
1. ACE Core

Consider the unsteady partial differential equation

∂u

∂t
=
∂2u

∂x2
+ f(x, t) (1)

with a given forcing function f(x, t) and initial condition u(x, t = 0) = u0(x), The spatial
domain is periodic in [0, 2π]. It is discretized by a non-uniform grid 0 = x0 < x1 <
. . . < xK−1 < 2π.

In this question, we focus on spatial discretization. A forward Euler time integration
scheme is assumed throughout the problem.

(a) Derive a consistent finite difference scheme for the PDE, using forward Euler for
time discretization. Please only use a stencil of three grid points xi−1, xi and xi+1.
Show the order of accuracy of your spatial approximation.

(b) Consider the L∞-norm of the numerical solution when f = 0. What sufficient
conditions can you impose to ensure L∞-stability?

(c) Consider the numerical solution at a fixed time tf . Does the error in the numerical
solution go to zero as N (the number of time steps) goes to infinity, ∆t goes to zero
(keeping N∆t = tf ), and K (the number of spatial grid points) goes to infinity?
Why or why not? If not, what sufficient conditions can you impose to ensure that
the numerical solution goes to zero?



2. Fluid Mechanics

A 2D airfoil of chord c is placed in an incompressible flow which has freestream speed
V∞ along the horizontal x axis. The airfoil maintains a small angle θ above the x axis,
while undergoing an unsteady sinusoidal vertical displacement

h(t) = h1 sinωt

where by convention h is positive down, and h1 is the half-amplitude of the displacement.
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(a) What are the physical boundary condition on the surface of the airfoil for
i) viscous flow, and ii) inviscid flow? Assume that the normal vector n̂ = nxx̂ +nzẑ
is known everywhere on the airfoil surface.

(b) If h1 = 0, then this situation reduces to the usual steady 2D airfoil case (shown
dashed), with angle of attack α = θ. For α � 1, the drag and lift coefficients
(always defined parallel and normal to the airfoil’s onset flow), are then given by:

D′

1
2
ρV 2

∞c
≡ cd = cd0 (8)

L′

1
2
ρV 2

∞c
≡ c` = 2πα (9)

For the more general case h1 6= 0, what are the requirements on the problem
parameters ρ, V∞, c, h1, ω such that the flow is quasi-steady, and equations (8)
and (9) are valid?

(c) Assuming the requirements above hold, determine the instantaneous force coeffi-
cients

cx(t) ≡
Fx(t)
1
2
ρV 2

∞c

cz(t) ≡
Fz(t)
1
2
ρV 2

∞c
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along the horizontal and vertical axes x, z. Also determine the corresponding time-
averaged force coefficients c̄x and c̄z defined over any integer number of oscillation
periods. You may use small-angle approximations.

(d) Consider the case where the condition(s) for the quasi-steady assumption in part (a)
do not quite hold. In which direction will the resulting cd(t) and c`(t) forces change
from their quasi-steady values you obtained for part (b)?
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3. Numerical Linear Algebra

An iterative method is used to solve the following linear system,

Ax = b (10)

where A ∈ RN×N , and x, b ∈ RN . You may assume that A is a full rank matrix. The
iterative method is of the following form,

Mxn+1 = Nxn + b (11)

where A = M −N . You may assume that M is also a full rank matrix.

(a) Define the error en ≡ x− xn (i.e. x being the exact solution). Determine G which
is the matrix relating en and en+1, specifically,

en+1 = Gen (12)

Please express your answer for G in terms of M and A (not N).

(b) Where in the complex plane must the eigenvalues of M−1A be such that ||en|| → 0
as n→∞ for any initial guess x0?

(c) The residual at iteration n is defined as rn ≡ b− Axn. H is the matrix relating rn

and rn+1, specifically,

rn+1 = Hrn (20)

How is H related to G? How are the eigenvalues of H related to the eigenvalues of
G?

(d) A difficult aspect of iterative methods is to determine when to stop iterating based
on a desired error level. For example, suppose that the desired error tolerance
is τe > 0 such that ||en||/||x|| ≤ τe and || · || is a vector norm. Since the exact
solution x and therefore the error en are unknown, this criteria cannot generally
be enforced. Alternatively, suppose that a residual criteria is used as a stopping
criteria. Specifically, the iterative method is terminated when ||rn||/||b|| ≤ τr for
some positive τr. Determine lower and upper bounds on ||en||/||x|| in terms of
||rn||/||b|| and κ(A) = ||A|| ||A−1|| (i.e. the condition number of A where the matrix
norms are those induced by the vector norms).
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4. Optimization Methods

Consider the least squares problem

minimize
θ

||Xθ − y||22, (30)

corresponding to the over-constrained linear relationship X


[
θ

]
≈

y
 .

The analytical solution θ∗ to this problem satisfies

(XTX)θ∗ = XTy. (31)

For intuition, you may assume the problem size X ∈ R10,000×100, y ∈ R10,000. In many
settings, it is desireable that θ not be too large. One way to achieve this is ridge
regression, which penalizes ||θ||22:

minimize
θ

||Xθ − y||22 + λ||θ||22. (32)

For now, assume λ > 0 is a given parameter.

(a) Determine the analytical optimum θ∗ to (32).

(b) Assume you have available a reliable and efficient black box for solving (30). The
inputs to this program are X and y, and the output is θ∗. You want to use this
program (unmodified) to solve (32), given a value for λ. How will you do it? Give
expressions for Xaug and yaug, the inputs you will provide to the solver.

In typical ridge regression solutions, many entries in θ∗ are close to, but not equal to,
0. Another regularizer, the Lasso, has sparsity-inducing effects: it drives some of the
entries in θ∗ all the way to 0. The Lasso formulation is

minimize
θ

||Xθ − y||22 (33)

subject to ||θ||1 ≤ t,

for some given t > 0, where ||θ||1 is the sum of the absolute values of the entries in θ.

(c) Formulate Lasso as a quadratic program (QP), an optimization problem with the
form

minimize
x

xTQx+ cTx

subject to Ax ≤ b.

Give expressions for x, Q, c, A, and b.
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(d) Sketch, on a plot, how the optimal cost ||Xθ − y||22 of (33) changes as t is varied.
Be sure to identify any salient features and values.
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