Metacommutation of Hurwitz primes

Abhinav Kumar MIT

Joint work with Henry Cohn

January 10, 2013

Quaternions and Hurwitz integers

Recall the skew-field of real quaternions $\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$, with $i^2 = j^2 = -1$ and ij = -ji = k.

The reduced trace of x = a + bi + cj + dk is tr(x) = 2a and the reduced norm is $N(x) = a^2 + b^2 + c^2 + d^2$. The conjugate of x is $x^{\sigma} = a - bi - cj - dk$.

The ring \mathcal{H} of Hurwitz integers consists of those quaternions with a,b,c,d all in \mathbb{Z} or all in $\mathbb{Z}+1/2$. It is a maximal order of $\mathcal{H}\otimes\mathbb{Q}$.

Primes and the Euclidean algorithm

With the reduced norm form, \mathcal{H} is isometric to the D_4 lattice. There are 24 units in \mathcal{H} .

A prime P of \mathcal{H} is an element which is not a product of two non-units. It lies over some rational prime p = N(P).

Primes and the Euclidean algorithm

With the reduced norm form, \mathcal{H} is isometric to the D_4 lattice. There are 24 units in \mathcal{H} .

A prime P of \mathcal{H} is an element which is not a product of two non-units. It lies over some rational prime p = N(P).

The ring \mathcal{H} is Euclidean: i.e. it has the "division with small remainder" property. Therefore, any (left) ideal is principal: it has the form $\mathcal{H}x$ for some $x \in \mathcal{H}$.

This fact rapidly leads to a version of unique factorization into primes.

Factorization I

We may factor any nonzero $x \in \mathcal{H}$ as

$$x = P_1 P_2 \dots P_n$$

where P_i are Hurwitz primes of norms say p_i . We say this is a factorization of x modeled on a factorization $N(x) = p_1 \dots p_n$. (i.e. fixing the order of p_1, \dots, p_n).

Factorization I

We may factor any nonzero $x \in \mathcal{H}$ as

$$x = P_1 P_2 \dots P_n$$

where P_i are Hurwitz primes of norms say p_i . We say this is a factorization of x modeled on a factorization $N(x) = p_1 \dots p_n$. (i.e. fixing the order of p_1, \dots, p_n).

Theorem (Conway, Smith (?))

If x is primitive (not divisible) by a natural number larger than 1, then there is a factorization of x modeled on any factorization of its norm. It is unique up to unit-migration, i.e. replacing

$$x = P_1 \dots P_n$$

by

$$x = (P_1 u_1)(u_1^{-1} P_2 u_2) \dots (u_{n-1}^{-1} P_n).$$

Factorization II

In particular, if P and Q are primes of distinct prime norms p and q, then PQ = Q'P' for some Q' and P' of norms q and p respectively. This "operation" is called metacommutation.

Factorization II

In particular, if P and Q are primes of distinct prime norms p and q, then PQ = Q'P' for some Q' and P' of norms q and p respectively. This "operation" is called metacommutation.

Theorem (Conway, Smith)

The prime factorization of a Hurwitz quaternion is unique up to (repeated applications of) unit-migration, metacommutation and recombination.

Recombination is the process of replacing PP^{σ} by $P'P'^{\sigma}$.

Metacommutation problem

From Conway and Smith, "On Quaternions and Octonions":

However, this does not completely justify the term "unique factorization" for Hurwitzians. To do so would require solving a problem we call the **metacommutation problem**: How does a prime factorization PQ modelled on pq determine a corresponding factorization Q'P' modelled on qp? This difficult problem does not seem to have been addressed in the literature.

Permutation action

Note that if we start with P,Q and produce Q',P' satisfying PQ=Q'P', the prime P' is unique up to left multiplication by units (since Q'P' is unique up to unit-migration). Also, left multiplying P by a unit does not affect P'.

So we can consider the action of Q on the set of primes of norm p up to left multiplication. This is a permutation, since right multiplication by Q^{σ} provides an inverse.

Points on a conic

Proposition

For p odd (i.e. unramified in $\mathcal{H}_{\mathbb{Q}}$), there are exactly p + 1 primes of norm p, up to left multiplication by units.

Points on a conic

Proposition

For p odd (i.e. unramified in $\mathcal{H}_{\mathbb{Q}}$), there are exactly p + 1 primes of norm p, up to left multiplication by units.

Proof.

Let $\overline{\mathcal{H}}$ be the reduction of \mathcal{H} mod p. The reduction Π of $\mathcal{H}P$ is a 2-dimensional vector space over \mathbb{F}_p . There is a unique element $t_P=(x,y,z)$ of trace zero in Π . It gives a point on the conic $x^2+y^2+z^2=0$ in $\mathbb{P}^2(\mathbb{F}_p)$. One proves that this association is bijective, and there are p+1 points on the smooth conic.

(More abstractly, conic is a Severi-Brauer variety)

Points on a conic

Proposition

For p odd (i.e. unramified in $\mathcal{H}_{\mathbb{Q}}$), there are exactly p + 1 primes of norm p, up to left multiplication by units.

Proof.

Let $\overline{\mathcal{H}}$ be the reduction of \mathcal{H} mod p. The reduction Π of $\mathcal{H}P$ is a 2-dimensional vector space over \mathbb{F}_p . There is a unique element $t_P=(x,y,z)$ of trace zero in Π . It gives a point on the conic $x^2+y^2+z^2=0$ in $\mathbb{P}^2(\mathbb{F}_p)$. One proves that this association is bijective, and there are p+1 points on the smooth conic.

(More abstractly, conic is a Severi-Brauer variety)

We can analyze the cycle structure of the metacommutation permutation by Q on the p+1 primes of norm P, for all primes Q of norm q.

Data on cycle structure

Example

p = 13, q = 11.

```
gp > allcyclestructs(11,13)
% 2 = [[[2, 2, 2, 2, 2, 2, 2], 24], [[1, 1, 12], 96], [[14], 72],
[[1, 1, 4, 4, 4], 96]]
```

Data on cycle structure

Example

```
\begin{split} p &= 13, \; q = 11. \\ \text{gp > allcyclestructs(11,13)} \\ \% &= \texttt{[[[2, 2, 2, 2, 2, 2, 2], 24], [[1, 1, 12], 96], [[14], 72],} \\ \texttt{[[1, 1, 4, 4, 4], 96]]} \end{split}
```

So there are

- 24 primes Q for which the permutation consists of seven transpositions
- 96 primes Q for which the permutation has two fixed points and a cycle of length 12
- 72 primes Q for which the permutation is a cycle of length 14
- and 96 primes Q for which the permutation has two fixed points and three cycles of length 4.

Total number of primes Q is 288 = 24(11 + 1).

Observations and Questions

- When are there fixed points? How many?
- The rest of the permutation seems to break up into cycles of equal length.
- What is the sign of the permutation?
- How do these depend on the particular prime Q chosen?

Theorem (Cohn-K)

Let p and q be distinct rational primes, let Q be a Hurwitz prime of norm q, and consider the Hurwitz primes of norm p modulo left multiplication by units.

Theorem (Cohn-K)

Let p and q be distinct rational primes, let Q be a Hurwitz prime of norm q, and consider the Hurwitz primes of norm p modulo left multiplication by units.

• Metacommutation by Q permutes these primes, and the sign of the permutation is the quadratic character $\binom{q}{p}$ of q modulo p.

Theorem (Cohn-K)

Let p and q be distinct rational primes, let Q be a Hurwitz prime of norm q, and consider the Hurwitz primes of norm p modulo left multiplication by units.

- **1** Metacommutation by Q permutes these primes, and the sign of the permutation is the quadratic character $\binom{q}{p}$ of q modulo p.
- ② If p=2, or if Q is congruent to a rational integer modulo p, then metacommutation by Q is the identity permutation. Otherwise it has $1+\binom{\operatorname{tr}(Q)^2-q}{p}$ fixed points.

Theorem (Cohn-K)

Let p and q be distinct rational primes, let Q be a Hurwitz prime of norm q, and consider the Hurwitz primes of norm p modulo left multiplication by units.

- **1** Metacommutation by Q permutes these primes, and the sign of the permutation is the quadratic character $\binom{q}{p}$ of q modulo p.
- ② If p=2, or if Q is congruent to a rational integer modulo p, then metacommutation by Q is the identity permutation. Otherwise it has $1+\left(\frac{\operatorname{tr}(Q)^2-q}{p}\right)$ fixed points.
- The rest of the permutation consists of cycles of length equal to the multiplicative order of the roots of the polynomial $(x+1)^2 (4a^2/q)x$.

p = 2 is easy to analyze, so we may assume p odd.

Write the reduction of $Q \mod p$ as $\overline{Q} = a + bi + cj + dk$.

We prove the **key lemma**: metacommutation by Q acts as conjugation on the points of the conic associated to p. That is, $t_P=\overline{Q}^{-1}t_p\overline{Q}$ up to scaling.

p = 2 is easy to analyze, so we may assume p odd.

Write the reduction of $Q \mod p$ as $\overline{Q} = a + bi + cj + dk$.

We prove the **key lemma**: metacommutation by Q acts as conjugation on the points of the conic associated to p. That is, $t_P = \overline{Q}^{-1} t_p \overline{Q}$ up to scaling.

Therefore, we may represent the metacommutation operation by an element ϕ of $SO_3(\mathbb{F}_p)$.

p = 2 is easy to analyze, so we may assume p odd.

Write the reduction of $Q \mod p$ as $\overline{Q} = a + bi + cj + dk$.

We prove the **key lemma**: metacommutation by Q acts as conjugation on the points of the conic associated to p. That is, $t_P=\overline{Q}^{-1}t_p\overline{Q}$ up to scaling.

Therefore, we may represent the metacommutation operation by an element ϕ of $SO_3(\mathbb{F}_p)$.

Its characteristic polynomial is

$$(x-1)\left(x^2+2\left(1-\frac{a^2}{q}\right)x+1\right)$$

We are interested in points v = (x, y, z) with $x^2 + y^2 + z^2 = 0$ up to scaling: these correspond to the primes above p.

We are interested in points v = (x, y, z) with $x^2 + y^2 + z^2 = 0$ up to scaling: these correspond to the primes above p.

Let $v_0 = (b, c, d)$; it is fixed under conjugation by \overline{Q} .

We are interested in points v = (x, y, z) with $x^2 + y^2 + z^2 = 0$ up to scaling: these correspond to the primes above p.

Let $v_0 = (b, c, d)$; it is fixed under conjugation by \overline{Q} .

If $v_0 = (0,0,0)$ then the permutation is obviously the identity.

We are interested in points v = (x, y, z) with $x^2 + y^2 + z^2 = 0$ up to scaling: these correspond to the primes above p.

Let $v_0 = (b, c, d)$; it is fixed under conjugation by \overline{Q} .

If $v_0 = (0,0,0)$ then the permutation is obviously the identity.

Otherwise the number of fixed points is the number of eigenvectors v (up to scaling) with $\langle v, v \rangle = 0$ and $\langle v, v_0 \rangle = 0$.

Analyzing the char poly shows that we get 0 or 2 points, depending on the quadratic character of a^2-q .

Now if $\langle v_0, v_0 \rangle \neq 0$, then we project any v not orthogonal to v_0 orthogonally to the vector v_0 and thereby transfer the metacommutation action to $SO(2\text{-}\dim \text{quad form})$, which is cyclic and easy to analyze. (Consider action of $SO(q_2)$ on a conic, which is simply transitive).

This is the "generic" case.

Now if $\langle v_0, v_0 \rangle \neq 0$, then we project any v not orthogonal to v_0 orthogonally to the vector v_0 and thereby transfer the metacommutation action to $SO(2\text{-}\dim \text{quad form})$, which is cyclic and easy to analyze. (Consider action of $SO(q_2)$ on a conic, which is simply transitive).

This is the "generic" case.

The last case is when $\langle v_0, v_0 \rangle = 0$ but $v_0 \neq 0$. Then the matrix corresponding to Q is unipotent, and the rest of the permutation is a p-cycle.

Reference: "Metacommutation of Hurwitz primes", Henry Cohn and Abhinav Kumar, available at http://web.mit.edu/abhinavk/www/papers.html

Thank you!