next up previous
Next: About this document ...

Sample Equations: first of each is not antialiased



\begin{displaymath}x' + y^{2} = z_{i}^{2}
\end{displaymath} (1)


x' + y2 = zi2 (2)




\begin{displaymath}-2 \, \ln \vert x-2\vert + 3 \, \ln \vert x-3\vert + C
\end{displaymath} (3)


\begin{displaymath}-2 \, \ln \vert x-2\vert + 3 \, \ln \vert x-3\vert + C
\end{displaymath} (4)




\begin{displaymath}y = k \, e^{x^2/2} - 1\;\;
\end{displaymath} (5)


\begin{displaymath}y = k \, e^{x^2/2} - 1\;\;
\end{displaymath} (6)




\begin{displaymath}\frac{dr}{dt} = \frac{1}{\pi}
\end{displaymath} (7)


\begin{displaymath}\frac{dr}{dt} = \frac{1}{\pi}
\end{displaymath} (8)




\begin{displaymath}[-1/\sqrt{3},0]\cup [1/\sqrt{3},+\infty[
\end{displaymath} (9)


\begin{displaymath}[-1/\sqrt{3},0]\cup [1/\sqrt{3},+\infty[
\end{displaymath} (10)




\begin{displaymath}\frac{\cos x}{2 \sqrt{\sin x}}
\end{displaymath} (11)


\begin{displaymath}\frac{\cos x}{2 \sqrt{\sin x}}
\end{displaymath} (12)




\begin{displaymath}A = \int_0^1 \frac{\ln(x+1) \,
\sqrt{x^2 + 2x + 2}}{x + 1} \, dx
\end{displaymath} (13)


\begin{displaymath}A = \int_0^1 \frac{\ln(x+1) \,
\sqrt{x^2 + 2x + 2}}{x + 1} \, dx
\end{displaymath} (14)




\begin{displaymath}\frac{1}{2} \int_0^{\pi/3}
\sin^2 3\theta \; d\theta = \frac{\pi}{12}
\end{displaymath} (15)


\begin{displaymath}\frac{1}{2} \int_0^{\pi/3}
\sin^2 3\theta \; d\theta = \frac{\pi}{12}
\end{displaymath} (16)



 
next up previous
Next: About this document ...
Abby Fox
1999-04-09