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Abstract—A quantitative description is presented of mixing augmentation mechanisms associated with
embedded streamwise vortices. The specific context of interest is the flowfield downstream of convoluted
(lobed) mixers, but the concepts developed apply to a range of devices that generate such vortices for
enhanced mixing. Arguments are presented to illustrate the dependence of mixing augmentation on the
strain field associated with the vortices; this strain field increases both the area available for mixing between
two streams and the local gradients in fluid properties which provide the driving potential for mixing.
Computations and experiments have been carried out to assess the influence of the streamwise vortices on
both momentum interchange and mixing on a molecular level. Based on these investigations, scaling laws
have been developed for the overall parametric trends of flow field structure and mixing rate as functions of
lobe geometry, Reynolds number, stream-to-stream velocity ratio and Mach number. © 1997 Elsevier
Science Ltd.
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1. INTRODUCTION AND SCOPE OF THE PAPER

There are a number of aerospace applications where methods to enhance fluid mixing
between co-flowing streams have been identified as critical or enabling technologies.
Examples include low-emissions combustors, ejectors for high lift or jet noise reduction,
infrared suppressor nozzles, turbofan core-bypass mixers used to increase propulsive

323
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efficiency and supersonic combustion ramjets. The requirements and the figures of merit for
the mixing process depend on the application, as well as whether molecular mixing of
chemical species, transfer of momentum, or transfer of energy is desired, but most criteria
are related to the rapidity and spatial uniformity of the mixing process and the cost
(frequently in terms of total pressure loss) associated with performing the mixing.

It is widely recognized that a powerful mechanism for enhancing mixing is the introduc-
tion of strong streamwise vortices. There are a variety of ways in which this idea has been
implemented, but the basic concept of utilizing a streamwise vortical structure with its
associated cross-stream circulation to augment the rate of mixing is fundamental to all of
them.

The objectives of this paper are: (i) to describe the mechanisms responsible for streamwise-
vorticity-enhanced mixing, and (ii) to quantify the mixing augmentation in several cases of
practical interest. The approaches presented will be seen to apply to a range of devices that
employ streamwise vorticity to enhance mixing, including lobed mixers for ejectors, wall-
mounted vortex generators and many fuel injection schemes.

Two themes underlie the presentation of the material. The dominant one is the character-
ization of mixing processes based on the relative roles of flow structures associated with
streamwise and transverse (such as in a planar shear layer) components of vorticity. Such
decomposition is useful for providing insight into the three-dimensional mixing process and
also as a basis for modeling the flow. A secondary theme is the utility of a slender-body
approach for describing these three-dimensional flows, not only as a means for rapid
computation but also, more importantly, to provide insight for modeling.

The paper begins with a description of the lobed mixing devices that were the focus of
this study (Section 2), followed by a discussion of the morphology of incompressible
mixing layers with large-scale, streamwise vortical structures (Section 3). The mechanisms
responsible for mixing enhancement in these flows are then introduced and quantified
(Section 4) for both laminar and turbulent flow regimes. Experimental and computational
results are used to illustrate the mixing augmentation associated with the streamwise
vortices downstream of a lobed mixer (Section 5). The description is then extended
to compressible flow (Section 6), with characterization of the different physical effects due to
operation at Mach numbers of unity or higher. The aim, throughout, is not so much to
provide details of a specific configuration but rather insight into fluid mixing in a broad
class of devices.

2. LOBED MIXERS AND STREAMWISE VORTICITY GENERATION

Lobed mixer geometries similar to that shown schematically in Fig. 1 were the basis for
much of the work discussed in this paper. These geometries are well-suited to the study of
mixing augmentation because they allow the controlled introduction of streamwise and
transverse vorticity along the interface between co-flowing streams. They are also of
considerable technological interest, for core-bypass mixing**? and in ejectors for jet noise
reduction.*%-23:24 Using lobed mixers, ejector pumping effectiveness has been measured to
be 75% greater than with conventional geometries, providing evidence of the level of mixing
augmentation associated with the streamwise vortices.?® Impressively, these ejectors
achieved 90-95% of the theoretical (complete mixing assumption) pumping value in a duct
length equivalent to one duct diameter.

In a lobed mixer, the generation of streamwise vorticity is associated with the variation in
aerodynamic loading along the span of the mixer, analogous to the situation along a finite
wing. At the trailing edge, a continuous distribution of streamwise vorticity is discharged
into the flow, evolving downstream into an array of discrete counter-rotating vortices, as
shown in Fig. 1. The vortices grow through turbulent diffusion and the circulation eventual-
ly decays as the counter-rotating vortices diffuse into one another. The streamwise vortices
downstream of such forced mixing devices are typically larger, in both magnitude and scale,
than those in naturally developing free shear layers and boundary layers.
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Fig. 1. Lobed mixer.

A good estimate for the initial streamwise circulation due to the lobes is given by
assuming that the fluid which exits the lobes does so at the lobe angle.**) For the geometry
shown in Fig. 1 this yields a shed circulation, I, of magnitude

IocUhtanay + U, htana, (N

where U, and U, are the freestream velocities on either side of the lobe, h is the lobe height
and o, and «, are the lobe penetration angles. For «; = a, = o, Equation (1) reduces to

I oc 2Uh tana (2a)

where U is the average freestream velocity, (U; + U,)/2. A constant, C, whose value
depends on the lobe geometry, is necessary in the scaling to provide a quantitative estimate
of circulation. For mixers with vertical side walls, such as are examined in this study, the
value of C can be taken as unity, i.e.

I =20htana (2b)

Equation (2b) provides a useful and direct link between mixer geometry and shed
circulation.

Skebe et al.?¥ and O’Sullivan et al.!” have characterized the range of geometries and
flow conditions over which Equation (2b) applies. For lobes with half-angles, «, up to 22°,
the circulation estimated from Equation (2b) is within 5% of values deduced from numerical
simulations.?* For larger angles, where the lobe boundary layers have a noticeable effect
on the fluid exit angle, the concept can be extended by using an effective lobe penetration
angle, o and an effective lobe height, k., to account for the boundary layer displacement
thickness.

When the freestream velocities on either side of the lobe are not equal, as is most often the
case in practical devices, vorticity components parallel to the trailing edge (transverse
vorticity) are also present. An aspect of interest then is the interaction between transverse
and streamwise vortical structures and the relative roles of the two types of structures in
mixing.
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Fig. 2. Schematic of vortical structure about a lobed mixer (after McCormick*®),

3. FLOW MORPHOLOGY AND RELEVANT LENGTH SCALES

A general description of the lobed mixer flow field can be separated conceptually into two
parts: (i) the generation of the streamwise vorticity, which involves the fluid dynamics within
the lobe; and (i) the mechanisms and parametric dependence of mixing enhancement
associated with the evolution of the flow downstream of the lobe. The latter are the focus of
this article.

The important vortical elements in the downstream flow field are outlined schematically
in Fig. 2. The counter-rotating pairs of streamwise vortices are the largest scale structures in
the flow for three to ten lobe wavelengths downstream. There are also transverse vortices
associated with the instability of the shear layer between the two streams of different
velocity on either side of the plate.!:16:21) Horseshoe vortices can also be formed around
the front of the lobes; in typical geometries these have circulation an order of magnitude less
than either transverse or streamwise vortices and have little impact on the overall mixing
process.'® Flow visualization photographs of this region are presented in Fig. 3.1 The
photographs were obtained using a gravity-driven water tunnel with two independently
controlled streams*. Photographs of two conditions are shown, one with Reynolds number,

* The data were obtained using phenolphthalein seeded in one stream, and sodium hydroxide in the other. The two
streams are initially clear, but when mixing at the molecular level has brought the local pH to a level between 8 and
12, the product turns a vivid red.®
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Fig. 3. Production of small scale structure downstream of forced mixer: velocity ratio + =0.5: (a) Re =900;
(b) Re =3600.12

Re, (based on mean velocity and lobe wavelength) of 900 and the second with Re = 3600.
The view is from above looking down upon the row of lobes, with the flow from left to right.
In both cases, the ratio of the freestream velocities was, » = U; /U, =0.5. The transverse
vortex structures can be seen in both pictures, but in the higher Reynolds number flow,
transition to turbulent mixing has occurred.

There is an important difference in length scale between the motions associated with
streamwise and transverse vorticity. The scale of the former is set by the vortex spacing, in
other words the half-wavelength of the lobe geometry, 4/2. The initial scale of the latter is set
by the shear layer thickness at the trailing edge, similar to the situation in planar shear
layers. For lobed mixers, the boundary layer on the lobe peaks and vertical edges may be
thinned by more than a factor of five when compared to the boundary layer upstream of the
lobes. For geometries of technological interest, then the scale of the transverse vortical
motions is thus small compared to that of the streamwise vortices for a distance down-
stream of approximately three to ten wavelengths when, depending on geometry, the
transverse layer will have diffused to a length comparable with /2. For example, in
a turbofan mixer Re = 0(10%-107), lobe spacing is approximately 0.2 m and the boundary
layer thickness at the trailing edge is less than 0.02 m.

The difference in scale between streamwise and transverse vortices allows adoption of
a simplified view of the principal mechanisms for interaction between the two structures. In
this view, transverse vorticity is associated with turbulent transport which diffuses stream-
wise vorticity across the symmetry planes between the counter-rotating streamwise vortices,
thereby reducing the magnitude of the streamwise circulation. The streamwise vortices
produce stretching along the axes of the transverse vortices. In the present treatment, we
compute the dynamical effects due to the streamwise vortices, while modeling the smaller
scale dynamics associated with the transverse vorticity.
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4. VORTEX-ENHANCED MIXING

We now turn to the mechanisms responsible for mixing enhancement in these flows.
When an interface between two fluids of different properties (e.g. chemical composition,
momentum or energy) is convected in the velocity field of a vortex, the stretching of the
interface creates two interrelated effects. The first is an increase in interfacial surface area
and the second is an increase in the magnitude of gradients normal to the interface, both
effects augment mixing.

The key elements of this process can be introduced by considering the model problem of
a laminar diffusion flame in the field of an isolated vortex. The discussion presented below
follows that given by Marble'*3- 14 and Karagozian and Marble'? for the two-dimensional
case. The process elements are presented in steps. The effect of strain on rate of reaction for
a planar diffusion flame is reviewed first (Section 4.1), followed by an assessment of the
influence on mixing of the strain field associated with a two-dimensional vortex (Section
4.2). A slender-body approach is then used (Section 4.3) to extend Marble’s two-dimensional
unsteady results to three-dimensional steady flow. The analysis leads to relationships for
predicting mixing augmentation in both laminar and turbulent flows. These relationships
are evaluated using results of computations and experiments in Section 5.

4.1. EFFECT OF STRAIN ON MIXING

To illustrate the effect of strain on mixing, we consider two semi-infinite regions separated
by the x-axis, one region containing fuel and the other oxidizer, as shown in Fig. 4a. The
chemical kinetics are taken to be infinitely fast so that locally the reaction is diffusion
controlled and the stoichiometry is taken such that equal amounts of oxidizer and fuel are
consumed by the reaction in an infinitely thin reaction zone. Effects of heat release are
neglected.

4.1.1. No Strain: Mixing due to Pure Diffusion

With no strain, the mixing process is pure diffusion described by

oK ?K

P ©

where K is the concentration of either reactant and the constant D is the binary diffu-
sion coefficient. The solutions for the fuel and oxidizer concentrations, K; and K,,

a) Planar Diffusion b) Stretched Interface ¢) Vortex

K _ D RK Interfacial Area * Mixing Augmentation
ot ay? Interfacial Gradients 4 ~T23pin3
Mixing f

Fig. 4. Effect of strain on mixing at an interface.
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respectively, are'¥

K; =erf(y//4Dt) and K, = —erf(y/./4Dt) 4

where y is the coordinate normal to the interface and erf is the error function. Equation (4)
shows that the thickness of the diffusion zone grows as (Dt)'/2. The reactant consumption
rate, which is a direct measure of the molecular mixing, may be expressed as the mass flux of
either species at the reaction zone;
1/2
=p [3} . ©
y=0 nt

For pure diffusion, the rate of mixing approaches zero as t — oo,

0K
D —
p By

4.1.2. Mixing Augmentation due to Normal Strain

Suppose a normal strain rate,* ¢ = 0u,/0x = — du,/0y, is applied to the flow field as
shown schematically in Fig. 4b. A velocity normal to the interface now exists, u, = — €y, s0
the mixing process is described by

0K oK 0’K
— —¢e(t)y—=D—. 6
5~y g, =D ©)

Equation (6) can be transformed into the form of eqn (3) with the substitution

{=y EXP[L: £ dt], T = J(: |:exp<£2 2¢ dt1>:| dt, ()

and the solutions for the reactant concentrations are:

K; =erf({//4Dt) and K, = — erf({/ /4D7). 8)

The modification of the mixing behavior due to strain can be seen most readily for the
case of constant strain rate, . In this case differentiation of Equation (8) gives the reactant

consumption rate as:
28D e2£t 1/2
y=0 n |e** |

For small times or small strain rate, t < 1/¢, the reactant consumption rate is similar to the
unstrained case. For large strain rate or long times, t > 1/¢, however, the consumption
rate does not go to zero, but approaches the constant value (2D¢/r)'/2. Strain enhances the
reaction rate by increasing the interfacial surface area and increasing gradients in the
diffusion zone. Mixing augmentation in a vortex flow field is due to the same physical
effects, but in a geometrically more complex situation.

0K
pD By

4.2. MIXING AUGMENTATION DUE TO A TWO-DIMENSIONAL VORTEX

The velocity field of a two-dimensional vortex located on the interface between the
reactants in a constant density flow has only one non-zero component, uy, which is

described by
Oug dl1o
FT Vali;a("“o)] ©

* Shearing does not affect the flow since there is no dependence on x.
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Equation (9) is satisfied by®

up = (T/27r) {1 —exp [ ;vﬂ}. (10)

Equation (10) represents a vortex of circulation I' with a viscous core that grows over time.

If the reaction and the vortex are both initiated at time ¢ = 0, with increasing time the
interface is stretched into a spiral, as shown in Fig. 4c. In the portion of the flow undergoing
solid body rotation, however, the interface is not stretched, so the increase in interfacial
length can be computed by examining only the region outside the viscous core. For
a material element of initial length dl,, the deformed length, dI, behaves as'%

271172
dl = [1 + <L§> ] dl, 11)
nr

I't
dl = — di,. 12
—dl, (12)

or, for large values of I't/nr?,

Equation (12) shows that the local interfacial length increases roughly linearly in time for
large values of I't/nr?. Further, because the stretching takes place in the region outside of
the viscous core of the vortex, this behavior is roughly independent of the growth rate of the
core and thus the scaling applies to turbulent as well as laminar vortex flows. This stretching
of the interface is the principal agent for mixing augmentation.

As with the planar diffusion flame, the reactant consumption rate gives a direct measure
of mixing. For the velocity field of Equation (10), Marble'** has shown that the augmenta-
tion in fuel consumption rate .#,, (fuel consumption rate minus fuel consumption rate with
no vortex) scales with I'?3D1/3;

'/[a 3 2/3 D 1/6
_—'I_,ZI,:;D”:’ = 2<£> + 0<f> (13)
and
2 1/3 D 1/2
Amixea = 2 <F> I23pt3; +0 <F> (14)

where Apixeq is the cross-sectional area of the fully mixed core.* The form of the expression
for core area (Equation (14)) can be directly compared with that for pure radial diffusion, in
which the core area grows at a rate proportional to Dt. The rate shown above is greater by
a factor of (I'/D)*/. Equation (13) provides a useful scaling for mixing augmentation as
a function of diffusion coefficient (D) and vortex strength (T'). The analysis is valid for any
diffusion process (e.g. heat transfer) which may be written in the form of Equation (3).

4.3. MIXING AUGMENTATION DUE TO A THREE-DIMENSIONAL VORTEX:
SLENDER-BODY APPROACH

The results of Section 4.2 for two-dimensional, unsteady flow can be extended to steady,
three-dimensional vortices using a slender-body approximation, as introduced by Marble
et al*® in studies of shock-enhanced mixing. The approach is illustrated conceptually for
a lobed mixer in Fig. 5.2V The three-dimensional spatial development downstream of the
mixer is represented by the evolution of a two-dimensional unsteady flow field. Changes
along the x-direction are viewed as changes with time seen by an observer traveling with an
appropriate convection velocity, taken here as the mean through flow velocity, U. Time is
thus related to streamwise distance by ¢ = x/U. The ability to characterize an appropriate

*The results are for Rr(Sc)™'/? > 300 where Ry = I'/v is the Reynolds number based on circulation and Sc is the
Schmidt number, v/D. For Rr(Sc)™*/> 5300, the viscous core grows at a rate which is significant compared to the
rate at which the burned-out core radius grows and the results are different. 14
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Trailing
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Fig. 5. Slender-body analogy for lobed mixer flow field development.?V

convection velocity, as well as the difference in scale of the transverse and streamwise
vortices, enable this modeling approach.

The conditions under which the slender body approach is justified are developed below.
To assess the degree to which these conditions are met in devices of practical interest,
a detailed comparison has been made between slender body analyses and fully three-
dimensional Reynolds-averaged, Navier—Stokes computations of mixer nozzle flow fields.
Appendix A describes the results of the comparisons, but, in sum, they show that the slender
body analysis provides a useful and effective method for investigating parametric depend-
encies of mixing strategies, with computational times one to two orders of magnitude
shorter than for three-dimensional solutions.

For a three-dimensional, steady, incompressible flow, we express the axial velocity, u, as
the sum of the mean velocity and a (steady) perturbation to the mean; u = U + u’, where
{u’/U| < 1. Since the dynamics of the cross-plane flow are dominated by the streamwise
vortex, the cross-flow velocities are expected to scale with I'/A and cross flow lengths are
expected to scale with A, where I is the shed streamwise circulation and 2 is the cross stream
length scale characterizing the streamwise vortex.Thus the non-dimensional velocities and
distances are

u,A u, A y z
M;,k=—1’:—, u:‘=—l—_—, y*=z and Z*ZI.
With this scaling, time is non-dimensionalized by I'/A?, so the relationship between

non-dimensional time in the slender-body system and axial distance (x) in the three-
dimensional system is given by

I'x
* = =
t o (15)

The expression for t* implies that two flows of different properties appear similar at axial
distances corresponding to the same t*.

The slender-body approximation is based on cross-plane velocities being small compared
to the mean axial velocity, so that,

r

— < 1. 16
77 (16)
If we assume that cross flow pressure gradients are much stronger than axial pressure
gradients, the axial momentum equation becomes decoupled from the cross flow
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momentum equations. If so, neglecting terms of O(I'/U 1)? yields the resulting system of

equations:
thl* +u juy ot Zuy: _ aﬁp + er (6;3;2 +§=2> u* 17)
?:i* + uf 21;%: +u;“?§— ;;p +Rir<6—i%+ai:2>u;" (18)
j_ly‘i + Z'Z‘: = (19)

where Rr =T'/v is the circulation Reynolds number. These equations are written for
laminar flow, with viscosity v, but can be extended to turbulent flow as will be shown below.
The diffusion of a scalar quantity ¢ can also be described in slender-body form

09 Lo, L0 _D(o &
s T g T <ay*2+az*2 ¢ 20)

These approximations allow extension of the Marble!*# scaling (Section 4.2) to three-
dimensional streamwise vortices. The augmentation in mixing rate expressed in Equation
(13) can be written for the analogous three-dimensional flow as

oM, D\!/3
ar (f) (21)
or equivalently
OM, r23pis
oA T 02 22)

In Equations (19) and (20) .#, represents the augmentation in mixing (or reactant consumption)
due to the introduction of the streamwise vortex, i.e. that portion of the mixing above and
beyond that which would occur purely due to diffusion on a planar interface. Equation (22)
provides a direct scaling for the axial mixing augmentation rate as a function of I', U, A and D.

4.4. EXTENSION TO TURBULENT FLOW

The scaling described can be extended to turbulent flow by employing a turbulent
‘effective diffusivity’, D,, to characterize the small scale mixing due to the transverse
turbulent motion. The principal assumption is that mixing on this scale is independent of
curvature and strain associated with the streamwise vortex. Although this cannot be true for
all flow regimes, the success of the scaling based on this approximation for lobed mixers
implies that the assumption is justified for the parameter ranges investigated.

As a starting point, we again make use of the slender body approach and consider an
unsteady, two-dimensional flow field associated with a turbulent vortex. The velocity field
of the vortex, as well as the diffusion process, are different from laminar flow. The velocity
field must satisfy the momentum equation

auo 10
i ()—[———(r )] (23)

where the turbulent viscosity, v,, will in general vary with time (i.c. distance downstream if
a slender body approach is adopted). Equation (6) for diffusion on an interface is also
modified

(24)

To proceed further, we need to specify the functional dependence of v, and D, on time. Since
time is directly proportional to length in the slender body analysis, we can make use of the
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extensive planar shear layer measurements that show that turbulent viscosity (and diffus-
ivity) vary linearly with downstream distance.®: ” Specifically, the measurements show that
the behavior of the shear layer vorticity thickness*, d,, is given by

o, 1—2

— o
x 1+

(25)

where « is the velocity ratio, U;/U,. Then, as described in a number of texts,'?? a scaling for
the diffusivity based on shear layer thickness may be derived based on Prandtl’s mixing
length hypothesis such that

— 2 —
v, = Se,/D, ~ 8,(x) AU = B <i - j) Ox (26)

where B is an empirical constant and Sc, is the turbulent Schmidt number.
Neglecting spatial variation of the turbulence properties in the cross plane, the turbulent
viscosity thus varies linearly with convective time such that v, = ft, where

B=B G ; f)z 02 7)

Substituting into Equation (23) and solving for uy, we find

ug = (/2xr) {1 —exp [4"7:22] } (28)

The equation describing diffusion about a strained interface with turbulent mixing (Equa-
tion (24)) has a similarity solution, similar to that for laminar mixing (Equation (8)) given by

&t

ye

K= terf B 1 7 1/2 29)
7| (£ t,e? 20 dn gy
Se.) Jo 0

where again, & = ¢(t). Equations (28) and (29) can be used to extend the Marble vortex/
diffusion flame analysis to turbulent flow. The mathematics are somewhat complicated but
the leading term describing the mixing augmentation is similar to that of Equation (13),
however the laminar diffusion coefficient is replaced by the turbulent version, D,, described
above. The result is®

Augmentation in consumption rate 4\/5 23 D, \'/6
23l “\x *o\t) -

(30)

For turbulent flow downstream of a lobed mixer therefore, mixing augmentation due to
streamwise vortices would be expected to scale as

d#, D\

< dt*) oc (ﬁ) (31a)
oM, r23pls

<a(x/,1)> Ul

or

(31b)

Thus the scaling is essentially unchanged whether a laminar or turbulent mixing process is
assumed.

When applied to a lobed mixer flow, turbulent diffusion may be expressed as a function
of the velocities on either side of the lobe (Equation (26)), with circulation related to the

* Here vorticity thickness is defined as the difference between the velocities of the high and low speed streams
divided by the magnitude of the maximum velocity gradient, é, = (U, — Uy)/|du/dy | max-
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lobe geometry by Equation (1). This scaling can therefore be used to estimate mixing
augmentation due to streamwise vortices for different lobe geometries and flow conditions.
In Section 5, we will use experiments and computations to examine over what parameter
ranges this scaling applies.

5. MIXING ENHANCEMENT IN LOBED MIXER FLOWS
5.1. EFFECT OF STREAMWISE VORTICITY ON INTERFACE LENGTH

Using the ideas developed concerning mixing enhancement, we can now examine specific
questions relating to mixer lobe flow behavior. There are two effects that enhance mixing
compared to naturally developing shear layers. One is the increase in initial interfacial area
(interface length), compared to a flat splitter, provided by convoluting the trailing edge. The
second effect is the further increase in interfacial area and steepening of interfacial gradients
downstream from the trailing edge due to cross-stream convection associated with stream-
wise vorticity. Both of these effects are apparent in the slender body simulation of the flow
downstream of a lobed mixer shown in Fig. 6. The mixing of a scalar, initially specified at
¢ = —1 on one side of the lobe and ¢ = + 1 on the other, is shown at different distances
(times) downstream from the mixer lobe. The results were obtained using a spectral element
Navier—Stokes code which is described in Appendix A.

For lobed mixers with nearly rectangular trailing edge profiles, the initial interface length

is given by
l h
—x2(= . 2
7 2</1> +1 (32)

For typical lobed mixers (h/4 = 1 to 3) this effect increases the initial mixing rate by a factor
of 3-7. The increase in interfacial area downstream from the lobe trailing edge can be found
by integrating the expression for d! (Equation (12)) over the trailing edge of the lobe. The
inner bound for the integration is the radius of the viscous vortex core which is assumed to

y-Axis

Fig. 6. Transport of scalar in a lobed mixer flow.??
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be some constant fraction of the lobe spacing (e.g. 4/4). The increase in interfacial surface
area is found to be approximately linear with downstream distance from the trailing edge
and proportional to the strength of the shed circulation,

d@/p . T
001~ (33a)
or
da/n
o = C (33b)

where C is a function of lobe geometry. This linear behavior is evident in the steady,
three-dimensional Euler simulations shown in Fig. 7® where the mean interface length is
plotted as a function of downstream distance for two different lobed mixers. The growth in
mean interface length due to the streamwise vortex can be rapid, with the interface tripling
in length in the first two wavelengths downstream of the trailing edge. The ratio of the
computed non-dimensional circulations for the two geometries shown in Fig. 7 is 6.0
and the ratio of the interface length growth rates is 6.5, in close agreement with the
scaling based on non-dimensional circulation suggested by Equation (33a). Tew?® has
performed additional steady and unsteady Euler computations for several different
lobe geometries and velocity ratios and found that for inviscid flows the constant in
Equation (33) is approximately C =~ 1.3.

Linear interface growth is also seen in the results of three-dimensional Navier-Stokes
simulations reported by Krasnodebski,""!) but the interface growth rate is slower with
C = 0.4-0.5 because of the presence of turbulent diffusion which tends to cause more rapid
decay of circulation and also because of the finite vortex sheet thickness associated with the
boundary layers shed from the lobe. The growth rate shown in the viscous solutions has the
interface length doubling in two to three wavelengths and this situation is more representa-
tive of practical situations. For typical mixer applications, where h/A &~ 1-3, mixing en-
hancement due to initial interface length and to vortex augmentation are of roughly the
same size. We will quantify these effects more rigorously below using results of computa-
tions and experiments.

3.0
25+
High Angle
< Mixer
~ 20}
£ o=22
3 T 0% “ Low Angl
ow Angle
2 15 Mixer
é a=6.1° }
[0} =0.09
€ 10r :
05} : M =05
i Trailin — M=0.
54_ Edgeg ----M=2.0
00 1 | 1 [l 1
-10 -5 0 5 10 15 20
(X - X)X

Fig. 7. Axial evolution of interface length (Euler calculation, » = 1.0).®
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5.2. COMPUTATIONAL ASSESSMENT

5.2.1. Laminar Flow

The effect of the increased initial trailing edge length of the lobed mixer can be separated
from the effect due to the streamwise vortices by comparing the results of two slender-body
Navier-Stokes computations: (1) a simulation of a lobed mixer flow field; and (2) a compu-
tation of the diffusion of a scalar for the same trailing edge geometry with no streamwise
vorticity (a convoluted plate). An example is shown in Fig. 8, for laminar flow, where scalar
mixedness for the two different cases is plotted as a function of non-dimensional time. Here
the scalar mixedness parameter, .#, is defined as

1
/t=ZL(1—|¢|)dA (34)

where A is the mixing duct cross-sectional area. The scalar mixedness can be interpreted
directly as the amount of product in a diffusion-limited, bi-molecular reaction with equiva-
lence ratio of unity (the basis for the diffusion flame models discussed in Sections 4.1 and
4.2). The difference between the curves shown in Fig. 8 is the augmentation due to the
streamwise vortex, .#,, which is expected to scale as

()= (7)o @eso 69

based on Equation (21).

The scaling can be tested by examining different circulation Reynolds numbers, R = I'/v,
as in Fig. 9, which shows the scalar field at t* = 0.4 for two cases with the same initial
conditions, but with Reynolds numbers differing by a factor of four. The thinning of the
concentration boundary layer for the higher Reynolds number case is apparent. The mixing
augmentation for these two cases is plotted as a function of non-dimensional time in Fig. 10.
Also shown is the result obtained when the higher Reynolds number case is scaled by the
ratio of the diffusion coefficients (D oc v) to the one-third power as suggested by Equation
(35). There is agreement in slope between the two cases for 1 <t* <2 where the mixing rate
is constant, as suggested by the vortex diffusion flame models described in Section 4.3. The
departure of the two curves farther downstream arises because of differences between the
velocity field of a confined array of counter-rotating vortices and that of a single vortex, for
which the scaling law was derived. For the counter-rotating vortex array, diffusion between
vortices of opposite sign causes a marked decay in streamwise circulation.
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treamwise Vorticity
061 (Lobed Mixer) Without
M Streamwise Vorticity
0.4 (Convoluted Plate)
021 Flat Plate
0.0 I 1 | !
0.0 1.0 2.0 3.0 4.0 5.0
X/A

Fig. 8. Comparison of mixedness as a function of downstream distance (x/4) for flows with streamwise vorticity
and without streamwise vorticity (convoluted plate and flat plate). Re = 2000, I'/i/ = 0.39 and Sc = 1.0.?V
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Fig. 10. Mixing augmentation for Ry = 1000 and Ry =4000, rescaled in accordance with the vortex diffusion
flame model; h/A =0.54, Sc = 1.0.2Y
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The scaling laws have been examined over a broader range of Reynolds numbers and
lobe shapes, using the slender-body code. The results are shown in Fig. 11 which presents
the maximum mixing augmentation rate as a function of circulation Reynolds number for
two different values of h/A. The mixing behavior can be roughly divided into two regimes
separated by a critical circulation Reynolds number, Rp. For circulation Reynolds
numbers greater than R, the flows are characterized by vorticity which has coalesced
into well-defined streamwise vortices, with the maximum mixing rate proportional to
(Rp) ™13, consistent with the Marble vortex/diffusion flame model. For circulation Reynolds
numbers less than Ry, there is appreciable diffusion of vorticity between the counter-
rotating vortices prior to formation of a vortex core and the vortex scaling law does not
apply. For example, for h/A =0.54 and Ry = 100, the streamwise circulation is less than
50% of its initial value by t* = 2.

5.2.2. Turbulent Flow

The results presented in Figs 10 and 11 were for laminar flow (constant diffusion
coefficient). Computations have also been carried out for a diffusion coefficient which
varies linearly in time to simulate the turbulent diffusion driven by a difference in velocity
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Fig. 11. Maximum scalar mixing augmentation rate as a function of Reynolds number: Sc¢ = 1.0.2?
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between either side of the lobed mixer. For these cases, we define the momentum mixing
parameter

u' '\ 2
/%pzlj 1—| AU dA (36)
A —
2

as the measure of mixedness and again focus on the augmentation in mixing due to the
vortex, .#,, (ie. that portion of the mixing which is in excess of what would occur for the
same trailing edge geometry but with no streamwise vorticity). The computations were
carried out for S¢, = 1.0 so that the evolution of the perturbation in axial velocity, u’, can be
directly related to the evolution of the passive scalar field. The results for the turbulent cases
are similar to the laminar results, and two examples are shown in Fig. 12. In Fig. 12a it is
seen that the scaling of Equation (34), this time based on the turbulent diffusion coefficient,
is applicable for velocity ratios of 0.67 and 0.8 for t* < 1.2. However, for the cases with
larger velocity differences shown in Fig. 12b (» = 0.125 and » = 0.25), the scaling represents
the behavior of the flow only for t* < 0.6.
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Fig. 12. (a) Momentum mixing augmentation for h/A = 0.54 and I'/U4 = 0.30.2%; (b) momentum mixing aug-
mentation for h/A =0.54 and I'/UA =0.39.2Y
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5.3. EXPERIMENTAL ASSESSMENT OF THE EFFECT OF STREAMWISE
VORTICITY ON MIXING

5.3.1. Conceptual Basis of the Experiments

Experiments have been carried out to assess the relative contribution of initial interface
length and streamwise vorticity on the mixing downstream of lobed mixers. Two separate
sets of experiments were conducted, one which addressed mixing on a molecular scale, such
as would be needed for combustion, and one which addressed momentum interchange. The
experiments also provide evaluation of the approximations made in the flow description
based on the vortex diffusion flame model and the slender body approach.

The central idea is that the effects of initial trailing edge length and the streamwise
vorticity can be separated through examination of the flow field associated with the two
geometries shown schematically in Fig. 13. These are a lobed mixer, and a lobe configura-
tion, referred to as the convoluted plate, which has the same trailing edge geometry but
a parallel extension of the trailing edge. The length of the extension controls the amount of
net streamwise vorticity in the flow and so can be used as a diagnostic for understanding the
role of the vorticity in mixing enhancement. The convoluted plate shown in Fig. 13 has an
extension of length 1.6 times the lobe height, the same initial interface length as the lobed
mixer, but a shed streamwise circulation almost an order of magnitude lower. This is
demonstrated in Fig. 13, which shows the computed streamwise circulation, obtained from
a three-dimensional, Reynolds-averaged, Navier-Stokes computation''V as a function of

distance for the lobed mixer and for the convoluted plate. For the lobed mixer, the
circulation increases roughly linearly over the surface of the lobe. This increase is also seen
initially with the convoluted plate but then, as the flow turns back to the x-direction in the
parallel section, the circulation decreases rapidly. The generation of streamwise circulation
is a consequence of the non-uniform aerodynamic loading (in y) on the lobes and hence net
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Fig. 13. Streamwise circulation as a function of axial distance for lobed mixer (a = 22°, » = 0.6) and convoluted
plate (x = 22°, 2 =0.53),0"
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transverse vorticity. This implies a net streamwise circulation, similar to the situation with
a finite wing. The parallel extension decreases the non-uniformity in transverse vorticity and
hence also the streamwise circulation.

5.3.2. Water Tunnel Experiments on Molecular Mixing

Water tunnel experiments to measure molecular mixing have been conducted for the two
geometries depicted in Fig. 13, as well as for a conventional flat plate splitter to provide
a reference. The experiments were conducted in the facility described in Section 3 and were
based on optical measurements of the chemical reaction between the two streams, following
the technique used by Breidenthal® In this technique, one stream contains phen-
olphthalein, the other sodium hydroxide, so that the two streams are initially clear. When
mixing at the molecular level has brought the local pH to a level between 8 and 12 the
nroduct turns a vivid red. Light directed across the mixing layer is attenuated by the
product of the mixing. The degree of attenuation gives a direct measure of the molecular
scale mixing. Further details of the facility and the experimental procedure are given by
Manning.*?

Figure 14 shows measured molecular mixedness as a function of axial distance down-
stream of the trailing edge for the lobed mixer, convoluted plate, and flat plate. Cases are
shown where the velocity ratios are » = 1.0, 0.67, 0.5. We consider first the convoluted plate
to assess the increase in mixing due to increased trailing edge length. In the region in which
the shear layers from adjacent lobes have not yet merged (in this experiment for x/A < 5),
the increase in mixing rate compared to the flat plate is essentially only due to the increase
in interfacial surface area at the trailing edge. The convoluted plate trailing edge length was
2.6 times longer than that of the flat plate. For the cases shown with » = 1.0 and z = 0.67, the
ratio of the mixing rates for the convoluted plate and the flat plate fall close to the ratio of
the trailing edge lengths*.

The mixer lobe introduces streamwise vorticity and hence additional mixing. In this case,
the additional mixing due to the streamwise vorticity is roughly the same amount as that
due to the increased trailing edge length. The experiments demonstrate clearly, however, the
roles of both the increase in initial interfacial surface area and the further stretching of the
interface due to the streamwise vorticity in mixing augmentation.

We can also compare the scaling for mixing augmentation expressed in Equation (31)
with the measurements. The augmentation in mixing rate is the difference between the
slopes of the mixing curves for the lobed mixer and the convoluted plate. From Fig. 14, the
curves are roughly linear between 2 < x/A <4. In this region, the ratio between the mixing
augmentation rates for », = 0.67, and 23 = 0.5, is (d.#, /dx),/(d.#,/dx); ~ 0.65.*? The ratio
of mixing augmentation calculated using Equation (31) with the variation in D, found using
Equation (26) is (d.#,/dx}),/(d.#,/dx); =0.7, in good agreement with the experimental value.

5.3.3. Wind Tunnel Measurements of Momentum Mixing

Measurements of momentum interchange between two streams have also been carried
out for the lobed mixer, convoluted plate and flat plate in a low speed wind tunnel
(velocities of the order of 40 m s~ 1). The lobed mixer had a penetration angle of 20 degrees
and a height to wavelength ratio of 2.0. The test section was 100 x 290 mm and 1 m long.
The stream-to-stream velocity ratio was set by adjusting the blockage of far upstream
perforated plates in the two streams. The Reynolds numbers were roughly 10°, based on
mean velocity and lobe wavelength and 1.4 x 10° based on circulation for the mixer lobe
(Rp). Further details of the facility are given by Qiu.??

*For » = 0.5, the flat plate mixing rate shown was obtained using an empirical scaling law since the data that was
collected for the flat plate at this condition was in error.!?



342 1. A. Waitz et al.

0.8
4 —— Forced Mixer —<]
2 064 Convoluted Plate —~<"]
2 ’ - -- Flat Plate
£ J
£ 044
@ = 1
(—‘?‘: 0.2 1
8 J
§° 0.0 .
-0.2 T T T T T T T T T T
0.8 -
| —— Forced Mixer
o I Convoluted Plate —< ]
8 %67 - FatPlae K a2
8 0.4 ox
X VT
P b BT, R
£ 024 e
< e
o 1 e -
2 00 OO bl e
-0.2 T T . T Y T T T T
0.8
{4 —— Forced Mixer
B 06 Convoluted Plate —< |
g - Flat Plate
FILEEN oy I
) = I Bidubdl B
2024 A
8 4 —
§° 0.0 | st e T
-0.2 T T T T T T T T 7 T
0.0 1.0 2.0 3.0 4.0 5.0

Fig. 14. Mixedness profiles for lobed mixer, convoluted plate and flat plate at velocity ratios; (a) + =1.0;
(b) 2=0.67; and (c) » =0.5.12

The test section was designed with constant area so that the rise in static pressure
was directly related to the change in overall momentum flux of the two streams. Measure-
ments of the pressure rise can thus be used to assess the momentum interchange between
streams.

Figure 15 shows data for the three configurations: lobed mixer, convoluted plate and flat
plate, at a velocity ratio of 0.31. The horizontal axis is the distance downstream from the
lobed mixer and the vertical axis is the static pressure rise normalized to the static pressure
rise obtained from ideal constant area mixing of two streams each having uniform profiles.
The reference pressure is atmospheric pressure (pressure at the mixing duct exit), so the
curves represent the extent to which the pressure at the mixer trailing edge is depressed
below atmospheric. The pressure rise given has been adjusted for the decrease in static
pressure along the duct due to wall friction using results from runs at a velocity ratio of
unity (no mixing). Conditions for the lobed mixer and the convoluted plate can be regarded
as nearly fully mixed in the test section but the flat plate data cannot. The difference in
mixing performance between the lobed mixer and the convoluted plate, i.e. the impact of
streamwise vorticity, is evident.
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One way to quantify data such as this is in terms of the length that it takes the mixing to
occur. For this we can define an integral pressure recovery length as

JAPdf

L="Gp..

~

(37

where AP is the average pressure difference between the trailing edge and the mixing duct
exit. The integral recovery length which is a measure of how rapidly mixing occurs, is shown
as a function of velocity ratio in Fig. 16. Note that the data for a velocity ratio of 0.55 is less

0.0

-0.2 4

-0.4

AP;
(AP)max

-0.6

-0.8 O Flat Plate
® Lobed Mixer
B Convoluted Plate

-1.0 T y ,

0 10 20

x/{ A

Fig. 15. Comparison of normalized static pressure recovery downstream of the lobed mixer, convoluted plate, and
flat plate for velocity ratio of 0.31.%
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reliable because the pressure rise due to the mixing at this velocity ratio is small and the
measurement is relatively less accurate. Figure 16 shows that the lobed mixer roughly
halves the distance to mix out compared to the convoluted plate.

6. EFFECTS OF COMPRESSIBILITY

The final aspect we discuss concerns the extension of some of the ideas presented to
compressible flow. There are two issues to be addressed: (1) the influence of compressibility
on the distribution of shed circulation in the downstream region; and (2) the effect on shear
layer mixing, or, within the context of the model, the dependence of the diffusivity on Mach
number.

For typical mixer nozzle geometries, cross-stream Mach numbers are subsonic for axial
Mach numbers of 2 or less. Trends concerning the magnitude and evolution of the
streamwise circulation are thus largely unchanged from those at low speed. This is
demonstrated in Fig. 7 which shows computational results for average freestream Mach
numbers of 0.5 and 2.0.®® The growth of the time-mean mixing interface in the cross-flow
plane, which represents the effect of the vortical structure, is virtually identical for the two
Mach number conditions.

Although there is little effect on streamwise circulation, the shear layer mixing is strongly
Mach number dependent. The decrease in mixing rate for a planar shear layer due to
compressibility is well-documented and has been shown to depend on the convective Mach
number, M., defined as the relative Mach number of the large-scale structures in the mixing
layer with respect to either the low speed or high speed freestream.'® For M, 0.3 the
planar mixing rate begins to be reduced significantly from the incompressible case.*® If the
arguments in Section 4 apply, the decay in vortex mixing with compressibility should scale
with the decay in diffusion coefficient to the one-third power and thus with the decay in
growth of the planar shear layer vorticity thickness (Equation (25)) to the two-thirds power.

Data on this point is sparse, but there have been back-to-back comparisons of the same
mixer lobe with subsonic and supersonic flow. Figure 17 shows data on the temperature
non-uniformity along the center-line of a lobed mixer/ejector configuration. With the same
velocity ratio of 4:1, measurements were made at two different primary stream Mach
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Fig. 17. Computational/experimental comparison for mixing of a temperature nonuniformity with increasing
compressibility.?” M, is the convective Mach number.
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numbers, 0.5 and 1.5 (corresponding to convective Mach numbers of 0.14 and 0.65,
respectively).®” The results of slender body calculations?! employing an effective diffusion
coefficient which has been adjusted to account for the decrease in shear layer growth rate
with compressibility are also shown. It is seen that the general trend for less mixing with
increasing compressibility is captured by this simplified approach.

7. SUMMARY AND CONCLUSIONS

(1) An experimental and numerical investigation has been conducted of mixing augmenta-
tion due to streamwise vortices downstream of forced mixer lobes. The investigation
included quantitative descriptions of the principal fluid dynamic processes by which
such augmentation occurs and assessment of analytical tools developed to describe
these processes.

(2) The role of streamwise vorticity in mixing augmentation has been described quantitat-
ively. Augmentation is due to the strain rate field associated with the vortices, which
increases both interface area (the area available for mixing between two streams) and
local gradients in fluid properties (the driving potential for mixing across this interface).

(3) Anenabling factor in modeling the flows of interest is that for many practical devices the
scale of the motions associated with the transverse vorticity is initially much less than
the scale of the cross-stream convective transport associated with streamwise vorticity.
This difference in scale allows application of a slender body analytical framework in
which the 3-D steady flow is usefully viewed as a 2-D unsteady flow in a coordinate
system traveling with the mean reference velocity.

(4) First of a kind experiments have been carried out to quantify: (1) the increase in mixing
associated with the streamwise vortices shed from the lobed mixer; and (2) the increase
in mixing due to the increased trailing edge length of the lobes. For the class of lobes
examined, which are representative of current mixer configurations, the two effects were
found to be of roughly equal magnitude.

(5) The experiments carried out on both bulk momentum mixing and molecular scale
mixing show that the models and scaling laws presented give useful descriptions of the
effects of lobe geometry, Reynolds number, stream-to-stream velocity ratio, and mean
Mach number, on overall mixing and flow field structure.

ACKNOWLEDGEMENTS

The research and ideas of many people influenced the work discussed in this paper. In
particular we wish to thank Dr D. C. McCormick for elucidating several important aspects
of these flows and for providing many insightful comments about the work. We also thank
Professor N. A. Cumpsty for very helpful suggestions and critical review of the manuscript
at several stages. Professor W. N. Dawes, Professor J. Peraire, Dr W. M. Presz Jr and
Dr T. J. Barber provided much help and guidance over the last several years which we are
also pleased to acknowledge. We are grateful for the support provided by NASA Lewis
Research Center through Grant NAG3-1364 with technical monitor Mr James R. DeBonis,
by NASA Langley Research Center through Grant NAG-1-1511 with technical monitor
Dr John M. Seiner and by the Naval Air Systems Command via Contract # N00019-88-C-
0229 and program managers Dr L. Sloter and Mr G. Derderian. We also offer our sincere
thanks to Diana Park for her expert help and advice on preparing the text and graphics for
this manuscript.

REFERENCES

1. Anderson, B. H., Povinelli, L. A. and Gerstenmaier, W. (1980) Influence of pressure driven secondary flows on
the behavior of turbofan forced mixer nozzles, AIAA Paper AIAA-80—1198.



346 1. A. Waitz et al.

2.

)

18.

19.
20.

21

22,
23.

24.

25.

26.

27.

Barber, T. J., Paterson, R. W. and Skebe, S. A. (1988) Turbofan forced mixer lobe flow modeling,
I—Experimental and analytical assessment, II—three-dimensional inviscid mixer analysis (FLOMIX),
III—application to augmentor engines. NASA CR 4147.

. Batchelor, G. K. (1967) An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, U.K.
. Breidenthal, R. E. Jr (1979) A chemically reacting turbulent shear layer, Ph.D. Thesis, California Institute of

Technology, Pasadena, CA.

. Brown, G. L. and Roshko, A. (1974) On density effects and large structure in turbulent mixing layers, J. Fluid

Mech. 64, 775-816.

. Dawes, W. N. (1992) The practical application of solution-adaptation to the numerical simulation of complex

turbomachinery problems, Prog. in Aerospace Sci., 29, 221-269.

. Dimotakis, P. E. (1991) Turbulent free shear layer mixing and combustion. GALCIT Report FM91-2,

California Institute of Technology. [See also Dimotakis, P. E. (1989) Turbulent free shear layer mixing and
combustion. AIAA paper 89-0262, 27th Aerospace Sciences Meeting.]

. Elliot, J. K. (1990} A computational investigation of the fluid dynamics of a three-dimensional, compressible,

mixing layer with strong streamwise vorticity, S.M. Thesis, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, MA.

. Fung, A. K. S. (1995) Modeling of mixer-ejector nozzle flows, S.M. Thesis, Department of Aeronautics, and

Astronautics, Massachusetts Institute of Technology, MA.

. Karagozian, A. R. and Marble, F. E. (1986) Study of a diffusion flame in a stretched vortex, Combustion Sci.

Technol. 45, 65-84.

. Kransnodebski, J. K. (1995) Numerical investigations of lobed mixer flow fields, S.M. Thesis, Department of

Mechanical Engineering, Massachusetts Institute of Technology, MA.

. Manning, T. A. (1991) Experimental studies of mixing flows with streamwise vorticity, M.S. Thesis, Mass-

achusetts Institute of Technology, Cambridge, MA.

. Marble, F. E. (1987) Chemical reactivity in liquids. In: Proc. 4nd Int. Meeting, Division de Chimie Physique,

Societe Francaise Chimie, Paris.

. Marble, F. E. (1985) Growth of a diffusion flame in the field of a vortex, Recent Advances in the Aerospace

Sciences, Plenum Publishing, New York.

. Marble, F. E., Zukoski, E. E., Jacobs, J. W, Hendricks, G. J. and Waitz, I. A. (1990) Shock enhancement and

control of hypersonic mixing and combustion, AIAA Paper 90-1981.

. McCormick, D. C. (1992) Vortical and turbulent structure of planar and lobed mixer free-shear flows, Ph.D.

Thesis, University of Connecticut, CT.

. O’Sullivan, M. N, Waitz, I. A, Greitzer, E. M., Tan, C. S. and Dawes, W. N. (1996) A computational study of

viscous effects on lobed mixer flow features and performance. AIAA J. Propulsion and Power.
Papamoschou, D. and Roshko, A. (1988) The compressible turbulent shear layer: an experimental study,
J. Fluid Mech. 197, 453-477.

Peiro, J., Peraire, J. and Morgan, K. (1993) Felisa system reference manual, Part 1-—Basic theory.

Presz, W., Gousy, R. and Morin, B. (1986) Forced mixer lobes in ejector designs AIAA Paper AIAA-86-1614,
22nd Joint Propulsion Conference.

Qiu, Y. J. (1992) A study of streamwise vortex enhanced mixing in lobed mixer devices, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Schlichting, H. (1979) Boundary Layer Theory, 7th edn, McGraw-Hill Inc., New York, NY.

Skebe, S. A., McCormick, D. C. and Presz, W. M. (1988) Parameter effects on mixer—ejector pumping
performance, AIAA Paper AIAA-88-0188, 26th Aerospace Sciences Meeting.

Skebe, S. A, Paterson, R. W. and Barber, T. J. (1988) Experimental investigation of three-dimensional forced
mixer lobe flow fields, AIAA Paper AIAA 88-3785.

Tan, C. S. (1985) Accurate solution of three-dimensional Poisson’s equation in cylindrical coordinates by
expansion in chebyshev polynomials, J. Comp. Phys. 59, 81-95.

Tew, D. E. (1992) A computational study of mixing downstream of a lobed mixer with a velocity difference
between the co-flowing streams, S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, MA.

Tillman, T. G., Paterson, R. W. and Presz, W. M. (1992) Supersonic nozzle mixer ejector, J. Propulsion Power
8, 513-519.

APPENDIX A
APPLICABILITY OF THE SLENDER BODY APPROACH

In the derivation of the slender-body system of equations (Equations (17)—(20)) it was

stipulated that the axial velocity perturbations satisfy |u’| U| < 1 and that the circulation
satisfies /UL < 1. Neither of these two requirements is rigorously met in devices of
practical interest. For example, from Equation (2)

r

h
57~ 27 tan(e). (A1)
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If h/i ~ 1.0, and tan o =25°, which are not untypical, then ['/U. ~ 0.9. Further, for
a velocity ratio 2= U;/U, =05 for example, the axial velocity perturbation is
|u'/U| =0.33. Thus, neither of these quantities satisfies the formal restrictions. To assess in
more detail the degree to which the slender-body approach is applicable, we have carried
out comparisons with fully three-dimensional simulations. These not only illustrate impor-
tant features of these flows, but also show that the slender-body approximation gives useful
results over the range of parameters of practical interest.

The three-dimensional simulation of the flow over and downstream of a lobed mixer
was carried out using a Reynolds-averaged, Navier-Stokes solver developed by Dawes,
which employs a k- turbulence model.®'” The code has been used extensively for
turbomachinery and internal flow calculations and was validated for this application by
Krasnodebski.!V The integration was carried out on an unstructured grid which was
generated using an advancing front technique.!®’ For the slender-body computations
(solution of Equations (17)—(20)) a spectral element Navier-Stokes code was used. The
computational domain was divided into 128 elements; within each element the flow
field variables were represented with 7 x 7-order Chebychev polynomials.***2% To ensure

3-D Slender-Body

t*=0 t*=0.8

t*=14 t*=3.0

Streamwise vorticity / U\

0 25
Fig. A.1. Comparison of 3-D and slender-body streamwise vorticity distribution at ¢* =0, 0.8, 1.4, 3.0 (- = 1.0,
s =1.0).
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consistent comparison, the slender-body calculations were initiated at the trailing edge
using the streamwise vorticity distribution taken directly from the three-dimensional
solution. The turbulent viscosity and the scalar diffusion coefficient were also kept the same
between the two codes. The lobes had k/A = 1.0 and lobe penetration angle, o = 22°, for
which I'/U 4 =0.9. The velocity ratio between the freestreams on either side of the lobed
mixer was specified from 2 = 0.6 to + =1.0. In the simulations a scalar was specified:
¢ = —1 below the lobed mixer and ¢ = +1 above the mixer. Two aspects will be
addressed: the overall flow features and the mixedness.

We first present the results for + = 1.0. The evolution of the streamwise vorticity field as
captured in the two simulations is compared in Fig. A.1 and the scalar field is shown in
Fig. A.2. The time t* =0.0 is at the lobe trailing edge. The thickness of the region of
appreciable vorticity reflects a computed boundary layer thickness at this location. Figure
A1 illustrates the rotation and roli-up of the distributed sheet of vorticity into a discrete

o olenusr-noay

=0 t*=0.8

Passive Scalar

-1 +1

Fig. A.2. Comparison of 3-D and slender-body passive scalar distribution at * =0, 0.18, 1.4, 3.0 (2 = 1.0, s = 1.0).
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t*=1.4 t*=3.0

Streamwise vorticity / UA

25

Fig. A.3. Comparison of 3-D and slender-body streamwise vorticity distribution at t* =0, 0.8, 1.4, 3.0 (- = 0.6,
s=1.0).

core which is eroded by viscous diffusion. The velocity field associated with the vortex has
a dramatic effect on the mixing of the scalar property field, as shown in Fig. A.2 which gives
contours of the scalar variable at the same times. The effect of the increases in interface
length are evident. At t* = 3.0, it can be seen that the interface has been stretched to roughly
double its initial length. In Figs A.3 and A.4 we present the results for the case with » = 0.6
which represents a more severe test of the slender body calculations. Although the overall
flow features are similar, the differences between the results of the fully three-dimensional
computation and the slender body analysis are more significant for the case of » = 0.6 than
for the case of » = 1.0.

It is also important to assess the mixing on a quantitative basis, since this is a main item
of interest. A comparison of mixedness (defined using Equation (34)) as a function of
downstream distance for the slender-body and three-dimensional computations is shown in
Fig. A.5 for the cases 2 =1.0 and » = 0.6. In the region t* < 3 where most of the mixing
augmentation occurs, the mixing rate for the slender body code is 10% less than that for the
three-dimensional simulation for z = 1.0. The accuracy of the slender body simulation
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3-D Slender-Body

tt=0 t*=0.8

t*=14 t*=3.0

Passive Scalar

Fig. A4. Comparison of 3-D and slender-body passive scalar distribution at t* =0, 0.8, 1.4,3.0(: =0.6, s =>1.0).

degrades as the velocity difference between the two streams increases. For the case » = 0.6
shown in Fig. A.5, the difference in mixing rate between the three-dimensional and the
slender body simulations is 25%.

The slender body simulations were also assessed by comparing them to results from the
wind tunnel experiments described in Section 5.3.3. Figure A.6 shows a comparison of
slender body computations and experiments for a lobed mixer at three different velocity
ratios, + =0.13, 0.20 and 0.30. The pressure rise was obtained from the slender-body
calculations by assuming that Sc, = 1 and that scalar and axial momentum mixedness have
the same behavior. The numerical results compare well with experimental data over the
range shown, even though the ratio of axial velocity non-uniformity to mean axial velocity
is 0.75 when 2 =0.13, a rather severe test of the slender body approach.
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Fig. A.6. Comparison of experimental static pressure recovery downstream of the lobed mixer with computa-

tions.?V

From these comparisons it is apparent that the slender-body flow is a useful approxima-
tion to the three-dimensional flow for realistic mixer lobe geometries or, in other words, that
the two-dimensional, unsteady scaling laws can be used to describe the three-dimensional

flow field downstream of the lobed mixer.



