Formally dual configurations in Euclidean space and in abelian groups

Abhinav Kumar
MIT

Joint work with Henry Cohn, Christian Reiher and Achill Schürmann

January 11, 2013
The story starts with some special periodic configurations found in numerical experiments on energy minimization.

Let $f : \mathbb{R}_{>0} \to \mathbb{R}$ be a potential function.
The story starts with some special periodic configurations found in numerical experiments on energy minimization.

Let $f : \mathbb{R}_{>0} \to \mathbb{R}$ be a potential function.

For a periodic point set \mathcal{P} in \mathbb{R}^n consisting of N translates of a lattice Λ by $0 = v_1, \ldots, v_N$, define the potential energy of a point of \mathcal{P} by

$$E_f(x) = \sum_{y \in \mathcal{P}, y \neq x} f(|x - y|)$$

The potential energy of \mathcal{P} is the (finite) average of $E_f(x)$ as x ranges over \mathcal{P}.
The story starts with some special periodic configurations found in numerical experiments on energy minimization.

Let $f : \mathbb{R}_{>0} \to \mathbb{R}$ be a potential function.

For a periodic point set \mathcal{P} in \mathbb{R}^n consisting of N translates of a lattice Λ by $0 = v_1, \ldots, v_N$, define the potential energy of a point of \mathcal{P} by

$$E_f(x) = \sum_{y \in \mathcal{P}, y \neq x} f(|x - y|)$$

The potential energy of \mathcal{P} is the (finite) average of $E_f(x)$ as x ranges over \mathcal{P}.

Remark: We usually take f to be a completely monotonic function of squared distance.
Main question: fixing the point density of \mathcal{P} (to be δ say), find the global minimum for potential energy among periodic configurations.
Main question: fixing the point density of \mathcal{P} (to be δ say), find the global minimum for potential energy among periodic configurations.

[Cohn-K-Schürmann ’09]: computer simulations for $f(r) = e^{-cr^2}$ for various c, dimension $n \leq 8$, number of translates $N \leq 10$. Gradient descent on the space of periodic configurations with fixed number of translates.

We observed very interesting phenomena for $n \geq 5$. For instance, in dimensions 5 and 7, the limit of the energy minimizers for $c \gg 0$ is not the densest lattice packing, but rather a periodic packing! (Disproving a conjecture of Torquato and Stillinger).
Also, the solutions for varying c seemed to appear in families exhibiting formal duality (to be defined soon!)
Also, the solutions for varying c seemed to appear in families exhibiting formal duality (to be defined soon!)

For instance, let D_n^+ be $D_n \cup (D_n + (1/2, \ldots, 1/2))$, where D_n is the checkerboard lattice. Let $D_n^+(\alpha)$ be obtained by scaling the last coordinate of every point of D_n^+ by the positive real number α.

Then $D_n^+(\alpha)$ is formally dual to $D_n^+(1/\alpha)$.
Also, the solutions for varying c seemed to appear in families exhibiting formal duality (to be defined soon!)

For instance, let $D_n^+ = D_n \cup (D_n + (1/2, \ldots, 1/2))$, where D_n is the checkerboard lattice. Let $D_n^+ (\alpha)$ be obtained by scaling the last coordinate of every point of D_n^+ by the positive real number α.

Then $D_n^+ (\alpha)$ is formally dual to $D_n^+ (1/\alpha)$.

For $n = 5$, and for c not too close to 1, the global minimum seems to be some $D_5^+ (\alpha)$.
For any lattice Λ, we have its dual lattice $\Lambda^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z} \quad \forall x \in \Lambda \}$.

We know $\operatorname{vol}(\mathbb{R}^n / \Lambda^*) = 1 / \operatorname{vol}(\mathbb{R}^n / \Lambda)$, $(\Lambda^*)^* = \Lambda$, etc.
Dual lattices and Poisson summation

For any lattice Λ, we have its dual lattice

$$\Lambda^* = \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z} \quad \forall x \in \Lambda \}.$$

We know $\text{vol}(\mathbb{R}^n/\Lambda^*) = 1/\text{vol}(\mathbb{R}^n/\Lambda)$, $(\Lambda^*)^* = \Lambda$, etc.

Poisson summation formula: For any nice function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ (e.g. Schwartz function),

$$\sum_{x \in \Lambda} f(x) = \frac{1}{\text{vol}(\mathbb{R}^n/\Lambda)} \sum_{y \in \Lambda^*} \hat{f}(y)$$

where $\hat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{2\pi i \langle x, y \rangle} dx$
Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q}? i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \hat{f}(y)$$
Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q}? i.e. Can we have

$$\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \hat{f}(y)$$

Theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.
Can the same hold for periodic configurations \mathcal{P} and \mathcal{Q}? i.e. Can we have

$$
\sum_{x \in \mathcal{P}} f(x) = \delta(\mathcal{P}) \sum_{y \in \mathcal{Q}} \hat{f}(y)
$$

Theorem of Cordoba says this cannot happen for all Schwartz functions f: it would force \mathcal{P} to be a lattice.

But we’re really only interested in $\mathcal{P} - \mathcal{P} = \{x - y : x, y \in \mathcal{P}\}$, since if

$$
\Sigma(f, \mathcal{P}) := \frac{1}{N} \sum_{i,j} \sum_{x \in \Lambda} f(x + v_i - v_j)
$$

then $E_f(\mathcal{P}) = \Sigma(f, \mathcal{P}) - f(0)$.
Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P}) = \delta(\mathcal{P})\Sigma(\hat{f}, \mathcal{Q})$ for every Schwartz function $f : \mathbb{R}^n \to \mathbb{R}$ (we do not omit the diagonal).
Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P}) = \delta(\mathcal{P}) \Sigma(\hat{f}, \mathcal{Q})$ for every Schwartz function $f : \mathbb{R}^n \to \mathbb{R}$ (we do not omit the diagonal).

Note: this implies (and is stricter than) the “classical” notion of a formal dual:

For binary codes, the weight enumerators are related by MacWilliams identities.
Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P}) = \delta(\mathcal{P}) \Sigma(\hat{f}, \mathcal{Q})$ for every Schwartz function $f : \mathbb{R}^n \to \mathbb{R}$ (we do not omit the diagonal).

Note: this implies (and is stricter than) the “classical” notion of a formal dual:

For binary codes, the weight enumerators are related by MacWilliams identities.

For periodic configurations, the average theta functions are related by the modular transformation $z \to -1/z$.
Say \mathcal{P} and \mathcal{Q} are formal duals if $\Sigma(f, \mathcal{P}) = \delta(\mathcal{P}) \Sigma(\hat{f}, \mathcal{Q})$ for every Schwartz function $f : \mathbb{R}^n \to \mathbb{R}$ (we do not omit the diagonal).

Note: this implies (and is stricter than) the “classical” notion of a formal dual:

For binary codes, the weight enumerators are related by MacWilliams identities.

For periodic configurations, the average theta functions are related by the modular transformation $z \rightarrow -1/z$. This follows by analytic continuation from

$$E_f(\mathcal{P}) + 1 = \delta \cdot (1 + E_{\hat{f}}(\mathcal{Q}))$$

when $f(x) = \exp(-\pi c|x|^2)$, $\hat{f}(y) = \exp(-\pi |y|^2/c)$.
Theorem (Cohn-K-Schürmann)

$D_n^+(\alpha)$ is formally self-dual when n is odd or n is a multiple of 4. If $n \equiv 2 \pmod{4}$, then D_n^+ is formally dual to an isometric copy of itself.
\[D_n^+(\alpha) \]

Theorem (Cohn-K-Schürmann)

\[D_n^+ \text{ is formally self-dual when } n \text{ is odd or } n \text{ is a multiple of 4. If } n \equiv 2 \pmod{4}, \text{ then } D_n^+ \text{ is formally dual to an isometric copy of itself.} \]

Corollary

\[D_n^+(\alpha) \text{ is formally dual to an isometric copy of } D_n^+(1/\alpha). \]

So if \(f \) is radially symmetric, the Gaussian potential energies of these periodic configurations at parameters \(c \) and \(1/c \) respectively are related.
Remark: if \mathcal{P} and \mathcal{Q} are formally dual, then so are $\phi(\mathcal{P})$ and $\phi^{-1}(\mathcal{Q})$ for any affine transformation ϕ of \mathbb{R}^n.
Remark: if \mathcal{P} and \mathcal{Q} are formally dual, then so are $\phi(\mathcal{P})$ and $\phi^{-1}(\mathcal{Q})$ for any affine transformation ϕ of \mathbb{R}^n.

Poisson summation tells us that

$$\sum(f, \mathcal{P}) = \delta(\mathcal{P}) \sum_{y \in \Lambda^*} \hat{f}(y) \left| \frac{1}{N} \sum_{i=1}^{N} e^{2\pi i \langle v_j, y \rangle} \right|^2.$$
Combinatorial description

Remark: if \mathcal{P} and \mathcal{Q} are formally dual, then so are $\phi(\mathcal{P})$ and $\phi^{-1}(\mathcal{Q})$ for any affine transformation ϕ of \mathbb{R}^n.

Poisson summation tells us that

$$
\sum(f, \mathcal{P}) = \delta(\mathcal{P}) \sum_{y \in \Lambda^*} \hat{f}(y) \left| \frac{1}{N} \sum_{i=1}^{N} e^{2\pi i \langle v_j, y \rangle} \right|^2.
$$

So formal duality really is only a combinatorial property of the group structure and cosets involved. Namely, if $\mathcal{P} = \Lambda + \{v_1, \ldots, v_n\}$ and $\mathcal{Q} = \Gamma + \{w_1, \ldots, w_n\}$, we need for every $y \in \Lambda^*$:

$$
\sum_{y \in \Lambda^*} \left| \frac{1}{N} \sum_{i=1}^{N} e^{2\pi i \langle v_j, y \rangle} \right|^2 = \frac{1}{M} \# \{(x, j, k) \in \Gamma \times [M] \times [M] : y = x + w_j - w_k\}.
$$
We can reformulate everything now in terms of abelian groups. Letting \(Q \) be \(M \) translates \(w_1, \ldots, w_M \) of a lattice \(\Gamma \), it is not hard to check that \(v_1, \ldots, v_N \) lie in \(\Gamma^* \).
We can reformulate everything now in terms of abelian groups. Letting Q be M translates w_1, \ldots, w_M of a lattice Γ, it is not hard to check that v_1, \ldots, v_N lie in Γ^*.

Let $G = \Gamma^*/\Lambda$ and its dual $\hat{G} = \Lambda^*/\Gamma$. We are then looking for subsets S of G and T of $\hat{G} = \text{Hom}(G, \mathbb{C}^*)$ such that

$$\left| \sum_{v \in S} \langle v, y \rangle \right|^2 = \frac{N^2}{M} \# \{ (w, w') \in T \times T : y = w - w' \}$$

for every $y \in \hat{G}$.

It automatically follows that duality is a symmetric relation.
The simplest example is of course $G = \hat{G} = \{0\}$ and $S = T = \{0\}$.

The next simplest example, from which D_n^+ arises by a taking a product with $n - 1$ copies of the first example, is the following:

Take $G = \hat{G} = \mathbb{Z}/4\mathbb{Z}$ and $S = T = \{0, 1\}$.
The simplest example is of course $G = \widehat{G} = \{0\}$ and $S = T = \{0\}$.

The next simplest example, from which D_n^+ arises by a taking a product with $n - 1$ copies of the first example, is the following:

Take $G = \widehat{G} = \mathbb{Z}/4\mathbb{Z}$ and $S = T = \{0, 1\}$.

The relevant calculations are:

\[
\begin{align*}
|1 + 1|^2 &= 4 = 2 \cdot \#\{(0, 0), (1, 1)\} \\
|1 + i|^2 &= 2 = 2 \cdot \#\{(1, 0)\} \\
|1 - i|^2 &= 2 = 2 \cdot \#\{(0, 1)\} \\
|1 - 1|^2 &= 0 = 2 \cdot \#\{\}
\end{align*}
\]

Call this example **TITO** (two-in-two-out).
Cyclic case

What else can we show?
Cyclic case

What else can we show?

First, consider the **cyclic case**. It’s not hard to show that $|G| = MN$, where $|S| = M$, $|T| = N$. Can reduce to $M = N$.

Cyclic case

What else can we show?

First, consider the cyclic case. It’s not hard to show that $|G| = MN$, where $|S| = M$, $|T| = N$. Can reduce to $M = N$.

We conjecture that the only non-trivial solution should come from TITO.
Cyclic case

What else can we show?

First, consider the **cyclic case**. It’s not hard to show that $|G| = MN$, where $|S| = M$, $|T| = N$. Can reduce to $M = N$.

We conjecture that the only non-trivial solution should come from TITO.

We can show that when $M = N$ is squarefree and odd, there only solutions are the trivial ones, i.e. $S = H$ a subgroup of G, and $T = H^\perp$ its annihilator in \hat{G}.
Quadratic examples and Gauss sums

We will now give some examples with $G = \hat{G} = (\mathbb{Z}/p\mathbb{Z})^2$, with the pairing

$$\langle (a, b), (c, d) \rangle = \zeta_p^{ac+bd},$$

where ζ_p is some fixed primitive p-th root of unity.
We will now give some examples with $G = \hat{G} = (\mathbb{Z}/p\mathbb{Z})^2$, with the pairing

$$\langle (a, b), (c, d) \rangle = \zeta_p^{ac+bd},$$

where ζ_p is some fixed primitive p-th root of unity.

Recall that

$$\left| \sum_{n=1}^{p} \zeta_p^{cn^2+dn} \right|^2 = \begin{cases} p^2 & \text{if } p|c, d \\ 0 & \text{if } p|c, p \nmid d \\ p & \text{if } p \nmid c. \end{cases}$$
Quadratic examples and Gauss sums

We will now give some examples with \(G = \hat{G} = (\mathbb{Z}/p\mathbb{Z})^2 \), with the pairing

\[
\langle (a, b), (c, d) \rangle = \zeta_p^{ac+bd},
\]

where \(\zeta_p \) is some fixed primitive \(p \)-th root of unity.

Recall that

\[
\left| \sum_{n=1}^{p} \zeta_p^{cn^2+dn} \right|^2 = \begin{cases}
 p^2 & \text{if } p \mid c, d \\
 0 & \text{if } p \mid c, p \nmid d \\
 p & \text{if } p \nmid c.
\end{cases}
\]

Proof is an easy exercise using the basic Gauss sum \(\left| \sum_{n=1}^{p} \zeta_p^{n^2} \right|^2 = p \) and completing squares.
Proposition

\[S = \{(n^2, n) : 1 \leq n \leq p\} \text{ and } T = \{(n, n^2) : 1 \leq n \leq p\} \text{ are formally dual to each other.} \]
Proposition

\[S = \{(n^2, n) : 1 \leq n \leq p\} \text{ and } T = \{(n, n^2) : 1 \leq n \leq p\} \text{ are formally dual to each other.} \]

Proof.

We need to show for every \((c, d) \in [p] \times [p]\) that

\[
\left| \sum_{n=1}^{p} \sum_{n=1}^{p} \zeta_p^{cn^2+dn} \right|^2 = \frac{p^2}{p} \# \{(j, k) : c = j - k, d = j^2 - k^2\}
\]
Proposition

\[S = \{(n^2, n) : 1 \leq n \leq p\} \text{ and } T = \{(n, n^2) : 1 \leq n \leq p\} \text{ are formally dual to each other.} \]

Proof.

We need to show for every \((c, d) \in [p] \times [p]\) that

\[
\left| \sum_{n=1}^{p} \sum_{n=1}^{p} \zeta_p^{cn^2+dn} \right|^2 = \frac{p^2}{p} \# \{(j, k) : c = j - k, d = j^2 - k^2\}
\]

For \(p|c\) this is trivial.

For \(p \nmid c\) it easily follows from the previous page that the LHS is \(p\). So enough to show there is a unique solution \((j, k)\) to \(c = j - k, d = j^2 - k^2\). This is trivial once we observe that \(j + k = d/c\).
Questions and further work

- Show that the only examples in the cyclic case are the trivial one and TITO.
Questions and further work

- Show that the only examples in the cyclic case are the trivial one and TITO.
- Both TITO and the Gauss sum examples have some sort of quadratic structure (note that 0, 1 are the squares mod 4). Can every example of formal duality be built from these examples and the trivial one by taking products?
Show that the only examples in the cyclic case are the trivial one and TITO.

Both TITO and the Gauss sum examples have some sort of quadratic structure (note that 0, 1 are the squares mod 4). Can every example of formal duality be built from these examples and the trivial one by taking products?

Conway and Sloane asked whether the Best packing in 10 dimensions has a formal dual. We can at least show it doesn’t have a formal dual in our stronger sense.
Questions and further work

- Show that the only examples in the cyclic case are the trivial one and TITO.
- Both TITO and the Gauss sum examples have some sort of quadratic structure (note that 0, 1 are the squares mod 4). Can every example of formal duality be built from these examples and the trivial one by taking products?
- Conway and Sloane asked whether the Best packing in 10 dimensions has a formal dual. We can at least show it doesn’t have a formal dual in our stronger sense.
- Understanding which Barlow packings may have a formal dual (work in progress).
Thank you!