THE SYSTEM SHELL AS A CONSTRUCT FOR MITIGATING THE
IMPACT OF CHANGING CONTEXTS BY CREATING OPPORTUNITIES
FOR VALUE ROBUSTNESS

Adam M. Ross
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge, MA 02139
617-253-7061
adamross@mit.edu

Abstract - One of the primary goals in
developing systems is to create a system that
delivers desired capabilities, or value, to
system stakeholders. In practice, system
development requires both creative design for
meeting the system objectives on paper, as
well as technical competence to ensure
system value delivery in practice. At least
several failure mechanisms exist that may
prevent a system from delivering value in
practice. These mechanisms include poor
concept design, failure in design
implementation, changes in system operating
contextt and changes in stakeholder
expectations. Whereas traditional robust
design deals with changes in operating
context, designing for Value Robustness is a
technique to ensure value delivery in spite of
changes in a more generalized context and
expectations. The concept of system shell is
introduced as a value robust construct for
mitigating the effect of changes in context and
expectations by decoupling the system from
the sources of change. The system shell
consists of two parts: the system mask and
the system shelter. The system mask changes
how the system is “seen” by the external
context and stakeholders. The system shelter
changes how the system “sees” its external
context and stakeholders. Examples of system
shell applications are presented, as
implemented in both software and hardware,
and across applications from consumer
products to aerospace systems. Implications
for the design of systems and systems of
systems are discussed, including customizing
perception of value delivery, integrating

Donna H. Rhodes
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge, MA 02139
617-324-0473
rhodes@mit.edu

legacy components, and balancing
changeability with robustness. Given
uncertainty in future system context and use,
the purposeful addition of system shells as a
part of system design is proposed as a cost-
effective approach to maintaining system
value in spite of changes in context and
stakeholder expectations.

INTRODUCTION

Designers are faced with significant challenges in
accommodating the nature of the contemporary
engineering environment. This environment is
characterized by an ever increasing pace of
change, high degrees of uncertainty, complex
interconnectedness of technologies and
enterprises, and diversity of system stakeholders.
Modern engineering also demands the
simultaneous deployment of systems to deliver
legacy functionality, while also contributing to
collaborative system of systems (SoS)
functionality.

Ross [8,9] addresses the challenge of designing
for changeability, and proposes several new
constructs for architectural decision making and
design. A formal change taxonomy elaborates the
various types of real and perceived system
changes. A key distinction is drawn between
scalability, modifiability, and robustness
concerning the type of change necessary to
achieve system value.

Robustness is related to an apparent lack of
change in perceived value delivery, in spite of
changes either internal or external to the system

itself. This concept of robustness motivates the
construct of system shell as an architectural
approach for designing systems that will be robust
in the face of change.

MOTIVATION

The desire for “robustness” extends from the fact
that change is inevitable, both in reality and in
perception. Approaches such as Axiomatic Design
and Taguchi Robust Design methods have
advanced understanding of how to develop robust
systems to deal with real-world changes [6,11]. It
is important to note that the goal of system design
is not robust systems per se, but rather the
delivery of value to system stakeholders. The
motivation for changeability over a system
lifecycle is categorized into three major drivers:
dynamic marketplace, technological evolution,
and variety of environments [2]. These drivers
result in two key aspects for system architectures
to address: 1) they must be able to be changed
easily and rapidly, and 2) they must be insensitive
or adaptable towards changing environments. In
this paper, a construct is proposed that leverages
the latter to minimize the need for the former,
offering a more cost effective and efficient
approach to sustained value delivery.

The complexity and interconnected nature of
modern systems drives the cost of system
changes to ever higher levels. Careful
consideration must be taken when weighing the
high cost for customization of a system versus the
motivation for that customization. No system can
be ‘all things to all people’, yet the contemporary
engineering environment does often demand that
an individual system simultaneously serve the
needs of multiple stakeholder communities that
may have divergent perceptions of system value.
This need to serve many stakeholders is
increasingly experienced by system designers.
New constructs are needed to minimize costly
changes to the architecture while also providing
responsiveness to context shifts and emergent
needs.

The motivation for robustness in perceived value
in large scale defense systems has been explored
during a recent workshop. In the 2003/04
timeframe, the US Air Force and Department of
Defense issued new systems engineering policies
related to the revitalization of systems engineering
and the need to deliver more robust system
solutions. In support of these policies, an Air
Force/MIT Lean Aerospace Initiative (LAI)

Workshop on System Engineering for Robustness
was held in June 2004 that challenged the
aerospace community to develop a process that
enables “systems engineering for “robustness” [7].
“Robustness” according to Dr. Marvin Sambur,
Assistant Secretary of the Air Force for Acquisition
at the time of the workshop, was defined as:

e Capable of adapting to changes in
mission and requirements;

e Expandable/scalable, and designed to
accommodate growth in capability;

e Able to reliably function given changes in
threats and environment;

o Effectively/affordably sustainable over
their lifecycle;

e Developed using products designed for
use in various platforms/systems; and

e Easily modified to leverage new
technologies.

These goals are similar to the separately defined
“ilities” of adaptability, scalability, robustness,
sustainability, and flexibility. Experts at the
workshop admitted no comprehensive approach
existed for designing for “robustness” in this sense
and that further research was required in order to
adequately address the defense industry needs.

PROBLEM OF ROBUST SYSTEMS

System designers are faced with the challenging
problem of creating robust systems in a world that
is increasingly dynamic and highly interconnected.
Effective design strategies are needed to create
systems that can operate in multiple contexts,
adapt to changing stakeholder needs and
perceptions, and leverage uncertainty. In the
modern environment, the designer’s challenge is
to develop and select an architectural design that
can best deliver a sustained level of value to its
stakeholders as context changes, stakeholder
perceptions shift, and new demands and
opportunities arise. Ross refers to this approach
as designing for value robustness [8].

We can describe a system in terms of a set of
parameters capturing physical and functional
aspects. An important aspect of change is the
difference in states before and after a change has
taken place. Scalability is the ability to change the
level of a parameter. Modifiability is the ability to
change the membership of a parameter set.
Robustness is the ability to maintain parameter

values in spite of external or internal context
changes.

As an example, consider the following parameter
set for a vehicle, which includes both function and
form: {number of wheels, color of vehicle,
quietness of cabin}. Suppose a design under
consideration has the following particular
parameter values: {4, “red,” and “moderately
quiet’}. The possible ranges for these parameters
include: {[3, 4, 6, 8], [*black”, “red”, “blue”], [*very
quiet”, “moderately quiet”, “little quiet”, “
If the current system can maintain its {4, “red,”
and “moderately quiet”} in spite of its operating
environment changing, such as due to driving on
unpaved roads, or past construction sites, then it
is robust in these parameters to those particular
environments. The more environments to which
the system is insensitive, the more robust the
system is considered to be.

The concept of system shell is a value robust
construct for mitigating the effect of changes in
context and expectations by decoupling the
system from the system external sources of
change. It is not always a viable or affordable
approach to make changes to the fundamental
system structure or function as value expectations
shift. Thus, the shell concept provides an alternate
design approach to deliver value by making the
system insensitive to external changes, rather
than directly adapting the fundamental system for
the external change.

The system shell approach is distinct from
traditional robust design approaches in that it
decouples the robustness mechanism from the
system. The decoupled shell can be adapted to
past, present, and future contexts, and modified
as uncertainty grows or diminishes. Development
cost and maintenance responsibilities for the shell
can be separated from the system itself, thereby
distributing the cost burden for robustness and
allowing for customized ownership.

SYSTEM SHELL DESCRIBED

The system shell is comprised of two layers: the
inner shell, or “shelter,” and the outer shell, or
‘mask,” each serving a unique purpose in
designing a system for value robustness. The
system shelter changes how the system “sees” its
external context and stakeholders. The system
mask changes how the system is “seen” by the
external context and stakeholders. The system
shelter is a protective-based mechanism, while

not quiet”]}.

the system mask is a perceptual-based
mechanism. Figure 1 below illustrates the concept.

Inner Shell
(The Shelter)

Change Context
as seen by Box

Outer Shell
(The Mask)

Change Box as
seen by Context

es
in its context

The shell filters the appearance of the
box to its context

Figure 1. System shell construct defined.

The purpose of the shelter is to prevent the
system from experiencing changes in its context.
It “protects” the system from change, thereby
ensuring constancy of operating environments. A
simple example of a shelter is a protective
mechanism for sheltering humans from the
elements, which could be a habitat or protective
clothing. Instead of redesigning the human to be
able to operate in temperature extremes, well-
designed clothing and buildings provide shelter to
the human system, creating an artificially stable
context in which to ‘operate’. Another example,
the space suit permits an astronaut to venture into
the extreme environments in space. Well
designed buildings permit the scientists in
Antarctica to live and work in a climate of extreme
weather conditions.

The mask changes the system as seen by the
context. It “masks” the true system to prevent the
system itself from having to change to meet
external changing perceptions. This construct is
similar to Kilirs definiton of “mask” where
“different masks lead generally to different
behaviors for the same system” [4]. An example of
a mask is a software wrapper module, which
standardizes the appearance of code so that it
can be manipulated by programmers who do not
need to know the specific of that particular code.
A construction example is when a franchise
business builds in a town with a controlled
architecture environment. Within the building itself,
they still construct the standard structure using the
same specifications and pre-fabricated
construction parts, but will then ‘wrap’ it with a
historic looking brick fagade to achieve the
required ‘look and feel’ for new constructions in
the controlled environment.

The system shell provides a construct for system
designers to consider when making architecture
decisions during the concept phase, initial design,
and/or during the subsequent evolution of the
operational system.

EXAMPLES

To further elaborate the system shell concept,
several examples are explored, and benefits and
costs associated with these are discussed. There
are three options for implementing the system
shell construct: (1) shelter only; (2) mask only; or
(3) shelter and mask together.

Shelter

The shelter prevents the system from
experiencing changes in its context, and requires
a protective mechanism. Consider the simple
problem where a new construction house has

been built with water pipes in an unheated garage.

The owner elected to use an architectural design
that was originally used in a warm climate,
however the new construction has been built in a
cold climate. The design worked fine in a warm
climate, but in the more extreme temperature
environment, a problem has occurred where the
water pipes are freezing when the temperature
drops below a certain level. Since this is a case
where the ‘system’ has already entered
operational use, the cost of relocating the water
pipes would be a very costly solution though it
may still offer the most reliable solution to the
problem. An alternate solution that a builder often
invokes that uses the shelter construct is to wrap
the water pipes in foam insulation. In most cases,
this design solution will address the problem of
the freezing pipes and the cost to the owner is
very low as compared to the cost that would be
involved in relocating the pipes to a heated area,
or the cost of heating the garage where the pipes
are located.

Another example in the building regime is the use
of protective films on glass to reduce solar
penetration into internal rooms, likewise
accomplished through tinting windows on cars.
Radiation shielding for people and equipment
serves the shelter function by isolating the people
and equipment from the radiation. In a smaller
sense, earplugs serve a similar purpose by
preventing sound from penetrating the ear canal.
In the area of software, firewalls serve the

purpose of insolating computers from malicious
streams of data on networks.

Mask

The mask changes the system as seen by the
context, that is, it “masks” the true system to
prevent the system itself from having to change to
meet external changing perceptions. The mask
construct is increasingly used in consumer
products as a strategy to address the need for
satisfying diversity of stakeholder stylistic
preferences. An early example was the watch
design with many variations of faceplates
(Swatch™). Nokia™ phones are another example,
where an underlying core architecture is used in a
family of products which appear to the customer
to be different products. The company’s strategy
to implement variation in the “mask” layer of the
phone is a cost effective approach to offering a
product line that accommodates market diversity
and change drivers.

Indirectly, the interface components of systems
serve the purpose of a system mask. An example
are customizable software interfaces, both simple,
such as switching between “basic” and
“advanced” modes, or complex, such as
customizing themes in the Windows™ operating
system environment. Likewise, the Global
Positioning Satellite (GPS) system and satellite
radio systems consist of large, expensive, and
complex remote space components, which are
very difficult to modify or customize to particular
users. The use of simple hand-held receivers with
various appearances and capabilities, in a sense,
approximates a system mask, customizing a
user’s experience with the system.

Dual Use of Shelter and Mask

In some cases, the designer may find advantages
in the dual use of the shelter and mask constructs.
The shelter's protective mechanism and the
mask’s perceptual adaptation mechanism offer
complementary strategies. As a simple example,
a consumer may find a personal apparel item to
offer value robustness as it may impress one’s
aesthetically driven audience. For example, a
person interviewing for an executive position
would find a sweat suit could protect them from
the elements, but a better apparel choice would
be a business suit as both protection from the cold
and as the ‘mask’ most suited for the standard
business interview situation.

Another example is the wall socket and common
plugs that permit appliances to be connected to
any electrical system. Consider the case of
wanting to use an electrical appliance in a country
in which it was not designed to operate. Through
the use of an adapter with converter, the device is
able to function properly. The adapter serves as a
mask to change the appearance of the appliance
to match the “expectation” of the outlet. The
converter serves as a shelter to protect the
appliance from experiencing any effects for the
non-standard electrical current. Together, the
adapter with converter shell enables the appliance
to continue to function in a new environment,
continuing to deliver value to the appliance’s user.

DISCUSSION
Implications for Design

Using the system shell construct for system value
robustness has several implications to consider
during design. First, as in traditional robust design,
the system shell allows for the extension of
system usefulness into new and different contexts
or operating environments. Second, the system
shell allows for new possibilities for customizing
system perception and experience across multiple
stakeholders even across time. Third, the
appropriateness of when and where to use a
system shell must be considered, as sometimes
the cost of using the construct may exceed its
benefit.

The first implication for extending operating
ranges is multiplied when using the system shell
over traditional robust design as multiple system
shells could be developed to allow for customized
or upgraded performance in new environments.
As an example, consider the ability to add “skins”
to the Apple iPod™. Such skins could be purely
aesthetic, performing the system mask role, or
could be both aesthetic and protective, preventing
damage from impacts or temperature extremes,
and thus performing the function of a full system
shell.

The second implication of customizing the
experience relates principally to the system mask
role. Instead of struggling with determining how to
compromise or aggregate diverse customer
desires into a single system, the mask allows for a
customer-specific experience. Masks could be
developed to alter the appearance of the system

to appear “red” to one person, but “blue” to
another. Figure 2 below gives a notional example
of such a system mask.

o~ [
(@‘

URS--AB

Figure 2. System mask customizes perception of
same system to different stakeholders.

The third implication is the additional analysis
needed to determine the appropriateness of when
and where to use a system shell or one of its
facets. Sometimes the cost for developing the
system shell will exceed the benefit for having the
shell. Such would be the case if the cost to
develop a new system with the new desired
values is less than developing a system shell that
modifies the old system to give those same new
values. Another reason for not pursuing a system
shell is when extending the useful life of a system
is not desired, such as the desire for new
performance, technologies, concepts, user
expectations, etc. As an example, Saleh
discusses a type of analysis needed when trying
to decide between replacing and repairing a
legacy satellite system [10]. In essence the net
benefit of the old system with a system shell must
exceed the net benefit of the old system plus a
system replacement in order for the system shell
concept to make sense, as shown in the equation
below.

—Cost

new _sys new _sys

Benefit —Cost,,, > Benefit

old _sys+shell

System of Systems

Many of the engineering challenges today involve
taking a system of systems approach which

requires the simultaneous deployment of systems
to address their legacy function, while also
contributing to collaborative systems functionality
of the SoS. Maier describes system of systems,
also known as collaborative systems, noting “the
interfaces, whether thought of as the actual
physical interconnections or as higher level
service abstractions, are the primary points at
which the designer can exert control” [5]. He
describes “leverage at the interfaces” as one of
the fundamental principles for architecting system
of systems. The system shell provides an
enabling design concept to implement this
principle through shelter and/or mask constructs.

The concept of a system shell is powerful in that it
decouples the system itself from changes in its
context. In order to make design sense, system
shells should be developed to be able to be
modified much more readily and for lower cost
than the system itself. This may be particularly
important as systems increasingly participate in
SoS operations. In this case, the system retains
its legacy function and behavior while
simultaneously taking on a contributing role in the
SoS. In such cases, the strategy of making
changes to the system itself to accommodate the
SoS unique needs might negatively impact the
ability to continue to perform in its legacy role. By
wrapping legacy components, the system shell
concept can allow the incorporation of legacy
systems into a larger system without having to
perform costly modifications or redesign. In effect,
the design of SoSs can be through the design of
systems shells and their interactions, rather than
on the components themselves, a useful
approach, especially when dealing with legacy
components or components outside of a
designer’s control or influence

A recent study on the need for new systems of
systems engineering methods is described in a
recent report of the US Air Force Scientific
Advisory Board [1]. This report stresses the
important role of “convergence protocols” to
provide mechanisms for the linkage of legacy
systems to address emergent needs. These
protocols are intended to guide SoS designers to
develop SoS component shells that allow each
component to evolve without negatively impacting
the overall SoS value delivery. Permitting the
independence of components in SoS design, as
described in Keating, as an essential and distinct
aspect in the successful development of an
overall SoS built from existing systems [3].

Separating Changeable System Parts

One common perception is that the ability to
change a system and robustness are in tension,
where one must give up one to have more of the
other. Such is not necessarily the case; it depends
on the parameters under consideration. For
example, making a computer robust to noise and
physical impacts does not reduce its modifiability
for changing components.

At a higher level is the concept of value
robustness. If the goal for system design and
development is to deliver value to stakeholders
over the system lifecycle, then value robustness is
the ultimate goal for the designers. Value
robustness can be achieved through either
passive or active means, with the former more
akin to traditional robust approaches, and the
latter embracing changeability as a dynamic
strategy for value sustainment. Passive value
robustness delivers value through the
development of “clever” designs, or designs
insulated by system shells, which are perceived to
maintain value over time. Successful development
of passively value robust systems, including those
with system shells requires anticipation of future
system contexts, including potential value
perceptions and the competitive environment with
alternative systems. Active value robustness
requires less omniscience, but does have the
added complexity of needing a change agent
changing the system over time to maintain high
value perception.

CONCLUSION

System designers are increasing challenged to
design systems to be value robust in a dynamic
and demanding world. Some traditional robust
design methods have proven effective for
addressing changes in the operating context, but
designers can benefit from additional approaches,
particularly to address highly complex and
interconnected systems. In order to ensure
sustained value delivery, designers need
enhanced ways of thinking for architecting new
systems or augmenting existing systems.

Designing for Value Robustness is a technique to
ensure value delivery in spite of changes in a
more generalized context and expectations. One
approach of this overall technique has been
presented in this paper, the concept of system
shell as a value robust construct for mitigating the

effect of changes in context and expectations by
decoupling the system from the sources of
change. Several areas of research are ongoing to
further the design for value robustness
methodology, including case studies that are
expected to yield new insights toward this goal.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support for
this research from the MIT Systems Engineering
Advancement Research Initiative (SEAY), Air
Force Office of Scientific Research (AFOSR) and
Lean Aerospace Initiative (LAI).

REFERENCES

[1] Air Force Scientific Advisory Board, “Report on
Systems of Systems Engineering for Air Force
Capability Development,” Air Force SAB-TR-05-
04, July 2005

[2] Fricke, E. and Schulz, A.P., “Design for
Changeability (DfC): Principles to Enable
Changes in Systems Throughout Their Entire
Lifecycle,” Systems Engineering 8(4), 2005

[3] Keating, C., Rogers, R., Unal, R., Dryer, D., et

al., “Systems of Systems Engineering,”
Engineering Management Journal 14(3),
September 2003

[4] Klir, G., An Approach to General Systems
Theory, New York: Van Nostrand Reinhold
Company, 1969, pp. 118

[5] Maier, M. W. "Architecting Principles for
Systems-of-Systems," Systems Engineering 1(4):
267-284, 1998

[6] Park, S. H., Robust Design and Analysis for
Quality Engineering, New York: Chapman & Hall,
1996

[7] Rhodes, D.H., “Air Force/LAl Workshop on
Engineering for Robustness,” Technical Report,
Lean Aerospace Initiative, http://lean.mit.edu, July
2004

[8] Ross, A.M., “Managing Unarticulated Value:

Changeability in Multi-Attribute Tradespace
Exploration,” Ph.D. in Engineering Systems,
Massachusetts Institute of Technology,

Cambridge, MA, June 2006

[9] Ross, A.M., and Hastings, D.E., “Assessing
Changeability in Aerospace Systems Architecting
and Design Using Dynamic Multi-Attribute
Tradespace Exploration,” AIAA Space 2006, San
Jose, CA, September 2006

[10] Saleh, J. H. "Weaving Time into System
Architecture: New Perspectives on Flexibility,
Spacecraft Design Lifetime, and On-orbit
Servicing," Ph.D. in Aeronautics and Astronautics,
Massachusetts Institute of Technology,
Cambridge, MA, June 2002

[11] Suh, N.P., Axiomatic Design--Advances and
Applications, New York: Oxford University Press,
2001

