% IAP 2006 Introduction to MATLAB % Programming % CC Violeta Ivanova, MIT Information Services and Technology % EXAMPLE 3 Orbital Velocity - An Interactive Program % An interactive program that uses this script M-file and the function % orbitalvelocity defined in the function M-file orbitalvelocity.m. % This example uses the same data as Exercise Two in Session 1: Interface % and Basics, and is based on NASA's educational web site: % http://exploration.grc.nasa.gov/education/rocket/rktrflght.html % A. Get input from the Command Window disp('This program computes circular orbital velocity.') % A1. Get input about the units for calculation units = input('What units? E for English or M for metric: ', 's'); if isempty(units) units = 'm'; disp('The program will use default metric units.') else units = lower(units); switch units case {'m', 'metric'} units = 'm'; disp('The program will use metric units.') case {'e', 'english'} units = 'e'; disp('The program will use English units.') otherwise error('Unsupported units.') end end % A2. Get input about the planet disp ('1. Earth') disp ('2. Mars') planet = input('Which planet: ', 's'); if isempty(planet) planet = 'Earth'; disp('Assuming planet Earth ...') else planet = lower(planet); switch planet case {'1', 'earth'} planet = 'Earth'; if strcmp(units, 'm') Re = 6376; g0 = 9.814; disp('Computing for planet Earth in metric units ...') else Re = 3963; g0 = 32.2; disp('Computing for planet Earth in English units ...') end case {'2', 'mars'} planet = 'Mars'; if strcmp(units, 'm') Re = 3396; g0 = 3.688; disp('Computing for planet Mars in metric units ...') else Re = 2111; g0 = 12.1; disp('Computing for planet Mars in English units ...') end otherwise Re = input('Enter mean radius of the planet: '); g0 = input('Enter gravitational constant of the planet: '); if (Re <= 0 || g0 <= 0) error('Impossible values for Re or g0.') end end end % A3. Get input about the altitude H altitude = input('What altitude above the planet: '); % B. Compute the orbital velocity V = orbitalvelocity(Re, g0, altitude, units); % B1. Add the code to include the Moon in the options above % Re and g0 for the Moon are as follows: % In metric units: Re = 1736 and g0 = 1.615. % In English units: Re = 1079 and g0 = 5.3. % YOU HAVE TO ADD YOUR CODE AMONG THE LINES ABOVE