Field Exam — Controls

Aeronautics and Astronautics Department, Massachusetts Institute of Technology

January 26-27, 2009

Consider a linear, time-invariant, single-input, *unstable*, controllable system, described by the following state-space model:

$$\frac{d}{dt}x(t) = Ax(t) + bu(t), \qquad x \in \mathbb{R}^n, u \in \mathcal{U} \subseteq \mathbb{R}.$$
(1)

In this exam, you will be asked to design full-state feedback control systems to stabilize the plant (1), under a variety of constraints on the set \mathcal{U} of allowable values for the control input.

NOTE: IT IS NOT NECESSARY TO COMPLETE PART A TO DO PART B.

A. Unbounded control

Assuming that $\mathcal{U} = \mathbb{R}$,

1. Design a full-state feedback control law for (1) such that the resulting closed-loop system is stable, and the following cost functional is minimized:

$$J(x,u) = \int_0^\infty \left[\|x(t)\|_2^2 + \gamma |u(t)|^2 \right] dt.$$
⁽²⁾

- 2. Discuss the choice of the parameter γ if it is desired that $|u| < u_{\text{max}}$, and $||x||_2 < x_{\text{max}}$.
- 3. Assume that system (1) is in controllable canonical form, and that all the eigenvalues of A are strictly positive, given by $p_1 \ge \ldots \ge p_n > 0$. Recall that a state-space model in controllable canonical form has the following structure:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_n & \dots & \dots & -a_1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Compute the control gain corresponding to the *expensive control* solution, i.e., the control gain that would minimize (2) for $\gamma \to +\infty$. (Please compute this explicitly, in terms of the open-loop poles p_1, \ldots, p_n)

In the following, let $k \in \mathbb{R}^n$ be a control gain vector, and let $V(x) = x^T P x$ be a Lyapunov function for the system (1) with control law u = -kx.

B. Bounded control

Now assume that $\mathcal{U} = [-1, 1]$. Consider the control input obtained by using a control law of the form $u = -\operatorname{sat}(kx)$, for some vector gain k. The saturation function sat: $\mathbb{R} \to [-1, 1]$ is defined as

$$sat(z) = \begin{cases} 1 & \text{if } z \ge 1 \\ z & \text{if } z \in (-1, 1) \\ -1 & \text{if } z \le -1 \end{cases}$$

1. Would a control law of the form $u = -\operatorname{sat}(kx)$ globally stabilize the system (1)? Prove or disprove.

2. Determine a set Ω such that, for all $x(0) \in \Omega$, and under the action of the control law $u = -\operatorname{sat}(kx)$,

$$\lim_{t \to +\infty} x(t) = 0$$

Hint: In order to compute such a set, you may find it useful to think about this problem: Given an ellipsoid $\mathcal{E} = \{x : x^T M x \leq \alpha\}, M > 0$, what is the maximum value attained by |kx| inside \mathcal{E} ?

- 3. How would you choose k and V in such a way that the set Ω is as large as possible, and why?
- 4. Would such a design have any limitations? If so, how would you address these limitations? What techniques would you suggest to design a control law for (1), in the presence of saturation?