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Uses of the EPMA

Complete quantitative chemical analysis at micron-scale spatial resolution:

e Beto U (10-50 ppm minimum detection limit)

High resolution imaging:
* compositional contrast (back-scattered electron)
» surface relief (secondary electron)
* spatial distribution of elements (x-ray)

* trace elements, defects (light)



An example: Compositional imaging with

back-scattered electrons
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Types of analysis

Qualitative analysis
m Visual characterization (shape, size, surface relief, etc.)
m Identification of elements in each phase

Semi-quantitative analysis
m  Quick and approximate concentration measurement of a spot
m  Elemental mapping (spatial distribution of elements)

Quantitative analysis
m  Complete chemical analysis of a micron-sized spot
m  Concentration mapping of all elements
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Electron emitting source: Tungsten hairpin

Filament Heating Supply

Wehnett
Cylinder
(Grid Cap) ™

Self-biased thermionic electron gun

Cathode: Filament at negative potential
Tungsten has a high melting point and a low work-function
energy barrier; heated by filament current, i;, until electrons

overcome the barrier

Wehnelt Cylinder at a slightly higher negative potential than the
filament because of the Bias Resistor

Bias voltage (V,,,.) automatically adjusts with changes in i, to
stabilize emission; the grid cap also focuses the electron beam

Anode: Plate at ground potential

Potential difference (accelerating voltage, V,) causes electron
emission (current, i)



Lens modes
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Electron probe parameters

Accelerating voltage, V,,
(V, of 15 kV generates electron beam with 15 keV energy)

Final beam current, or probe current, /.
Final beam diameter, or probe diameter, dp
Final beam convergence angle, or probe convergence angle, o,



Electron probe diameter
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Different electron sources
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At a fixed Probe current,
Probe diameter increases
» with source as
Field emission < LaB, < W
» with decreasing
Accelerating voltage

As Probe current increases,
Probe diameter also increases
(signal improves, but image
resolution degrades)

At 10 nA and 15 kV, a Tungsten hairpin filament produces a beam with d, ~100 nm



Spatial resolution: electron interaction volume

Vertical electron beam, probe diameter = 0.1 um
0.5um
Uranium

Horizontal surface
of sample

Monte Carlo simulations of electron trajectories in the sample

Low atomic number: large tear-drop High atomic number: small hemisphere

Width of interaction volume >> probe diameter
Spatial resolution can be improved by using a lower accelerating voltage that reduces the interaction volume



Electron interaction depth (range)

v

: Kanaya-Okayama

R . 0 0 276' E 1.67 A electron range
/ 0 ZO. 889

: beam energy

: atomic weight
: density

: atomic number

NT > M

Electron range increases with increasing E, and decreasing p and pZ

E.g., at 20 kY,
R =4.29 um in Carbon (Z =6, A=12.01, p = 2.26 g/cc)
R =0.93 um in Uranium (Z = 92, A = 238.03, p = 19.07 g/cc)




Electron interaction depth (range)
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Signal types

Electron
beam

472000182 Cathodoluminescence

Objective lens - X-ray

* Characteristic

Back-scattered electron — » Continuum
“ (Bremsstrahlung)
Secondary electron

Other signals include phonon excitation (manifested by heating), plasmon excitation (generated by

moving electrons in metals), and auger electron (ejected from atom by internally absorbed x-ray)
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Spatial resolution for different signals (production volume)

20 keV, W filament

Incident electrons

diameter ~150 nm

Secondary electrons

Auger electrons 150 nm

Backscattered electrons

450 nm

Continuum X-rays o
Characteristic X-rays

Fluorescent X-rays CuKa ~1 pm
Fluorescence of CuLa ~1.5 um Production volume is
CoKa by CuKa ~60 pm different for each signal

(not to scale)

The “onion shell” model:
Cu-10%Co alloy



Production volume for cathodoluminescence 16

Gallium Nitride



Electron-specimen interactions:

Elastic scattering

Back-scattered
electron (BSE)
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Electron-specimen interactions:
Inelastic scattering

Beam electron

Scattered
beam

electron

E,<E,
small ¢,
Inner shell interactions: Outer shell interactions:
Characteristic X-rays - Continuum X-rays
Secondary. electron (SE) - Secondary electron (SE)

Cathodoluminescence (CL)



Back-scattered electron (BSE)

0.5um

A Uranium

- Beam electrons scattered elastically at high angles

- Commonly scattered multiple times, so energy of BSE < beam energy



Electron backscatter coefficient

Fraction of beam
electrons scattered
backward
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» [arge differences between high- and low-atomic number elements

» [arger differences among low-Z elements than among high-Z elements
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Back-scattered electron detector




Back-scattered electron detector
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Compositional and topographic imaging with BSE

40um

A+B: Compositional mode A-B: Topographic mode



Secondary electron (SE)

Specimen electrons mobilized by beam electrons through
inelastic scattering (causing outer and inner shell ionizations)

Emitted at low energies (mostly < 10 eV for slow secondaries,
less commonly < 50 eV for fast secondaries)

(recall BSE have high energies up to that of the electron beam)




Secondary electron detector
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Secondary electron detector
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Everhart-Thornley Detector (+ve bias)

When Faraday cage is positively biased,
secondary electrons are pulled into the detector
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Imaging with the Everhart-Thornley detector
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only BSE BSE + SE
Surfaces in direct line of sight All surfaces are illuminated

are illuminated



Cathodoluminescence (CL) 28

Caused by Filled valence band is

7 / / Initial State separated from an empty
inelastic scattering Conduction band conduction band by E,
of beam electrons

in semiconductors ¥ —————/alence band

ap,

— =
Recombination + . = »  Electron-hole Electron beam
Electron recombines Photon emission 3 N oo . pair / ;
; interacts:
with the valence band A
to generate light with S S L
energy Egap

conduction band

Trace element impurities expand the conduction band and enable additional electron transitions
Emitted light has additional energy componentsE = E, |



Cathodoluminescence spectrometer

Optical microscope
camera (not used)

Optical microscope
light (turned off)

Optical spectrometer
(CCD array detector)



Cathodoluminescence spectrum
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Hyperspectral CL imaging

A continuous spectrum
covering all light
wavelengths is collected
at each point of the
image area

Total intensities of 400-
450 nm light (blue
shades: 29-277 counts)

Total intensities of 500-
550 nm light (green
shades: 63-251 counts)

Mo

Total intensities of

200-950 nm light I 100 pm I 100 ym

at each pixel (red 203-949 nm{ 400-450 nm  500-550 nm  600-750 nm Total intensities of 600-
shades represent 722 2090 I277 I2‘°'1 I‘°18 750 nm light (red shades:
722-2090 counts) 2 63 87 87-1018 counts)



Hyperspectral CL imaging

Total intensities of
light of all
wavelengths at each
pixel in grey scale:

Black: no light
White: maximum
intensity

361-668 nm

9884'

Total intensities of
361-668 nm light at
each pixel in
multicolor scale:

Blue (< 0 counts):
no light

Red (9884 counts):
maximum intensity



The X-ray spectrum
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Energy Dispersive Spectrometer (EDS)

» EDS detector: solid-state semiconductor, window and aperture

» Multichannel analyzer (MCA) processes the X-ray signal



Energy Dispersive Spectrometer (EDS) 35

« Asingle crystal of silicon, coated with

electron lithium on one side

* Pure silicon is a semiconductor. But
impurity of boron, a p-type dopant,
makes it a conductor

» Lithium, an n-type dopant, counteracts
the effect of boron and produces an
intrinsic semiconductor

i - layer
(lithium) (3-5 mm intrinsic silicon) ("dead”silicon)

Lithium-drifted silicon, or Si(Li), “p-i-n” detector




Qualitative analysis with iimenite
BSE and EDS




