Skip to content
MIT Department of Aeronautics and Astronautics

AeroAstro Magazine Highlight

The following article appears in the 2008–2009 issue of AeroAstro, the annual report/magazine of the MIT Aeronautics and Astronautics Department. © 2009 Massachusetts Institute of Technology.

Lab report: A review of Aeronautics and Astronautics Department laboratories for 2008-2009

Information provided by the Research Laboratories and Research Centers.

Learning Laboratory | Aerospace Computational Design Laboratory | Aerospace Controls Laboratory | Communications and Networking Group | Complex Systems Research Laboratory | Gas Turbine Laboratory | Humans and Automation Laboratory | International Center for Air Transportation | Laboratory for Information and Decision Systems | Lean Advancement Institute | Man Vehicle Laboratory | Partnership for AiR Transportation Noise and Emissions Reduction | Space Propulsion Laboratory | Space Systems Laboratory | Technology Laboratory for Advanced Materials and Structures | Wireless Communication and Network Sciences Group | Wright Brothers Wind Tunnel

The AeroAstro Learning Laboratory

The AeroAstro Learning Lab, which has been adopted as a model by other universities around the world, compliments the department’s curriculum by provided spaces where students conceive, design, implement, and operate engineering systems in modern, team-based environments. The Learning Lab comprises four main areas. The Arthur and Linda Gelb Laboratory includes the Gelb Machine Shop, Instrumentation Laboratory, Mechanical Projects Area, Projects Space, and the Composite Fabrication-Design Shop. The Gelb Laboratory provides facilities for students to conduct hands-on experiential learning through diverse engineering projects. The Gelb facilities foster teamwork with a variety of resources (e.g., machining tools, electrical instrumentation, composites) to meet the needs of curricular and extracurricular projects. The Gerhard Neumann Hangar lets students work on large-scale projects that take considerable floor and table space. Typical of these projects are planetary rovers, a human-powered zero-g centrifuge, and UAVs. The structure also houses low-speed and supersonic wind tunnels. The Robert C. Seamans Jr. Laboratory includes a multipurpose room for meetings, presentations, lectures, videoconferences and distance learning. Two project offices support team study, group design work, online work, and telecommunication. A network operations area supports learning about the operations and management of networks. The Seamans Aerospace Library offers a collection of aerospace engineering resources with extensive digital information storage and retrieval capability. And, the Al Shaw Student Lounge provides a large space for social interaction and operations. The Digital Design Studio offers multiple computer stations arranged around reconfigurable conference tables. Here, students conduct engineering evaluations and design work, and exchange computerized databases as system and subsystem trades are conducted during the development cycle. Adjacent to the studio are the AA Department Design Room, and the Arthur W. Vogeley Design Room, which are reserved for student design teams.

Since its completion in 2001, the Learning Lab has spawned some of the departments’ most interesting student projects including the Mars Biosatellite Project, a car competing for a 200 mpg X PRIZE, a successful competitor in the DARPA Urban Challenge, a legged planetary rover, and a flying automobile.

The Experimental Projects course (16.62x) is a major customer of the teaching labs including experiments and projects in the Neumann Hangar’s low speed wind tunnel, and the workspaces in the Gelb Laboratory, with a number of excellent projects as outcomes. Two examples of work done in this hands-on environment are the investigation of reconfigurable wheels for planetary rovers and a study of bats’ wing cilia enabling these creatures’ highly maneuverable flight. The Neumann and Gelb facilities were also much used by the Robotics: Science and Systems I class, (16.415/6.14), which has participation from both AeroAstro and Electrical Engineering and Computer Science faculty.

Another example of Learning Lab use is the Space Systems Engineering capstone class (16.83x, which is using the Gelb lab to build a high Delta-V (~2-3 km/sec) micro-satellite. The motivation is to provide a low cost orbital transfer vehicle capability for maneuvering throughout the Earth-moon system. The goal of the class is to deliver in May 2009, a flight qualified vehicle for launch as an ESPA-Ring (a device that permits up to six small satellites to be carried along with a larger satellite) secondary payload. The project offers approximately 45 undergraduates hands-on experience in designing, building, and testing actual flight hardware.

back to top

Aerospace Computational Design Laboratory

The Aerospace Computational Design Laboratory mission is the advancement and application of computational engineering for aerospace system design and optimization. ACDL researches topics in advanced computational fluid dynamics and reacting flow, methods for uncertainty quantification and control, and simulation-based design techniques. The use of advanced computational fluid dynamics for complex 3D configurations allows for significant reductions in time from geometry-to-solution. Specific research interests include aerodynamics, aeroacoustics, flow and process control, fluid structure interactions, hypersonic flows, high-order methods, multi-level solution techniques, large eddy simulation, and scientific visualization. Research interests also extend to chemical kinetics, transport-chemistry interactions, and other reacting flow phenomena. Uncertainty quantification and control is aimed at improving the efficiency and reliability of simulation-based analysis as well as supporting decision under uncertainty. Research is focused on error estimation, adaptive methods, ODEs/PDEs with random inputs, certification of computer simulations, and robust statistical frameworks for estimating and improving physical models from observational data. The creation of computational decision-aiding tools in support of the design process is the objective of a number of methodologies the lab pursues. These include PDE-constrained optimization, real time simulation and optimization of systems governed by PDEs, multiscale optimization, model order reduction, geometry management, and fidelity management. ACDL applies these methodologies to aircraft design and to the development of tools for assessing aviation environmental impact.

ACDL faculty and staff include: Jaime Peraire (director), Doug Allaire, Marcelo Buffoni, David Darmofal, Mark Drela, Michalis Frangos, Robert Haimes, Youssef Marzouk, Cuong Nguyen, Karen Willcox, and David Willis.

back to top

Aerospace Controls Laboratory

The Aerospace Controls Laboratory researches autonomous systems and control design for aircraft, spacecraft, and ground vehicles. Theoretical research is pursued in areas such as decision making under uncertainty; path planning, activity and task assignment; estimation and navigation; sensor network design; and robust, adaptive, and nonlinear control. A key part of ACL is RAVEN (Real-time indoor Autonomous Vehicle test ENvironment), a unique experimental facility that uses a motion capture system to enable rapid prototyping of aerobatic flight controllers for helicopters and aircraft, robust coordination algorithms for multiple helicopters, and vision-based sensing algorithms for indoor flight. Recent research includes the following:

Robust Planning: ACL developed a distributed task planning algorithm that provides provably good conflict-free task allocations that are robust to poor network connectivity and inconsistencies in the situational awareness over the team. Recent work demonstrated key theoretical properties of this consensus-based bundle algorithm and extended the algorithm to enable tight linkages with a human operator.

Sensor Networks: ACL also addressed planning of mobile sensor networks (e.g., UAVs) to extract the maximal information from a complex dynamic environment such as a weather system. The primary challenge in this planning is the significant computational complexity due to the large size of the decision space and the cost of propagating the influence of sensing into the future. ACL developed a new set of methodologies that correctly and efficiently quantify the value of information in large information spaces, thus leading to a systematic architecture for planning information-gathering paths for mobile sensors in a dynamic environment.

Approximate Dynamic Programming: Markov Decision Processes are a natural framework for formulating many of the decision problems of interest to ACL, but the curse of dimensionality prevents the exact solution of problems of practical size. ACL has developed new approximate policy iteration algorithms that exploit flexible, kernel-based cost approximation architectures to quickly compute an approximate policy by minimizing the error incurred in solving Bellman's equation over a set of sample states. Experimental results demonstrating the applicability of this approach to several applications, including a multi-UAV coordination and planning problem.

Autonomous Vehicles: Working with Professor Emilio Frazzoli and team as part of the Agile Robotics for Logistics program, ACL has developed a planning and control framework capable of autonomous forklift operations in an unstructured, outdoor warehouse setting. The framework implemented uses closed-loop rapidly-exploring random trees for navigation, and a steering controller coupled with pallet and truck perception filters for manipulation of pallet loads. In a presentation at Fort Belvoir, VA in June 2009, the team's robotic forklift demonstrated robust path planning capabilities in a complex environment with uncertain terrain, dynamic obstacles (including humans), and unreliable GPS data. ACL faculty are Jonathan How and Steven Hall.

ACL faculty are Jonathan How and Steven Hall.

back to top

Communications and Networking Research Group

The primary goal of the Communications and Networking Research Group’s primary goal is the design of network architectures that are cost effective, scalable, and meet emerging needs for high data-rate and reliable communications. To meet emerging critical needs for military communications, space exploration, and internet access for remote and mobile users, future aerospace networks will depend upon satellite, wireless and optical components. Satellite networks are essential for providing access to remote locations lacking in communications infrastructure, wireless networks are needed for communication between untethered nodes (such as autonomous air vehicles), and optical networks are critical to the network backbone and in high performance local area networks.

The group is working on a wide range of projects in the area of data communication and networks with application to satellite, wireless, and optical networks. Over the past year, the group continued to work on a Department of Defense-funded project toward the design of highly robust telecommunication networks that can survive a massive disruption that may result from natural disasters or intentional attack. The project examines the impact of large scale, geographically correlated failures, on network survivability and design. In a related project, recently funded by the National Science Foundation, the group is studying survivability in layered networks; with the goal of preventing failures from propagating across layers.

The group also started work on a new Army MURI (Multidisciplinary University Research Initiative) project titled “MAASCOM : Modeling, Analysis, and Algorithms for Stochastic Control of Multi-Scale Networks.” The project deals with control of communication networks at multiple time-scales; and is a collaboration among MIT, Ohio State University, University of Maryland, University of Illinois, Purdue University, and Cornell University. CNRG's research crosses disciplinary boundaries by combining techniques from network optimization, queueing theory, graph theory, network protocols and algorithms, hardware design, and physical layer communications.

Eytan Modiano directs the Communications and Networking Research Group.

back to top

Complex Systems Research Laboratory

Increasing complexity and coupling, and the introduction of digital technology, present challenges for engineering, operations, and sustainment. The Complex Systems Research Lab designs system modeling, analysis, and visualization theory and tools to assist in the design and operation of safer systems with greater capability. To accomplish these goals, the lab applies a system's approach to engineering that includes building technical foundations and knowledge and integrating these with the organizational, political, and cultural aspects of system construction and operation.

While CSRL’s main emphasis is aerospace systems and applications, its research results are applicable to complex systems in such domains as transportation, energy, and health. Current research projects include accident modeling and design for safety, model-based system and software engineering, reusable, component-based system architectures, interactive visualization, human-centered system design, system diagnosis and fault tolerance, system sustainment, and organizational factors in engineering and project management.

Nancy Leveson directs the Complex Systems Research Laboratory.

back to top

Gas Turbine Laboratory

The MIT Gas Turbine Laboratory has had a worldwide reputation for research and teaching at the forefront of gas turbine technology for more than 60 years. GTL’s mission is to advance the state-of-the-art in fluid machinery for power and propulsion. The research is focused on advanced propulsion systems, energy conversion and power, with activities in computational, theoretical, and experimental study of: loss mechanisms and unsteady flows in fluid machinery, dynamic behavior and stability of compression systems, instrumentation and diagnostics, advanced centrifugal compressors and pumps for energy conversion, gas turbine engine and fluid machinery noise reduction and aero-acoustics, novel aircraft and propulsion system concepts for reduced environmental impact.

Examples of current and past research projects include: engine diagnostics and smart engines, aerodynamically induced compressor rotor whirl, a criterion for axial compressor hub-corner separation, axial and centrifugal compressor stability prediction, losses in centrifugal pumps, loss generation mechanisms in axial turbomachinery, the Silent Aircraft Initiative (a collaborative project with Cambridge University, Boeing, Rolls Royce, and other industrial partners), hybrid-wing-body airframe design and propulsion system integration for reduced environmental impact (NASA N+2), counter-rotating propfan aerodynamics and acoustics, an engine air-brake for quiet aircraft, inlet distortion noise prediction for embedded propulsion systems, novel aircraft concepts for 2035 (NASA N+3), high-speed micro gas bearings for MEMS turbomachinery, small gas turbines and energy concepts for portable power, and carbon-nano-tube bearings. Zoltan Spakovszky is the GTL director. Faculty, research staff and frequent visitors include John Adamczyk, Nick Cumpsty, Elena de la Rosa Blanco, Mark Drela, Fredric Ehrich, Alan Epstein, Edward Greitzer, Gerald Guenette, Jim Hileman, Bob Liebeck, Jack Kerrebrock, Choon Tan, and Ian Waitz.

back to top

Humans and Automation Laboratory

Research in the Humans and Automation Laboratory focuses on the multifaceted interactions of human and computer decision-making in complex socio-technical systems. With the explosion of automated technology, the need for humans as supervisors of complex automatic control systems has replaced the need for humans in direct manual control. A consequence of complex, highly-automated domains in which the human decision-maker is more on-the-loop than in-the-loop is that the level of required cognition has moved from that of well-rehearsed skill execution and rule following to higher, more abstract levels of knowledge synthesis, judgment, and reasoning. Employing human-centered design principles to human supervisory control problems, and identifying ways in which humans and computers can leverage the strengths of the other to achieve superior decisions together is HAL’s central focus.

Current research projects include investigation of human understanding of complex optimization algorithms and visualization of cost functions, collaborative human-computer decision making in time-pressured scenarios (for both individuals and teams), human supervisory control of multiple unmanned vehicles, and designing decision support displays for direct-perception interaction as well as assistive collaboration technologies, including activity awareness interface technologies and interruption assistance technologies. Lab equipment includes an experimental test bed for future command and control decision support systems, intended to aid in the development of human-computer interface (HCI) design recommendations for future unmanned vehicle systems. In addition, the lab hosts a state-of-the-art multi-workstation collaborative teaming operations center, as well as a mobile command and control experimental test bed mounted in a Dodge Sprint van awarded through the Office of Naval Research. HAL faculty include Mary L. Cummings (director), Nicholas Roy, and Thomas Sheridan.

HAL faculty include Mary "Missy" Cummings (director), Nicholas Roy, and Thomas Sheridan.

back to top

International Center for Air Transportation

The International Center for Air Transportation undertakes research and educational programs that discover and disseminate the knowledge and tools underlying a global air transportation industry driven by technologies. Global information systems are central to the future operation of international air transportation. Modern information technology systems of interest to ICAT include global communication and positioning; international air traffic management; scheduling, dispatch, and maintenance support; vehicle management; passenger information and communication; and real-time vehicle diagnostics. Airline operations are also undergoing major transformations.

Airline management, airport security, air transportation economics, fleet scheduling, traffic flow management, and airport facilities development, represent areas of great interest to the MIT faculty and are of vital importance to international air transportation. ICAT is a physical and intellectual home for these activities. ICAT, and its predecessors, the Aeronautical Systems Laboratory and Flight Transportation Laboratory, pioneered concepts in air traffic management and flight deck automation and displays that are now in common use.

ICAT faculty include R. John Hansman (director), Cynthia Barnhart, Peter Belobaba, and Amedeo Odoni.

back to top

Laboratory for Information and Decision Systems

The Laboratory for Information and Decision Systems is an interdepartmental research laboratory that began in 1939 as the Servomechanisms Laboratory, focusing on guided missile control, radar, and flight trainer technology. Today, LIDS conducts theoretical studies in communication and control, and is committed to advancing the state of knowledge of technologically important areas such as atmospheric optical communications, and multivariable robust control. Laboratory research volume is approximately $6.5 million, and the size of the faculty and student body has tripled in recent years. LIDS continues to host events, notably weekly colloquia that feature leading scholars from the laboratory’s research areas. . In addition to a fulltime staff of faculty, support personnel, and graduate assistants, scientists from around the globe visit LIDS to participate in its research program. Currently, 17 faculty members and approximately 100 graduate students are associated with the laboratory.

AeroAstro / LIDS faculty includes Emilio Frazzoli and Moe Win. Vincent Chan directs the laboratory.

back to top

Lean Advancement Initiative

The Lean Advancement Initiative is a unique learning and research consortium focused on enterprise transformation, and its members include key stakeholders from industry, government, and academia. LAI is headquartered in AeroAstro, works in close collaboration with the Sloan School of Management, and is managed under the auspices of the Center for Technology, Policy and Industrial Development, an MIT-wide interdisciplinary research center.

LAI began in 1993 as the Lean Aircraft Initiative when leaders from the U.S. Air Force, MIT, labor unions, and defense aerospace businesses created a partnership to transform the U.S. aerospace industry using an operational philosophy known as “lean.” LAI is now in its fifth and most important phase and has moved beyond a focus on business-unit level change toward a holistic approach to transforming entire enterprises across a variety of industries. Through collaborative stakeholder engagement, along with the development and promulgation of knowledge, practices, and tools, LAI enables enterprises to effectively, efficiently, and reliably create value in complex and rapidly changing environments. Consortium members work collaboratively through the neutral LAI forum toward enterprise excellence, and the results are radical improvements, lifecycle cost savings, and increased stakeholder value. LAI’s Educational Network includes more than 40 educational institutions in the United States, England, Italy, and Mexico and provides LAI members with unmatched educational outreach and training capabilities.

AeroAstro LAI participants include Deborah Nightingale (co-director), Earll Murman, Dan Hastings, Annalisa Weigel, and Sheila Widnall. John Carroll (co-director) joins LAI from the Sloan School of Management, and Warren Seering and Joe Sussman represent the Engineering Systems Division.

back to top

Man Vehicle Laboratory

The Man Vehicle Laboratory The Man Vehicle Laboratory optimizes human-vehicle system safety and effectiveness by improving understanding of human physiological and cognitive capabilities, and developing countermeasures and evidence-based engineering design criteria. Research is interdisciplinary, and uses techniques from manual and supervisory control, signal processing, estimation, sensory-motor physiology, sensory and cognitive psychology, biomechanics, human factors engineering, artificial intelligence, and biostatistics. MVL has flown experiments on Space Shuttle missions, the Mir Space Station, and on many parabolic flights, and developed experiments for the International Space Station.

This year, MVL has more affiliated graduate students (25) than at any time in its four decade history. Research sponsors include NASA, the National Space Biomedical Institute, the Office of Naval Research, the Department of Transportation’s FAA and FRA, the Center for Integration of Medicine and Innovative Technology, the Deshpande Center, and the MIT Portugal Program. Projects focus on advanced space suit design and dynamics of astronaut motion, adaptation to rotating artificial gravity environments, spatial disorientation and navigation, space teleoperation, design of aircraft and spacecraft displays, and controls and cockpit human factors. Current MVL research projects deal with cockpit displays, controls, and vehicle handling qualities for lunar landing; mathematical modeling of spatial disorientation; enhancing human performance in space teleoperation; assuring the effectiveness of astronaut lunar exploration sorties; planetary mission planning; fatigue detection in locomotive engineers; and advanced helmet designs for brain protection in sports and against explosive blasts.

This year, MVL received two new major collaborative grants: One to study the effects of fatigue in space teleoperation performance, being conducted collaboratively with Harvard colleagues at the Division of Sleep Medicine at the Brigham and Women’s Hospital. A second addresses human automation interactions and supervisory control of lunar landing vehicles. Both are four-year grants totaling $3.4 million. The MVL also collaborates with the Volpe Transportation Research Center, and the Jenks Vestibular Physiology Laboratory of the Massachusetts Eye and Ear Infirmary.

Physical space continues to be a major constraint: the laboratory relinquished room 37-135 to Kavli, and consolidated three other research projects in a renovated room 37-127. MVL faculty and several graduate students and posdocs were active in the Space, Policy, and Society Research Group this year and contributed to MIT’s white paper “The Future of Human Space Flight.” MVL faculty (Newman, Hoffman) and several graduate students took lead roles in planning the Department’s “Giant Leaps” celebration of the 40th anniversary of Apollo 11. The Laboratory’s “Bioastronautics Journal Seminar” enrolled 16 graduate students, with another ten faculty, students, staff and undergraduates participating as listeners. For the sixth year, MVL MIT Independent Activities Period activities included a popular course on Boeing 767 Systems and Automation and Aircraft Accident Investigation, co-taught with Brian N. Nield, Boeing’s chief engineer for the 777.

MVL faculty include Charles Oman (director), Jeffrey Hoffman, Dava Newman, and Laurence Young. They teach subjects in human factors engineering, space systems engineering, space policy, flight simulation, space physiology, aerospace biomedical engineering, the physiology of human spatial orientation, and leadership. The MVL also serves as the office of the Director for the NSBRI-sponsored Graduate Program in Bioastronautics, the Massachusetts Space Grant Consortium, NSBRI Sensory-Motor Adaptation Team, the MIT-Volpe Program in Transportation Human Factors, and the MIT Portugal Program’s Bioengineering Systems focus area.

back to top

The Partnership for AiR Transportation Noise and Emissions Reduction

The Partnership for AiR Transportation Noise and Emissions Reduction is an MIT-led FAA/NASA/Transport Canada-sponsored Center of Excellence. PARTNER fosters breakthrough technological, operational, policy, and workforce advances for the betterment of mobility, economy, national security, and the environment. PARTNER combines the talents of 9 universities, three federal agencies, and 53 advisory board members, the latter spanning a range of interests from local government, to industry, to citizens’ community groups. During 2008-09, PARTNER continued to expand its research portfolio. New research projects include Noise Exposure Response: Annoyance; Noise Exposure Response: Sleep Disturbance; Sound Structural Transmission; Environmental Cost-benefit Analysis of Ultra Low Sulfur Jet Fuels; Environmental Cost-benefit Analysis of Alternative Jet Fuels; Objective Measures to Support Airspace Management; Metrics for an Aviation CO2 Standard; Near-Term Operational Changes; Isotopic Analysis of Airport Air Quality; and International Collaborative Emissions Studies. New reports resulting from PARTNER research were released including studies of en route traffic optimization to reduce environmental impact, land use management and airport controls, large eddy simulations of contrails, and aircraft emissions-related pollutant health risk prioritization.

MIT’s most prominent role within PARTNER is developing research tools that provide rigorous guidance to policy-makers who must decide among alternatives to address aviation’s environmental impact. The MIT researchers collaborate with an international team in developing aircraft-level and aviation system level tools to assess the costs and benefits of different policies and R&D investment strategies. Other PARTNER initiatives in which MIT participates include exploring mitigating aviation environmental impacts via the use of alternative fuels for aircraft; studies of aircraft particulate matter microphysics and chemistry; and a study of reducing vertical separations required between commercial aircraft, which may enhance operating efficiency by making available more fuel/time efficient flight levels, and enhancing air traffic control flexibility and airspace capacity.

PARTNER MIT personnel include Ian Waitz, who directs the organization, James Hileman (associate director), Hamsa Balakrishnan, John Hansman, Thomas Reynolds, Karen Willcox, Malcolm Weiss, Christolph Wollersheim, William Litant (communications director), Jennifer Leith (program coordinator), and 10-15 graduate students.

back to top

Space Propulsion Laboratory

The Space Propulsion Laboratory, part of the Space Systems Lab, studies and develops systems for increasing performance and reducing costs of space propulsion. A major area of interest to the lab is electric propulsion in which electrical, rather than chemical energy propels spacecraft. The benefits are numerous, hence the reason electric propulsion systems are increasingly applied to communication satellites and scientific space missions. In the future, these efficient engines will allow exploration in more detail of the structure of the universe, increase the lifetime of commercial payloads, and look for signs of life in far away places. Areas of research include Hall thrusters; plasma plumes and their interaction with spacecraft; electrospray physics, mainly as it relates to propulsion; microfabrication of electrospray thruster arrays; Helicon and other radio frequency plasma devices; and space electrodynamic tethers.

Manuel Martinez-Sanchez directs the SPL research group, and Paulo Lozano and Oleg Batishchev are key participants.

back to top

Space Systems Laboratory

Space Systems Laboratory research contributes to the exploration and development of space. SSL’s mission is to explore innovative space systems concepts while training researchers to be conversant in this field. The major programs include systems analysis studies and tool development, precision optical systems for space telescopes, microgravity experiments operated aboard the International Space Station, and robotic operations for Mars and beyond. Research encompasses a wide array of topics that together comprise a majority of space systems: systems architecting, dynamics and control, active structural control, thermal analysis, space power and propulsion, microelectromechanical systems, modular space systems design, micro-satellite design, real-time embedded systems, and software development.

Major SSL initiatives study the development of formation flight technology. Significant research has been conducted using the Synchronized Position Hold Engage and Reorient Experimental Satellites facility, in the areas of distributed satellites systems, including telescope formation flight, docking, and reconfiguration. The SPHERES facility consists of three small satellites 20 centimeters in diameter that have flown inside the International Space Station since May 2006. They are used to test advanced control software in support of future space missions that require autonomous inspection, docking, assembly and precision formation flight. Over the past three years we have successfully completed more than 16 test sessions with six astronauts. The pending Space Act Agreement will make SPHERES a permanent National Facility aboard the International Space Station.

SSL is in the second year of the SEA program; the Space Engineering Academy will immerse junior Air Force officers in the actual development of flight hardware providing first hand experience in implementing best (and avoiding worst) practices in space system procurement. The SEA will engage AF graduate students in a two year, end-to-end, flight-worthy satellite conceive, design, build, integrate, test, and operate program. Lessons learned in the three-semester senior capstone satellite design-build course (16.83x) and the construction, testing, and subsequent analysis of the Orbital Surveillance Maneuverability Vehicle have contributed to the development of the graduate level SEA program.

The Electromagnetic Formation Flight testbed is a proof-of-concept demonstration for a formation flight system that has no consumables; a space-qualified version is under study. The MOST project studies multiple architectures for lightweight segmented mirror space telescopes using active structural control; its final product will be a ground-prototype demonstrator. Multiple programs research the synthesis and analysis of architectural options for future manned and robotic exploration of the Earth-Moon-Mars system, as well as real options analysis for Earth-to-Orbit launch and assembly. SSL continues to lead the development of methodologies and tools for space logistics. In 2007, SpaceNet 1.4 was accredited by the NASA Constellation Program as an approved software tool for modeling lunar exploration missions and campaigns. SSL contributed several important studies to the Constellation Program Integrated Design and Analysis Cycles. Together with the Jet Propulsion Laboratory, SSL is editing a new AIAA Progress in Aeronautics and Astronautics Volume on Space Logistics that summarizes the current state of the art and future directions in the field.

Jointly with Aurora Flight Sciences, SSL is developing prototypes for automated asset tracking and management systems for ISS based on radio frequency identification technology. Innovative exploration logistics container concepts were tested at the Mars Desert Research Station in Utah in February 2008.

SSL personnel include David W. Miller (director), John Keesee, Olivier de Weck, Jeffrey Hoffman, Edward F. Crawley, Daniel Hastings, Annalisa Weigel, Manuel Martinez-Sanchez, Paulo Lozano, Alvar Saenz-Otero, Paul Bauer (research specialist), SharonLeah Brown (administrator and outreach coordinator), Brían O’Conaill (fiscal officer), Marilyn E. Good (administrative assistant), and Deatrice Moore (financial assistant).

back to top

Technology Laboratory for Advanced Materials and Structures

A dedicated and multidisciplinary group of researchers constitute the Technology Laboratory for Advanced Materials and Structures. They work cooperatively to advance the knowledge base and understanding that will help facilitate and accelerate the advanced materials systems development and use in various advanced structural applications and devices.

The laboratory has broadened its interests from a strong historical background in composite materials, and this is reflected in the name change from the former Technology Laboratory for Advanced Composites. A significant initiative involves engineering materials systems at the nanoscale, particularly focusing on aligned carbon nanotubes as a constituent in new materials and structures. This initiative is in partnership with industry through the Nano-Engineered Composite aerospace STructures (NECST) Consortium founded at MIT in 2007. The research interests and ongoing work in the laboratory thus represent a diverse and growing set of areas and associations. Areas of interest include:

  • nano-engineered hybrid advanced composite design, fabrication, and testing
  • fundamental investigations of mechanical and transport properties of polymer nanocomposites (PNCs)
  • characterization of carbon nanotube bulk engineering properties • carbon nanotube synthesis and governing mechanism
  • composite tubular structural and laminate failures • MEMS-scale mechanical energy harvesting modeling, design, and testing
  • durability testing of structural health monitoring systems
  • hermostructural design, manufacture, and testing of composite thin films and associated fundamental mechanical and microstructural characterization
  • continued efforts on addressing the roles of lengthscale in the failure of composite structures
  • numerical and analytical solid modeling to inform, and be informed by, experiments
  • continued engagement in the overall issues of the design of composite structures with a focus on failure and durability, particularly within the context of safety

In supporting this work, TELAMS has complete facilities for the fabrication of structural specimens such as coupons, shells, shafts, stiffened panels, and pressurized cylinders, made of composites, active, and other materials. A recent addition includes several reactors for synthesizing carbon nanotubes. TELAMS testing capabilities include a battery of servohydraulic machines for cyclic and static testing, a unit for the catastrophic burst testing of pressure vessels, and an impact testing facility. TELAMS maintains capabilities for environmental conditioning, testing at low and high temperature, and in hostile and other controlled environments. There are facilities for nano and microscopic inspection, nondestructive inspection, high-fidelity characterization of MEMS materials and devices, and a laser vibrometer for dynamic device and structural characterization.

With its, linked, and coordinated efforts, both internal and external, the laboratory continues its commitment to leadership in the advancement of the knowledge and capabilities of the composites and structures community through education of students, original research, and interactions with the community. There has been a broadening of this commitment consistent with the broadening of the interest areas in the laboratory. This commitment is exemplified in the newly formed NECST Consortium, an industry-supported center for developing hybrid advanced polymeric composites. In all these efforts, the laboratory and its members continue their extensive collaborations with industry, government organizations, other academic institutions, and other groups and faculty within the MIT community.

TELAMS faculty include Paul A. Lagacé (director), Brian L. Wardle, and visitors Antonio Miravete, and Luis Rocha.

back to top

Wireless Communication and Network Sciences Group

The Wireless Communication and Network Sciences Group is involved in multidisciplinary research that encompasses developing fundamental theories, designing algorithms, and conducting experiments for a broad range of real-world problems. Its current research topics include location-aware networks, network synchronization, aggregate interference, intrinsically-secure networks, time-varying channels, multiple antenna systems, ultra-wide bandwidth systems, optical transmission systems, and space communications systems. Details of a few specific projects are given below.

The group is working on location-aware networks in GPS-denied environments, which provide highly accurate and robust positioning capabilities for military and commercial aerospace networks. It has developed a foundation for the design and analysis of large-scale location-aware networks from the perspective of theory, algorithms, and experimentation. This includes derivation of performance bounds for cooperative localization, development of a geometric interpretation for these bounds, and the design of practical, near-optimal cooperative localization algorithms. It is currently validating the algorithms in a realistic network environment through experimentation in the lab.

The lab has been engaged in the development of a state-of-the-art apparatus that enables automated channel measurements. The apparatus makes use of a vector network analyzer and two vertically polarized, omni-directional wideband antennas to measure wireless channels over a range of 2–18 GHz. It is unique in that extremely wide bandwidth data, more than twice the bandwidth of conventional ultra-wideband systems, can be captured with high-precision positioning capabilities. Data collected with this apparatus facilitates the efficient and accurate experimental validation of proposed theories and enables the development of realistic wideband channel models. Work is underway to analyze the vast amounts of data collected during an extensive measurement campaign that was completed in early 2009.

Lab students are also investigating physical-layer security in large-scale wireless networks. Such security schemes will play increasingly important roles in new paradigms for guidance, navigation, and control of unmanned aerial vehicle networks. The framework they have developed introduces the notion of a secure communications graph, which captures the information-theoretically secure links that can be established in a wireless network. They have characterized the s-graph in terms of local and global connectivity, as well as the secrecy capacity of connections. They also proposed various strategies for improving secure connectivity, such as eavesdropper neutralization and sectorized transmission. Lastly, they analyzed the capability for secure communication in the presence of colluding eavesdroppers.

Lab director Moe Win and a team of undergraduate and graduate students competed in the Institute of Soldier Nanotechnologies Soldier Design Competition. In this contest they demonstrated the first cooperative location-aware network for GPS-denied environments, using ultra-wideband technology, leading to the team winning the L3 Communications Prize. They are now advancing the localization algorithms in terms of scalability, robustness to failure, and tracking accuracy.

To advocate outreach and diversity, the group is committed to attracting undergraduates and underrepresented minorities, giving them exposure to theoretical and experimental research at all levels. For example, the group has a strong track record for hosting students from both the Undergraduate Research Opportunities Program and the MIT Summer Research Program (MSRP). Professor Win maintains dynamic collaborations and partnerships with academia and industry, including the University of Bologna and Ferrara in Italy, University of Lund in Sweden, University of Oulu in Finland, National University of Singapore, Nanyang Technological University in Singapore, Draper Laboratory, the Jet Propulsion Laboratory, and Mitsubishi Electric Research Laboratories.

Moe Win directs the Wireless Communication and Network Sciences Group.

Wright Brothers Wind Tunnel

Since its opening in September 1938, The Wright Brothers Wind Tunnel has played a major role in the development of aerospace, civil engineering and architectural systems. In recent years, faculty research interests generated long-range studies of unsteady airfoil flow fields, jet engine inlet-vortex behavior, aeroelastic tests of unducted propeller fans, and panel methods for tunnel wall interaction effects. Industrial testing has ranged over auxiliary propulsion burner units, helicopter antenna pods, and in-flight trailing cables, as well as concepts for roofing attachments, a variety of stationary and vehicle mounted ground antenna configurations, the aeroelastic dynamics of airport control tower configurations for the Federal Aviation Authority, and the less anticipated live tests in Olympic ski gear, space suits for tare evaluations related to underwater simulations of weightless space activity, racing bicycles, subway station entrances, and Olympic rowing shells for oarlock system drag comparisons.

In its nearly 70 years of operations, Wright Brothers Wind Tunnel work has been recorded in hundreds of theses and more than 1,000 technical reports.

WBWT faculty and staff include Mark Drela and Richard Perdichizzi.

back to top

Massachusetts Institute of Technology, 77 Massachusetts  Avenue, 33 - 207, Cambridge, MA 02139

Contact|Site Map|Home