
MIT Programming Contest
Individual Round Logistics

September 22, 2019

In this 4-hour contest, you will be presented with 9 programming problems. Your goal is
to solve as many tasks as you can by writing a correct and efficient (enough) C/C++/Java
program for each.

1 Pre-contest Setup

Before the contest starts, you need to register for the contest:

add slobo

touch /mit/slobo/acm/roster/$USER

Then create (a symbolic link to) your submission directory:

ln -s /mit/slobo/acm/submit/$USER submit

You will submit programs later by copying files into the submit directory you just created.
Optional: if you want your name to be visible on the scoreboard, you may copy a file

called name with your name in it into your submission directory.

2 About the problems

When the contest starts, you will be given a set of programming problems to solve. You
can view this set at http://web.mit.edu/acmicpc/www/2019/indiv/tasks.pdf. You should
write your solution in C, C++, or Java, compile it, test it, and then submit it. (Repeat if
necessary.)

Every program you write should read all input from standard input and write all output
to standard output. Your output should have no extra blanks, lines, or characters unless
otherwise stated by the problem. Do not attempt to open files, open network ports, do any
other type of sketchy stuff, or risk disqualification. Make sure your program terminates
with exit code of 0.

A program is correct if it meets the following criteria:

• outputs the correct answer

• terminates normally (with an exit code of 0) within 4 seconds

• uses at most 1024 MB of memory

1

http://web.mit.edu/acmicpc/www/2019/indiv/tasks.pdf

3 Compilation

We will use the following compile line to compile your program; you might want to use the
same line when you do your test runs to make sure that your program does not fail because
of compiler incompatabilities.

To compile your C/C++ program for problem N (-lm is to link with the standard math
library):

gcc -o <probN> <probN>.c -lm # C

g++ -o <probN> <probN>.cc # C++

For Java, you must first type add java, which allows you to use Java. Then to compile
and run:

/mit/java/current/bin/javac <probN>.java # Compile

/mit/java/current/bin/java <probN> # Run

4 Questions

If you have a question get Kevin’s or Slobo’s attention.

5 Submission

When you are confident that your program is correct, copy your source code (not your
executable!) into the submit directory you set up before the contest.

For example, to submit your C solution of problem 1, type:

cp prob1.c submit

When our grading system is ready to grade your source code, it will move the source code
out of the submit directory. You can check if your program is being graded by checking that
your program has been removed from submit. After a while, you should get e-mail about
the fate of your program. Do not wait for the e-mail: keep on working.

6 Scoring

Your score for the contest is exactly the number of problems you solved correctly. If two
people solve the same number of problems, we use time as a tie-breaker. Your time on a
problem that you solved is the time from the beginning of the contest until your correct
submission1 plus an additional 20-minute penalty for every incorrect submission you made.
Your total time is simply the sum of the times of the individual problems you solved.

For example, suppose you made the following submissions:
1Please don’t submit programs for problems you have already solved correctly.

2

0:10 problem 1 (incorrect)

0:30 problem 3 (correct)

0:35 problem 2 (incorrect)

0:45 problem 1 (correct)

Then your total time is 30+(45+20) = 95 minutes. Note that no penalty will be charged
if you submit an incorrect program and never get it right later (problem 2).

7 Regulations

In this contest, you are expected to work on your own with no collaboration with anyone
else. You can consult language reference manuals that you bring with you into the contest
and online man pages. You are not allowed to use any form of e-mail, online source code or
machine-readable code: everything you submit you must type in yourself during the contest.
You can use whatever text editor you find on the machine (vi, emacs, cat, etc.). Of course,
you may use your own pens, pencils, and paper. Have fun!

3

8 Adding Numbers (Sample Problem)

The goal of this problem is for you to familiarize yourself with the environment by solving
the simple task of adding two numbers. Of course, this problem will not count towards the
contest.

Input

There will be several test cases, one per line. Each test case consists of two integers.
The input data is terminated by a line that contains two zeros, and should not be pro-

cessed.

Output

Output a single line for each test case, which contains the sum of the two integers. Follow
the formatting of the sample output.

Example

Sample Input

1 2

6 3

0 0

Sample Output

Sum 1: 3

Sum 2: 9

4

	Pre-contest Setup
	About the problems
	Compilation
	Questions
	Submission
	Scoring
	Regulations
	Adding Numbers (Sample Problem)

