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SEXTANT is an extravehicular activity (EVA) mission planner tool developed in 

MATLAB, which computes the most efficient path between waypoints across a planetary 

surface. The traverse efficiency can be optimized around path distance, time, or explorer 

energy consumption. The user can select waypoints and the time spent at each, and can 

visualize a 3D map of the optimal path. Once the optimal path is generated, the thermal load 

on suited astronauts or solar power generation of rovers is displayed, along with the total 

traverse time and distance traveled. A field study was conducted at the Mars Desert 

Research Station (MDRS) in Utah to see if there was a statistical difference between the 

SEXTANT-determined energy consumption, time, or distance of EVA traverses and the 

actual output values. Actual traverse time was significantly longer than SEXTANT-

predicted EVA traverse time (n=6, p<0.01), traverse distance was not significantly different 

than SEXTANT-predicted distance, and explorer energy consumption was significantly 

greater than SEXTANT-predicted energy consumption (n=5, p<0.01). A second study was 

done to see if mission re-planning, or contingency planning, was faster and less work when 

using SEXTANT in the habitat or in the field using an iPad. Time and workload 

measurements were collected for each subject under both conditions. Contingency planning 

in the habitat was not significantly different than contingency planning in the field. There 

was no significant workload difference when contingency planning in either location, 

however there was a trend that suggested contingency planning was faster in the habitat 

(n=3, p=0.07). Every subject commented that it was a hassle to carry the mission planner in 

the field and it was difficult to see the screen in the sunlight. To determine if gloves were a 

factor in the difference between mission re-planning time, subjects were asked to plan a 

contingency indoors with and without gloves. Performance and workload were not 

significantly different when re-planning with and without the gloves. The SEXTANT mission 

planner will continue to be improved according to the results and the recommendations of 

subjects in this study. 
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Nomenclature 

EVA = extravehicular activity 

GIS = geographical information system 

GPS = global positioning system 

LASOIS = lunar astronaut spatial orientation and information system 

MDRS = Mars Desert Research Station  
MIT = Massachusetts Institute of Technology 

SEXTANT = Surface Exploration Traverse Analysis and Navigation Tool 

VNC = virtual network computing 

I. Introduction 

OR future human missions to the Moon and Mars, efficient extravehicular activity (EVA) traverses are vitally 

important because resources are limited and must be used optimally. As the second EVA of Apollo 14 

demonstrates, navigation in the lunar environment is challenging.1 Astronauts Al Shepard and Ed Mitchell had 

difficulty identifying craters and judging distances on their EVA. This led to poor situational awareness and the 

astronauts never reached their desired destination. To improve situational awareness while on an EVA, absolute 

orientation in the planetary environment is vitally important. Researchers at the Ohio State University have 

developed the Lunar Astronaut Spatial Orientation and Information System (LASOIS), which uses 

microelectromechanical systems inertial measurement units, lightweight stereo cameras, step sensors, and displays 

to accomplish spatial localization with the aid of an imaging system which tracks terrain targets.2,3 

  To further mitigate some of the challenges experienced on EVAs during the Apollo program and plan for future 

human planetary exploration, graduate students at the Massachusetts Institute of Technology (MIT) Man-Vehicle 
Laboratory have developed an EVA traverse planning tool. The first iteration of the EVA mission planner was 

called the Geologic Traverse Planner.1,4 The Geologic Traverse Planner featured a digital elevation map where users 

could select waypoints along a traverse. The mission planner then generated a straight-line path between the 

waypoints and output a total exploration cost, which was a measurement of metabolic cost and thermal cost. The 

Geologic Traverse Planner also indicated when the user violated any of the following constraints: maximum slope, 

maximum energy consumption, EVA time, and EVA duration.   

Marquez developed informational and functional requirements for the mission planner by analyzing Apollo 

EVAs and field studies at the Mars Society’s Haughton-Mars Project on Devon Island.5-8 Marquez overlaid the 

planned traverse on the terrain map, and made the metrics of time, distance, and energy cost clearly displayed on the 

interface, along with the elevation and slope along the traverse.  

Lindqvist expanded the mission planner from a research tool to a planner that could be used for future human 
planetary missions by combining the mission planner program with an ArcGIS geographical information system 

(GIS) software program.9 Essenburg combined the two separate programs into one program written in MATLAB, 

call Pathmaster.10 Pathmaster also allows for mission planning 

with multiple explorers on the same map.  

The EVA traverse planning tool used in this study is called 

SEXTANT, the Surface Exploration Traverse Analysis and 

Navigation Tool.11 SEXTANT allows users to specify waypoints 

on a 3D map of the lunar or planetary surface for an explorer to 

travel. Explorers can be astronauts, astronauts on transportation 

rovers, or unmanned robots.11 SEXTANT then calculates the 

optimal path between waypoints around one of three cost 

functions: path distance, EVA traversal time, or explorer energy 
consumption. The optimal path is then generated on a 3D mapping 

interface, and the predicted energy output is displayed, along with 

the total predicted traverse time and distance traveled. Crew 

members can use SEXTANT in the habitat to plan missions, or in 

the field for mission contingency planning (Figure 1).  

In previous field studies of SEXTANT at the Jet Propulsion 

Lab and Haughton Crater, the mission planner was used by 

engineering students at MIT and the re-planned missions were 
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Figure 1. Mission Planning in the Field 

with an iPad 



 

American Institute of Aeronautics and Astronautics 
 

 

3 
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Figure 2. SEXTANT 3D mapping interface 

 

 
Figure 3. SEXTANT 2.0 3D mapping interface 
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communicated to the crew members in the field.12 A future goal of 

SEXTANT is to be able to use it for real-time mission contingency 

planning in the field by the crew members. In order to develop the 

mission planner from primarily an engineering tool to a planner that 

can be used in the field, a human factors analysis was conducted on 

the SEXTANT computer interface. This study aims to use the 
mission planner for contingency planning in the field, so that the 

efficacy of real-time mission re-planning by the EVA crew member 

can be determined. Once the SEXTANT interface redesign was 

complete, a field study using SEXTANT was conducted.  

 

II. Materials and Methods 

At its current state, the interface of SEXTANT is designed as an engineering tool and is not designed for subject 

ease of use. It is desired that the interface be more user-friendly before future use in field studies. The SEXTANT 

interface is shown in Figure  2. In the first study, the interface was redesigned according to human factors principles. 

The redesigned interface is shown in Figure 3. The study consisted of 10 subjects (7 males, 3 females, age 21-28) 

who were first trained in both interfaces and then tested using each interface to perform a checklist that simulated a 

realistic traverse planning sequence.  The  total  time  to  complete  the  checklist  and  the  time  to  complete phases 

of the checklist, as well as workload ratings were obtained and analyzed statistically. Subjective feedback was also 

collected from each subject focusing on which interface was preferred. Within subjects analysis was done 

comparing performance and workload when using the SEXTANT interface and the new interface, SEXTANT 2.0.  
Once the SEXTANT interface redesign was analyzed, SEXTANT was prepared for use in the field on an iPad. 

There are unavoidable issues with using re-planning aids in the field, such as glove interaction, weight, and visibility 

issues, however an iPad was chosen for this preliminary field study due to limited access to equipment. Since 

MATLAB cannot run natively on the iOS of an iPad, a Virtual Network Computing (VNC) system was set up 

between an ASUS laptop (Server) and the iPad (Client). The remote control package used for the server was 

TightVNC 2.0.2 set up under Windows 7 32-bit operating system and the VNC Viewer used for the client was Wyse 

PocketCloudTM. An ad-hoc wireless network connection was established between the laptop and the iPad and with 

the use of PocketCloudTM. The iPad user could view and control the laptop operating system and run MATLAB, 

which allowed the user to view the output maps and cost functions on the iPad.  

The first field study was conducted to see if there was a statistical difference between the SEXTANT-determined 
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 Figure 5. Workload: Temporal Demand on second trial, 

SEXTANT Interface vs. SEXTANT 2.0 Interface (n=5, 

p<0.05) 
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Figure 6. Workload: Frustration in second trial, 
SEXTANT Interface vs. SEXTANT 2.0 Interface (n=5, 

p=0.06) 
 

 



 

American Institute of Aeronautics and Astronautics 
 

 

5 

energy consumption, time, or distance of EVA 

traversals and the actual output values. The output 

values were displayed on the interface as shown in 

Figure 4. Energy consumption was determined by 

measuring astronaut mass, height, and heart rate along 

the traverse, and calculating energy consumption with 
energy equations.13 SEXTANT-predicted energy 

consumption is a function of energy rate and time. 

Energy rate is a function of mass, slope, gravity, and 

velocity. The velocity is a function of terrain slope, 

and is fixed depending on which slope range the 

terrain fits.11 The distance traveled was measured 

using a global positioning system (GPS). The time 

was measured using a stopwatch. Long EVA 

traversals were strenuous for the crew member 

subjects due to the added weight of the life support 

system backpack, therefore SEXTANT-predicted 

EVA traversals were limited to 406 m in length to 
reduce variability in crew member fitness level and to 

reduce stress on the subjects. There were six subjects 

(3 males, 3 females, ages 21-23) who completed two 

traverses each.  

The second field study was done to see if mission 

re-planning, or contingency planning, was faster and 

less work when using SEXTANT in the habitat or in 

the field with an iPad. In both cases, subjects 

simulated adding an obstacle, such as a boulder, that 

blocked the traverse path and subjects had to re-plan 

the traverse around the obstacle. Time and workload 
measurements were collected for each subject under 

both conditions. The subjective NASA TLX workload 

assessment was used to determine workload. There 

were three subjects (2 males, 1 female, ages 21-23) 

who performed one mission re-plan in the field and 

one mission re-plan in the habitat, alternating which 

subjects re-planned in the habitat on their first trial or 

in the field.  

The traverses started at the habitat and ended at the same location for all subjects, therefore predicted distance was 

the same for all trials. All traversals were conducted between the hours of 9am and 4pm MST, therefore there was 

adequate sunlight for each EVA traversal and subjects were performing during normal working hours. Each subject 

was rested according to their personal preference the night prior to testing. All 
subjects were comfortably fitted with the simulated space suits with no suit problems 

or discomforts mentioned during traversal. Each subject was weighed prior to their 

EVA traverse.   

Subjects wore iTouch gloves in the field to re-plan missions. To ensure that the 

gloves alone were not making a difference in mission re-planning in the habitat and in 

the field, different subjects were asked post-field study to re-plan a mission both with 

the gloves and without the gloves. Four subjects (1 male, 3 females, ages 22-26) were 

asked to perform the experiment. A within subjects study was conducted, alternating 

if subjects wore the gloves in their first trial or not. Total time to re-plan a mission 

was measured, along with a NASA TLX workload survey after each trial. 

Two-tailed dependent t-tests were conducted on all studies to compare the means 
of several variables assuming equal variance. Nonparametric Friedman and Quade 

tests were performed on workload results.   
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 Figure 7. EVA Predicted Time vs. EVA Actual Time 
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Figure 8. EVA Predicted Energy Consumption vs. 

EVA Actual Energy Consumption (n=5, p<0.01) 

 

 

 

 
 

Table 1. Difference in 

Time (sec) when 

Contingency Planning 

in the Habitat vs. in the 

Field 

 

Habitat 
(sec) 

Field 
(sec) 

153 349 

210 573 

221 369 
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III. Results 

A. Human Factors Interface Analysis 

In the human factors analysis of the SEXTANT 

interface redesign, learning was the largest contributing 
factor to the results. Subjects were significantly faster at 

planning missions on the second trial, regardless of 

which interface the subject used first (n=10, p<0.05). It 

was found that with the new interface, SEXTANT 2.0, 

marginally less time was spent inputting explorer 

properties and the EVA schedule (n=10, p=0.07). When 

looking at workload factors, there was marginally less 

workload for two of the six workload categories when 

using SEXTANT 2.0: mental demand (n=10, p=0.06) 

and frustration (n=10, p=0.09).  

Because learning was involved, workload 
measurements were also compared between subjects 

using SEXTANT and SEXTANT 2.0 on the second 

trial. When comparing the workload on the five 

subjects that used SEXTANT second to the five 

subjects that used SEXTANT 2.0 second, it was found 

that temporal demand was significantly less with 

SEXTANT 2.0 (n=5, p<0.05), and that frustration was 

marginally less with SEXTANT 2.0 (n=5, p=0.06). The 

box plots of temporal demand and frustration for 

SEXTANT vs. SEXTANT 2.0 are shown in Figure 5 

and Figure 6, respectively. 

Although overall there was no strong quantitative 
difference between the two interfaces, 8 out of 10 

subjects preferred SEXTANT 2.0 over SEXTANT. 

Because of the results of this study, SEXTANT 2.0 was 

used in the MDRS field studies. 

B. Mission Planning  

The difference in traversal time, traversal distance, 

and explorer energy consumption between SEXTANT 

and actual values was measured. Actual EVA traverse 

time was significantly different than SEXTANT-

predicted time (n=6, p<0.01), as shown in  Figure  7. Actual traverse distance was not significantly different than the 

predicted EVA traverse distance. Explorer energy consumption was significantly different than the predicted energy 
consumption (n=5, p<0.01), as shown in Figure 8. Each of the six subjects commented that it was difficult to carry 

the mission planner in the field and it was difficult to see the screen in the sunlight, especially with the space suit 

helmet on. 

The ability to plan a contingency during EVA is vitally important in cases of emergency. If a crew member were 

to experience a problem with the space suit, a mission planner would have the ability to ensure a quick and reliable 

return to the habitat. To compare mission re-planning inside the habitat with contingency planning in the field using 

an iPad, time and workload measurements were collected for each subject under both conditions. The times it took 

to re-plan in the habitat and in the field are shown in Table 1. Contingency planning in the habitat was not 

significantly less than contingency planning in the field, however there was a trend (n=3, p=0.07), as shown in 

Figure 9. There was no significant workload difference when re-planning in the habitat or in the field.  

When subjects re-planned a mission in the habitat, they used the iPad but they were not wearing the iTouch 

gloves. To see if wearing the iTouch gloves made a difference in the time spent re-planning a mission, subjects 
inside were asked to re-plan a mission wearing the gloves and without wearing the gloves. There was not a 

significant difference between the total time subjects spent re-planning a mission when wearing the gloves or 

wearing no gloves, however there was a trend towards better performance without gloves (n=4, p<0.1), as shown in 

Figure 10. There was a trend in three of the six workload ratings (perceived performance, effort, and frustration) that 
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Figure 9. Contingency Planning Time in the Habitat vs. 

in the Field (n=3, p=0.07) 
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Figure 10. Contingency Planning Time Without Gloves 
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showed that workload was less when re-planning a mission without the gloves. Subjects thought they performed 

better without the gloves (n=4, p=0.06, Figure 11), used less effort (n=4, p=0.09, Figure 12), and were less frustrated 

(n=4, p=0.09) than when they were wearing the gloves. 

Additionally, a between subjects comparison was made with the subjects that performed mission re-planning 

inside with gloves and the subjects that performed mission re-planning in the field with gloves. There was not a 

significant difference between the mission re-planning time of subjects inside wearing gloves and in the field, 
however there was a trend that suggested that mission re-planning inside wearing gloves was faster than mission re-

planning in the field (n=7, p=0.07), suggesting that additional factors other than gloves alone led to the difference in 

planning time in the field and in the habitat.  

IV. Discussion 

 

There was a significant difference in subject energy 

consumption between SEXTANT-predicted energy 

consumption and actual energy output. The equations 

used to calculate energy consumption take into account 

actual EVA traverse time, while SEXTANT uses 

predicted EVA traverse time.14 Because energy 

expenditure calculations used actual traverse time, this 

could be a reason for the significant difference in crew 

member energy consumption between actual energy 

expenditure and SEXTANT-predicted energy 
expenditure. 

Heart rate was monitored at the beginning of the 

traverse, the end of the traverse, and every three minutes 

during testing. Heart rates were determined between 

these times through interpolation instead of through 

continuous measurements. Average heart rate (in beats 

per minute) was calculated for each traverse and input 

into the energy equations. Discrete heart rate data points 

could have also led to a difference in actual energy 

consumption values, however the terrain over which the 

traverses took place was relatively flat, with no large 
slopes or hills; therefore the heart rate should not have 

changed by large amounts between heart rate 

measurement points. 

An iPad was selected as the mission planning tool 

used in the field study due to limited access to 

equipment. Although there may be human factors issues 

associated with using an iPad in the field, this was a 

preliminary study accessing SEXTANT and future 

studies will include more advanced equipment.  

The data showed that there was no significant 

difference between mission re-planning in the field and 

in the habitat, however there was a trend that suggested 
that EVA re-planning was faster in the habitat. Each of 

the six subjects mentioned that it was difficult to see the 

iPad screen when re-planning a mission in the field due 

to bright sunlight, which indicates sunlight may have 

been a factor contributing to this difference. Also, when 

subjects re-planned the mission in the field they wore 

gloves to protect against the harsh environment of analog 

Mars. Gloves were not worn when re-planning in the 

habitat. The data from the follow-up study at MIT 

showed that there was not a significant difference 
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Figure 11. Workload: Performance Rating when 

Contingency Planning Without Gloves vs. With 

Gloves (n=4, p=0.06) 
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Figure 12. Workload: Effort Rating when 
Contingency Planning Without Gloves vs. With 

Gloves (n=4, p=0.09) 
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between mission planning without gloves and with the gloves, however this also showed a trend that may have 

indicated otherwise if more subjects participated. These results indicate that perhaps gloves as well as the bright 

sunlight may contribute to mission re-planning time in the field and both factors should be taken into account on 

future planetary missions. Future re-planning tools should be less weight than an iPad, easily compatible with 

gloves, and allow for viewing even in direct sunlight.  

Significant differences were only seen between SEXTANT-predicted energy expenditure and time calculations 
and the actual energy and time measurements. All other observations were not significant or only demonstrated a 

trend in the data. A limitation of this field study is subject size. Only six subjects were at MDRS, therefore this was 

the maximum subject number possible for the field studies. All six subjects were used to compare SEXTANT-

predicted EVA traverse time, distance, and subject energy consumption to actual values. The length of stay at 

MDRS was two-weeks long, and each of the six crew members had individual projects to conduct during the stay, 

therefore subject number and availability, as well as field testing time availability was limited. Nonparametric 

statistics tests have little power when sample size is small. The statistics could be strengthened with a larger number 

of subjects.  

If this study were to be repeated, recommendations include conducting repeated EVAs to various locations, some 

closer to the habitat, and some further away from the habitat. The EVA destinations would also include sloped 

terrain, with hills and drops similar to craters to measure SEXTANT algorithms over a variety of terrain features. 

The crew member heart rate would also be measured continuously on future studies. Also, this study would be 
greatly improved with a larger sample size, therefore a future field study would include several subjects instead of 

three to six.  

For future human missions to the Moon, Mars, and beyond, an EVA mission planner is extremely important. By 

effectively predicting EVA costs such as traverse distance, time, and explorer energy consumption, astronauts, 

engineers, and mission control can ensure that the crew will not exceed life support system consumables and will 

take the optimal path to reach their desired destinations. A mission planner that determines these variables and 

allows for contingency planning in the field is an important step in preparing humans for further space exploration.   

V. Conclusion 

The SEXTANT 2.0 interface showed a trend towards improved user performance and reduced workload over the 
SEXTANT interface, with qualitative support from subjects. The SEXTANT 2.0 interface was used on field studies 

at MDRS, which found that SEXTANT-predicted EVA traversal time and subject energy consumption were 

significantly different than actual time and energy consumption, while there was no significant difference in EVA 

distance from SEXTANT-predicted values. Contingency planning showed a trend towards improved performance 

when re-planning in the habitat compared to in the field, however workload was not significantly different. Finally, 

there was not a significant difference between mission planning performance and workload without gloves and with 

gloves, however results indicated a trend that suggested mission planning was better in terms of performance and 

workload when subjects were not wearing gloves. The results of this study will be used to further improve 

characteristics of SEXTANT.  
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