed force b(x).

A geometrically (kinematically) possible displacement of the string is described by any sufficiently smooth

function w(x) that obeys the boundary conditions w(0) = w(L) = 0. Thus the set A of all kinematically

admissible displacement fields is

A = {w ∈ C1[0, L] : w(0) = 0, w(L) = 0}. (i)

The total potential energy associated with any w ∈ A is comprised of (the integral over the string of)

the elastic potential energy of the string6 1
2T (w′(x))2, plus the elastic potential energy of the foundation

1
2k(x)(w(x))2, plus the potential energy of the dead loading −b(x)w(x):

Φ{w} =

∫ L

0

[
1

2
T
(
w′(x)

)2
+

1

2
k(x)w2(x)− b(x)w(x)

]
dx for all w ∈ A. (ii)

The displacement has been taken to be positive in the upward direction. Our aim is to find the particular

displacement u ∈ A that minimizes the potential energy functional Φ over the set A:.

When (ii) is written in the form (10.3) we have

f(x, u, u′) =
1

2
Tu′2 +

1

2
k(x)u− b(x)u, (iii)

whence
∂f

∂u
= ku− b, ∂f

∂u′
= Tu′; (iv)

or more formally as

f(x, y, z) =
1

2
Tz2 +

1

2
k(x)y − b(x)y,

∂f

∂y
= ky − b, ∂f

∂z
= Tz,

so that
∂f

∂y

∣∣∣∣
(x,y,z)=(x,u,u′)

= ku− b =:
∂f

∂u
,

∂f

∂z

∣∣∣∣
(x,y,z)=(x,u,u′)

= Tu′ =:
∂f

∂u′
.

5We shall be only concerned with small deflections of the string so we do not need to distinguish between

force per unit reference length and force per unit deformed length.
6Exercise: Derive the expression 1

2T (w′(x))2 for the elastic energy in the string.
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Substituting (iv) into the Euler-Lagrange equation (10.14) yields

ku− b− d

dx
(Tu′) = 0 ⇒ −Tu′′(x) + k(x)u(x)− b(x) = 0, 0 < x < L.

The displacement field u(x) that minimizes the potential energy can now be found by solving this second

order ordinary differential equation together with the boundary conditions u(0) = u(L) = 0.

Problem 10.2.2. Minimize the functional

F{w} =

∫ 1

0

f(w(x), w′(x)) dx

over the admissible set (10.4); note that the function f in the integrand here does not explicitly depend on

x, i.e. f = f(�x,w(x), w′(x)). Show that the Euler-Lagrange equation satisfied by the extremizer u(x) has

the first integral (i.e. can be integrated once to give)

f(u, u′)− u′ ∂f
∂u′

(u, u′) = c (constant). (10.15)

10.2.3 A formalism for deriving the Euler-Lagrange equation.

In order to expedite the steps involved in deriving the Euler-Lagrange equation, one usually

uses the following formal procedure. First, one adopts the following notation: if H is a

function or functional that depends on u(x), then by δH we mean

δH := H{u+ εη} −H{u} up to terms linear in ε, (10.16)

that is,

δH := ε

[
dH

dε
{u+ εη}

]
ε=0

. (10.17)

For example, by δu(x) we mean

δu(x) =
[
u(x) + εη(x)

]
−
[
u(x)

]
= εη(x); (10.18)

and, for example,

δu2 = δ(u2) =
[
u+ εη

]2 − [u]2 up to linear terms = 2uεη
(10.18)

= 2u δu. (10.19)

If η(0) = η(1) = 0, then

δu(0) = δu(1) = 0. (10.20)
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Similarly δu′ = δ(u′) denotes

δu′ = δ(u′) =
[
u′ + εη′

]
−
[
u′
]

= εη′
(10.18)

= (δu)′; (10.21)

and, for example,

δ(u′)2 =
[
u′ + εη′

]2 − [u′]2 up to linear terms = 2u′εη′
(10.21)

= 2u′ δu′. (10.22)

Generalizing to a function f(x, u, u′), by δf we mean

δf = f(x, u+ εη, u′ + εη′)− f(x, u, u′) up to linear terms, (10.23)

which can be written as

δf =
∂f

∂u
(x, u, u′) εη +

∂f

∂u′
(x, u, u′) εη′

(10.18),(10.21)
=

∂f

∂u
δu+

∂f

∂u′
δu′. (10.24)

Finally, for a functional F =

∫ 1

0

f dx, by δF we mean

δF = δ

∫ 1

0

f dx = F{u+ εη} − F{u} =

=

∫ 1

0

f(x, u+ εη, u′ + εη′)dx −
∫ 1

0

f(x, u, u′)dx up to linear terms =

=

∫ 1

0

[
f(x, u+ εη, u′ + εη′) − f(x, u, u′)

]
dx up to linear terms =

(10.23)
=

∫ 1

0

δf dx
(10.24)

=

∫ 1

0

[
∂f

∂u
δu+

∂f

∂u′
δu′
]
dx.

(10.25)

Note that δF is linear with respect to the function δu(x). Moreover, note by making use of

(10.18), (10.21) and (10.24) that the steps involved in the calculation (10.25) can be written

as

δF = δ

∫ 1

0

f dx =

∫ 1

0

δf dx =

∫ 1

0

[
∂f

∂u
δu+

∂f

∂u′
δu′
]
dx. (10.26)

Observe that the variation δ does not operate on x and so (as in (10.24)) in the last step

we wrote δf = fuδu + fu′δu
′ and not δf = fxδx + fuδu + fu′δu

′. This is because it is the

function u(x) that is being varied, not the independent variable x.

One refers to δu(x) as an admissible variation and to δF as the first variation of

the functional F. Note from (10.25) that the first variation δF depends on both u and δu:

δF = δF{u, δu}. Observe also that

δF{u, δu} = F{u+ δu} − F{u} up to linear terms.
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The first variation of F necessarily vanishes at a minimizer u:

δF{u, δu} = 0 for all admissible variations δu. (10.27)

The derivation of the Euler-Lagrange equation in Section 10.2.1 can be carried out ex-

peditiously using the present notation7. Given a functional

F{w} =

∫ 1

0

f(x,w(x), w′(x)) dx (10.28)

defined for all functions w in some admissible set A, the first variation of F vanishes at the

minimizer u, and so from (10.26)

0 = δF = δ

∫ 1

0

f dx =

∫ 1

0

δf dx =

∫ 1

0

[
∂f

∂u
δu+

∂f

∂u′
δu′
]
dx. (10.29)

Integrating the term involving δu′ by parts, using the boundary conditions δu(0) = δu(1) = 0

and the fundamental lemma of the calculus of variations (page 635) yields the Euler-Lagrange

equation (10.14).

10.2.4 Natural boundary conditions.

Figure 10.4: A stretched elastic string is attached to an elastic foundation and carries a distributed force

b(x). The right-hand end of the string is attached to a slider on which an externally applied force F acts.

The slider can move on a frictionless vertical rail.

Reconsider the problem concerning the stretched elastic string looked at on page 635

but now suppose it is attached to a (massless) slider at its right-hand end. An externally

applied upward force of magnitude F acts on the slider and it is free to move on a frictionless

7If ever in doubt about a particular step during a calculation, always go back to the meaning of the

symbols δu, etc. or revert to using εη.
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vertical rail as shown in Figure 10.4. The string continues to be fixed at its left-hand end.

Therefore a kinematically admissible displacement w(x) must obey the boundary condition

w(0) = 0 but the value of w(L) is not specified. Thus the setA of all geometrically admissible

displacements is now

A = {w ∈ C1[0, L] : w(0) = 0}. (i)

Note that the class of admissible functions A here is larger than before. The total potential

energy of the system associated with any w ∈ A is

Φ{w} =

∫ L

0

[
1

2
T
(
w′(x)

)2
+

1

2
kw2(x)− b(x)w(x)

]
dx− Fw(L), (ii)

where, again, the displacement is taken to be positive in the upward direction, and the last

term in (ii) is the potential energy of the concentrated force on the slider.

L

Figure 10.5: The minimizer u(x) and the neighboring function u(x)+δu(x) both pass through (0, 0). Their

values at x = L are not prescribed and therefore observe that δu(L) need not vanish. The function δu(x)

corresponds to the difference between the two curves in the figure and so δu(0) = 0 and δu(L) is arbitrary.

Generalizing this, we now return to the functional

F{w} =

∫ 1

0

f(x,w(x), w′(x)) dx, (10.30)

that now is defined for all functions w in the admissible set

A = {w ∈ C1[0, 1] : w(0) = a}. (10.31)

Let u(x) ∈ A be a minimizer of (10.30) so that

F{w} ≥ F{u} for all w ∈ A.

The initial steps of the calculation we used previously when deriving the Euler-Lagrange

equation, all the way until equation (10.12), continue to remain valid and so we are again
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led to

δF{u, δu} =

∫ 1

0

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
δu dx +

[
∂f

∂u′
δu

]1

0

. (10.32)

Since u and u+δu are both in A, it follows that u(0) = a and u(0)+δu(0) = a and therefore

that δu(0) = 0. Thus the set of admissible variations is

V = {δu ∈ C1[0, 1] : δu(0) = 0}. (10.33)

Thus

δF{u, δu} =

∫ 1

0

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
δu dx +

∂f

∂u′

∣∣∣∣
x=1

δu(1). (10.34)

At a minimizer we have

δF{u, δu} = 0 for all δu ∈ V . (10.35)

First restrict attention to all variations with the additional property δu(1) = 0. Equation

(10.35) must necessarily hold for all such variations. The boundary term in (10.34) now drops

out and we are led to ∫ 1

0

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
δu dx = 0 (10.36)

which must hold for all variations with δu(0) = 0 and δu(1) = 0. By the fundamental lemma

of the calculus of variations (page 635) it follows that

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0 for 0 < x < 1. (10.37)

We now return to (10.34), (10.35) which because of (10.37) reduces to

∂f

∂u′

∣∣∣∣
x=1

δu(1) = 0 for all δu ∈ V . (10.38)

Since the value δu(1) is arbitrary it follows that

∂f

∂u′

∣∣∣∣
x=1

= 0. (10.39)

Equation (10.37) is the Euler-Lagrange equation associated with the problem and (10.39) is

the natural boundary condition. A natural boundary condition is generated by the minimiza-

tion process. The particular displacement that minimizes the energy is found by solving the

boundary-value problem (10.37), (10.39) and u(0) = a. The boundary condition u(0) = a is

sometimes referred to as the essential boundary condition.
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When applied to the problem described in Figure 10.4, we first write (ii) as

Φ{u} =

∫ L

0

[
1

2
T
(
u′(x)

)2
+

1

2
ku2(x)− b(x)u(x)− Fu′(x)

]
dx,

and so the natural boundary condition reads

∂f

∂u′

∣∣∣∣
x=L

=
[
Tu′(x)− F

]
x=L

= Tu′(L)− F = 0. (iii)

It can be readily verified that the natural boundary condition (iii) characterizes vertical

force balance for the slider, a condition we did not impose a priori. (In the special case

F = 0, it states that the string must be horizontal at the right-hand end; the force applied

on the slider by the rail is horizontal in this case.)

10.3 Principle of minimum potential energy.

We now return to the general setting of an elastic solid in three-dimensions. The body

occupies a region RR in a reference configuration and its boundary is ∂RR = S1 ∪ S2. The

deformation ŷ(x) is prescribed on S1, the Piola traction ŝ(x) is prescribed on S2, and the

body force bR(x) is prescribed on RR. The body is composed of an elastic material whose

strain energy function W (F) is known.

A kinematically admissible deformation (virtual deformation) is any sufficiently

smooth vector field z(x) defined for all x ∈ RR that satisfies the kinematic boundary condi-

tion:

z(x) = ŷ(x) for x ∈ S1. (10.40)

Let A denote the set of all kinematically admissible deformations:

A = {z ∈ C1(RR) : z(x) = ŷ(x) for x ∈ S1}. (10.41)

The potential energy associated with an admissible deformation z(x) ∈ A is

Φ{z} =

∫
RR

W (∇z) dVx −
∫
RR

bR · z dVx −
∫
S2

ŝ · z dAx. (10.42)

If there are other kinematic constraints, those too must also be enforced. For example if the

material is incompressible we would modify the kinematically admissible set of deformations

to be

A = {z ∈ C1(RR) : z(x) = ŷ(x) for x ∈ S1; det ∇z = 1 for x ∈ RR}. (10.43)
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We want to find the deformation y(x) ∈ A that minimizes the potential energy functional

(10.42) from among all kinematically admissible deformations:

Φ{z} ≥ Φ{y} for all z ∈ A. (10.44)

Observe that the prescribed body force bR(x), boundary traction ŝ(x) and strain energy

function W (F) describing the material all appear in Φ, while the prescribed boundary de-

formation ŷ(x) is part of the admissible set of functions A. Moreover, note that we have

said nothing about the equilibrium equations and in fact, not even introduced the notion of

stress.

Since the minimizer y is in A we know that necessarily

y(x) = ŷ(x) for x ∈ S1. (10.45)

Now consider kinematically admissible deformations of the form

z(x) = y(x) + εη(x), −ε0 ≤ ε ≤ ε0, (10.46)

where ε is a scalar parameter. We refer to η(x) as an admissible variation. In view of

(10.40) and (10.45) it follows that

η(x) = o for x ∈ S1. (10.47)

This, and smoothness, are the only requirements of an admissible variation η(x). The set of

all admissible variations is

V = {η ∈ C1(RR) : η(x) = o for x ∈ S1}. (10.48)

On evaluating the potential energy (10.42) at a kinematically admissible deformation

(10.46) we obtain

Φ{y + εη} =

∫
RR

W (∇y + ε∇η) dVx−
∫
RR

bR · (y + εη) dVx−
∫
S2

ŝ · (y + εη) dAx. (10.49)

On keeping η(x) ∈ V fixed for the moment, we can view the potential energy Φ{y + εη} as

a scalar valued function of the scalar parameter ε:

Φ = Φ(ε) := Φ{y + εη}, −ε0 ≤ ε ≤ ε0. (10.50)
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Since y(x) is a minimizer of the potential energy functional Φ{z} it follows from (10.46)

and (10.50) that ε = 0 is a minimizer of the potential energy function Φ(ε). This requires

dΦ

dε

∣∣∣∣
ε=0

= 0,
d2Φ

dε2

∣∣∣∣
ε=0

≥ 0. (10.51)

We want to examine the implications of (10.51) and it will be convenient for this to introduce

the functions S(F) and A(F), defined for all tensors F with det F > 0, whose cartesian

components are

Sij(F) :=
∂W

∂Fij
(F), Aijk`(F) :=

∂Sij
∂Fk`

(F) =
∂2W

∂Fij∂Fk`
(F). (10.52)

(a) We now calculate the first derivative of Φ with respect to ε from (10.49), (10.50). This

yields
dΦ

dε
=

∫
RR

[
∂W

∂Fij
(∇y + ε∇η)

∂ηi
∂xj
− bR · η

]
dVx −

∫
S2

ŝ · η dAx,

and so

dΦ

dε

∣∣∣∣
ε=0

=

∫
RR

[
∂W

∂Fij
(∇y)

∂ηi
∂xj
− bR · η

]
dVx −

∫
S2

ŝ · η dAx =

(10.52)1=

∫
RR

[
Sij(∇y)

∂ηi
∂xj
− bR · η

]
dVx −

∫
S2

ŝ · η dAx.

Thus

δΦ{y,η} =
dΦ

dε

∣∣∣∣
ε=0

=

∫
RR

[S(∇y) · ∇η − bR · η] dVx −
∫
S2

ŝ · η dAx.

Since the first variation δΦ{y,η} vanishes for all variations η ∈ V ,∫
RR

[
Sij(∇y)

∂ηi
∂xj
− bR · η

]
dVx −

∫
S2

ŝ · η dAx = 0, η ∈ V .

Writing this as∫
RR

[
∂

∂xj
(Sij(∇y) ηi)−

∂Sij
∂xj

(∇y) ηi − bR · η
]
dVx −

∫
S2

ŝ · η dAx = 0

and using the divergence theorem leads to∫
∂RR

Sij(∇y) ηi n
R
j dAx −

∫
RR

[
∂Sij
∂xj

(∇y) + bi

]
ηidVx −

∫
S2
ŝiηi dAx = 0.
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Since η(x) = o on S1, the first integral can be written over S2 and combined with the last

integral: ∫
S2

[
Sij(∇y)nRj − ŝi

]
ηi dAx −

∫
RR

[
∂Sij
∂xj

(∇y) + bi

]
ηidVx = 0.

This must hold for all admissible variations η(x). Since η(x) is arbitrary onRR and on S2 we

conclude that the following field equation and natural boundary condition must necessarily

hold:

∂Sij
∂xj

(∇y(x)) + bi = 0 for x ∈ RR, Sij(∇y)nRj = ŝi for x ∈ S2.

i.e.

Div S(∇y(x)) + b = o for x ∈ RR, S(∇y(x))nR = ŝ for x ∈ S2. (10.53)

If we now define S(∇y) to be the Piola stress, we see that the preceding equations are the

equilibrium equation on RR and the traction boundary condition on S2.

(b) Next we turn to the second derivative condition (10.51)2 and so differentiate dΦ/dε with

respect to ε. This yields

d2Φ

dε2
=

∫
RR

∂2W

∂Fij∂Fk`
(∇y + ε∇η)

∂ηi
∂xj

∂ηk
∂x`

dVx, (10.54)

and so
d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

∂2W

∂Fij∂Fk`
(∇y)

∂ηi
∂xj

∂ηk
∂x`

dVx. (10.55)

Thus if y(x) is to be a minimizer it is also necessary that∫
RR

∂2W

∂Fij∂Fk`
(∇y)

∂ηi
∂xj

∂ηk
∂x`

dVx ≥ 0 for all η ∈ V . (10.56)

See Problem 10.4.8.

10.4 Worked examples.

Problem 10.4.1. Deriving equilibrium equations. We know from the principle of minimum potential energy

that the Euler-Lagrange equation associated with an elastic solid subjected to dead loading is in fact the

equilibrium equation. Make use of this to derive the non-trivial equilibrium equation associated with a

radially symmetric deformation of a homogeneous isotropic body.
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Solution: Let r(R) be the radial component of a spherically symmetric deformation. The associated principal

stretches are

λ1 = λr = r′(R), λ2 = λθ = λ3 = λφ =
r(R)

R
. (i)

Our interest is in deriving the Euler-Lagrange equation in a spherically symmetric setting and we are not

concerned with the boundary conditions. Thus without loss of generality we assume the body to be a hollow

sphere of inner and outer radii A and B in the reference configuration, and we take the deformations r(A)

and r(B) be given so that then their variations δr(A) = δr(B) = 0. The potential energy functional is

Φ{r} =

∫
RR

W dVx =

∫ B

0

W
(
r′(R), r(R)/R, r(R)/R

)
4πR2 dR. (ii)

In the calculations to follow we shall use the notation

Wi ≡
∂W

∂λi
(λ1, λ2, λ3).

Calculating the first variation of Φ in the usual way:

δΦ{r, δr} =

∫ B

A

[W1δλ1 +W2δλ2 +W3δλ3] 4πR2 dR =

∫ B

A

[W1δλ1 + 2W2δλ2] 4πR2 dR =

=

∫ B

A

[
W1δr

′ + 2W2
δr

R

]
4πR2 dR = 4π

∫ B

A

[
R2W1δr

′ + 2RW2δr
]
dR =

= 4π

∫ B

A

[
d

dR
[R2W1δr]−

d

dR
(R2W1)δr + 2RW2δr

]
dR =

= 4π

∫ B

A

[
− d

dR
(R2W1) + 2RW2

]
δr dR

where we used δr(A) = δr(B) = 0 in getting to the last line. Since δΦ{r, δr} = 0 for all admissible δr, we

arrive at the Euler-Lagrange equation

d

dR
(R2W1)− 2RW2 = 0 for 0 < R < B. (iii)

From the general principle of minimum potential energy we know that this corresponds to (the radial com-

ponent of) the equilibrium equation. Our final task is to write (iii) in the familiar form in terms of the

principal Cauchy stress components.

Recall from the constitutive relation for an isotropic elastic material that the radial and circumferential

components of the Cauchy stress tensor can be written as

Trr =
λ1

λ1λ2λ3
W1 =

1

λ2
θ

W1
(i)
=
R2

r2
W1, Tθθ = Tφφ =

λ2

λ1λ2λ3
W2 =

1

λrλθ
W2

(i)
=

R

rr′
W2.

This gives

R2W1 = r2Trr, RW2 = rr′Tθθ. (iv)

We now simplify the left-hand side of (iii) as follows:

d

dR
(R2W1)− 2RW2

(iv)
=

d

dR
(r2Trr)− 2rr′Tθθ =

d

dr
(r2Trr)

dr

dR
− 2rr′Tθθ =

= r′
[
d

dr
(r2Trr)− 2rTθθ

]
= r′

[
2rTrr + r2 dTrr

dr
− 2rTθθ

]
=

= r2r′
[
dTrr
dr

+ 2
Trr − Tθθ

r

]
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Therefore the Euler-Lagrange equation (iii) can be written as

dTrr
dr

+ 2
Trr − Tθθ

r
= 0. �

Remark: A weakness of this derivation is that we assumed the material to be (a) elastic and (b) isotropic,

and therefore don’t know whether the equilibrium equation � holds for a general inelastic material. We

know from Chapter 3 that it does! A derivation analogous to the one above but starting from the principle

of virtual work avoids this issue.

Problem 10.4.2. Elastic string subject to dead loading. We are concerned with an elastic string modeled

as a one-dimensional continuum. A generic particle of the string is located at x = x e1, 0 ≤ x ≤ L, in the

reference configuration and at y(x) = y1(x)e1 + y2(x)e2, 0 ≤ x ≤ L, in the deformed configuration. The left-

and right-hand ends of the string are fixed at (0, 0) and (a, b) respectively:

(y1(0), y2(0)) = (0, 0), (y1(L), y2(L)) = (a, b). (i)

Thus in the reference and current configurations we have

RR = {x : 0 ≤ x ≤ L}, R = {(y1(x), y2(x)) : 0 ≤ x ≤ L}.

The string is subjected to a body force distribution bR(x) per unit undeformed length.

Consider the following set of kinematically admissible deformations y1(x), y2(x):

A = {y1, y2 ∈ C1[0, L] : y1(0) = 0, y2(0) = 0, y1(L) = a, y2(L) = b}. (ii)

The potential energy of the system associated with any admissible y1, y2 ∈ A is

Φ{y1, y2} =

∫ L

0

W (λ(x)) dx−
∫ L

0

bR · y dx, (iii)

where W (λ) is the stored elastic energy per unit undeformed length and λ is the stretch.

(a) Minimize Φ over A and derive a pair of differential equations governing y1(x), y2(x).

(b) Show that these are the same equations we derived previously in Problem 4.34.

Solution: Since the values of y1(0), y2(0)y1(L) and y2(L) are prescribed, an admissible variation δy1(x), δy2(x)

obeys

δy1(0) = δy2(0) = δy1(L) = δy2(L) = 0. (iv)

In what follows we will have to calculate δλ and so recall that by the definition of stretch,

λ = s′(x) (v)

where s(x) is arc length along the deformed string. Since we will want to express δs in terms of δy1 and δy2

we also note by geometry that(
s′
)

2 =
(
y′1
)

2 +
(
y′2
)

2, cosφ = y′1/s
′, sinφ = y′2/s

′, (vi)
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where φ(x) denotes the slope of the string in the deformed configuration. In equation (vi) and what follows,

a prime denotes d/dx except for W ′(λ).

We can now calculate δλ. From (v), δλ = δs′ and from (vi)1,

s′δs′
(iii)1
= y′1δy

′
1 + y′2δy

′
2, ⇒ δs′ =

y′1
s′
δy′1 +

y′2
s′
δy′2

(vi)2,(vi)3
= cosφ δy′1 + sinφ δy′2.

Thus

δλ = cosφ δy′1 + sinφ δy′2. (vii)

We now calculate the first variation of Φ from (iii):

δΦ =

∫ L

0

δW (λ) dx−
∫ L

0

bR · δy dx =

=

∫ L

0

W ′(λ)δλ dx−
∫ L

0

(bR1 δy1 + bR2 δy2) dx =

(vii)
=

∫ L

0

[
W ′(λ) cosφ δy′1 +W ′(λ) sinφ δy′2

]
dx−

∫ L

0

(bR1 δy1 + bR2 δy2) dx =

(iv)
=

∫ L

0

− d

dx
[W ′(λ) cosφ] δy1 −

d

dx
[W ′(λ) sinφ] δy2 dx−

∫ L

0

(bR1 δy1 + bR2 δy2) dx

= −
∫ L

0

[(
d

dx
[W ′(λ) cosφ] + bR1

)
δy1 +

(
d

dx
[W ′(λ) sinφ] + bR2

)
δy2

]
dx.

where in getting to the penultimate line we integrated by parts and used the boundary conditions (iv).

Since since the first variation vanishes, δΦ{y1, y2, δy1, δy2} = 0 for all admissible variations δy1, δy2, and

so by the fundamental lemma of the calculus of variations (page 635), we conclude that

d

dx
[W ′(λ) cosφ] + bR1 = 0,

d

dx
[W ′(λ) sinφ] + bR2 = 0. � (viii)

Keeping in mind that λ = s′ =
√
y′21 + y′22, this is a pair of differential equations involving y1(x), y2(x) to

be solved together with the boundary conditions y1(0) = y2(0) = 0, y1(L) = a, y2(L) = b.

(b) To write (viii) in the form we had previously we first combine (viii)1 and (viii)2 vectorially:(
d

dx
[W ′(λ) cosφ] + bR1

)
e1 +

(
d

dx
[W ′(λ) sinφ] + bR2

)
e2 = o,

which can be written as

d

dx

[
W ′(λ)

(
cosφ e1 + sinφ e2

)]
+
(
bR1 e1 + bR2 e2

)
= o.

The unit vector ` tangent to the string in the deformed configuration is

` = cosφ e1 + sinφ e2,

and so we have
d

dx

[
W ′(λ)`

]
+ bR = o.
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Previously we used arc length s instead of the coordinate x and so had d/ds instead of d/dx. Thus we use

the chain rule to write

d

ds

[
W ′(λ)`

] ds
dx

+ bR = o
(v)⇒ d

ds

[
W ′(λ)`

]
λ+ bR = o ⇒ d

ds

[
W ′(λ)`

]
+ b = o.

where b = bR/λ is the body force per unit deformed length; this follows from b ds = bR dx. Finally setting

σ = W ′(λ) for the force in the string we obtain

d

ds

[
σ`
]

+ b = o. �

This is the form in which we wrote the equilibrium equation previously.

Problem 10.4.3. Cavitation in an incompressible solid. (See Problem 10.1 for cavitation in a compressible

solid.) In an unstressed reference configuration the homogeneous, isotropic, incompressible elastic body is a

solid sphere of radius B. A uniformly distributed radial tensile dead load (Piola traction) of magnitude σ > 0

is applied on the boundary R = B. The material is described by its strain energy function W (λ1, λ2, λ3).

Examine the possibility of cavitation, where the deformed body contains a hole.

Reference: J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philosophical

Transactions of the Royal Society (London), A306, (1982), pp. 557-611.

Solution: Consider spherically symmetric kinematically admissible deformations of the form r = r(R), θ =

Θ, φ = Φ where (R,Θ,Φ) and (r, θ, φ) are spherical polar coordinates in the reference and current configu-

rations respectively. We know from, e.g. Chapter 5.4, that the associated principal stretches are

λ1 = r′(R), λ2 = λ3 = r(R)/R. (i)

A kinematically admissible deformation is described by the function r(R), defined and suitably smooth on

[0, B], satisfying the kinematic requirement of incompressibility:

λ1λ2λ3 = 1 ⇒ r2(R)r′(R) = R2 ⇒ r(R) = [R3 + a3]1/3, (ii)

where a ≥ 0 is an unknown constant.

Observe that the set of kinematically admissible deformations is in fact a one-parameter family of

deformations r(R; a) = [R3 + a3]1/3 parameterized by a ≥ 0. If a = 0 then r(R) = R and so the body

is undeformed (but stressed); if a > 0 then r(0+) = a > 0 and so a hole of deformed radius a has appeared

in the center of the body.

The prescribed traction on the outer boundary is ŝ = σer, while the deformation there is y = r(B)er.

Therefore the potential energy associated with the dead loading is∫
∂RR

ŝ · y dAx = 4πB2σ r(B)
(ii)
= 4πB2σ [B3 + a3]1/3. (iii)

The elastic potential energy of the body due to deformation is∫
RR

W (λ1, λ2, λ3)dVx =

∫ B

0

w(λ)4πR2 dR (iv)
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where w(λ) is the restriction of W to spherically symmetric, isochoric deformations:

w(λ) := W (λ−2, λ, λ) for λ > 0. (v)

The total potential energy associated with an admissible deformation is therefore

Φ(a) =

∫ B

0

4πR2w(λ) dR− 4πB2σ [B3 + a3]1/3, (vi)

where

λ =
r(R)

R
=

[R3 + a3]1/3

R
. (vii)

Observe that in this problem the potential energy functional has reduced to a function Φ(a) of the parameter

a since the kinematically admissible deformations considered here has an explicit form (ii). It will be useful

for what follows to observe from (vii) that

∂λ

∂a
=

a2

R(R3 + a3)2/3
,

∂λ

∂R
=

− a3

R2(R3 + a3)2/3
, λ3 − 1 = a3/R3, λb :=

[B3 + a3]1/3

B
. (viii)

In an equilibrium configuration we have Φ′(a) = 0. Thus, differentiating (vi) with respect to a

Φ′(a) =

∫ B

0

4πR2w′(λ)
dλ

da
dR− 4

3
πB2σ

3a2

[B3 + a3]2/3
,

which because of (viii)1 and (viii)4 can be written as

Φ′(a) =

∫ B

0

4πR2 a2

R(R3 + a3)2/3
w′(λ) dR− 4πa2σ

λ2
b

,

which in turn using (viii)2 and (viii)3 yields

Φ′(a) =

∫ B

0

−4πa2R
3

a3

dλ

dR
w′(λ) dR− 4πa2σ

λ2
b

= 4πa2

∫ ∞
λb

w′(λ)

λ3 − 1
dλ− 4πa2σ

λ2
b

. (ix)

Finally, setting Φ′(a) = 0 (with a 6= 0) leads to

σ = λ2
b

∫ ∞
λb

w′(λ)

λ3 − 1
dλ where λb =

[
1 +

a3

B3

]1/3

. (x)

(Assuming the convergence of the integral) equation (x)1 is a relation between the applied stress σ and the

radius a of the cavity in the deformed configuration; see Figure 10.6. To find the critical stress σcr at which

the cavity just appears, we take the limit a/B → 0 in (x) which yields

σcr =

∫ ∞
1

w′(λ)

λ3 − 1
dλ. (xi)

The convergence of this integral, and therefore the existence of the cavitation phenomenon, was analyzed

carefully by Ball (1982), and was touched on at the end of Chapter 5.4.
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Uniform configuration

Cavitated configuration

0

Figure 10.6: Schematic bifurcation diagram. Uniform configuration without a cavity for all σ ≥ 0 (black).

Configuration with a cavity of radius r(0) = a > 0 for σ > σcr (blue).

Problem 10.4.4. 3D continuum subjected to a constant pressure loading. A homogeneous elastic body

occupies a region RR in a reference configuration. The deformation is prescribed to be ŷ(x) at each point x

on some part S1 of the boundary ∂RR. A constant pressure p per unit deformed area is applied on the rest

of the boundary, the pressure being normal to the deformed boundary of the body.

We know that pressure loading is not dead loading so the field equations and natural boundary conditions

governing this system cannot be obtained by extremizing the potential energy functional (10.42).

In this problem we are asked to derive the functional Φ{z} that, when extremized over the set

A = {z ∈ C1(R) : z(x) = ŷ(x) for x ∈ S1} (i)

of kinematically admissible deformations, leads to the fields equations on RR and natural boundary condi-

tions on S2 = ∂RR − S1.

Solution: Let S ′2 be the image of S2 in the deformed configuration (where S2 = ∂RR −S1 is the part of the

boundary ∂RR on which the pressure is applied). We are told that the traction boundary condition is

Tn = −pn for y ∈ S ′2.

We can write this boundary condition in terms of the Piola stress by first writing it as Tn dAy = −pn dAy,

and then using Tn dAy = SnR dAx and Nanson’s formula n dAy = JF−TnR dAx to get SnR dAx =

−pJF−TnR dAx. Thus we can write the traction boundary condition above in the equivalent form

SnR = −pJF−TnR for x ∈ S2,

or in terms of components,

Sijn
R
j = −pJ F−1

ji nR
j for x ∈ S2. (ii)

It will simplify our writing if we denote the partial derivative with respect to xj of some field by a subscript

containing a comma followed by j so that for example we will write

yi,j ≡
∂yi
∂xj

, Sij,j ≡
∂Sij
∂xj

, etc.
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Accordingly, we can write the equilibrium equation (in the absence of body forces) as

Sij,j = 0 for x ∈ RR. (iii)

The constitutive relation is

Sij =
∂W

∂Fij
. (iv)

An admissible variation is any sufficiently smooth function δy(x) defined of RR that vanishes on S1:

δyi(x) = 0 for x ∈ S1. (v)

Multiplying (ii) by an arbitrary variation δyi and integrating over S2 and multiplying (iii) by δyi and

integrating over RR gives∫
S2

(
Sij + pJ F−1

ji

)
nR
j δyi dAx = 0,

∫
RR

Sij,j δyi dVx = 0, (vi)

respectively. Subtracting the second from the first gives

0 =

∫
S2

(
Sij + pJ F−1

ji

)
nR
j δyi dAx −

∫
RR

Sij,j δyi dVx =

(v)
=

∫
∂RR

(
Sij + pJ F−1

ji

)
nR
j δyi dAx −

∫
RR

Sij,j δyi dVx =

=

∫
∂RR

Sijn
R
j δyi dAx −

∫
RR

Sij,j δyi dVx +

∫
∂RR

pJ F−1
ji n

R
j δyi dAx = 0

(vii)

First consider the two terms involving the stress Sij . They can be simplified as follows:∫
∂RR

Sijn
R
j δyi dAx −

∫
RR

Sij,j δyi dVx
(a)
=

∫
RR

(Sij,j δyi + Sijδyi,j) dVx −
∫
RR

Sij,j δyi dVx =

=

∫
RR

Sijδyi,j dVx
(b)
=

∫
RR

SijδFij dVx =

(iv)
=

∫
RR

∂W

∂Fij
δFij dVx =

∫
RR

δW (F) dVx =

= δ

∫
RR

W (F) dVx, (viii)

where we used the divergence theorem in step (a) and Fij = yi,j in step (b). Next consider the term in (vii)

that involves the pressure p. It can be simplified as follows:∫
∂RR

pJ F−1
ji nR

j δyi dAx
(c)
=

∫
RR

p(J F−1
ji δyi),j dVx =

∫
RR

[
p
(
J F−1

ji

)
,j
δyi + pJ F−1

ji δyi,j

]
dVx =

(d)
=

∫
RR

pJ F−1
ji δyi,j dVx

(e)
=

∫
RR

p
∂J

∂Fij
δyi,j dVx =

(f)
=

∫
RR

p
∂J

∂Fij
δFij dVx =

∫
RR

p δJ dVx =

= δ

∫
RR

pJ dVx
(g)
= δ

∫
R
p dVy, (ix)

where in step (c) we used the divergence theorem, in step (d) the identity (Problem 2.24 , page 217)

Div (JF−T ) = o, (JF−1
ji ),j = 0; (ix)
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in step (e) the identity (Problem 1.47, page 108)

∂J

∂F
= J F−T ,

∂J

∂Fij
= J F−1

ji (x)

in step (f) we used Fij = yi,j and in step (g) we used J dVx = dVy.

On substituting (viii) and (ix) into (vii) we get

δ

∫
RR

W (F) dVx + δ

∫
R
p dVy = 0.

Thus the potential energy functional that we minimize is

Φ{z} =

∫
RR

W (∇z) dVx +

∫
R
p dVy, z ∈ A. �

Problem 10.4.5. (Steigman) Axi-symmetric membrane subjected to axial stretch at its two ends. An

unpressurized circular cylindrical membrane has length 2L and radius R. Its ends, Z = ±L, are attached

to two rigid rings of radius R. The membrane material can be modeled by the strain energy function

W = µ
2 (λ2

1 +λ2
2 +λ−2

1 λ−2
2 −3) per unit reference area. The rings are moved apart by the application of axial

forces of magnitude F . If the distance between the rings in the deformed configuration is 2`, calculate the

relationship between F and `.

Remark: You can reduce the problem to a pair of differential equations λ̇1 = f(λ1, λ2), λ̇2 = g(λ1, λ2) which

you can then solve numerically (using MATHEMATICA, MATLAB, . . . or writing your own code using say

a shooting scheme). Since dimensional considerations tell us that F/µR2 is a function of `/L and R/L,

choose a particular value for R/L.

Figure 10.7: Left: Unstressed circular cylindrical membrane of radius R and length 2L, attached to two

rigid rings (of radius R) at its ends. Right: The rings have been moved apart by the application of axial

forces of magnitude F . The deformation takes (R,Θ, Z) 7→ (r(Z),Θ, z(Z)). Arc length along a meridional

curve is s(Z) and the unit tangent vector s(Z) makes an angle φ(Z) with the horizontal.

Reference: D.J. Steigmann, Finite Elasticity Theory, Oxford, 2017.
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Solution: Let (R,Θ, Z) with 0 ≤ Θ ≤ 2π,−L ≤ Z ≤ L be cylindrical polar coordinates of a particle in

the reference configuration. If its image in the deformed configuration is (r, θ, z) then the axi-symmetric

deformation can be described by

r = r(Z), θ = Θ, z = z(Z). (i)

Since the rings are rigid,

r(±L) = R. (ii)

Let the arc length along, and slope of, a meridional curve be s(Z) and φ(Z). Then,

(s′)2 = (r′)2 + (z′)2, z′ = s′ cosφ, r′ = s′ sinφ, (iii)

where here, and below, a prime denotes differentiation with respect to Z. The principal stretches are

λ1 = s′, λ2 =
r

R
, (iv)

and so

λ′2
(iv)2
=

r′

R

(iii)3
=

s′

R
sinφ

(iv)1
= (λ1/R) sinφ. (v)

The set A of all kinematically admissible deformations r(Z), z(Z) is

A = {r, z ∈ C1[−L,L] : r(±L) = R}. (vi)

The potential energy associated with a kinematically admissible deformation is

Φ{r, z} =

∫ L

−L
2πRW (λ1, λ2) dZ − Fz(L) + Fz(−L), (vii)

where W is the strain energy function per unit referential area.

We are interested in the particular kinematically admissible deformation that extremizes the potential

energy from among deformations in A. Thus calculating the first variation of Φ and introducing the notation

Wi = ∂W/∂λi,Wij = ∂2W/∂λi∂λj :

δΦ =

∫ L

−L
2πR

(
W1δλ1 +W2δλ2

)
dZ − Fδz(L) + Fδz(−L) =

(iv)
=

∫ L

−L
2πR

(
W1δs

′ +W2δr/R
)
dZ − Fδz(L) + Fδz(−L).

(viii)

However from (iii)1,

s′ δs′ = r′ δr′ + z′ δz′
(iii)2,3⇒ δs′ = sinφ δr′ + cosφ δz′. (ix)

Therefore

δΦ =

∫ L

−L
2πR

(
W1 sinφδr′ +W1 cosφδz′ +W2δr/R

)
dZ − Fδz(L) + Fδz(−L). (x)

Integrating the first and second terms by parts and using δr(±L) = 0,

δΦ =

∫ L

−L
2πR

[(
W2

R
− d

dZ
(W1 sinφ)

)
δr − d

dZ
(W1 cosφ)δz

]
dZ−

−(2πRW1 cosφ− F )δz(L) + (2πRW1 cosφ− F )δz(−L).

(xi)
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Since this must vanish for all admissible variations δr(Z) and δz(Z) it follows that the following field equations

W2

R
− d

dZ
(W1 sinφ) = 0 for − L ≤ Z ≤ L, (xii)

d

dZ
(W1 cosφ) = 0 for − L ≤ Z ≤ L, (xiii)

and natural boundary conditions

F = 2πRW1 cosφ for Z = ±L, (xiv)

must hold. Thus the functions λ1(Z), λ2(Z) and φ(Z) are to be found by solving the differential equations

(v), (xii) and (xiii), subject to the boundary conditions (ii) and (xv).

Remark 1: Note that with σ1 and τ1 denoting the Piola and Cauchy forces per unit length (conjugate to λ1),

we have σ1 = W1 and τ1 = σ1/λ2 (which follows from 2πrτ1 = 2πRσ1). The natural boundary condition

(xv) then reads F = 2πRσ1 cosφ = 2πrτ1 cosφ as expected since σ1 cosφ and τ1 cosφ are the ez components

of the Piola and Cauchy traction respectively at Z = L.

Remark 2: The differential equation (xiii) can be integrated with respect to Z, which together with (xv)

gives

F = 2πRW1 cosφ for − L ≤ Z ≤ L. (xv)

Thus the field equations to be solved are

λ′2 =
λ1

R
sinφ,

W2

R
− d

dZ
(W1 sinφ) = 0, 2πRW1 cosφ = F. (xvi)

In order to solve these equations numerically (e.g. using the shooting method) it is convenient to write

them in the form λ′1 = f(λ1, λ2, φ), λ′2 = g(λ1, λ2, φ) and h(λ1, λ2, φ) = 0. To this end one can combine the

three equations in (xvi) to get

λ′1 =
sinφ

R

W2 −W12λ1

W11
.

Thus the equations to be solved are

λ′1 =
sinφ

R

W2 −W12λ1

W11
, λ′2 =

λ1

R
sinφ, 2πRW1 cosφ = F for − L ≤ Z ≤ L.

If the material is neo-Hookean we take W ∗ = µ
2 (λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3) where to convert this energy per

unit reference volume to the energy W per unit reference area we (see Section 10.4 of Steigman).

Problem 10.4.6. Non-spherically symmetric cavitation. Approximation solution. In a reference configu-

ration the body is a solid sphere of radius B. It is composed of a homogeneous, isotropic, incompressible

material; when seeking explicit results, assume the material to be neo-Hookean. The boundary ∂RR is

subjected to a dead load Piola traction

ŝ = ΣnR, (i)

where Σ is the constant tensor

Σ = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 + σ3e3 ⊗ e3, (ii)
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and the unit outward normal vector on ∂RR is

nR =
x

B

∣∣∣
|x|=B

. (iii)

Thus from (i), (ii) and (iii)

ŝ = σ1n
R
1 e1 + σ2n

R
2 e2 + σ3n

R
3 e3 = σ1

x1

B
e1 + σ2

x2

B
e2 + σ3

x3

B
e3 for x ∈ ∂RR. (iv)

You are asked to investigate the possibility of cavitation under this loading. In the special case where

σ1 = σ2 = σ3 = σ this is the spherically symmetric cavitation problem studied by Ball; see Chapter 5.4

and also Problem 10.4.3. Since it is unlikely that we can find a closed-form solution to the non-symmetric

problem at hand, seek an approximate solution by minimizing the potential energy functional over a suitable

subset of kinematically admissible deformations.

Reference: H-S Hou and R. Abeyaratne, Cavitation is elastic and elastic-plastic solids, Journal of the Me-

chanics and Physics of Solids, volume 40, issue 3, 1992, pp. 571-592. (This paper considers Cauchy traction

loading.)

Solution: Consider deformations of the form

y1 = f1(R)x1, y2 = f2(R)x2, y3 = f3(R)x3, (v)

where

R = (x2
1 + x2

2 + x2
3)1/2, fi(R) > 0. (vi)

In order that (v), (vi) be admissible, it must satisfy the kinematic requirement det F = 1. Calculating

the components Fij = ∂yi/∂xj of the deformation gradient tensor associated with (v) leads to

F11 = f ′1x
2
1/R+ f1, F12 = f ′1x1x2/R, F13 = f ′1x1x3/R,

F21 = f ′2x1x2/R, F22 = f ′2x
2
2/R+ f2, F23 = f ′2x2x3/R,

F31 = f ′3x3x1/R, F32 = f ′3x3x2/R, F33 = f ′3x
2
3/R+ f3.

Since the deformation must be isochoric we require8

det F = f1f2f3 + f2f3
f ′1
R
x2

1 + f1f3
f ′2
R
x2

2 + f1f2
f ′3
R
x2

3 = 1

which can be written as

f1f2f3 +Rf1f2f
′
3 − 1 +

x2
1

R
f2(f ′1f3 − f1f

′
3) +

x2
2

R
f1(f ′2f3 − f2f

′
3) = 0.

This must hold at all points in the body and so

f1f2f3 +Rf1f2f
′
3 = 1, f ′1f3 − f1f

′
3 = 0, f ′2f3 − f2f

′
3 = 0 for 0 ≤ R ≤ B.

8Many of the calculations were carried out using MATHEMATICA.
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The second and third of these equations tell us that f1 and f2 are proportional to f3 so that on writing

f1 = η1f3 and f2 = η2f3 the first equation reduces to

Rf2
3 f
′
3 + f3

3 =
1

η1η2
⇒ f3(R) =

(
1

η1η2
+
η3

R3

)1/3

=
1

η
1/3
1 η

1/3
2

(
1 +

η1η2η3

R3

)1/3

,

η1, η2 and η3 being constants. The deformation (v), when isochoric, can therefore be written in the form

y1 = α1f(R)x1, y2 = α2f(R)x2, y3 = α3f(R)x3, (vii)

where

α1α2α3 = 1, f(R) =

(
1 +

β3

R3

)1/3

, (viii)

with α2 > 0, α3 > 0, β ≥ 0 being arbitrary constants.

Remark: It can be readily seen that the deformation (vii) takes a spherical surface R = constant in the

reference configuration into the ellipsoidal surface

y2
1

α2
1

+
y2

2

α2
2

+
y2

3

α2
3

= (R3 + β3)2/3

in the deformed configuration. Observe that α2 and α3 describe its aspect ratios (α1 = α−1
2 α−1

3 ) and β its

size. If β > 0 the origin maps into the ellipsoid corresponding to R = 0; if β = 0 the origin R = 0 remains

at the origin.

In order to write the various equations below in symmetric form, we will continue to involve α1 but make

sure to enforce α1 = 1/(α2α3) when necessary.

The class of kinematically admissible deformations (vii), (viii) is in fact an explicit 3-parameter family

of deformations where the parameters are α2 > 0, α3 > 0 and β ≥ 0. Thus the potential energy functional

will reduce to a potential energy function

Φ(α2, α3, β) =

∫
RR

W dVx −
∫
∂RR

ŝ · y dAx. (ix)

Let the potential energies of the elastic body and the loading be denoted by

E(α2, α3, β) =

∫
RR

W dVx, Ψ(α2, α3, β) =

∫
∂RR

ŝ · y dAx, (x)

so that Φ(α2, α3, β) = E(α2, α3, β)−Ψ(α2, α3, β).

Having previously calculated the components of the deformation gradient tensor, we can now calculate

the principal scalar invariants I1 and I2 and thus obtain

E(α2, α3, β) =

∫
RR

W (I1, I2) dVx. (ix)

For example for a neo-Hookean material, W = µ
2 (I1 − 3) = µ

2 (F · F− 3), this gives the explicit expression

E =
2πµ

3
B3
[
(α2

1 + α2
2 + α2

3)(B3 + 2β3)(B3 + β3)−1/3B−2 − 3
]
. (x)
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Now consider the potential energy Ψ of the loading. From (x)2, (iv) and (vii) we have

Ψ =
1

B

∫
∂RR

(σ1α1x
2
1f(B) + σ2α2x

2
2f(B) + σ3α3x

2
3f(B)) dAx

which yields

Ψ =
4π

3
B3f(B)(σ1α1 + σ2α2 + σ3α3). (xi)

Thus
∂Ψ

∂α2
=

4π

3
B3f(B)

(σ2α2 − σ1α1)

α2
,

∂Ψ

∂α3
=

4π

3
B3f(B)

(σ3α3 − σ1α1)

α3
,

∂Ψ

∂β
=

4π

3

1

f2(B)
β2 (σ1α1 + σ2α2 + σ3α3),

 (xii)

where we have used α1 = α−1
2 α−1

3 and f(B) = (1 + β3/B3)1/3.

Since minimizing Φ(α2, α3, β) = E(α2, α3, β)−Ψ(α2, α3, β) requires

∂Ψ

∂α2
=

∂E
∂α2

,
∂Ψ

∂α3
=

∂E
∂α3

,
∂Ψ

∂β
=
∂E
∂β

, (xiii)

we conclude from (xii) and (xiii) that

α1σ1 + α2σ2 + α3σ3 =
3

4π

f2(B)

β2

∂E
∂β

,

σ2α2 − σ1α1

α2
=

3

4πB3

1

f(B)

∂E
∂α2

,

σ3α3 − σ1α1

α3
=

3

4πB3

1

f(B)

∂E
∂α3

.


(xiv)

The three equations (xiv) relate the unknown geometric parameters α2, α3 and β to the given stresses

σ1, σ2, σ3. At the onset of cavitation the cavity size β → 0+ and such a state is described by

α1σ1 + α2σ2 + α3σ3 =
3

4π

[
1

β2

∂E
∂β

]
β→0

,

σ2α2 − σ1α1

α2
=

3

4πB3

∂E
∂α2

∣∣∣∣
β→0+

,

σ3α3 − σ1α1

α3
=

3

4πB3

∂E
∂α3

∣∣∣∣
β→0+

,


(xv)

having used f(B) = (1 + β3/B3)1/3 = 1 when β = 0.

For a neo-Hookean material we use (x) in (xv) to find the following explicit condition describing the

onset of cavitation:
α1σ1 + α2σ2 + α3σ3 = 5

2µ (α2
1 + α2

2 + α2
3),

α2σ2 − α1σ1 = µ (α2
2 − α2

1),

α3σ3 − α1σ1 = µ (α2
3 − α2

1).

 (xvi)

On solving (xvi) we get

σ1/µ =
3α2

1 + α2
2 + α2

3

2α1
, σ2/µ =

α2
1 + 3α2

2 + α2
3

2α2
, σ3/µ =

α2
1 + α2

2 + 3α2
3

2α3
, α2 > 0, α3 > 0. (xvii)
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keeping in mind that α1 = α−1
2 α−1

3 . Observe that when α1 = α2 = α3 = 1 this gives

σ1 = σ2 = σ3 =
5

2
µ

which is Ball’s result for the case of spherically symmetric loading, see Problem 10.4.3.

Equation (xvii) (with α1 = α−1
2 α−1

3 ) provides a parametric description of a surface in σ1, σ2, σ3-stress

space, α2 > 0, α3 > 0 being the parameters. This surface characterizes the onset of cavitation. When the

loading (σ1, σ2, σ3) lies on one side of this surface, the side on which the origin is located, the body does not

involve a cavity. When the loading is on the other side, the body is in a cavitated configuration.

To visualize this prediction in a special case, consider ellipsoidal cavities with equal aspect ratios α2 = α3.

Equations (xvii) then specialize to σ2 = σ3 and

σ1/µ =
3α2

1 + 2α2
2

2α1
, σ2/µ =

α2
1 + 4α2

2

2α2
, α2 > 0, α1 = 1/α2

2. (xviii)

This provides a parametric description of the cavitation curve in the σ1, σ2-plane as illustrated in Figure 10.8.

This curve intersects the line σ1 = σ2 at the value 5µ/2 which corresponds to Ball’s result for spherically

symmetric cavitation. Cavitation occurs when (σ1, σ2) lies in the wedge-shaped region between the two

branches of the cavitation curve.

0 1 2 3 4 5

1

2

3

4

5

Figure 10.8: Cavitation curve on the σ1, σ2-plane in the special case of cavities where two semi-major axes

have the same length (α2 = α3). The cavitation curve is characterized parametrically by equation (xviii).

The cavitation curve intersects the line σ1 = σ2 at the value 5µ/2 which corresponds to Ball’s result for

spherically symmetric cavitation. Cavitation occurs when (σ1, σ2) lies in the wedge-shaped region between

the two branches of the cavitation curve.

Problem 10.4.7. Approximate solution. End effects in a bar a la Saint-Venant. Figure 10.9 shows a solid

circular cylindrical bar that in an unstressed reference configuration has length L and radius R. It is firmly
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bonded to two rigid end plates. The left-hand plate (at x1 = 0) is held fixed while the plate on the right-hand

end (at x1 = L) is displaced by ∆ e1 as shown in the figure. It will be useful to let λ = 1 + ∆/L > 1. Thus

the prescribed kinematic boundary conditions are

y = x on x1 = 0 and y = x + (λ− 1)L︸ ︷︷ ︸
=∆

e1 on x1 = L, (i)

with the lateral boundary of the bar being traction-free.

Δ

Δ

R

Figure 10.9: The bar is stretched after being attached to rigid end-plates. The end plates prevent “Poisson

contraction” in the transverse direction at the two ends.

If the bar was stretched in this way without being attached to rigid end plates, it will contract in the

transverse direction and undergo a homogeneous deformation of the form

y1 = λx1, y2 = Λx2, y3 = Λx3 for x ∈ RR, (ii)

(for some value Λ that we expected to be < 1 due to the “Poisson effect”). In the present problem however

the bar is attached to rigid end plates and so cannot contract in the transverse direction at the two ends.

Said differently, the deformation (ii) does not satisfy the kinematic boundary conditions (i) (except in some

pathological case where the material shows no Poisson effect, i.e. Λ = 1).

Suppose you want to determine an approximate expression for the deformation using the minimum

potential energy principle. If you minimize the potential energy functional over all admissible deformations

you will simply obtain the usual equations of elasticity. To find an approximate solution you want to minimize

the potential energy over some suitable subset of all admissible deformations.

To this end consider kinematically admissible deformations of the form

y1 = λx1, y2 = x2h(x1), y3 = x3h(x1) for x ∈ RR, (iii)

where the function h(x1) is to be determined. The bar is composed of an unconstrained, homogeneous,

isotropic elastic material characterized by the strain energy function

W =
µ

2
(I1 − 3) + f(J), I1 = tr FFT , J = det F, (iv)

where

f(1) = 0, f ′(1) = −µ, µ > 0. (v)

Equations (v)1,2 ensure that the energy and stress vanish in the reference configuration.
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(a) What restrictions must be placed on the function h(x1) in order that the deformation (iii) is kine-

matically admissible?

(b) (Based on your intuition,) sketch what you expect the graph of h(x1) versus x1 to look like in the

case L� R. Label key values.

(c) Specialize the general 3D potential energy functional of finite elasticity to the present setting and thus

derive the potential energy functional Φ{h}.

(d) Derive the Euler-Lagrange equation and natural boundary conditions (if any).

(e) Show that h(x1) = Λ for 0 ≤ x1 ≤ L is a solution of the Euler-Lagrange but not the boundary

conditions.

(f) Approximate the Euler-Lagrange equation to the case where h(x1) ≈ Λ and solve the resulting linear

boundary value problem. Does the graph of your solution h(x1) look like what you sketched in part

(b)?

Solution:

(a) The displacement at the left-hand boundary vanishes and therefore we must have

(i)1 ⇒
y1(0, x2, x3) = 0,

y2(0, x2, x3) = x2,

y3(0, x2, x3) = x3,

 (iii)⇒ h(0) = 1.

Similarly, the displacement at the right-hand boundary is (λ− 1)Le1 and therefore we must have

(i)2 ⇒
y1(L, x2, x3) = λL,

y2(L, x2, x3) = x2,

y3(L, x2, x3) = x3,

 (iii)⇒ h(L) = 1.

Thus a kinematically admissible function h(x1) must obey

h(0) = h(L) = 1, � (vi)

(together with an appropriate level of smoothness).

(b) If we assume Saint-Venant’s principle to be valid in the nonlinear theory, then we would expect the

central part of the bar, away from the two ends, to be in a state of uniaxial tension and therefore that the

deformation will have the form (ii) in that region. Thus we expect h(x1) ≈ Λ away from x1 = 0 and x1 = L.

The boundary conditions (vi) must hold at the two ends and so we must have h(0) = h(1) = 1. Thus we

expect that h(x1) will vary rapidly from h = Λ to h = 1 as one approaches each end. Thus we expect the

graph of h(x1) versus x1 to be as depicted schematically in Figure 10.10.

If we have a state of uniaxial stress in the x1-direction, the deformation will have the form (ii). Then

T22 =
λ2

J

∂W

∂λ2
=
λ2

J

[
µλ2 + λ1λ3f

′(J)
]

=
Λ

λΛ2

[
µΛ + λΛf ′(λΛ2)

]
= 0,
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Figure 10.10: When L � R we expect h(x1) ≈ Λ in most of the bar except near the two ends. The

parameter ` is the length scale over which the end effects are important; a formula for ` is calculated in part

(f).

and so Λ will be given by

1 +
λf ′(λΛ2)

µ
= 0. (vii)

(c) The part S1 of the boundary on which the deformation is prescribed is comprised of the two ends x1 = 0

and x1 = L; the part S2 on which the traction is prescribed is the lateral boundary. Since the prescribed

traction on S2 vanishes, there is no potential energy associated with the loading. Thus the total potential

energy is

Φ =

∫
RR

W dVx −
∫
RR

bR dVx −
∫
S2

ŝ · ydAx =

∫
RR

W dVx =

∫
RR

[µ
2

(I1 − 3) + f(J)
]
dVx. (viii)

In order to calculate I1 = tr (FFT ) and J = det F we first use Fij = ∂yi/∂xj to calculate the components of

the deformation gradient tensor associated with (iii):

F11 = λ, F12 = 0, F13 = 0,

F21 = x2h
′(x1), F22 = h(x1), F23 = 0,

F31 = x3h
′(x1), F32 = 0, F33 = h(x1).

(ix)

Therefore

I1 = tr (FFT ) = FijFij
(ix)
= λ2 + 2h2 + r2(h′)2 and J = det F

(ix)
= λh2, (x)

where

r2 = x2
2 + x2

3.

Thus from (viii) and (x):

Φ{h} =

∫
RR

[µ
2

(λ2 + 2h2 + r2(h′)2 − 3) + f(λh2)
]
dVx. �
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(d) From (x) we have

δI1(x1) = 4h(x1)δh(x1) + 2r2h′(x1)δh′(x1) and δJ(x1) = 2λh(x1)δh(x1). (xi)

Therefore

δΦ{h, δh} =

∫
RR

δW dVx
(viii)

=

∫
RR

[µ
2
δI1 + f ′(J) δJ

]
dVx =

(xi)
=

∫
RR

[µ
2

[
4h δh+ 2r2h′ δh′

]
+ 2λf ′(J)h δh

]
dVx =

=

∫ L

0

∫
D

[µ
2

[
4h δh+ 2r2h′ δh′

]
+ 2λf ′(J)h δh

]
dAx︸︷︷︸
dx2dx3

dx1,

(xii)

where D is a cross-section of the bar. Let

A :=

∫
D
dAx, Ip :=

∫
D
r2dAx, (xiii)

which for a circular cross-section specializes to

A = πR2, Ip =
1

2
πR4. (xiiia)

Therefore

δΦ{h, δh} (xii)
=

∫ L

0

[µ
2

[
4Ah δh+ 2Iph

′ δh′
]

+ 2λAf ′(J)h δh
]
dx1 =

=

∫ L

0

[
µ
[
2Ah δh+ Iph

′ δh′
]

+ 2λAf ′(J)h δh
]
dx1 =

=

∫ L

0

[
µ
[
2Ah δh− Iph′′ δh

]
+ 2λAf ′(J)h δh

]
dx1 =

=

∫ L

0

[
µ
[
2Ah− Iph′′

]
+ 2λAf ′(J)h

]
δh dx1.

(xiv)

Since δΦ{h, δh} = 0 for all admissible δh, it follows from the fundamental lemma of the calculus of variations

that 2µAh− µIph′′ + 2λAf ′(J)h = 0:

Ip
2A

h′′(x1)−
[
1 + λ

f ′(J(x1))

µ

]
h(x1) = 0, 0 < x1 < L, � (xv)

where J
(x)2
= λh2(x1). Thus h(x1) is to be found by solving the second-order, nonlinear, ordinary differential

equation (xv) subject to the boundary conditions (vi). Remark: for a circular cross-section, from (xiiia) we

have
Ip
A

=
R2

2
;

the calculations below are not limited to a circular cross-section.

(e) Observe because of (vii) and J = λh2 that

h(x1) = Λ, 0 ≤ x1 ≤ L, (xvi)

is a solution of the differential equation (xv) (but not the boundary conditions (vi)).
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(f) Now suppose that h(x1) ≈ Λ. It is then convenient to let

g(x1) = h(x1)− Λ (xvii)

where we assume g(x1) and its derivatives to be small. Then J
(x)2
= λh2 = λ(Λ + g)2 .

= λΛ2 + 2λΛg and so

f ′(J) = f ′(λh2)
.
= f ′(λΛ2 + 2λΛg)

.
= f ′(λΛ2) + 2λΛf ′′(λΛ2)g.

Thus the term involving the square bracket in the Euler-Lagrange equation (xv) can be approximated as[
1 +

λ

µ
f ′(J)

]
h
.
=
[
1 +

λ

µ
f ′(λΛ2) +

λ

µ
2λΛf ′′(λΛ2)g

]
(Λ + g)

(vii)
=

2λ2Λ2

µ
f ′′(λΛ2)g.

The differential equation (xv) therefore linearizes to

Ip
2A

g′′(x1)− 2λ2Λ2

µ
f ′′(λΛ2)g = 0, 0 < x1 < L. (xviii)

Since f has the same dimensions as µ (see (iv)) it follows that the coefficient of g is dimensionless. Moreover

the term Ip/A has the dimension of length squared. Thus we can introduce the length scale

` :=

√
µIp/A

4λ2Λ2f ′′(λΛ2)
. (xix)

Note: this assumes f ′′(λΛ2) > 0. We can write (xviii) as

`2g′′(x1)− g(x1) = 0, 0 < x1 < L. (xx)

Thus we are to find g(x1) by solving the linear differential equation (xx) subject to the boundary conditions

g(0) = g(L) = 1− Λ. (xxi)

We now turn to determining g.

Equation (xx) has solutions e−x1/` and ex1/`. For reasons that will become apparent shortly it is

convenient to write the second solution as e−(L−x1)/`. Thus the general solution of (xx) can be written as

g(x1) = C1 exp
(
−x1

`

)
+ C2 exp

(
− (L− x1)

`

)
.

By enforcing the boundary conditions (xxi) we find the constants C1 and C2 to be

C1 = C2 =
1− Λ

1 + exp (−L/`) .

Therefore

g(x1) = (1− Λ)
exp (−x1/`) + exp (−(L− x1)/`)

1 + exp (−L/`)
and so by (xvii),

h(x1) = Λ + (1− Λ)
exp (−x1/`) + exp (−(L− x1)/`)

1 + exp (−L/`) . � (xxii)



10.4. WORKED EXAMPLES. 665

Note that at any point x1 away from the two ends we have

x1

`
� 1 and

(L− x1)

`
� 1 .

Therefore the exponential terms in the numerator of (xxii) are very small in the interior region of the bar

and we have h(x1) ≈ Λ. Therefore away from the two ends, the displacement field (iii), (xxii) has the form

(ii). On the other hand at each end, we have h(0) = h(L) = 1. The term exp (−x1/`) is important near

the left-hand end and the term exp (−(L− x1)/`) is important near the right-hand end. A plot of h(x1)

versus x1 according to (xxii) is shown in Figure 10.10. The length scale ` represents the decay length of the

end-effects.

Problem 10.4.8. Second variation. Stability of the “Rivlin Cube” with respect to arbitrary perturbations.

Reconsider the stability of the “Rivlin cube” studied in Section 5.3. There, we first determined the various

pure homogeneous deformations the body could undergo, and second, investigated whether these deforma-

tions minimized the potential energy. In this latter calculation, we limited attention to virtual deformations

that were homogeneous and coaxial with the pure homogeneous deformations we were studying. In the

present problem, you are asked to consider all virtual deformations.

In the “Rivlin cube” problem the unit cube is subjected to the dead loading s = SnR on ∂RR where S

is a given constant tensor. The associated deformation whose stability we want to study is

y(x) = Fx for x ∈ RR, (i)

where the constant tensor F has det F = 1 and

S =
∂W

∂F
(F)− qF−T . (ii)

In order to study the stability of a deformation (i), consider virtual deformations of the form

z(x) = y(x) + εη(x) = Fx + εη(x) for x ∈ RR. (iii)

Here z(x) is the virtual deformation, y(x) is the deformation whose stability we wish the study, and εη(x)

is the virtual displacement. The associated virtual deformation gradient tensor is

G = ∇xz = F + ε∇xη. (iv)

Here and in what follows, a subscript, e.g. x, on ∇ indicates that the gradient is being taken with respect to

the position, e.g. x. In (iii), ε is a scalar parameter and η(x) is an arbitrary smooth function subject only

to the incompressibility requirement

det G = 1. (v)

The potential energy associated with a virtual deformation z(x) is

Φ =

∫
RR

W (∇xz)dVx −
∫
∂RR

SnR · z dAx.
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It is convenient to incorporate the kinematic constraint (v) into the potential energy through a Lagrange

multiplier q, and to therefore consider

Φ =

∫
RR

(W (∇xz)− q det(∇xz)) dVx −
∫
∂RR

SnR · z dAx. (vi)

On substituting the virtual deformation (iii) into the potential energy (vi), and keeping η(x) fixed for

the moment, we can view the potential energy as a function of the scalar parameter ε:

Φ = Φ(ε). (vii)

Since z(x) = y(x) when ε = 0, see (iii), it follows that if y(x) is a minimizer of the potential energy then

ε = 0 is a minimizer of Φ(ε). This requires

dΦ

dε

∣∣∣∣
ε=0

= 0,
d2Φ

dε2

∣∣∣∣
ε=0

≥ 0. (viii).

It will be convenient in what follows to let

H := ∇yη = ∇xηF−1. (ix)

(a) Show that

det G = 1 + tr H + O(ε2) as ε→ 0, (x)

so that the incompressibility requirement (v) tells us that tr H = 0 + O(ε) as ε→ 0.

(b) Evaluate dΦ/dε and show that, in view of (ii), the first requirement (viii)1 holds automatically.

(c) Show that
d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
∂2W

∂Fij∂Fk`
(F)ηi,jηk,` − q(HiiHjj −HijHji)

]
dVx. (xi)

(d) Next consider a neo-Hookean material:

W =
µ

2
(F · F− 1), (xii)

and show that (xi) now specializes to

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µBkjHijHik + qHijHji] dVx, (xiii)

where B = FFT .

(e) Now consider the stability of the cubic solution F = I. Recall that the loading is in fact an equi-triaxial

dead loading, i.e. S = S I. In this case (ii), (xii) gives q = µ− S. Show that

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
(2µ− S)εijεij + Sωijωij)

]
dVx, (xiv)

where we have set εij := 1
2 (ηi,j + ηj,i) and ωij := 1

2 (ηi,j − ηj,i).
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Thus far we kept η(x) fixed. But in fact it is arbitrary, subject only to the requirement stemming

from incompressibility. Thus, for stability, it is necessary that the expression in the previous equation

be non-negative for all such ηi,j . Show from this that the cubic deformation is stable for 0 < S < 2µ.

And unstable for S > 2µ and S < 0. What is the nature of a virtual deformation that makes the

cubic configuration unstable in the case S < 0?

References:

– R, Hill, On uniqueness and stability in the theory of finite elastic strain, Journal of the Mechanics and

Physics of Solids, 5 (1957), pp. 229–241.

– R.S. Rivlin, Stability of pure homogeneous deformations of an elastic cube under dead loading, Quarterly

Journal of Applied Mathematics, 1974, pp. 265-271.

Solution:

(a) Observe from (iv) that

G|ε=0 = F,
dG

dε
= ∇xη.

and from (v) that

1 = det G = det (F + ε∇xη) = det [(I + ε∇xηF−1)F] = det(I + εH) = 1,

where we have used (ix). In view of the identity det(I + A) = 1 + I1(A) + I2(A) + I3(A) we can write

det G = 1 + I1
(
εH) + I2

(
εH
)

+ O(ε3) = 1 + εHii +
ε2

2
(HiiHjj −HijHji) + O(ε3),

from which (x) follows. The requirement (v) now yields

tr H = 0 + O(ε). (xv)

(b) By using the divergence theorem, the potential energy associated with the loading device can be written

as ∫
∂RR

−SnR · z dAx =

∫
RR

−S ·G dVx,

and therefore (vi) can be rewritten as

Φ =

∫
RR

[W (G)− S ·G− q det G]dVx.

On calculating the first derivative of Φ with respect to ε one gets

dΦ

dε
=

∫
RR

[
∂W

∂F
(G) · ∇xη − S · ∇xη − q [Hii + ε(HiiHjj −HijHji)]

]
dVx + O(ε2)

and so
dΦ

dε

∣∣∣∣
ε=0

=

∫
RR

[
∂W

∂F
(F) · ∇xη − q trH− S · ∇xη

]
dVx.
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But tr H = F−T · ∇xη and so this yields

dΦ

dε

∣∣∣∣
ε=0

=

∫
RR

[
∂W

∂F
(F)− qF−T − S

]
· ∇xη dVx

which vanishes because of (ii).

(c) On calculating the second derivative of Φ with respect to ε one gets

d2Φ

dε2
=

∫
RR

[
∂2W

∂Fij∂Fk`
(G)ηi,jηk,` − q(HiiHjj −HijHji)

]
dVx + O(ε),

and so
d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
∂2W

∂Fij∂Fk`
(F)ηi,jηk,` − q(HiiHjj −HijHji)

]
dVx. (xvi)

(d) Now consider a neo-Hookean material:

W =
µ

2
(F · F− 1),

for which
∂W

∂Fij
= µFij ,

∂2W

∂Fij∂Fk`
= µδikδj`.

Thus (ii) gives

S = µF− qF−T ⇒ qI = µB−T, (xvii)

where T = SFT and B = FFT . Equation (xvi) specializes for the neo-Hookean material to

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µηi,jηi,j − q(HiiHjj −HijHji)] dVx,

which further specializes because of (xv) to

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µ ηi,jηi,j + qHijHji] dVx.

In view of (ix),

∇xη · ∇xη = HF ·HF = HB ·H,

and so
d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µBkjHijHik + qHijHji] dVx. (xviii)

We can use this to study the stability of any equilibrium deformation y(x) = Fx subject to a uniform dead

loading s = SnR.

(e) Now consider the stability of the undeformed configuration. Here F = B = I and so (xviii) simplifies to

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[µHijHij + qHijHji] dVx.

Moreover (xvii) with S = SI and F = I gives

q = µ− S. (xix)
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If we set εij := 1
2 (ηi,j + ηj,i) and ωij := 1

2 (ηi,j − ηj,i) we can write (xix) as

d2Φ

dε2

∣∣∣∣
ε=0

=

∫
RR

[
(2µ− S)εijεij + Sωijωij)

]
dVx. (xx)

Thus far we held η(x) fixed subject only to the incompressibility requirement (xv) that, in view of ix), (xv)

and F = I reads

ηi,i = 0. (xxi)

The second necessary condition (xviii)2 requires that the expression in (xx) be non-negative for all η(x)

obeying (xxi).

Note that εijεij and ωijωij are both non-negative. If 0 < S < 2µ then both coefficients in (xx) are

positive and so the inequality holds and the equilibrium state is stable. If either coefficient is negative, i.e.

S > 2µ or S < 0, then one can find some ηi,j that violates this inequality and so the equilibrium state is

unstable.

Remark: The instability in the case S < 0 involves choosing ηi,j such that εij = 0 and so the instability is

with respect to infinitesimal rotations.

10.5 Virtual Work. Weak formulation.

Consider again a body that occupies a region RR in a reference configuration whose bound-

ary is ∂RR = S1 ∪ S2. The deformation ŷ(x) is prescribed on S1, the Piola traction ŝ(x)

is prescribed on S2, and the body force bR(x) is prescribed on RR. The virtual work prin-

ciple provides an alternative statement of the equilibrium equations and traction boundary

conditions.

The set of kinematically admissible deformations is

A = {z ∈ C1(RR) : z(x) = ŷ(x) for x ∈ S1}, (10.57)

and the set of admissible variations is

V = {w ∈ C1(RR) : w(x) = o for x ∈ S1}. (10.58)

The principle of virtual work states that∫
RR

S · ∇w dVx =

∫
S2

ŝ ·w dAx +

∫
RR

bR ·w dVx for all w ∈ V , (10.59)

if and only if

SnR = ŝ on S2, (10.60)



670 CHAPTER 10. INTRODUCTION TO VARIATIONAL METHODS

Div S + bR = o on RR. (10.61)

Note that this does not require the body to be elastic. The proof is straightforward and

merely involves using the divergence theorem and the fundamental lemma of the calculus of

variations. If the material is elastic, we can write (10.59) as∫
RR

WF · ∇w dVx =

∫
S2

ŝ ·w dAx +

∫
RR

bR ·w dVx for all w ∈ V , (10.62)

where WF is evaluated at ∇y(x).

The mathematical problem associated with the problem described in the first paragraph

of this section, in the case when the material is elastic, can now be stated in three alternative

forms: the strong form, weak form and variational form.

Strong form: Find the deformation y(x) ∈ C2(RR) such that

Div
[
WF(∇y)

]
+ bR(x) = o for x ∈ RR,

y(x) = ŷ(x) for x ∈ S1, WF(∇y)nR = ŝ(x) for x ∈ S2.

 (10.63)

Weak form: Find the deformation y(x) ∈ A such that∫
RR

WF(∇y) · ∇w dVx =

∫
S2

ŝ ·w dAx +

∫
RR

bR ·w dVx for all w ∈ V , (10.64)

where A and V were defined in (10.57) and (10.58). Note that (10.64) is in fact the virtual

work statement (10.62).

Variational form: The potential energy functional is defined for all kinematically admissible

deformations z ∈ A by

Φ{z} :=

∫
RR

W (∇z)dVx −
∫
RR

bR · zdAx −
∫
S2

ŝ · zdAx for all z ∈ A.

Find y(x) ∈ A such that

δΦ{y, δy} = 0 for all δy ∈ V where δΦ{y, δy} :=
dΦ

dε
{y + εη}

∣∣∣∣
ε=0

.

This is related to finding y(x) ∈ A such that

Φ{z} ≥ Φ{y} for all z ∈ A.
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10.6 Worked examples.

Problem 10.5.1. Show that force and moment balance of a part D,∫
∂D

t dAy +

∫
D

b dVy = o, (i)∫
∂D

y × t dAy +

∫
D

y × b dVy = o, (ii)

hold if and only if the rate of working (of the tractions and body forces on D) vanishes in all steady rigid

motions.

Solution We will show at the end of this solution that the velocity field in a steady rigid motion is

v(y) = c + ω × y, (iii)

where the constant vectors ω and c represent the angular and translational velocities respectively.

Substituting (iii) into the expression for the rate of working gives

Prigid =

∫
∂D

t · v dAy +

∫
D

b · v dVy =

∫
∂D

t · (c + ω × y) dAy +

∫
D

b · (c + ω × y) dVy,

which, since c is a constant vector, we can write as

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+

[∫
∂D

t · (ω × y) dAy +

∫
D

b · (ω × y) dVy

]
.

This can be rewritten using the vector identity p · (q× r) = q · (r× p) as

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+

[∫
∂D
ω · (y × t) dAy +

∫
D
ω · (y × b) dVy

]
,

from which, since ω is a constant vector, we conclude that

Prigid = c ·
[∫

∂D
t dAy +

∫
D

b dVy

]
+ ω ·

[∫
∂D

y × t dAy +

∫
D

y × b dVy

]
. (iv)

Therefore when force and moment balance, (i) and (ii), hold, it follows from (iv) that the rate of working

vanishes: Prigid = 0. Conversely if the rate of working vanishes is every steady rigid motion, then Prigid = 0

for all vectors c and ω, and so it follows from (iv) that each term in square brackets must vanish, and

therefore that force and moment balance necessarily hold.

A steady rigid motion: Such a motion is described by y(x, t) = Q(t)x + d(t) where the proper orthogonal

tensor Q(t) characterizes the rotation and the vector d(t) the translation. Differentiating with respect to

time t gives the corresponding velocity

v = Q̇x + ḋ = Q̇(QTy −QTd) + ḋ = Q̇QTy + (ḋ− Q̇QTd) =: Wy + c. (v)

where we have set c = ḋ − Q̇QTd and W = Q̇QT . However, since Q is orthogonal at each instant t we

have Q(t)QT (t) = I. Differentiating this with respect to time gives 0 = Q̇QT + QQ̇T = Q̇QT +
(
Q̇QT

)
T =

W + WT . Therefore W is a skew-symmetric tensor. Let ω be the associated axial vector in which case

Wz = ω × z for all vectors z. It follows that (v) can be written as (iii).



672 CHAPTER 10. INTRODUCTION TO VARIATIONAL METHODS

10.7 Appendix: some remarks.

Existence of minimizers: It is worth recalling that even in the case of a familiar function

ϕ(x) of a scalar variable x, the function need not have a minimizer. For example, the function

ϕ1(x) = x defined on A1 = (−∞,∞) is unbounded as x → ±∞. Another example is the

function ϕ2(x) = x defined on A2 = (−1, 1) noting that ϕ2 ≥ −1 on A2; however, while

the value of ϕ2 can get arbitrarily close to −1, it cannot actually achieve the value −1 since

there is no x ∈ A2 at which ϕ2(x) = −1; note that −1 /∈ A2. Finally, consider the function

ϕ3(x) defined on A3 = [−1, 1] where ϕ3(x) = 1 for −1 ≤ x ≤ 0 and ϕ3(x) = x for 0 < x ≤ 1;

the value of ϕ3 can get arbitrarily close to 0 but cannot achieve it since ϕ3(0) = 1. In the

first example A1 was unbounded. In the second, A2 was bounded but open. And in the

third example A3 was bounded and closed but the function was discontinuous on A3. In

order for a minimizer to exist, A must be bounded and closed (i.e. “compact”). It can be

shown that if A is compact and if ϕ is continuous on A then ϕ assumes both maximum and

minimum values on A. The corresponding questions regarding the existence of minimizers

in the calculus of variations are not addressed in these notes.

Local vs. global and weak vs. strong minimizers: In the calculus of variations we are

given a functional F defined on a function space A with F : A 7→ R, and we are asked to

find a function u ∈ A that minimizes F over A: i.e. to find u ∈ A for which

F{w} ≥ F{u} for all w ∈ A.

Often we will be looking for a local (or relative) minimizer, i.e. for a function u that

minimizes F relative to all “nearby functions” w. This requires that we select a norm so

that the distance between two functions can be quantified. For example, for a function w

in the set of functions that are continuous on an interval [0, 1], i.e. for w ∈ C[0, 1], one can

define a norm by, say,

||w||0 = max
0≤x≤1

|w(x)|.

As a second example, for a function w in the set of functions that are continuous and have

continuous first derivatives on [0, 1], i.e. for w ∈ C1[0, 1], one can define a norm by, say,

||w||1 = max
0≤x≤1

|w(x)| + max
0≤x≤1

|w′(x)|;

and so on. (Of course the norm ||w||0 can also be used on C1[0, 1].)
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x
0

y

(0↪ a)

(1↪ b)

y = φ1(x)

1

y = φ2(x)

Figure 10.11: Two functions φ1 and φ2 that are “close” in the sense of the norm || · ||0 but not in the sense

of the norm || · ||1.

Suppose we are working with functions that are C1[0, 1]. When seeking a local minimizer

of F we might say we want to find u for which

F{w} ≥ F{u} for all admissible w such that ||w − u||0 < r,

for some r > 0. In this case the minimizer u is being compared with all admissible functions

w whose values are close to those of u for all 0 ≤ x ≤ 1. Such a local minimizer is called a

strong minimizer. On the other hand, we may want to find u such that

F{w} ≥ F{u} for all admissible w such that ||w − u||1 < r,

for some r > 0. In this case the minimizer is being compared with all functions whose values

and whose first derivatives are close to those of u for all 0 ≤ x ≤ 1. Such a local minimizer

is called a weak minimizer. A strong minimizer is automatically a weak minimizer.

In our analysis when determining the minimizer u ∈ A we consider the one-parameter

family of admissible functions

w(x; ε) = u(x) + ε η(x) (10.65)

that were close to u. Here ε is a real variable in some range −ε0 < ε < ε0, η(x) ∈ V , and

u+ εη ∈ A for each ε ∈ (−ε0, ε0) and η ∈ V .

We took η to be independent of ε. In this case the functions u(x) and w(x; ε), and their

derivatives, are close to each other for small ε. Thus we were concerned with weak local

minima.
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Suppose we had chosen for example the functions u(x) and w(x; ε) = u(x) + ε sin(x/ε).

In this case the functions u and w are close to each other for small ε but their derivatives

are not close.
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10.8 Exercises.

Problem 10.1. Cavitation in a compressible solid. (See Problem 10.4.3 for cavitation in a compressible

solid.) In an unstressed reference configuration, the body occupies a solid sphere of radius B. The boundary

R = B is given a purely radial displacement such that its radius in the deformed configuration is ΛB

where Λ > 1. The resulting spherically symmetric deformation has the form r = r(R), θ = Θ, φ = Φ

where (R,Θ,Φ) and (r, θ, φ) are spherical polar coordinates in the reference and current configurations

respectively. The homogeneous, isotropic, unconstrained, elastic material is described by its strain energy

function W (λ1, λ2, λ3).

A kinematically admissible radial deformation is described by a function r(R) defined and suitably smooth

on [0, B] satisfying the kinematic boundary condition r(B) = ΛB. Note that we impose no requirements on

r(0). The admissible set A of all such functions is

A = {r ∈ C1(0, B) : r(B) = ΛB; r(0) ≥ 0; r2(R)r′(R)/R2 > 0 for 0 < R < B}, (i)

where the requirement r2(R)r′(R)/R2 > 0 ensures that the associated Jacobian determinant is positive and

r(0) ≥ 0 prevents interpenetration. The potential energy functional9 is defined as

Ψ{r} =

∫
RR

W dVx =

∫ B

0

W
(
r′(R), r(R)/R, r(R)/R

)
4πR2 dR for all r ∈ A. (ii)

(a) If r(R) is an extremizer of the potential energy functional, derive the Euler-Lagrange equation on (0, B)

and the natural boundary at R = 0 that r(R) must obey. Interpret the natural boundary condition.

(b) Determine the extremizing deformation(s) of (ii) for a compressible Varga material described by the

strain energy function

W = 2µ(λ1 + λ2 + λ3 − 3) + F (J), J = λ1λ2λ3, µ > 0. (iii)

Assume F (J) to have the following characteristics: the strain energy and stress vanish in the reference

configuration whence

F (1) = 0, F ′(1) = −2µ < 0; (iv)

the Baker-Ericksen inequalities require µ > 0; the shear and bulk moduli at infinitesimal deformations are µ

and κ = F ′′(1)− 4µ/3 so that requiring κ > 0 demands

F ′′(1) >
4

3
µ > 0. (v)

Moreover take F (J) to have a local minimum at some J = J0 > 1,

F ′(J0) = 0, F ′′(J0) > 0, J0 > 1; (vi)

9Since we used the symbol Φ to denote a spherical polar angle, we are using Ψ here to denote the potential

energy.
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and assume that F ′′(J) > 0 on some interval [1, J∗] that contains J0 in its interior:

F ′′(J) > 0 for 1 ≤ J ≤ J∗ for some J∗ > J0. (vii)

Thus F (J) has a unique local minimum in the interval [1, J∗] and it occurs at J0. Figure 10.12 shows a

schematic sketch of F (J). We will only be concerned with deformations in which the Jacobian determinant

takes values in the interval [1, J∗].

Figure 10.12: Schematic sketch of the constitutive function F (J) for the compressible Varga material (iii)

where F (1) = 0, F ′(1) < 0, F ′′(1) > 0; F ′(J0) = 0; F ′′(J) > 0 for 1 ≤ J ≤ J∗ where J∗ > J0 > 1. We will

only be concerned with deformations on the interval [1, J∗].

(b1) Under what conditions does a solution with r(0) = 0 exist?

(b2) Under what conditions (if any) does a (cavitation) solution with r(0) > 0 exist?

(b2) When both types of solutions exist, which has less potential energy?

Solution:

References
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D.J. Steigman, Chapter 8, Finite Elasticity Theory, Oxford University Press, 2017.

(a) Using

λ1 = λr = r′(R), λ2 = λθ = λ3 = λφ =
r(R)

R
, (viii)
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and the notation

Wi ≡
∂W

∂λi
(λ1, λ2, λ3), (ix)

we calculate the first variation of Ψ in the usual way:

δΨ{r, δr} =

∫ B

0

[W1δλ1 +W2δλ2 +W3δλ3] 4πR2 dR =

∫ B

0

[W1δλ1 + 2W2δλ2] 4πR2 dR =

=

∫ B

0

[
W1δr

′ + 2W2
δr

R

]
4πR2 dR = 4π

∫ B

0

[
R2W1δr

′ + 2RW2δr
]
dR =

= 4π

∫ B

0

[
d

dR
[R2W1δr]−

d

dR
(R2W1)δr + 2RW2δr

]
dR =

= 4π
[
R2W1δr

]B
0

+ 4π

∫ B

0

[
− d

dR
(R2W1) + 2RW2

]
δr dR =

= −4πR2W1

∣∣∣
R=0

δr(0) + 4π

∫ B

0

[
− d

dR
(R2W1) + 2RW2

]
4πR2δr dR,

where we used δr(B) = 0 in getting to the last line. Since δΨ{r, δr} = 0 for all admissible δr, we arrive at

the Euler-Lagrange equation

d

dR
(R2W1)− 2RW2 = 0 for 0 < R < B, � (x)

and the natural boundary condition

R2W1 = 0 for R = 0. � (xi)

We showed in Problem 10.4.1 that the Euler-Lagrange equation (x) is in fact the radial equilibrium equation.

To interpret the natural boundary condition, we recall that the radial component of the Cauchy stress

tensor anywhere in the body can be written as

Trr =
λ1

λ1λ2λ3
W1 =

1

λ2
θ

W1
(viii)

=
R2

r2(R)
W1.

Therefore the natural boundary condition (xi) can be written equivalently as

r2(R)Trr(R) = 0 for R = 0. (xii)

Observe that this boundary condition can be satisfied in two ways: one, r(0) = 0 (with Trr(0) arbitrary);

and two, r(0) > 0 with Trr(0) = 0. When the former holds, the body remains a solid sphere in the

deformed configuration. In the event that the second alternative holds, a traction-free cavity of radius r(0)

has appeared in the body. �

(b) For the compressible Varga material (iii) we have

W1 = 2µ+ λ2
θF
′(J), W2 = 2µ+ λrλθF

′(J). (xiii)

– First consider the equilibrium equation (x). Substituting (xiii) into it and simplifying leads to

r2 d

dR
F ′(J) = 0 for 0 < R < B,
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which can be solved as follows:

F ′′(J)
dJ

dR
= 0

(vii)⇒ dJ

dR
= 0 ⇒ J(R) = k1 = constant for 0 < R < B, (xiv)

where k1 is a positive constant to be determined. On using J = λrλ
2
θ

(viii)
= r′r2/R2, equation (xiv) yields

r2

R2
r′(R) = k1 ⇒ r(R) =

[
k1R

3 + a3
]1/3

for 0 < R < B, (xv)

where a is a second constant parameter to be determined. Note that

r(0) = a ≥ 0. (xvi)

– Next consider the essential boundary condition r(B) = ΛB. Enforcing this on (xv) gives Λ3B3 = k1B
3 +a3

from which we find

k1 = Λ3 − a3/B3. (xvii)

The deformation (xv) can thus be written as

r(R) =
[(

Λ3 − a3/B3
)
R3 + a3

]1/3
, 0 < R ≤ B, (xviii)

where a ≥ 0 remains to be determined.

– Finally we turn to the natural boundary condition R2W1 = 0 at R = 0. This requires that we examine

W1 as R→ 0 where, from (xiii)1 and (xiv),

W1 = 2µ+ λ2
θ(R)F ′(k1). (xix)

Observe that

λθ(R) =
r

R

(xviii)
=

[(
Λ3 − a3/B3

)
+ a3/R3

]1/3
. (xx)

Therefore as R→ 0,

λθ = Λ if a = 0 and λθ ∼ a/R if a > 0. (xxi)

(b1) Case a = 0: since λθ = Λ in this case we see from (xix) that W1 remains bounded as R→ 0 and so the

natural boundary condition R2W1 = 0 as R→ 0 holds automatically. The deformation associated with this

solution is given by (xviii) to be

r(R) = ΛR for 0 ≤ R ≤ B. � (xxii)

This solution, corresponding to

a = 0, (xxiii)

is possible for all values of the applied stretch Λ > 0. The bold black horizontal line in Figure 10.13 depicts

this solution.

(b2) Case a > 0: since λθ ∼ a/R as R→ 0 in this case, it follows from (xix) that

W1 ∼ λ2
θF
′(k1) = a2F ′(k1)/R2. (xxiv)
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Therefore R2W1 = a2F ′(k1) as R→ 0 and so the boundary condition R2W1 = 0 reduces to

F ′(k1) = 0. (xxv)

In view of (vi) this tells us that

k1 = J0 (xxvi)

where J0 is where the minimum of F (J) occurs; see Figure 10.12. From (xvii) we now have

a = B
[
Λ3 − J0

]1/3
. (xxvii)

The associated deformation is given by (xviii) and (xxvii):

r(R) =
[
J0R

3 +B3(Λ3 − J0)
]1/3

for 0 ≤ R ≤ B. � (xxviii)

Since a > 0 it follows from (xxvii) that this solution exists only for

Λ > J
1/3
0 . (xxix)

Equation (xxvii) describes the relationship between the cavity radius r(0) = a and the applied stretch Λ,

which is depicted by the bold blue curve in Figure 10.13.

Uniform configuration

Cavitated configuration

Figure 10.13: Bifurcation diagram. Uniform configuration for all Λ ≥ 1 (black). Configuration with a

cavity of radius r(0) > 0 for stretches Λ > J
1/3
0 (blue).

(b3) We have the uniform solution (xxii) for all Λ > 1. In addition, for Λ > J
1/3
0 , we have the solution

(xxviii) involving a cavity. Both solutions exist for J
1/3
0 < Λ ≤ J1/3

∗ . To compare their energies we calculate

Ψ
(ii),(iii)

=

∫ B

0

4πWR2dR = 4π

∫ B

0

[
2µ(λr + 2λθ) + F (J)

]
R2dR =

(viii)
= 4π

∫ B

0

[
2µ

(
r′(R) + 2

r(R)

R

)
+ F (J)

]
R2dR = 4π

∫ B

0

[
2µ

R2

d

dR
(R2r) + F (J)

]
R2dR =

= 8πµΛB3 + 4π

∫ B

0

F (J)R2dR,

(xxx)
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having used r(B) = ΛB in the last step. Observe from this that

δΨ = 4π

∫ B

0

F ′(J) δJ R2dR, δ2Ψ = 4π

∫ B

0

F ′′(J) (δJ)2R2dR, (xxxi)

Remark: If we restricted attention to the compressible Varga material from the start, we could have simplified

the analyses in parts (b1) and (b2) by starting from (xxxi)1. Since J = r2r′/R2 we have

δJ =
r2δr′ + 2rr′δr

R2

and so

δΨ = 4π

∫ B

0

F ′(J)(r2δr′ + 2rr′δr) dR = 4π

∫ B

0

[
d

dR
(F ′(J)r2δr)− d

dR
(F ′(J)r2)δr + 2rr′F ′(J)δr

]
dR =

= −4π
[
r2F ′(J)

]
R=0

δr(0)− 4π

∫ B

0

r2 d

dR
F ′(J) δr dR

Thus at a minimizer we have the Euler-Lagrange equation

r2 d

dR
F ′(J) = 0 for 0 < R < B

and the natural boundary condition

r2(R)F ′(J(R)) = 0 as R→ 0,

which recovers what we had before.

In the uniform and cavitated solutions we have J = Λ3 and J = J0 respectively. Observe

from (xxxi)2 that δ2Ψ ≥ 0 at both the uniform and cavitated solutions since F ′′(Λ3) > 0

and F ′′(J0) > 0. To compare their energies we evaluate (xxx) at each solution which gives

Ψ
∣∣∣
uniform

(xxii)
= 8πµΛB3 + 4π

∫ B

0

F (Λ3)R2dR = 8πµΛB3 +
4

3
πB3F (Λ3),

Ψ
∣∣∣
cavitated

(xxviii)
= 8πµΛB3 + 4π

∫ B

0

F (J0)R2dR = 8πµΛB3 +
4

3
πB3F (J0).

Since J0 is the unique minimum of F (J) on the interval of interest, see Figure 10.12, we have

F (Λ3) > F (J0) for Λ > J
1/3
0 and so

Ψ
∣∣∣
uniform

> Ψ
∣∣∣
cavitated

.

when both solutions exist.
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Problem 10.2. Elastic string subjected to pressure loading. (Remark: The sign of the

pressure term in this and Problem 10.4.4 are different. This is because the pressure p points

into RR in the 3D problem while it points out of the area A in the string problem.) In a

reference configuration, a generic particle of an elastic string is located at x = x e1, 0 ≤ x ≤
L. Its location in a deformed configuration is y = y1(x)e1 + y2(x)e2. The left-hand end of

the string in fixed at (0, 0) while the right-hand end is displaced to a location (a, b):

y1(0) = y2(0) = 0, y1(L) = a, y2(L) = b. (i)

The string is subjected to a constant pressure p per unit deformed length that acts in a

direction normal to the deformed string.

Consider the following set of kinematically admissible deformations y1(x), y2(x):

A = {y1, y2 ∈ C1[0, L] : y1(0) = y2(0) = 0, y1(L) = a, y2(L) = b}. (ii)

Let s(x) and φ(x) denote arc length and slope along the string in a kinematically admissible

deformation so that(
s′
)

2 =
(
y′1
)

2 +
(
y′2
)

2, cosφ = y′1/s
′, sinφ = y′2/s

′, (iii)

and let λ(x) be the associated stretch:

λ = s′(x). (iv)

The potential energy of the system is

Φ{y1, y2} =

∫ L

0

W (λ(x)) dx− pA{y1, y2}. (v)

where W (λ) is the stored elastic energy per unit undeformed length. If the pressure was

not applied, the deformed configuration of the string would be the straight line joining (0, 0)

to (a, b). The value of the functional A in (v) is the area between the curve describing the

deformed string (with the pressure applied) and this straight line.

Minimize the potential energy (v) over the setA and derive the associated Euler-Lagrange

equations.

Solution: An admissible variation δy1(x), δy2(x) obeys

δy1(0) = δy2(0) = δy1(L) = δy2(L) = 0, (va)
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and from (iv) the variations δs and δλ are related to an admissible variation by

s′δs′
(iii)1
= y′1δy

′
1 + y′2δy

′
2 ⇒ δλ

(iv)
= δs′

(iii)2,3
= cosφ δy′1 + sinφ δy′2. (vi)

The area A can be written as

A{y1, y2} =

∫ L

0

y2y
′
1 dx−

1

2
ab,

and so its first variation is

δA =

∫ L

0

(y′1 δy2 + y2 δy
′
1) dx.

Integrating the second term by parts and using (va) yields

δA =

∫ L

0

(y′1 δy2 − y′2 δy1) dx. (vii)

Thus the first variation of Φ is

δΦ =

∫ L

0

δW (λ) dx− p δA =

∫ L

0

W ′(λ)δλ dx− p δA =

(vi)
=

∫ L

0

W ′(λ)δs′ dx− p δA =

(vi)
=

∫ L

0

[
W ′(λ) cosφ δy′1 +W ′(λ) sinφ δy′2

]
dx− p δA =

(va)
=

∫ L

0

− d

dx
[W ′(λ) cosφ] δy1 −

d

dx
[W ′(λ) sinφ] δy2 dx− p δA

(viii)

where in getting to the final expression we integrated by parts and used (va). Substituting

(vii) into (viii) yields

δΦ =

∫ L

0

[(
− d

dx
[W ′(λ) cosφ] + py′2

)
δy1 −

(
d

dx
[W ′(λ) sinφ] + py′1

)
δy2

]
dx = 0.

Since this must vanish for all admissible variations δy1, δy2, we conclude that

d

dx
[W ′(λ) cosφ]− py′2 = 0,

d

dx
[W ′(λ) sinφ] + py′1 = 0. �

Remark: By setting t(x) = W ′(λ(x)) and using (iii) one can rewrite (�) as

d

dx
(t cosφ)− ps′ sinφ = 0,

d

dx
(t sinφ) + ps′ cosφ = 0.
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which we can write as

d

ds
(t cosφ)− p sinφ = 0,

d

ds
(t sinφ) + p cosφ = 0.

Equilibrium of a differential element of the string can be readily shown to lead to these

equation with t being the tension in the string, the former by force balance in the direction

e1, the latter in the direction e2. In fact(
d

ds
(t cosφ)− p sinφ

)
e1 +

(
d

ds
(t sinφ) + p cosφ

)
e2 = o.

d

ds

(
t(cosφe1 + sinφe2)

)
+ p(− sinφe1 + cosφe2) = o.

d

ds
(t`) + pn = o.

Problem 10.3. Stability of the “Rivlin cube” for an arbitrary isotropic material. In Section

5.3 we examined the stability of a neo-Hookean cube subjected to an equi-triaxial dead

loading (Piola traction). Generalize that analysis to a cube composed of an arbitrary isotropic

(unconstrained) elastic material by extremizing

Φ(F) = W (F)− S · F, (i)

over all geometrically admissible homogeneous deformations. Assume, in keeping with the

equi-triaxial dead loading, that

S =
3∑
i=1

Siei ⊗ ei, (ii)

and consider only deformations of the form y = Fx where

F =
3∑
i=1

λiei ⊗ ei, (iii)

i.e. where F and S are coaxial.

How would your analysis change if the material is incompressible?

Solution: For a loading of the form (ii) and deformation gradient of the form (iii), the

potential energy Φ(F) can be written as

Φ(λ1, λ2, λ3) = W (λ1, λ2, λ3)−
3∑
i=1

Siλi (iv)
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Therefore at some nearby deformation gradient tensor characterized by (iii) with stretches

λ1 + δλ1, λ2 + δλ2, λ3 + δλ3 the potential energy is

Φ(λ1 + δλ1, λ2 + δλ2, λ3 + δλ3) = W (λ1 + δλ1, λ2 + δλ2, λ3 + δλ3)−
3∑
i=1

Si(λi + δλi). (v)

The first variation of the potential energy is defined by

δΦ := Φ(λ1 + δλ1, λ2 + δλ2, λ3 + δλ3)− Φ(λ1, λ2, λ3) up to terms linear in the δλ′is

which by (iv) and (v) can be written as

δΦ =
3∑
i=1

∂W

∂λi
(λ1, λ2, λ3) δλi −

3∑
i=1

Siδλi =
3∑
i=1

(
∂W

∂λi
(λ1, λ2, λ3)− Si

)
δλi. (vi)

The second variation of the potential energy is

δ2Φ =
3∑
j=1

3∑
i=1

∂2W

∂λi∂λj
(λ1, λ2, λ3) δλiδλj. (vii)

Equilibrium requires the first variation δΦ to vanish for all δλi’s and so gives

Si =
∂W

∂λi
(λ1, λ2, λ3). (viii)

Taking for granted that stability of an equilibrium configuration requires the second variation

δ2Φ to be positive for all non-vanishing δλi’s and δλj’s we find that for stability

The matrix whose i, j element is
∂2W

∂λi∂λj
(λ1, λ2, λ3) must be positive definite (ix)

The matrix referred to in (ix) is called the Hessian matrix and it is to be evaluated at the

equilibrium configurations given by (viii).

Remark on the incompressible case: The preceding analysis was for an unconstrained

material. We considered all δλi’s there. For an incompressible material, the allowable

equilibrium configurations must obey the kinematic constraint λ1λ2λ3 = 1 and this imposes

a relationship between the three δλi’s. This can be accounted for in the usual way by

introducing a Lagrange multiplier q into the potential energy and writing

Φ(λ1, λ2, λ3) = W (λ1, λ2, λ3)−
3∑
i=1

Siλi − q(λ1λ2λ3 − 1). (x)



10.8. EXERCISES. 685

The first variation of Φ is now

δΦ =
3∑
i=1

∂W

∂λi
δλi −

3∑
i=1

Siδλi − q(δλ1λ2λ3 + λ1δλ2λ3 + λ1λ2δλ3) + δq(λ1λ2λ3 − 1) =

=
3∑
i=1

∂W

∂λi
δλi −

3∑
i=1

Siδλi − q
3∑
i=1

δλi
λi

+ δq(λ1λ2λ3 − 1) =

=
3∑
i=1

(
∂W

∂λi
− Si − q

1

λi

)
δλi +

(
λ1λ2λ3 − 1

)
δq.

(xi)

The coefficients of δλi and δq must vanish in equilibrium and so one obtains

Si =
∂W

∂λi
− q 1

λi
, λ1λ2λ3 = 1. (xii)

Alternatively one can use the incompressibility constraint to eliminate λ3 and write the

potential energy as

Φ̂(λ1, λ2) := Φ(λ1, λ2, λ
−1
1 λ−1

2 ) = W (λ1, λ2, λ
−1
1 λ−1

2 )− (S1λ1 + S2λ2 + S3λ
−1
1 λ−1

2 ). (xiii)

Taking the second variation of (xiii) leads to an expression of the form

δ2Φ = M11δλ
2
1 + 2M12δλ1δλ2 +M22δλ

2
2

where theMαβ’s depend on the λi’s, the second partial derivatives of Ŵ (λ1, λ2) := W (λ1, λ2, λ
−1
1 λ−1

2 )

with respect to λ1 and λ2 and the stress S3.

Problem 10.4. Buckling of a slender elastic beam. A particle (on the centerline of the

beam) is at the position x = xe1, 0 ≤ x ≤ L, in the reference configuration and at y(x) =

y1(x)e1 + y2(x)e2, 0 ≤ x ≤ L, in the deformed configuration. Use x to identify a particle.

The left-hand end of the beam is fixed and the right-hand end is constrained to move on

the horizontal axis:

y1(0) = y2(0) = 0, y2(L) = 0.

A force ŝ = −Pe1 is applied at the right-hand end. The beam is attached to an elastic

foundation of stiffness k per unit reference length.

Extremize the potential energy functional Φ{y1, y2} over an admissible set of functions

to find the differential equations and boundary conditions satisfied by y1(x) and y2(x). Spe-

cialize your model to the case where the centerline is inextensible, and further specialize it

to the case where |y′2(x)| � 1 at each x.
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P

k

A
B

Figure 10.14: A pinned-pinned beam attached to an elastic foundation and subjected to a compressive

force P . The particle x is located at (y1(x), y2(x)) in the deformed configuration.

Solution: Since a force ŝ = −Pe1 is applied at the right-hand end where x = L and

y(L) = y1(L)e1, the potential energy associated with this dead loading is

−ŝ · y(L) = −(−Pe1) · (y1(L)e1) = Py1(L). (i)

Let s(x) and κ(x) denote the arc length and curvature along the deformed beam; they are

related to y1(x) and y2(x) by10

s′(x) =
[(
y′1(x)

)
2 +

(
y′2(x)

)
2
]1/2

, κ(x) =
y′1(x)y′′2(x)− y′2(x)y′′1(x)

[
(
y1(x)′

)
2 +

(
y′2(x)

)
2]3/2

. (ii)

The stretch λ along the beam is

λ(x) = s′(x) =
[(
y′1(x)

)
2 +

(
y′2(x)

)
2
]1/2

. (iii)

With EI being the constant bending stiffness, the elastic energy due to bending per unit

deformed length is
1

2
EIκ2. (iv)

With EA being the constant axial stiffness, the elastic energy due to stretching per unit

undeformed length is
1

2
EA(λ(x)− 1)2. (v)

Finally, suppose the beam is attached to an elastic foundation of constant stiffness k such

that the energy stored in the foundation per unit undeformed length is

1

2
ky2

2(x). (vi)

From (i), (iv), (v) and (vi) the total potential energy is

Φ{y1, y2} =

∫ `

0

1

2
EIκ2 ds +

∫ L

0

1

2
EA(λ− 1)2 dx +

∫ L

0

1

2
ky2

2 dx+ Py1(L)− PL,

10The formula (ii)2 for κ is derived in the appendix.
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where ` is the length of the deformed beam. With no loss of generality we have included an

additive constant −PL since then Φ = 0 when the beam is undeformed. We can write this

using (iii)1 as

Φ{y1, y2} =

∫ L

0

1

2
EIκ2 λ dx +

∫ L

0

1

2
EA(λ− 1)2 dx +

∫ L

0

1

2
ky2

2 dx+ Py1(L)− PL, (vii)

where κ and λ are given in terms of y1 and y2 by (ii)2 and (iii). The potential energy is

defined for all admissible functions in

A = {y1, y2 ∈ C2[0, L] : y1(0) = y2(0) = 0, y2(L) = 0}.

Extremizing Φ over A by setting

δΦ{y1, y2, δy1, δy2} = 0

for all variations δy(x) (with δy1(0) = δy2(0) = δy2(0) = 0) leads to two differential equations

on (0, L), one natural boundary condition at x = 0 and two natural boundary conditions at

x = L. (Keep in mind that δy1(L), δy′2(0) and δy′2(L) are arbitrary.)

(b) Case: inextensible centerline. In this case we have

s(x) = x, λ(x) = 1. (viii)

Equation (vii) now reduces to

Φ =

∫ L

0

1

2
EIκ2 dx +

∫ L

0

1

2
ky2

2 dx+ Py1(L)− PL. (ix)

We can use (viii) to eliminate y1(x) and rewrite the potential energy functional in the form

Φ{y2}. To this end we want to eliminate y1(x) from κ and y1(L) from the last term in (ix).

Since, from (iii) and (viii),

(y′1(x))2 + (y′2(x))2 = 1, (x)

we find by differentiation that

y′′1 = −y′2y′′2/y′1. (xi)

Therefore

κ
(ii)2
=

y′1y
′′
2 − y′2y′′1

[(y′1)2 + (y′2)2]3/2
(x)
= y′1y

′′
2 − y′2y′′1

(xi)
= y′1y

′′
2 − y′2(−y′2y′′2/y′1)

(x)
=
y′′2
y′1

(x)
=

y′′2√
1− (y′2)2

. (xii)

Moreover, rearranging (x) and integrating gives

y1(x) =

∫ x

0

√
1− (y′2(ξ))2 dξ, (xiii)
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and so in particular,

y1(L) =

∫ L

0

√
1− (y′2(x))2 dx. (xiv)

We can now use (xii) and (xiv) in (ix) to obtain explicitly

Φ{y2} =

∫ L

0

1

2
EI

(y′′2)2

1− (y′2)2
dx +

∫ L

0

1

2
ky2

2 dx+ P

∫ L

0

√
1− (y′2(x))2 dx− PL.

To write this in more conventional notation let

v(x) ≡ y2(x),

so that the potential energy functional then reads

Φ{v} =

∫ L

0

1

2
EI

(v′′)2

1− (v′)2
dx +

∫ L

0

1

2
kv2 dx+ P

∫ L

0

√
1− (v′(x))2 dx − PL, (xv)

for all

v ∈ A = {v ∈ C2[0, L] : v(0) = 0, v(L) = 0}. (xvi)

Setting the first variation δΦ{v, δv} = 0 for all admissible variations δv(x) (with δv(0) =

δv(L) = 0) leads to a differential equation on (0, L) and one natural boundary condition at

each end. Once v(x) has been determined, we can determine y1(x) from (xiii).

(c) Special case: When |v′(x)| is small at each x we can approximate

(v′′)2

1− (v′)2
= (v′′)2

[
1− (v′)2

]−1
= (v′′)2 + . . . ,

√
1− (v′(x))2 =

[
1− (v′(x))2

]1/2
= 1− 1

2
(v′(x))2 + . . .

and so we can replace (xv) by

Φ{v} =

∫ L

0

1

2
EI (v′′)2 dx +

∫ L

0

1

2
kv2 dx− P

∫ L

0

1

2
(v′(x))2 dx . (xvii)

Extremizing (xvii) over (xvi) leads to

δΦ{v, δv} = EIv′′(L)δv′(L)− EIv′′(0)δv′(0) +

∫ L

0

[
EIv′′′′ + kv − Pv′′

]
δvdx = 0.

Since this vanishes for all admissible variations δv(x) we conclude that the following differ-

ential equation must hold:

EIv′′′′ + kv − Pv′′ = 0 for 0 < x < L. (xviii)
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Moreover, since δv′(0) and δv′(L) are arbitrary we also arrive at the natural boundary

conditions

v′′(0) = v′′(L) = 0. (xix)

The deflected shape of the beam is thus to be determined by solving the 4th order differential

equation (xviii) subject to the boundary conditions v(0) = v(L) = L and (xix).

Observe that v(x) = 0 for 0 ≤ x ≤ L is a solution of this problem no matter what the

value of P . In addition, at certain values of P it will also have non-vanishing solutions v(x).

These are the values of P at buckling. (The mathematical problem here is an eigenvalue

problem).

(d) Multiplying (xviii) by v(x), integrating over [0, L] and using the boundary conditions

yields

P = P{v} :=

∫ L

0

1

2
EI
(
v′′
)2
dx+

∫ L

0

1

2
kv2dx∫ L

0

1

2

(
v′
)2
dx

. (xx)

If Pcrit is the smallest buckling load one can show that

Pcrit ≤ P{w} for all w ∈ A = {w ∈ C2[0, L] : w(0) = w(L) = 0}. (xxi)

Equation (xxi) provides an upper bound on the smallest buckling load Pcrit. We now

calculate an explicit upper bound by choosing a particular test function w(x). Since w(x) ∈
A our choice must satisfy the kinematic boundary conditions w(0) = w(L) = 0. Since the

minimizer also satisfies the natural boundary conditions (xix), we pick a test function that

also satisfies w′′(0) = w′′(L) = 0 since such a function would be closer to the actual deflection

than would be a function that didn’t have this characteristic. This suggests that we consider

test functions of the form, e.g. w(x) = w0 sinnπ/L. Finally, since we are interested in

the smallest buckling load we expect the associated buckling mode to be more similar to

w(x) = w0 sin π/L than to, say, w(x) = w0 sin 2π/L. Accordingly we choose

w(x) = w0 sin πx/L.

Substituting this into (xx) and (xxi) and evaluating the integrals leads to the upper bound

Pcrit ≤ P{w}
∣∣∣
w(x)=w0 sinπx/L

= EI(π/L)2 + k(L/π)2.

Appendix: Curvature of a curve in the plane. Let C be a curve in the y1, y2-plane,

described parametrically by

y(x) = y1(x)e1 + y2(x)e2, x1 ≤ x ≤ x2, (i)
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x being the parameter and {e1, e2} a fixed orthonormal basis. For any function h(x) we let

a prime denote

h′ =
dh

dx
(x). (ii)

Let

λ =

√
(y′1)2 + (y′2)2 (iii)

denote the stretch along C. The arc length s(x) is found by integrating

s′ = λ (iv)

with respect to x. The unit tangent vector on C (in the direction of increasing arc length) is

` = cos θ e1 + sin θ e2, (v)

where the angle θ(x) that the tangent makes with the y1-axis is given by

cos θ = y′1/λ, sin θ = y′2/λ. (vi)

The unit normal vector, obtained by counter clockwise rotation of `, is

n = e3 × ` = − sin θ e1 + cos θ e2. (vii)

The curvature of C, by definition, is

κ :=
dθ

ds
= θ′/λ, (viii)

having used (i); it is the reciprocal of the radius of curvature ds/dθ. It follows from (v),

(vii) and (viii) that

n′ = −κλ`, `′ = κλn. (ix)

Differentiating each equation in (iii) with respect to x leads to the respective equations

− sin θ θ′ = y′′1/λ− cos θλ′/λ, cos θ θ′ = y′′2/λ− sin θλ′/λ.

Multiplying the first of these by sin θ, the second by cos θ and then subtracting the first from

the second gives

θ′ = cos θ y′′2/λ− sin θ y′′1/λ
(vi)
= (y′1 y

′′
2 − y′2 y′′1)/λ2.

On combining this with (iii) and (viii), we obtain the following formula for the curvature:

κ =
y′1y
′′
2 − y′2y′′1[

(y′1)2 + (y′2)2
]3/2 .

This is the formula for the curvature which we used above.
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Problem 10.5. Non-smooth minimizers. From among all curves passing through the given

points A = (0, 1) and B = (a, b), b ≥ 1, you want to find the curve that generates the surface

of revolution of least area when the curve is rotated rigidly about the x-axis.

(a) Assume that the curve can be described by y = y(x), 0 ≤ x ≤ a, and formulate this

problem, i.e. derive the functional that is to be minimized and characterize the set of

all admissible functions over which this minimization is to be carried out.

(b) Derive the associated Euler-Lagrange equation.

(c) Solve the Euler-Lagrange equation.

(d) What do the boundary conditions require? Can they be satisfied?

(e) Optional: If b < a − 1 show that there is no solution of the Euler-Lagrange equation

that satisfies the boundary conditions y(0) = 1, y(a) = b. What is the area minimizing

curve in this case?

Solution: We shall assume that the minimizer is a smooth curve joining A and B. This

assumption will be revisited in part (e).

(a) When an infinitesimal line segment of length ds is rotated about the x-axis in a circle

of radius y(x), the area of the surface it generates is 2πy(x)ds. Thus the total area of the

surface of revolution is

A{y} =

∫ B

A

2πy(x) ds =

∫ a

0

2πy(x)
√

1 + (y′(x))2 dx, (i)

where the set of admissible test functions is

A = {y ∈ C1[0, 1] : y(0) = 1, y(a) = b}. (ii)

At an extremizer y, the first variation of A must vanish,

δA{y, δy} = 0 for all admissible δy, (iii)

where δy(x) is in the set of admissible variations

V = {δy(x) ∈ C1[0, 1] : δy(0) = 0, δy(a) = 0}. (iv)
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(b) Functionals of the form (i) were examined in Section 10.2.1. In fact, (i) is of the particular

form considered in Problem 10.2.2 and so the Euler-Lagrange equation can be written as

(see (10.15))

y[1 + y′2]1/2 − yy′2

[1 + y′2]1/2
= c1, (v)

where c1 is a constant. The curve that minimizes the area of revolution is found by solving

the differential equation (v) subject to the boundary conditions

y(0) = 1, y(a) = b. (vi)

(c) Equation (v) can be simplified to read

y′2 =
y2

c2
1

− 1 ⇒
∫

c1√
y2 − c2

1

dy =

∫
dx. (vii)

The integral on the left-hand side can be evaluated by making the substitution y = c1 cosh ξ.

This leads to

y(x) = c1 cosh

(
x

c1

+ c2

)
, 0 ≤ x ≤ a, (viii)

where c2 is a constant.

(d) The constants c1 and c2 are to be determined (if possible) using the boundary conditions

y(0) = 1, y(a) = b. The first boundary condition gives c1 = 1/ cosh c2 and so the second

boundary condition requires

b =
cosh(a cosh c2 + c2)

cosh c2

. (ix)

Given a > 0, b > 0, if this equation can be solved for c2 then there is a solution of the

assumed (smooth) form.

(e) From Section 7.5 of Troutman [5]: For all z one has

cosh z > |z| ≥ z, cosh z > 0, z ≥ −|z|. (x)

Therefore it follows that:

b =
cosh(a cosh c2 + c2)

cosh c2

(x)1
>

a cosh c2 + c2

cosh c2

= a+
c2

cosh c2

(x)3
≥ a− |c2|

cosh c2

(x)1,2
> a− 1.

Therefore it follows that if a root c2 of (ix) is to exist, then it is necessarily that b > a− 1.

Or equivalently, if b < a − 1 then equation (ix) has no root c2, and therefore there is no

smooth curve that minimizes the surface area functional. (This argument does not tell us

that there is a solution for b > a− 1.)
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Figure 10.15 shows schematic plots of the minimizing curve y = y(x) for three different

values of a (at fixed b). As suggested by the rightmost figure, the minimizer approaches the

degenerate three segment curve approached by the red curve. One can view the corresponding

surface of revolution as a circle of radius 1 at x = 0, a circle of radius b at x = a, connected

by the straight line segment 0 ≤ x ≤ a; the area of this surface is π12+πb2. Such non-smooth

minimizers can be allowed for in the analysis by characterizing the curve parametrically in

the form x = x(t), y = y(t), 0 < t < 1.

0.5

1.0

1.5

0.5

1.0

1.5

0.5

1.0

1.5

Figure 10.15: Schematic depiction of the curve y = y(x) joining (0, 1) and (a, 1.5) that gives the minimum

surface area of revolution; the three figures correspond to three values of a with a slightly less than b + 1

in the rightmost figure. As suggested by the rightmost figure, the minimizer shown in red approaches the

degenerate three segment curve comprised of the segments {(x, y) : x = 0, 0 ≤ y ≤ 1} ∪ {(x, y) : y = 0, 0 ≤
x ≤ a} ∪ {(x, y) : x = a, 0 ≤ y ≤ b}.



694 CHAPTER 10. INTRODUCTION TO VARIATIONAL METHODS

References:

1. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Dover, 2000.

2. T. Mura & T. Koya, Variational Methods in Mechanics, Oxford, 1992.

3. R. W. Ogden, Section 5.4, Non-linear Elastic Deformations, Dover, 1997.

4. A. T. Patera, An Introduction to Finite Element Methods for Solid Mechanics: The

Critical Practitioner, May 2016.

5. J. L. Troutman, Variational Calculus with Elementary Convexity, Springer-Verlag,

1983.



Index

4-tensor, 118

Acoustic tensor, 383, 434

Admissible function, 631

Austenite, 231, 581

Axial vector, 31

Baker-Ericksen inequalities, 379, 436, 437

Basis, 21

Biaxial stretch, 375, 530

Body force, 255

Bravais lattice, 592

Calculus of variations, 630

Cauchy, 592

Cauchy elastic material, 416, 418

Cauchy relations, 601

Cauchy’s hypothesis, 256

Cauchy’s Theorem, 261

Cauchy-Born hypothesis, 596

Cavitation, 486, 487, 536, 649, 655

Cayley-Hamilton theorem, 91

Coaxial tensors, 94, 332, 333

Cofactor, 117

Coleman-Noll argument, 347, 616

Compatibility, 219, 456

Components of a tensor, 48

Components of a vector, 21

Compressible inviscid fluid, 387

Constitutive constraints, 363

Constitutive relation, 358

Constitutive response function, 343

Convex set, 117

Convexity, 381

Convexity, rank-one, 384

Couple stress, 325

Cubic phase, 581

Cylindrical polar coordinates, 77, 164, 291

Decay length, 665

Deformation, 125

Deformation gradient tensor, 133, 167

Deformation, piecewise homogeneous, 222,

502

Deformation, two phase, 502

Deformation, two-phase, 222

Deformation, universal, 551

Dissipation inequality, 347, 614

div and Div, 173

Divergence theorem, 70

Elastic, Green, 340

Elasticity tensor, 381, 397

Elasticity tensors, 521, 551, 607

Energy well, 581

Energy-Momentum Tensor, 427

695



696 INDEX

Energy-well, 581

Equilibrium equations, 271, 280

Equilibrium, force balance, 259

Equilibrium, moment balance, 259

Euler-Lagrange equation, 635

Eulerian principal directions, 151

Eulerian strain, 160

Eulerian stretch tensor, 150

Eversion, 542

Fibers, 553, 561

Frame, 66

Free energy, 347

Functional, 630

grad and Grad, 173

Green Saint-Venant strain, 162

Growth conditions, 385

Hadamard compatibility condition, 222,

224

Hard loading device, 500

Helmholtz free energy, 622

Hydrogels, 612

Hyperelastic, 340

Image, 27, 124, 133

Incompressibility, 139, 364

Indicial notation., 6

Inextensibility, 536

Inextensible, 185, 364, 428, 568

Infinitesimal deformation, 177

Inflation of the cylindrical tube, 494

Instability, 471, 492, 497, 500, 508

Invariant, 54

Isochoric, 128, 139

Isotropic, 104

Isotropic function, 53

Jacobian determinant, 134

Kearsley instability, 466

Lagrange’s identity, 26

Lagrangian principal directions, 149

Lagrangian strain, 161

Lagrangian stretch tensor, 147, 148

Lattice point group, 606

Lattice symmetry, 602

Laue group, 606

Left Cauchy-Green deformation tensor,

151

Left stretch tensor, 150

Legendre transform, 617

Legendre-Hadamard condition, 384

Levi-Civita symbol, 14

Limit point instability, 488, 548

Lin, 29

Linear elasticity, 398, 601

Linearization, 176, 290, 396

Local minimum, 581

Localization, 70, 105

Martensite variants, 231, 581

Material description, 172

Material frame indifference, 348, 600

Material stability, 383

Material symmetry, 351

Material symmetry group, 354

Material time derivative, 248

Material, Anisotropic, 394, 553

Material, Arruda-Boyce, 392

Material, Blatz-Ko, 360, 394

Material, compressible, 547



INDEX 697

Material, Ericksen, 430

Material, Fung, 393

Material, generalized neo-Hookean, 387

Material, Gent, 390

Material, Harmonic, 547

Material, isotropic, 357

Material, Mooney-Rivlin, 389

Material, neo-Hookean, 388

Material, Ogden, 391, 394

Material, Saint-Venant Kirchhoff, 401

Material, Standard-Fiber reinforcing, 395

Material, transversely isotropic, 553, 575

Material, unconstrained, 369, 547

Material, Valanis and Landel, 392

Material, Varga, 392

Maxwell pressure, 500

Mean stress, 316

Membrane, 493, 653

Minimum potential energy principle, 642

Motion, piecewise homogeneous, 224

Nanson’s formula, 140, 245

Natural boundary conditions, 639

Objective, 348

Observer, 53, 348

Orthorhombic phase, 589

Pair potential, 593

Phase transformation, 494

Phase transition, 231

Piezoelectricity, 612

Plane stress, 375, 530

Polar decomposition theorem, 43, 147

Polymer chain model, 592

Pressure loading, 651

Pressurized circular tube, 524

Pressurized hollow sphere, 488

Principal scalar invariants, 152

Principal strain, 160, 161

Principal stretches, 147

Projection tensor, 111

Pure shear, 266

Quasi-static motion, 340

Referential description, 172

Right Cauchy-Green deformation tensor,

151

Right stretch tensor, 147

Rivlin cube, 466, 529, 533, 535, 665, 683

Rubber elasticity, 592

Saint-Venant, 659

Shape change, 424

Shear stress, 258

Simple shear, 129, 152, 232, 234, 279, 363,

372, 377

Small deformation superposed on a finite

deformation, 550

Small deformation superposed on finite de-

formation, 510, 518

Soft loading device, 497

Spatial description, 172

Spectral representation, 40, 41

Spherical polar coordinates, 168, 294

Stability, 471, 492, 497, 500

Strain, 159

Strain energy density, 344

Strain energy function, 345

Strain tensor, infinitesimal, 179

Strain, Biot, 160

Strain, Green Saint-Venant, 160

Strain, Hencky (logarithmic), 160



698 INDEX

Strain, Lagrangian, 160

Stress field, piecewise homogeneous, 331

Stress power, 287

Stress, Biot, 416, 422

Stress, Cauchy, 262

Stress, deviatoric, 275

Stress, first Piola-Kirchhoff, 277

Stress, normal, 258, 274, 304

Stress, Octahedral, 313

Stress, Piola, 277

Stress, principal, 273

Stress, reactive, 365

Stress, Resultant shear, 274

Stress, resultant shear, 305, 313

Stress, second Piola-Kirchhoff, 290

Stretch, 136

Stretching tensor, 288

Strong ellipticity, 381, 433, 437

Strong form, 106

Structural tensor, 555, 575

Substitution rule, 13

Surface instability, 549, 550

Surface instability of a neo-Hookean half-

space., 508

Surface tension, 550

Tensor product, 28

Test function, 631

Tetragonal phase, 581

Thermoelasticity, 618

Torsion, 458, 524

Traction, Cauchy (true), 254

Traction, first Piola-Kirchhoff, 277

Traction, Piola, 277

Transport relation, 249

Two-phase, 494

Two-phase material, 581, 589

Uniaxial stress, 370, 376

Universal deformations, 424

Vectors, Reciprocal, 191, 310

Velocity gradient tensor, 288

Virtual work, 324, 669

Volume change, 424

Weak form, 106

Work Conjugate Stress and Strain, 289

Young-Laplace equation, 493


	BRIEF REVIEW OF MATHEMATICAL PRELIMINARIES
	Matrices.
	Indicial notation.
	Worked examples.
	Vector algebra.
	Components of a vector in a basis.
	Worked examples.
	Tensor algebra.
	Worked examples.
	Worked examples.
	Components of a tensor in a basis.
	Worked examples.
	Invariance. Isotropic functions.
	Worked examples.
	Change of basis. Cartesian tensors.
	Two orthonormal bases.
	Vectors: 1-tensors.
	Linear transformations: 2-tensors.
	n-tensors.
	Worked examples.
	Euclidean point space.
	Calculus.
	Calculus of scalar, vector and tensor fields.
	Divergence theorem.
	Localization.
	Function of a tensor.
	Worked examples.
	Calculus in orthogonal curvilinear coordinates. An example.
	Exercises
	Kinematics: Finite Deformation
	Deformation
	Some homogeneous deformations.
	Pure stretch.
	Simple shear.
	Rigid deformation.
	Deformation in the neighborhood of a particle. Deformation gradient tensor.
	Change of length, orientation, angle, volume and area.
	Change of length and direction.
	Change of angle.
	Change of volume.
	Change of area.
	Worked examples.
	Stretch and rotation.
	Right (or Lagrangian) Stretch Tensor U.
	Left (or Eulerian) Stretch Tensor V.
	Cauchy–Green deformation tensors.
	Worked examples.
	Strain.
	Remarks on the Green Saint-Venant strain tensor.
	Some other coordinate systems.
	Cylindrical polar coordinates.
	Spherical polar coordinates.
	Worked examples.
	Spatial and referential descriptions of a field.
	Worked examples.
	Linearization.
	Exercises.
	Appendix
	The material time derivative.
	A transport theorem.
	Exercises.

	Force, Equilibrium Principles and Stress
	Force.
	Force and moment equilibrium.
	Consequences of force balance. Stress.
	Some particular stress tensors. 
	Worked examples.
	Field equations.
	Summary
	Principal stresses.
	Mean pressure and deviatoric stress.
	Formulation of mechanical principles with respect to a reference configuration.
	Worked examples.
	Rate of working. Stress power.
	Work Conjugate Stress-Strain Pairs.
	Some other stress tensors.
	Linearization.
	Some other coordinate systems.
	Cylindrical polar coordinates.
	Spherical polar coordinates.
	Worked examples

	Exercises.
	Constitutive Relation
	Motivation.
	An Elastic Material.
	An elastic material. Alternative approach.
	Material frame indifference.
	Material symmetry.
	Material symmetry and frame indifference combined.
	Isotropic material.
	Materials with Internal Constraints.
	Response of Isotropic Elastic Materials.
	Incompressible isotropic materials.
	Unconstrained isotropic materials.
	Restrictions on the strain energy function.
	Some Models of Isotropic Elastic Materials.
	Linearized elasticity.
	Exercises.
	Some Nonlinear Effects: Illustrative Examples
	Summary and boundary conditions.
	Field equations.
	Boundary conditions
	Example (1): Torsion of a circular cylinder.
	Discussion.
	Example (2): Deformation of an Incompressible Cube Under Prescribed Tensile Forces.
	Appendix: Potential energy of an elastic body subjected to conservative loading:
	Example (3): Growth of a Cavity.
	Example (4): Limit point instability of a thin-walled hollow sphere.
	Example (5): Two-Phase Configurations of a Thin-Walled Tube.
	Example(6): Surface instability of a neo-Hookean half-space.
	Example: Surface instability of a neo-Hookean half-space.
	An arbitrary small deformation superimposed on an arbitrary homogeneous finite deformation.
	Exercises.
	Anisotropic Elastic Solids.
	One family of fibers. Transversely isotropic material.
	Example: pure homogeneous stretch of a cube.
	Two families of fibers.
	Example: pure homogeneous stretch of a cube.
	Inextensible fibers.
	Inflation, extension and twisting of a thin-walled tube.
	Worked Examples and Exercises.
	A Two-Phase Elastic Material: An Example.
	A material with cubic and tetragonal phases.
	A Micromechanical Constitutive Model
	Example: Lattice Theory of Elasticity.
	A Bravais Lattice. Pair Potential.
	Homogenous Deformation of a Bravais Lattice.
	Traction and Stress.
	Energy.
	Material Frame Indifference.
	 Linearized Elastic Moduli. Cauchy Relations.
	Lattice and Continuum Symmetry.
	Worked Examples and Exercises.
	Brief Remarks on Coupled Problems
	Hydrogels:
	Basic mechanical equations. Balance laws and field equations.
	Basic chemical equation. Balance law and field equation.
	Dissipation inequality.
	Constitutive equations:
	Alternative form of the constitutive relation.
	Thermoelasticity.
	Basic mechanical equations.
	First law of thermodynamics.
	Dissipation inequality. The second law of thermodynamics. 
	Constitutive equations:
	Alternative form of the constitutive relation.
	Worked examples.
	Exercises.
	Introduction to Variational Methods
	Preliminary remarks.
	A brief introduction to the calculus of variations.
	Minimizing a functional.
	Worked examples.
	A formalism for deriving the Euler-Lagrange equation.
	Natural boundary conditions.
	Principle of minimum potential energy.
	Worked examples.
	Virtual Work. Weak formulation.
	Worked examples.
	Appendix: some remarks.
	Exercises.
	Index





































































