ABSTRACT

The impact of representative paths of engine degradation on aircraft cruise NO\textsubscript{x} emissions was investigated. Engine cycles corresponding to older, current, and future subsonic and supersonic technologies were developed and used to determine the sensitivities of combustor conditions to various changes in component efficiencies and flow capacities due to aging. Estimates of relative changes in NO\textsubscript{x} emissions levels were made using established empirical correlations that relate emissions to combustor flow parameters. The analysis methodology was validated through comparisons to test data where available.

It was found that the sensitivity of specific fuel consumption (SFC) and combustor flow parameters to component aging is enhanced by increases in cycle temperatures and pressures. This ultimately results in a higher sensitivity of NO\textsubscript{x} emissions to engine degradation for cycles representative of more advanced technology. At constant thrust, turbine degradation typically acts to decrease NO\textsubscript{x} emissions while compressor aging results in an increase in NO\textsubscript{x} emissions; both occurring at the expense of SFC. Sample degradation scenarios were used to highlight how the sensitivity between turbine and compressor aging affects. Changes in NO\textsubscript{x} emissions in the -1% to +4% range were predicted for typical aging scenarios. The applicability of these results to the formulation of aircraft emissions inventories is considered.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P\textsubscript{comb}</td>
<td>combustion chamber pressure (Pa)</td>
</tr>
<tr>
<td>P\textsubscript{T}</td>
<td>stagnation pressure (Pa)</td>
</tr>
<tr>
<td>SFC</td>
<td>specific fuel consumption (kg/kN)</td>
</tr>
<tr>
<td>t\textsubscript{res}</td>
<td>combustor residence time (s)</td>
</tr>
<tr>
<td>T</td>
<td>temperature (K)</td>
</tr>
<tr>
<td>T\textsubscript{adiab}</td>
<td>adiabatic flame temperature (K)</td>
</tr>
<tr>
<td>T\textsubscript{T}</td>
<td>stagnation temperature (K)</td>
</tr>
</tbody>
</table>

Subscripts

2  fan inlet
3  compressor exit/combustor inlet
4  combustor exit/turbine inlet
5  low-pressure turbine exit

1. OBJECTIVE AND APPROACH

Several programs of research initiated within the last decade in both the United States and Europe focus on understanding the ozone and climate impacts of supersonic and, more recently, subsonic aircraft emissions (NASA-ICAO, 1996). Oxides of nitrogen (NO\textsubscript{x}) emissions continue to be the primary foci of environmental concern with regards to the atmosphere because of their potential effects on ozone concentrations in both the troposphere and the stratosphere. The development of global emissions inventories, in situ exhaust sampling campaigns, ground level engine tests, and modeling efforts organized to characterize the exhaust composition of both individual engines and global fleets are central components to these assessment efforts.

The objective of this study was to determine the effect of engine aging on NO\textsubscript{x} emissions and thus to determine the extent of the uncertainty introduced by engine aging in emissions databases. A second goal was to examine how these effects change as gas turbine technology evolves.

Presented at the International Gas Turbine & Aeroengine Congress & Exhibition
Orlando, Florida — June 2–5, 1997
Because of the expense and length of time required to complete exhaust characterization tests, it is important to enumerate and classify sources of uncertainty that may complicate the interpretation of results. One basic uncertainty that affects all characterization data is the change in exhaust speciation due to the effects of aging on engine operation. However, an account of these effects is usually not undertaken. For example, in the International Civil Aviation Organization Engine Exhaust Emissions Data Bank (ICAO, 1995), which is the primary source of input for global atmospheric models used to predict the effects of aircraft on the atmosphere, the majority of data reported is based on tests conducted using new production engines or dedicated test engines. No systematic account of the effects of engine age or maintenance practice is provided. With an understanding of the effects of engine aging on aircraft NOx emissions, scientific assessments of aircraft emissions can move to address the consequences of uncertainty in exhaust characterization and ultimately, any subsequent effects on the results of global atmospheric modeling.

The only publicly available study of the effects of engine aging on carbon monoxide (CO), hydrocarbons (HC), and NOx emissions was performed in the early 1970’s to support the formulation of early emissions certification requirements (Platt and Norster, 1978; Platt and Norster, 1979). Efforts to understand variability in engine emissions due to maintenance procedures were also conducted (Becker et al., 1980; Frings, 1980). The results of these studies are discussed in greater detail in Section 2. Despite the importance of these studies, no publicly reported effort to broaden and update this limited empirical database has been undertaken.

In lieu of an adequate empirical database from which to work, a modeling approach was employed in this study to provide some insight into the effects of engine aging on NOx emissions. Representative cycles corresponding to older, current, and future subsonic and supersonic technologies were developed. These cycles were used to determine the sensitivities of combustor flow conditions to various changes in component efficiencies and flow capacity that typically result from engine aging. Focus was given to the cruise condition. The resulting changes in NOx emissions levels were determined using established empirical correlations that relate emissions to combustor flow conditions. This analysis methodology was validated through comparisons to test data where available.

To set the context for discussion of the effects of engine deterioration on NOx emissions, Section 2 provides an overview of the existing data on overall engine performance and emissions change with aging, as well as emissions variability for both new and maintained engines. Methods for correlating engine deterioration with changes in performance parameters and practical limits to losses incurred before overhaul are also presented. Section 3 discusses the research methodology employed in the current study, including the development and validation of representative engine cycles, methods for correlating changes in performance parameters with changes in NOx emissions levels, and the models and scenarios for engine aging employed. Section 4 presents and discusses results for sensitivity to component deterioration, technological trends, and results for representative scenario calculations. Section 5 contains a discussion of the importance of these results with regard to the accuracy of emissions databases. Section 6 closes the paper with a summary and suggestions for future research.

2. OVERVIEW OF ENGINE AGING, MAINTENANCE, AND OPERATIONAL VARIABILITY

There are several contexts in which to consider the effects of aging on engine operation. Knowledge of aging effects is important for monitoring the health and diagnosing the maintenance needs of gas turbine engines, for the development of flight deck instrumentation that conveys the correct state of engine operation, and for the development of regulatory certification requirements for aircraft engines with respect to various exhaust constituents. Deciphering the modes of component degradation and failure through measurements of key engine parameters is basic to the conduct of all of these activities. These engine parameters determine emissions levels both directly and indirectly.

2.1 Engine Aging

Engine deterioration can be characterized as the summation of short-term and long-term effects, both of which result in performance losses. These trends are shown schematically in Figure 1 taken from Wulf (1980). Typically, a rapid loss occurs during the engine’s initial service flight followed by a gradual performance degradation until the engine is refurbished. For both economic and mechanical reasons, only part of this total degradation is restored in the maintenance process resulting in an engine returned to service with a reduced level of performance. As the engine continues operation, these unrecovered losses increase with additional maintenance cycles. A portion of the long term losses are cyclically restored with each repair.

![Figure 1: A model of engine deterioration. [Adapted from Wulf (1980), Fig. 3.1]](image-url)
For the GE CF6-50 engine, Wulf (1980) found that short-
term deterioration was more closely associated with the engine
design itself rather than the operational use of the engine. Long-
term losses were more related to the operational characteristics
of the aircraft employing the engine and therefore were more ap-
propriately correlated with the fleet rather than the engine. Other
studies indicate that for some individual components, degrada-
tion is correlated with number of cycles rather than hours in use
(Richardson et al., 1979).

As a practical matter, tracing the degradation of an engine to
its cause is a difficult prospect. Engine performance deterioration
is associated with several aging conditions that are of a time-de-
veloping nature. These include physical distortion of engine parts
due to corrosion, the ingestion of foreign objects, the buildup of
deposits (fouling), erosion of parts, and general wear. Degradation
is empirically manifest as changes in measurable engine pa-
rameters such as exhaust gas temperature (EGT), fuel consump-
tion (as specific fuel consumption, SFC, or fuel flow, FF), turbine
inlet temperature ($T_{in}$), low or high pressure spool speeds (N1 or
N2 respectively), and/or engine pressure ratio (EPR), as well as
changes in engine performance bounds such as the stall margin.
Methods used to investigate mechanical performance include vi-
bational analyses and oil consumption tests. A key difficulty lies
in associating a specific condition or combination of problems
with measured performance parameters. Because this capability
is important for bounding the changes in NOx that might reason-
ablely be expected, Section 2.2 details research conducted on this
issue.

### 2.2 Methods for Correlating Aging with Changes in Performance Parameters

Before the introduction of analytically oriented techniques,
engine degradation was understood through empirically devel-
oped relationships between engine parameters and degradation
effects as revealed through inspection and, eventually, through
in-flight or ground testing performance data (Arnold and Gast,
1970; Treager, 1979). Trend plots were used to map the deviation
of engine parameters from a manufacturer specified baseline to
better recognize the existence of a fault. However, this type of
analysis generally did not provide enough information to specify
what composed the fault (Aker and Saravanamutto, 1989).

More analytically driven studies geared towards prediction
of fault occurrences and levels of degradation led to the develop-
ment of methods based on an understanding of engine cycles.
Urban (1974) proposed a linear analysis method where measur-
able parameter changes are associated with changes in the perfor-
ance characteristics of engine components using fundamental
performance equations specific to a particular engine. Recogniz-
ing limitations in the trend plotting and linear analysis approaches,
Saravanamutto and MacIsaac (1983) proposed a nonlinear meth-
odology based on cycle deck analysis to be used in concert with
trend analyses. Like Urban, Saravanamutto and MacIsaac pro-
posed to show changes in critical engine parameters through cor-
relation with changes in measurable parameters. They also sug-
gested that with the use of cycle decks employing generic com-
ponent performance maps, degradation could be associated with
particular problems through the use of fault matrices. Using fault
matrices, cycle deck modeling results were typically presented as
a grid of faults associated with qualitative (e.g. visual representa-
tions of increases or decreases in measurable parameters) rather
than quantitative trends in measurable engine parameters. Early
use of fault matrices employed assumptions about the effects of a
fault in terms of component efficiencies and flow capacities with-
out empirical verification (MacIsaac, 1992). Importantly,
Saravanamutto and MacIsaac showed that engine models could
be employed as a predictive rather than a solely diagnostic tool
using models of faults constructed as combinations of efficiency
and flow capacity changes. A similar approach was employed in
the current study. Cycle deck calculations with generic compo-
nent maps were used and engine degradation was modeled via
changes in flow capacity and efficiency.

In response to the lack of rigorous connection with actual
deterioration circumstances, recent efforts have concentrated on
developing models of specific faults that can be verified, prima-
arily for the case of compressor fouling. Although the intention of
the current study is to provide only a representative analysis of
the effects of component degradation on emissions, more quanti-
tative analysis associated with specific faults can be developed.
Using the methods reviewed above, several authors have attempted
to model or show the effects of various types of degradation on
engine performance (Saravanamutto and MacIsaac, 1983;
Saravanamutto and Lakshminarasimha, 1985; Lakshmin-
arasimha and Saravanamutto, 1986; Dupuis et al., 1986; Aker
and Saravanamutto, 1989). Among these, Dupuis et al. conclude
that the superposition of individual component fault effects on an
engine can suffice for a multiple component fault simulation with
a high degree of accuracy. Papers within the last few years have
given more detailed accounts of individual fault effects (Stevesen
and Saravanamutto, 1995; Singh et al., 1996).

### 2.3 Maintenance Practice and Restoration of Losses

Aircraft engines traditionally have been maintained accord-
ing to a manufacturer suggested schedule tempered by inspection
of the engine before maintenance by the operator and in a manner
approved by the Federal Aviation Administration (FAA) (Treager,
1979). In aircraft applications, maintenance practices are usually
predicated on thresholds of allowable engine degradation deter-
mined by economic considerations which can be understood as a
balance between the cost of inefficient aircraft operation and main-
tenance expenditures, and safety concerns which exist as more
absolute bounds on allowable deterioration. This method of per-
duction maintenance only when needed, known as on-condition
maintenance, requires a close monitoring of measurable engine
parameters as well as detailed inspections of engine components
during scheduled visits, taking advantage of further opportuni-
ties for inspection when they arise.
There has been little reported research on the effectiveness of maintenance procedures in correcting faults and restoring losses. Proprietary concerns of aircraft engine manufacturers limit the disclosure of such competitive information. Engine overhauls may cost as much as $1M for a single engine and all losses may not be recovered in the maintenance cycle while the engine remains usable for service. For example, Wulf (1980) found that it was economical to restore only 70% of long-term unrestored losses.

Despite a lack of data, representative limits of the extent to which engines may degrade can be established. For example, Urban (1974) suggests typical limits on changes in engine parameters and reasons for their existence for a dual-spool turbofan engine, as shown in Table 1.

Table 1: Typical Limits on Changes in Engine Parameters for a Turbofan Engine
[Adapted from Urban (1974), Fig. 14, p. 19-14]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan mass flow</td>
<td>-5.0%</td>
<td>LPC surge</td>
</tr>
<tr>
<td>LPC mass flow</td>
<td>-8.0%</td>
<td>High turbine temp.</td>
</tr>
<tr>
<td>Fan efficiency</td>
<td>-5.0%</td>
<td>High turbine temp.</td>
</tr>
<tr>
<td>HPC mass flow</td>
<td>-8.0%</td>
<td>High RPM</td>
</tr>
<tr>
<td>HPC efficiency</td>
<td>-4.5%</td>
<td>High turbine temp.</td>
</tr>
<tr>
<td>HPT nozzle effective area</td>
<td>6.0%</td>
<td>LPC surge</td>
</tr>
<tr>
<td>HPT nozzle effective area</td>
<td>-6.0%</td>
<td>HPC surge</td>
</tr>
<tr>
<td>HPT efficiency</td>
<td>-5.0%</td>
<td>High turbine temp.</td>
</tr>
<tr>
<td>LPT nozzle effective area</td>
<td>8.0%</td>
<td>Low thrust</td>
</tr>
<tr>
<td>LPT nozzle effective area</td>
<td>-6.0%</td>
<td>LPC surge</td>
</tr>
<tr>
<td>Combustor exit temp.</td>
<td>2.5%</td>
<td>Turbine life</td>
</tr>
<tr>
<td>Specific fuel consumption</td>
<td>4.0%</td>
<td>Economy</td>
</tr>
</tbody>
</table>

Typically, component efficiency losses and flow capacity changes result in hotter cycle temperatures indicated by a rise in EGT. An overhaul condition is roughly suggested by a rise in EGT between 30 - 50 K and/or an increase in SFC of between 2 - 4 % (Urban, 1974; Treager, 1979; Frith, 1993). Given this data, we have chosen to use a 3% increase in the SFC as a reasonable degradation limit with which to investigate the effects of engine aging on NOx emissions.

2.4 Sources and Extent of Engine Emissions Variability

There are many sources of engine emissions variability, including manufacturing differences in new engines, different aging characteristics for individual engines, and changes in fuel content, atmospheric conditions, or operational use. Extracting a trend that would suggest changes in emissions over a period of time must be undertaken amidst the uncertainty associated with these various factors. There have been a limited number of studies considering the variability of emissions in new engines and the effects of maintenance on overall emissions levels. Table 2 summarizes published data regarding emissions variability. Although not always undertaken, corrections are usually made for differences in ambient conditions and, where possible, for changes in fuel content, in order for the data to be comparable. However, Lyon, Dodds, and Bahr (1980) found that the variability of NOx emissions was only slightly influenced by fuel type, fuel content, or sampling methods. Despite the lack of consistency in methodologies and reported units among the studies summarized in Table 2, the data provides some indication of the expected magnitudes of variability. The typical standard deviation for the data in Table 2 is 5-6% in the NOx emissions index (EINOx = gNOx (as NO2)/kg fuel burned) for the power settings closest to the cruise condition, but there is a wide range represented in the data.

Also shown in Table 2 are measurements obtained immediately after maintenance has been performed. In particular, Becker et al. (1980) investigated the exhaust characteristics of a sample of seven JT8D-7A gas turbines after overhaul finding that properly overhauled engines should have emissions levels and variability similar to new engines. Standard deviations for NOx emissions ranged from 7.1% at 100% rated takeoff power to 40.7% at idle. Collectively, these data combine to give a standard deviation of 14.5% in the NOx EPA parameter (EPAP). Becker et al. also present data on variability among new production engines in graphical form indicating an approximately 23.5% standard deviation in the NOx EPAP for a much larger sample of newly manufactured engines. An earlier test of the CF6-50 conducted by Frings (1980) showed a 2.8% standard deviation in the NOx EPAP emissions level among a sample of engines tested after undergoing various levels of maintenance.

The emissions certification process also provides some insight into expected levels of variability in engines. Studies on engine variability (e.g. Table 2) were incorporated into the formulation of emissions certification procedures for newly manufactured engines because verification of compliance was a central issue in the promulgation of emissions requirements (43 FR 58, 1978; 47 FR 251, 1982; 55 FR 155, 1990; ICAO, 1993). These procedures are based on a composite distribution of historical engine to engine variability and imply that the NOx emissions measured for a single engine test would be expected fall within an interval equivalent to 31.8% of the mean NOx kg/kN (e.g. Dp/Foo or EPAP) test result with 90% confidence.

Comparisons of emissions variability between maintained engines and new engines (e.g. Becker et al., 1980; Frings, 1980) do not directly address changes in the average emissions levels that occur as a result of engine aging. It is this point which is of primary interest for the current study. Only one report found by the authors addresses this issue. Platt and Norster (1979) published emissions degradation factors per 1000 hours of engine use in terms of EIIs and EPAPs for NO, CO, and HC. A summary of the Platt and Norster results is given in Table 3 for the engines tested. No results for the cruise condition were presented.

The data in Table 3, using a constant thrust power setting, indicate a decrease in NO emissions as a function engine age,
with the exception of the increase shown for the RB211 engine. Platt and Norster (1979) addressed the reason for this perhaps counter-intuitive trend explaining that, “significant deterioration of the turbine stator vanes would cause the operating line of the engine to move away from the surge line, resulting in an increased velocity through the combustor and less time for NO formation.” Thus, the reduction in NO was associated with an increase in mass flow due to hot section damage. Indeed, as will be shown later in this paper, turbine damage is expected to result in a lower NOx emissions rate. The RB211 result of increased emissions with age was attributed to increased operating temperatures rather than reduced residence time, which would be consistent with compressor deterioration as discussed in Section 4.

3. RESEARCH METHODOLOGY

Having considered the available information on maintenance practice, new and maintained engine emissions variability, and performance changes resulting from deterioration, the rest of the paper deals more directly with the execution of the present study. The following three sections discuss the development and validation of the representative cycles used to simulate deterioration (3.1), methods for correlating engine performance with emissions levels (3.2), and the application of these correlative methods in the study (3.3).

3.1 Development and Validation of Representative Engine Cycles

Four different engine cycles were developed for use in this study. Three cycles represent subsonic technologies and the fourth cycle represents one possibility for a future supersonic transport engine design. The CF6-50C2 was used as an example of older in-use technology and a cycle modeled after the GE90-85B engine was used to represent the most current in-use technology. A next-generation subsonic engine cycle, here called the Advanced...
Table 3: NO Emissions Degradation Factors
[Adapted from Platt and Norster (1979), Table 45, p. 180]

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>No. Units</th>
<th>EI at Climb</th>
<th>EPAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT8D-9</td>
<td>14</td>
<td>-3.3</td>
<td>±3.0</td>
</tr>
<tr>
<td>JT8D-7</td>
<td>18</td>
<td>-3.8</td>
<td>±2.3</td>
</tr>
<tr>
<td>JT3D-7</td>
<td>9</td>
<td>-1.0</td>
<td>±1.9</td>
</tr>
<tr>
<td>JT3D-3B</td>
<td>13</td>
<td>-1.2</td>
<td>±3.1</td>
</tr>
<tr>
<td>JT9D-3A</td>
<td>9</td>
<td>-3.9</td>
<td>±3.6</td>
</tr>
<tr>
<td>RB211</td>
<td>10</td>
<td>5.3</td>
<td>±7.5</td>
</tr>
<tr>
<td>CF700</td>
<td>9</td>
<td>-14.3</td>
<td>±12.7</td>
</tr>
</tbody>
</table>

Degradation Factor (% per 1000 hrs.)

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>No. Units</th>
<th>Avg. Value</th>
<th>Deviation</th>
<th>Avg. Value</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT8D-9</td>
<td>14</td>
<td>-3.3</td>
<td>±3.0</td>
<td>2.3</td>
<td>±2.6</td>
</tr>
<tr>
<td>JT8D-7</td>
<td>18</td>
<td>-3.8</td>
<td>±2.3</td>
<td>-3.2</td>
<td>±4.8</td>
</tr>
<tr>
<td>JT3D-7</td>
<td>9</td>
<td>-1.0</td>
<td>±1.9</td>
<td>-4.2</td>
<td>±3.6</td>
</tr>
<tr>
<td>JT3D-3B</td>
<td>13</td>
<td>-1.2</td>
<td>±3.1</td>
<td>-3.1</td>
<td>±2.6</td>
</tr>
<tr>
<td>JT9D-3A</td>
<td>9</td>
<td>-3.9</td>
<td>±3.6</td>
<td>-5.7</td>
<td>±4.5</td>
</tr>
<tr>
<td>RB211</td>
<td>10</td>
<td>5.3</td>
<td>±7.5</td>
<td>3.6</td>
<td>±5.9</td>
</tr>
<tr>
<td>CF700</td>
<td>9</td>
<td>-14.3</td>
<td>±12.7</td>
<td>-12.7</td>
<td>±18.3</td>
</tr>
</tbody>
</table>

Subsonic Engine (ASE), was established based on parameters from a cycle deck developed through a NASA-industry study (Liebeck et al., 1995). The ASE cycle is representative of an engine for a medium range, 275 seat passenger aircraft with an entry-into-service of 2005. Finally, the supersonic cycle was based on engine parameters for a possible future European high-speed civil transport (EHSCT) with a Mach number of 2.0 as described by Habrard (1990). Table 4 gives an overview of the primary characteristics of these four cycles. Note that these cycles span a range of combustor inlet pressures (P_{T3} = 906-1371 kPa at cruise) and temperatures (T_{T3} = 732-954 K at cruise), and involve two types of engines; subsonic turbofans, including ultra-high bypass configurations, and a supersonic turbojet.

These cycles were developed using the commercially available cycle deck GASTURB (Kurzke, 1995). Cycles were specified as completely as possible, employing data available in the open literature for primary (e.g. bypass ratio, pressure ratios, total mass flow, and T_{T4}) and secondary (e.g. bleederts, cooling air, etc.) cycle parameters. Cycles were matched to performance data primarily through iterations on values for T_{T4}, and less so through alterations of component efficiencies, pressure ratios, and some secondary parameters. Several minor parameters were set to typical values. Cycle results were compared to typical published performance data for both design and off-design conditions resulting in the estimated differences in thrust and SFC shown in Table 5.

The differences between the results of the representative cycles and the published information are due primarily to the lack of data available for parameter specification, but it is worthwhile to consider some of the details of the cycle calculation. GASTURB references generalized component maps for the fan, compressors, and turbines for calculation of design and off-design operating points. When an efficiency or mass flow change was imposed on the cycle to simulate degradation, the map was scaled by the specified percentage. For example, when the efficiency of the high-pressure compressor was reduced by 1%, the contours on the generalized component maps were scaled by a factor of 0.99. For off-design analysis, the use of generalized component maps will cause some error and specific maps are always preferred. However, component maps for the engines studied are proprietary and were not available for this study. Though an operating line for the engines simulated can be generated, there was no data available with which to compare the results. In light of these considerations, we again emphasize the representative nature of the cycles developed for this study. The results presented in Section 4 do not necessarily reproduce the results one would find if the engines simulated were actually tested.

Table 4: Engine Cycle Parameters for the Cruise Condition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CF6</td>
<td>19.0</td>
<td>17.7</td>
<td>[-4.4]</td>
<td>47.6</td>
<td>49.0</td>
<td>2.8</td>
</tr>
<tr>
<td>GE90</td>
<td>16.7</td>
<td>14.6</td>
<td>[-14.0]</td>
<td>76.9</td>
<td>77.9</td>
<td>1.2</td>
</tr>
<tr>
<td>ASE</td>
<td>14.5</td>
<td>14.6</td>
<td>0.7</td>
<td>27.9</td>
<td>30.3</td>
<td>7.8</td>
</tr>
<tr>
<td>EHSCT</td>
<td>32.4</td>
<td>32.2</td>
<td>[-0.6]</td>
<td>40.4</td>
<td>42.0</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 5: Comparisons of Developed Cycles and Published Data at Cruise and SLS Conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CF6</td>
<td>11.0</td>
<td>10.8</td>
<td>2.6</td>
<td>236.5</td>
<td>230.4</td>
<td>1.7</td>
</tr>
<tr>
<td>GE90</td>
<td>8.9</td>
<td>8.1</td>
<td>9.9</td>
<td>393.5</td>
<td>395.3</td>
<td>0.5</td>
</tr>
<tr>
<td>ASE</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHSCT</td>
<td>NOT AVAILABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources:
3.2 Methods for Correlating Changes in Performance Parameters with Changes in NO\textsubscript{x} Emissions Levels

In order to complete the task set out in this paper, the additional step of correlating engine operation with NO\textsubscript{x} emissions levels is required. Correlations of NO\textsubscript{x} emissions are of three basic types, all based on engine performance and emissions data obtained via combustor rig tests or full-scale engine tests at ground-level and/or at altitude. The first type, a reference correlation, uses sea level and altitude emissions data to formulate emissions correlations as ratios of engine conditions at altitude to those at sea level. A second, direct correlation formulation can be constructed using regression analysis of measurable test parameters (e.g. T\textsubscript{1}, T\textsubscript{4}, P\textsubscript{3}) and/or consideration of time scales of chemical kinetics (e.g. t\textsubscript{res}, P\textsubscript{comb}, T\textsubscript{adiab}). Such direct correlations typically employ data to formulate general dependencies on engine parameters and then these dependencies are tailored to specific combustor designs through multiplicative or additive constants that contain representations of the residence time, etc. The third type of correlation, a fuel flow correlation, was advanced in response to the inadequate availability of often proprietary engine test data and correlates corrected emissions results with corrected fuel flow and ambient conditions (see e.g. Boeing, 1995).

Most EINO\textsubscript{x} correlations exhibit a basic dependence on the combustor pressure raised to a power typically between 0.4 -0.6 and an exponential dependence on the temperature at the combustor inlet. Beginning with the Climatic Impact Assessment Program (CIAP, 1971-1975), EINO\textsubscript{x} dependencies of this type were used for several engine tests, including the engine variability and degradation tests discussed earlier in Section 2.4 (Prather et al., 1992). Because of their usefulness in summarizing emissions characteristics, other public and private interests have continued to formulate correlations based on engine parameters that are sometimes made available in the open literature. However, these published correlations are usually for either older technology or for experimental combustion systems. In general, a standard correction for humidity is applied to the data used for all of these equations (see ICAO, 1993), although this correction is sometimes included explicitly in the EI correlation. In addition, because these equations usually refer to emissions exiting the combustor, they may not necessarily correspond directly to the emissions exiting the exhaust nozzle. However, Lukachko et al. (1996) have shown in a study of turbine and exhaust nozzle chemistry that for NO\textsubscript{x} there is typically little change in emissions levels due to kinetics occurring within the engine downstream of the combustor.

Several correlations have been published in the open literature for specific aircraft engines and variants (e.g. Platt and Norster, 1979; Prather et al., 1992; Lister et al. in Schumann et al., 1995). A recent study on the usefulness of various correlations was presented by Lister et al. as part of the European AERONOX program (1995). This study considered the applicability of nine possible correlation equations of the three types described above for the prediction of NO\textsubscript{x} from four different turbofan engine types. Lister et al. concluded that if the parameters used in EINO\textsubscript{x} equations of the direct correlation type were referenced to ground level certification data, the average variability in predictions for an engine at altitude was ±18%. Ground level and altitude tests of two engines showed that correlations specifically formulated for use with a particular engine are more accurate but emissions can be adequately estimated by the application of other correlation equations to those engines with preference given to use in a reference mode. Lister et al. suggest that in the development of global inventories, the use of any particular NO\textsubscript{x} correlation equation will have an uncertainty (typically ±15-20%) smaller than other sources of inventory error, if referenced to certification data as described above. The accuracy of any correlation is limited by availability of data on which to construct the correlation. To achieve greater accuracy in the determination of engine data, emissions correlations specific to the engine considered are required. Lister et al. did not consider the effect of changing technology, such as correlations appropriate for dual-stage combustors.

3.3 Application of EINO\textsubscript{x} Correlations

The emissions correlations used with the cycles in this study are given in Table 6. They are of the direct correlation type and most are of a mixed character, employing both characteristic time and parameter regression in their construction as discussed in Section 3.2. The correlation used for the EHSCT is based solely on a characteristic time formulation.

In applying these correlations, it was assumed that all effects of aging are realized as changes in T\textsubscript{3}, P\textsubscript{3}, T\textsubscript{4}, the combustor residence time (t\textsubscript{res}), and the adiabatic flame temperature (T\textsubscript{adiab}), rather than through changes in the empirical constants used in the correlations. It is believed that this assumption is the primary source of uncertainties for the conclusions presented in this paper. More information about the correlations and the derivation of the empirical constants would be necessary to properly validate the accuracy of this assumption.

### Table 6: EINO\textsubscript{x} Correlations Used with Simulated Engine Cycles

<table>
<thead>
<tr>
<th>Engine</th>
<th>NO\textsubscript{x} Correlation as EINO\textsubscript{2} (NO\textsubscript{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF6-50C2 [1]</td>
<td>1.35 \cdot 0.9986 \left( \frac{P_3}{1 \text{ atm}} \right)^{0.4} \exp \left( \frac{T_3}{194.4 \text{ K}} - \frac{H_0}{53.2 \text{ g H}_2\text{O/kg dry air}} \right) + 1.7</td>
</tr>
<tr>
<td>GE90-85B [2]</td>
<td>0.0986 \left( \frac{P_3}{1 \text{ atm}} \right)^{0.4} \exp \left( \frac{T_3}{194.4 \text{ K}} - \frac{H_0}{53.2 \text{ g H}_2\text{O/kg dry air}} \right)</td>
</tr>
<tr>
<td>ASE [3]</td>
<td>0.0041941 \cdot T_4 \left( \frac{P_3}{439 \text{ psia}} \right)^{0.37} \exp \left( \frac{T_3 - 1471 R}{345 R} \right)</td>
</tr>
<tr>
<td>EHSCT [4]</td>
<td>t_{res} \cdot \exp \left( -72.28 + 2.8 \cdot \left( \frac{T_{adiab}}{38.02} \right)^{0.5} \right)</td>
</tr>
</tbody>
</table>

**Sources:**

The correlation used for the CF6-50C is applicable directly to the cycle simulations introduced in this paper. Drawing from the work of Lister et al., the accuracy of the correlation should be better than the ±15-20% result obtained for the application of a nonspecific correlation. For the GE90-85B, no emissions correlation is publicly available, but it is known that the GE90-85B employs a dual-annular, staged combustor design that owes some of its design to concepts developed through the NASA Experimental Clean Combustor Program (ECCP). The ECCP, in association with General Electric, produced emissions correlations for the CF6-50C (e.g. the equation shown in Table 6), the CF6-80C, and an advanced, dual-annular, low-NOX combustor concept. This dual-annular emissions correlation is thought to capture the basic emissions characteristics of the GE90 engine. The coefficients used for the CF6-50C and dual-annular correlations include parameters describing specific combustor design details such as residence time. While for the CF6-50C2 these parameters will remain essentially the same, no attempt was made to change these parameters for the dual-annular case to match the GE90-85B combustion system.

The ASE engine employs a dual-annular, staged combustor and since the ASE is a concept engine cycle, the correlation employed is based on projected behavior. An ultra-low-NOx correlation based on tests of the lean-premixed prevaporized (LPP) concept was employed as representative of HSCT emissions characteristics (Roffe and Venkataramani, 1978). This equation predicts emissions based on \( t_{\text{res}} \) and \( T_{\text{adiab}} \). For this paper, the adiabatic flame temperature was assumed to be 2000 K and the residence time was calculated using a simplified model of a constant area, viscous duct with constant pressure and prescribed temperature change. Using cruise condition engine parameters for the simulated cycles, \( EINO_x \) results were compared with certification emissions data given in the ICAO Engine Exhaust Emissions Data Bank (1995) in Table 7. For the LPP combustor case, certification data for the Concorde Olympus engine is provided for reference. The low-NO\textsubscript{X} emissions goal of the NASA High-Speed Research Program is for an \( EINO_x \) of 5 g/kg fuel.

<table>
<thead>
<tr>
<th>Engine</th>
<th>Simulated ( EINO_x ) at cruise</th>
<th>Simulated Engine Combustor</th>
<th>ICAO ( EINO_x ) PL = 30%</th>
<th>ICAO ( EINO_x ) PL = 85%</th>
<th>Certification Engine Designation</th>
<th>Certification Engine Combustor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF6-50C2</td>
<td>16.5</td>
<td>single annular</td>
<td>9.50</td>
<td>29.70</td>
<td>CF6-50C1 or -50C2</td>
<td>single annular</td>
</tr>
<tr>
<td>GE90-85B</td>
<td>13.8</td>
<td>double annular</td>
<td>10.30</td>
<td>40.27</td>
<td>GE90-85B</td>
<td>double annular</td>
</tr>
<tr>
<td>ASE</td>
<td>8.9</td>
<td>double annular</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EHSCT</td>
<td>6.1</td>
<td>LPP</td>
<td>3.5</td>
<td>9.3</td>
<td>Olympus 593 Mk 610</td>
<td>single annular</td>
</tr>
</tbody>
</table>

Note: Olympus power settings are actually 34% for the value in 30% power level (PL) column and 65% in 85% column.

4. RESULTS

Changes in pollutant emissions with time are a strong function of the pattern of degradation for a particular engine, the components that are degraded, the magnitude and combination of efficiency and flow capacity change, and the technology represented by the engine design, both the cycle and the type of combustor utilized. The GASTURB cycle deck was used to perform aging investigations through changes in component efficiencies and flow capacities. Both sensitivity and scenario analyses are presented in the following sections, including a description of the calculation methodology and specifics about the GASTURB implementation. The analyses reveal both broad technological and specific component trends and provide an overview of the aging effect that proves useful for understanding the impact of deterioration on emissions levels. In order to place the results in context, the limit to deterioration suggested previously, a 3% increase in SFC, is applied to the results to bound the changes observed in the NO\textsubscript{X} emissions rate.

4.1 NO\textsubscript{X} Emissions Sensitivity to Small Component Perturbations

Influence coefficients comparing the emissions and thermodynamic performance of new and degraded engines were generated using one percent perturbations to individual component efficiencies and flow capacities. Where component efficiency will typically decrease with age for both the compressor and turbine, flow capacity changes with age typically differ for a compressor and turbine. For a compressor, flow capacity is likely to decrease, primarily due to fouling and increased aerodynamic blockage due to blade tip clearance increases and other effects. Conversely, for the turbine, erosion and other thermal damage increase the size of blade passages and thus the flow capacity. The perturbed state was calculated via a design calculation under the constraint of constant thrust at the cruise condition. This constraint is based on typical flight procedures where a given Mach number, usually between 0.8 and 0.85 at cruise, is set for the duration of the flight. Using GASTURB, the constraint of constant thrust can be set directly through iterations on component matching.\(^1\)
### Table 8: Parameter Sensitivity Results for Subsonic, Turbofan Cycles at Cruise Condition

<table>
<thead>
<tr>
<th>BASELINE VALUES</th>
<th>CF6-50C2</th>
<th>GE90-85B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PARAMETER</strong></td>
<td><strong>T\textsubscript{T3} (K)</strong></td>
<td><strong>P\textsubscript{T3} (atm)</strong></td>
</tr>
<tr>
<td>-1% eff. fan</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>-1% eff. LPC</td>
<td>1.76</td>
<td>-0.01</td>
</tr>
<tr>
<td>-1% eff. HPC</td>
<td>1.97</td>
<td>-0.33</td>
</tr>
<tr>
<td>-1% HPC cap</td>
<td>0.32</td>
<td>-0.05</td>
</tr>
<tr>
<td>-1% eff. HPT</td>
<td>-3.89</td>
<td>-0.63</td>
</tr>
<tr>
<td>+1% HPT cap</td>
<td>-2.51</td>
<td>-1.13</td>
</tr>
<tr>
<td>-1% eff. LPT</td>
<td>0.34</td>
<td>0.27</td>
</tr>
<tr>
<td>+1% LPT cap</td>
<td>2.33</td>
<td>0.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BASELINE VALUES</th>
<th>ASE</th>
<th>EHSCT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PARAMETER</strong></td>
<td><strong>T\textsubscript{T3} (K)</strong></td>
<td><strong>P\textsubscript{T3} (atm)</strong></td>
</tr>
<tr>
<td>-1% eff. fan</td>
<td>0.47</td>
<td>0.28</td>
</tr>
<tr>
<td>-1% eff. LPC</td>
<td>1.78</td>
<td>-0.02</td>
</tr>
<tr>
<td>-1% eff. HPC</td>
<td>2.30</td>
<td>-0.35</td>
</tr>
<tr>
<td>-1% HPC cap</td>
<td>0.39</td>
<td>-0.06</td>
</tr>
<tr>
<td>-1% eff. HPT</td>
<td>-4.44</td>
<td>-0.69</td>
</tr>
<tr>
<td>+1% HPT cap</td>
<td>-2.59</td>
<td>-1.13</td>
</tr>
<tr>
<td>-1% eff. LPT</td>
<td>0.91</td>
<td>0.41</td>
</tr>
<tr>
<td>+1% LPT cap</td>
<td>2.41</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Table 8 shows cycle parameter changes resulting from small perturbations (1% change with sign depending on parameter) to component efficiencies and flow capacities for each of the cycles simulated. Included in the table is the relative change in NO\textsubscript{x}/s, which is the product of the EINO\textsubscript{x} and the fuel flow rate.

The results in Table 8 indicate that changes in the HPT and HPC component efficiencies and in the HPT flow capacity produce the largest changes in cycle parameters and also the largest changes in NO\textsubscript{x}/s. If we compare these results to the limits on component degradation suggested in Table 1, we see that changes in NO\textsubscript{x}/s of up to ±12% may be possible. However, as is shown in Section 4.3, typical changes in NO\textsubscript{x}/s are expected to be much smaller than this, due in large part to the competing influences of HPC and HPT degradation. For example, the influence coefficients show that for the HPT both flow capacity increases and efficiency decreases (the typical aging trends) lead to a decrease in the NO\textsubscript{x}/s. However, for the HPC, the typical aging effects (decreases in both flow capacity and efficiency) lead to an increase in NO\textsubscript{x}/s. Note that in all cases, faults increase the fuel flow rate. Thus, in terms of the total NO\textsubscript{x} emitted (e.g. NO\textsubscript{x}/s), an increase in EINO\textsubscript{x} is always exacerbated by the change in fuel flow and a decrease in EINO\textsubscript{x} is always attenuated. This is particularly noticeable for the EHSCT. Using the simple duct model to estimate residence time for the EHSCT EINO\textsubscript{x} equation, flow capacity changes reduce residence time while efficiency changes increase residence time, affecting a negative change in the EINO\textsubscript{x} for the former and a positive change for the latter. However, both the NO\textsubscript{x}/s changes are both positive because the increased fuel usage overwhelms the slight decreases in the EINO\textsubscript{x}.

The opposing influences of turbine and compressor faults can be illustrated using temperature-entropy (T-s) diagrams for the Brayton cycle as shown in Figure 2. If the cycle is constrained to result in the same work, losses in compressor efficiency tend to cause increases in both T\textsubscript{3} and T\textsubscript{4} as shown in Figure 2a. However, for constant work, losses in turbine efficiency tend to depress T\textsubscript{3} and produce relatively smaller increases in T\textsubscript{4} as shown in Figure 2b.

Similar arguments can be made for the relative effects of each of the component faults modeled, however the arguments are more complicated because of the complexity of the two-spool turbofan.
cycles investigated. We give only one example below for the different effects of HPT and LPT capacity changes.

Sensitivity results indicate that for turbofans, an increase in HPT capacity leads to a decrease in NOₓ/s whereas an increase in LPT capacity leads to an increase in NOₓ/s. These opposing influences can be explained by considering that the LPT is responsible for powering the fan where 70-90% of the thrust can be generated. Both of these component faults lead to larger mass flows and, at the same efficiency, less work per kilogram. Increased flow capacity leads to a lower compressor discharge pressure (P_T3) and temperature (T_T3) which prompt an increase in fuel flow until the original thrust level is achieved. The additional mass flow also leads to an increase in thrust which offsets some of the thrust decrease due to lower pressure ratios. However, for the LPT capacity increase, the fan is also affected and a larger thrust decrease is realized because of the LPT fault than for the HPT fault. The result is that for the HPT capacity increase, there is a net decrease in P_T3, T_T3, and T_T4 (in all cases except of the GE90-85B) whereas for the LPT fault, there is an increase in all these parameters. The decreases in the HPT case lead to decreases in EINOₓ, which, depending on the magnitude of the increased fuel requirement, is manifest as a smaller percent decrease in NOₓ/s. For the LPT, all trends favor an EINOₓ increase with age which is exacerbated by the increased fuel needs, leading to an even higher percent change in NOₓ/s.

4.2 Technological Trends
As gas turbine technology has advanced, engine pressure ratios and cycle temperatures have increased to achieve better fuel efficiency. Correlating the results shown in Table 8 with the cycle OPR and T_T4 illustrates the changes in sensitivity of NOₓ emissions to aging effects that occur as technology advances. As shown in Figure 3, changes in NOₓ/s increase with increasing OPR for the fan, HPC, LPC, and LPT efficiency faults. Increased sensitivity of NOₓ/s with increased T_T4 is shown in Figure 4 for HPC, HPT, and LPT capacity faults and HPT efficiency faults. Thus, NOₓ emissions from more technologically advanced cycles are more sensitive to aging.

4.3 NOₓ Emissions Results for Sample Degradation Scenarios
Sample degradation scenarios were imposed on each of the four cycles using degradation of the high-pressure turbine (HPT) and the high-pressure compressor (HPC) both separately and in combination. The HPT and HPC were chosen for further calculations because anecdotal information from engine manufacturers suggests that degradation of these components is the largest contributor to overall engine aging trends. Table 9 summarizes the scenarios investigated. One point of efficiency loss was combined with one point of flow capacity change, the latter being positive for the HPT and negative for the HPC. For the combined HPT and HPC aging scenario, it was assumed that the degradation of

---

2 Figures 3 and 4 indicate that the EHSCT cycle exhibits much less sensitivity to efficiency and flow capacity changes at cruise than any of the turbofan cycles. However, most HSCT engine concepts are of the variable cycle type (Harbard, 1990; Boeing, 1989) and it is unclear whether the aging behavior of a multiple cycle engine will exhibit a similar degradation sensitivity to the single spool turbojet cycle.
the turbine and compressor occur with the same efficiency loss and capacity change per unit time. This choice was again based on anecdotal evidence for current engines which suggests that, while individual engines have unique aging profiles, on average for a group of engines, compressors and turbines will degrade at approximately the same rate. Scenario calculations were conducted through off-design matching, using the constraint of constant thrust at the cruise condition.

The results previously presented in Table 8 show that HPT degradation leads to decreases in NOx/s while compressor and LPT faults lead to increases in NOx/s. These trends are borne out in the results of the aging scenarios shown in Figures 5 and 6 for HPT-only and HPC-only faults respectively. To relate these results to maintenance practices, the NOx changes (solid lines) are plotted with the corresponding changes in SFC (dashed lines), marking the overhaul condition by the +2-4% SFC threshold. The relative linearity of these trends suggests that influence coefficients presented in Table 8 are useful for predicting changes in emissions mass flow even for large changes in component performance.

### Table 9: Assumed Degradation Scenarios

<table>
<thead>
<tr>
<th>Level</th>
<th>HPT-Only</th>
<th>HPC-Only</th>
<th>HPT and HPC Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% HPT eff.</td>
<td>% HPT cap.</td>
<td>% HPT eff.</td>
</tr>
<tr>
<td>0</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>1</td>
<td>-1.00 -1.00</td>
<td>-1.00 -1.00</td>
<td>-1.00 1.00</td>
</tr>
<tr>
<td>2</td>
<td>-2.00 -2.00</td>
<td>-2.00 -2.00</td>
<td>-2.00 2.00</td>
</tr>
<tr>
<td>3</td>
<td>-3.00 -3.00</td>
<td>-3.00 -3.00</td>
<td>-3.00 3.00</td>
</tr>
<tr>
<td>4</td>
<td>-4.00 -4.00</td>
<td>-4.00 -4.00</td>
<td>-4.00 4.00</td>
</tr>
<tr>
<td>5</td>
<td>-5.00 -5.00</td>
<td>-5.00 -5.00</td>
<td>-5.00 5.00</td>
</tr>
<tr>
<td>7</td>
<td>-7.00 -7.00</td>
<td>-7.00 -7.00</td>
<td>-7.00 7.00</td>
</tr>
<tr>
<td>9</td>
<td>-9.00 -9.00</td>
<td>-9.00 -9.00</td>
<td>-9.00 9.00</td>
</tr>
</tbody>
</table>

For the HPT-only scenario, increased degradation levels result in lower compressor discharge pressure and temperature and a higher T₄₅, which lead to a higher fuel flow and, at constant thrust, a higher SFC. The effect on the EINOₓ is negative, that is lower emissions per fuel burned for higher degradation levels, for all cases other than the EHSCT cycle. The EINOₓ decrease is tempered somewhat by the increase in fuel flow necessary to power the now progressively less efficient engine. For the HPC-only degradation case, a lower P₃ and higher T₄₅ result as with the HPT-only case, but the combustor inlet temperature increases. The efficiency effects are again similar, since the HPC-only aging leads to a higher fuel flow and thus higher SFC at constant thrust. The effect on the EINOₓ is positive, meaning higher emissions per unit fuel flow. Since the fuel flow also increases, it enhances the effect leading to even higher changes in the value of NOₓ/s.

For the HPC-only scenario, using a limit of a 3% SFC rise before overhaul would result in a degradation level of between 5 and 7 for turbofan cycles and a degradation level of about four for the EHSCT case. These correspond to 10-25% and 1% increases in NOₓ/s, respectively. SFC for newer cycles is less sensitive to aging and thus the cycles tend towards higher degradation levels before exceeding the overhaul limits. For the HPT-only scenario, the SFC criteria is exceeded at a degradation level of between 5 and 7 for turbofan cycles and at level two for the EHSCT. These correspond to a -8% to -14% and +1% changes in NOₓ/s respectively. Where the HPC-only cases show marked differences in degradation effect as a function of the turbofan cycle simulated, and higher increases in the percent change in NOₓ/s with degradation level, the HPT-only cases show remarkably simi-
lar patterns of emissions change across all turbofan cycles. The EHSCT case, exhibiting increases in NO\textsubscript{x} for both HPT and HPC degradation, shows a lower sensitivity to degradation. However, as with all the cycles, these numbers must be viewed in the context of the original values of NO\textsubscript{x}/s for the cruise condition without aging (see Table 8).

While the HPT-only and HPC-only scenarios illustrate the opposing influences of turbine and compressor aging, the combined HPT and HPC aging scenario is expected to be more representative of typical engine aging behavior. Combined degradation of the HPC and HPT results in an almost linear change in cycle parameters exemplified by Figure 7 for the CF6-50C2 cycle. All cycles modeled exhibit similar trends and magnitudes of change in T\textsubscript{T3}, P\textsubscript{T3}, and T\textsubscript{T4} to those shown for the CF6-50C2. However, the way in which these changes affect the EINO\textsubscript{x} and subsequently the NO\textsubscript{x}/s value is not similar for the different cycles. It was noted earlier that fuel flow always increases with degradation, enhancing an increase in EINO\textsubscript{x} and attenuating a decrease. This differential effect among the cycles is noted in Figure 8 where the CF6-50C2 cycle experiences a decline in NO\textsubscript{x}/s with increasing degradation level as a percentage of the baseline while all other cycles show increases. The largest changes are seen for the ASE cycle. For all of the cycles, the EINO\textsubscript{x} value actually decreases, except for the ASE where the value fluctuates near zero. Thus, the effect of fuel flow increases due to the less efficient cycles is enough to increase the emissions flux and negate the gains in the EINO\textsubscript{x}. The +3% SFC criteria is exceeded at a degradation level of between 2 and 3 for turbofan cycles and above level 1 for the EHSCT. These correspond to -1% to +4% and +3% changes in NO\textsubscript{x}/s, respectively.

These results compare well with the only published empirical data (Platt and Norster, 1979) regarding the effects of engine aging on aircraft emissions. Examination of the Platt and Norster results, which are summarized in Table 3, shows there was a relatively small effect on NO\textsubscript{x} emissions from deterioration. The measured changes in emission rates were on the order of the unit to unit deviation. The Platt and Norster results, however, do generally indicate a decrease in EINO\textsubscript{3}. Further investigation of the maintenance records supplied with the report shows at least one engine’s history exhibits a majority of HPT problems (the JT3D). This observation is in general agreement with the results for the HPT noted in the current study. For the CF6-50C2 cycle studied here, a reduction of 11% in the EINO\textsubscript{x} value is realized with the SFC limitation for the HPT-only scenario and a -3.5% EINO\textsubscript{x} change for the combined case. At overhaul time for the JT3D, the rate reported by Platt and Norster would give a decrease of -2.8 to -3.6% in EINO\textsubscript{x} for 2300-3000 hours of operation.

\textsuperscript{3} EINO is comparable to EINO\textsubscript{x} since ~90% of the NO\textsubscript{x} emitted is emitted as NO.
5. IMPACT ON EMISSIONS INVENTORIES

The results of the previous section provide a wide scope with which to view the effect of aging on engine NO\textsubscript{x} emissions. It is possible to draw some conclusions regarding emissions inventories used by assessment programs to initialize atmospheric NO\textsubscript{x} distributions and magnitudes in global modeling studies. There are currently two emissions inventories under development, one a joint effort between Boeing and McDonnell-Douglas for the NASA Atmospheric Effects of Aviation Project and the other a European effort supported by the European Civil Aviation Conference (ECAC) through its Abatement of Nuisances Caused by Air Transport (ANCAT) group which is responsible for environmental issues. Each of these projects attempts to predict fleetwide emissions loadings over altitude, latitude, and longitude through models of flight profiles, emission indices, and aircraft/engine performance for both commercial and non-commercial schedules. Where the ECAC/ANCAT inventory employs a common, ratio type NO\textsubscript{x} correlation among all aircraft, the NASA inventory uses the Boeing fuel flow methodology (see Section 3.2). There are many uncertainties related to the use of these inventories. Inaccurate or incomplete movement data, erroneous flight profiles, aircraft performance data, or aircraft condition with respect to weight or fuel loading, assumptions regarding routing, EINO\textsubscript{x}, and the contributions of classified military flights can all have an effect on the final results. It is known that these inventories do not account directly for the effects of aging on emissions. The key question is whether the effects of aging are significant compared to the current uncertainties in these inventories.

Fuel burn for the NASA inventory is calculated to be on the order of 10 - 20% lower than US Department of Transportation reported fuel use data for a US airline based validation test (Stolarski and Wesoky, 1993). For the entire global inventory, a 76% match in fuel-use was realized as compared to International Energy Agency data, for an overall NO\textsubscript{x} burden of 1.92 Tg/yr corresponding to an average EINO\textsubscript{x} of 10.9 for the base year 1990. The ECAC/ANCAT effort indicates that deviations from great circle routing could result in an approximately 10% increase in fuel burn (Schumann et al., 1995). In addition, ECAC/ANCAT also notes that lack of performance data for engines will have a subsequent effect on the NO\textsubscript{x} emissions level because the methodology used requires simulations of aircraft performance and derivation of NO\textsubscript{x} emissions much like the current study. Conducting a validation test comparing a simulated flight with actual performance data and using the generic EINO\textsubscript{x} correlation, they estimate that variability in fuel burn and emissions production could be ±10% due to inaccuracy in performance simulations. The results here add another level of complexity to these considerations in the form of aging. If we determine from these brief comments that uncertainty in the inventories is at least 10% and perhaps greater than 25%, the results given for HPT-only, HPC-only, and the combined scenario NO\textsubscript{x}/s changes of -8 to -14%, +10 to +25%, and -1 to +4%, respectively, would seem to be on the order of or less than the uncertainties currently found in the inventories. In addition, if we rely more on the combined scenario to represent the probable path of degradation, it is more likely that aging effects would currently be small compared to other inventory uncertainties.

6. SUMMARY AND FURTHER RESEARCH

This paper has presented research concerning the effect of engine aging on NO\textsubscript{x} emissions for a range of aircraft engines representing different technologies. The results indicated that for subsonic turbofans, HPC, LPC, fan and LPT faults increase NO\textsubscript{x} emissions...
emissions flux whereas deterioration of the HPT decreases NO\textsubscript{x} emissions flux. Aging of the HPT and HPC have the largest effect on cycle parameters and NO\textsubscript{x} emissions. Increased sensitivity of NO\textsubscript{x}/s with increasing OPR or T\textsubscript{T4} was also observed. For the supersonic case, all degradation scenarios led to increased emissions, however, the sensitivity to changes in cycle parameters was smaller than for the subsonic cases. In all cases, both turbine and compressor faults, an increase in EINO\textsubscript{x} is exacerbated by the change in fuel flow and a decrease in EINO\textsubscript{x} is attenuated.

Scenario calculations confirmed the usefulness of the influence coefficients indicating fairly linear changes in cycle parameters with increasing degradation level for the HPT-only, HPC-only, and HPT + HPC aging cases. For a 3% SFC rise overhaul limit, decreases in NO\textsubscript{x}/s for turbofans with HPT-only aging for all simulations fell between -8% and -14% and increases in NO\textsubscript{x}/s for HPC deterioration were between +10% and +25%. Combining these aging effects resulted in a -1% to +4% change in the emissions flux. For the supersonic case, changes were much smaller, with a 3% SFC limitation resulting in +1% changes for both HPT-only and HPC-only scenarios, and +3% for the combined case.

There are several sources of uncertainty in these analyses of aging effects. Primarily, these uncertainties are associated with the lack of performance data and empirical information on the effects of aging on engine emissions and with the lack of detailed information regarding the NO\textsubscript{x} correlations used. Increased availability of these elements could be used to build more widely relevant representative engine cycles and to provide a better database through which to validate the results presented.

Application of these results to the improvement of emissions inventories used for analysis of the atmospheric effects of aviation would seem to be premature due to the greater uncertainties in other inventory elements. However, regardless of the current applicability of these results to emissions inventories, attention to the effects of engine aging on aircraft NO\textsubscript{x} emissions would seem to be warranted in anticipation of broader consideration of these issues that could come about due to rapid improvements of the inventories or perhaps more indirectly through regulatory action.

7. ACKNOWLEDGMENTS

We thank Chowney Wey and Bill Haller of the NASA Lewis Research Center for providing information on the ASE engine cycle. We also appreciate the insight and advice regarding engine aging provided by Alan Epstein of the MIT Gas Turbine Laboratory. Finally, we thank Diana Park for help with editing and production of this paper.

8. REFERENCES


