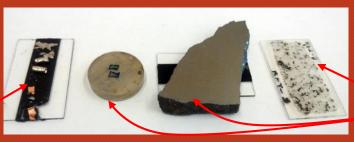
Quantitative Electron Microprobe Analysis

Wavelength Dispersive X-ray Spectrometry (WDS)

Goal: Measurement of concentration of all elements in a microscopic volume

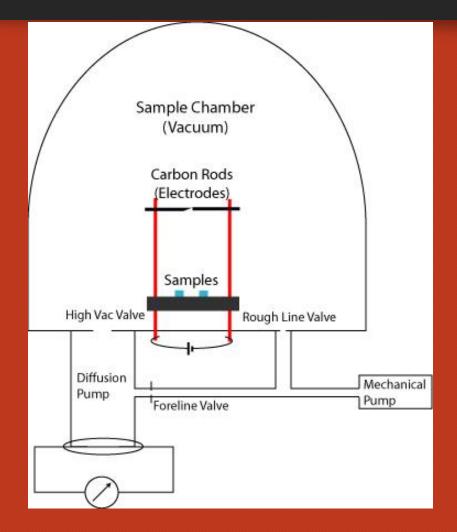
EPMA Analytical procedure

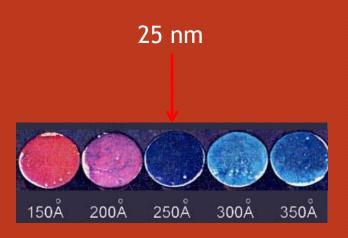

- Sample preparation (mounting, polishing, carbon coating)
 Carbon coating non-conducting material
- Setting up the Electron Microprobe
 Voltage, beam conditions, spectrometers, etc.
- Qualitative analysis with EDS and WDS
 If nothing is known about the chemical composition
- Measurement of X-ray intensities in standards (calibration)
 A different standard can be used for each element
- Measurement of X-ray intensities in the specimen and matrix corrections

ZAF corrections

Sample preparation

- Sample cut and mounted in epoxy, if necessary
- Coarse polished with 240-600 SiC paper (53-16 μm)
- Fine polished with alumina slurry or diamond paste on cloth (grit size 1.00-0.25 μm)
- Washed with water in ultrasonic cleaner after each polishing step, dried after final step, wiped with ethanol


Quantitative analysis



Carbon coating

Thickness is monitored on a polished surface of brass, which is coated with the samples

Setting up the Electron Microprobe Voltage, filament saturation and beam alignment

- Accelerating voltage
 - o Depends on overvoltage requirement, e.g., FeK α is not emitted with a 5 keV beam because $E_{c(K-shell)}$ =7.111 keV, and U < 1.
 - For a particular accelerating voltage, overvoltage will be different for different elements. U should be about 2-10.
- Filament saturation and beam alignment
 - Saturation: filament current is adjusted to ensure saturation
 - o Gun bias should be properly set to ensure optimum emission
 - Shift and tilt alignment: beam current is maximized
 - Wobble adjustment: image defocusing should be symmetrical above and below the optimum beam focusing plane. If not, position of the objective lens aperture is adjusted
 - Astigmatism correction: image is distorted if the spot is elliptical. Stigmator controls are used to remove distortion

Setting up the Electron Microprobe Spectrometer choice

Crystal/diffractor

E.g., FeK α ($\lambda_{K\alpha}$ = 0.1937 nm, $E_{FeK\alpha}$ = 6.4 keV) can be diffracted by TAP (2d = 2.5757 nm), PET (2d = 0.8742 nm) and LIF (2d = 0.4027 nm).

For n=1, equation $\lambda=2dsin\theta$, i.e., $\theta=sin^{-1}\left(\frac{\lambda}{2d}\right)$, and for R=140 mm, equation $L=n\lambda\frac{140}{d}$ indicate: $\theta=4.3^{\circ}$ and L=191.2 mm for TAP $\theta=12.8^{\circ}$ and L=62.0 mm for PET

 θ = 28.8° and L = 134.6 mm for LIF

Counter and window

Xe has a better quantum efficiency for FeK α . So, a Xe counter with a Be window is the right choice.

Acceptable ranges for θ and L are 15-55° and 70-230 mm. Therefore, LIF is the correct choice.

SCA settings

Using LIF/Xe counter and an appropriate collection wire voltage, the $\underline{CuK\alpha}$ ($\underline{E_{CuK\alpha}}$ = 8.04 keV) pulse should be set at 5 V by performing PHA. Since $\underline{E_{FeK\alpha}}$ = 0.8 x $\underline{E_{CuK\alpha}}$ the FeK α pulse should be at 0.8 x 5 = 4 V.

Detector slit

For higher energy X-rays, smaller slits are recommended. The 300-550 μm slit should be selected.

Setting up the Electron Microprobe Beam current, counting time and probe diameter

Beam current and counting time depend on concentration of the element of interest

Higher beam current increases count rate and longer counting time increases total counts (improves precision)

For N counts, the counting uncertainty is $\frac{1}{\sqrt{N}}$ X 100 %. Counting is more precise as N increases. E.g.,

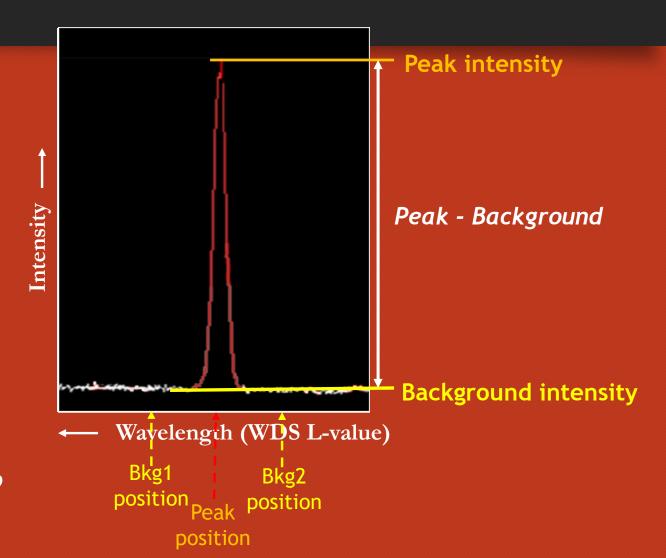
For 25 counts, the uncertainty is 20 %

For 100 counts, the uncertainty is 10 %

For 10,000 counts, the uncertainty is 1 %

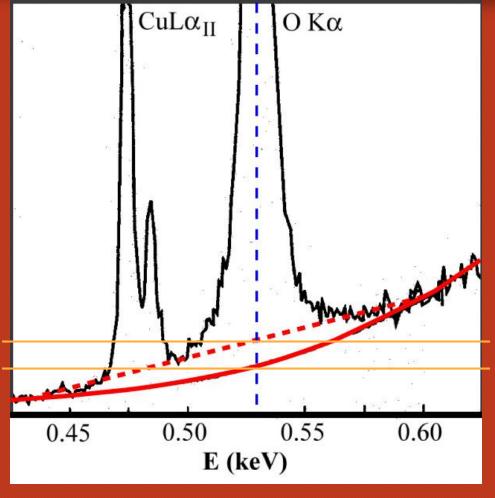
Probe diameter

Sometimes necessary to use a defocused beam (large spot size). E.g.,

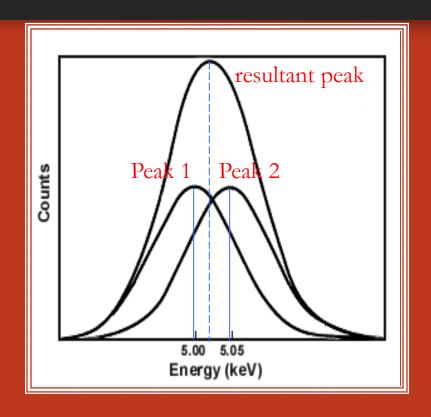

Average composition of fine-grained material (spot size > grain size)

Hydrous, and Na or F containing glass: Na migrates away, F migrates toward the spot (spot size \sim 10 μ m)

Standard x-ray intensity measurement (calibration)


- Calibration (standard intensity measurement) is performed on standards, a set of homogenous, natural or synthetic compounds with well known composition
- A good calibration is essential for <u>accurate</u> analysis.
 It eliminates <u>systematic errors</u>
- After primary calibration, secondary standards (working standards) are analyzed to make sure the results are as expected

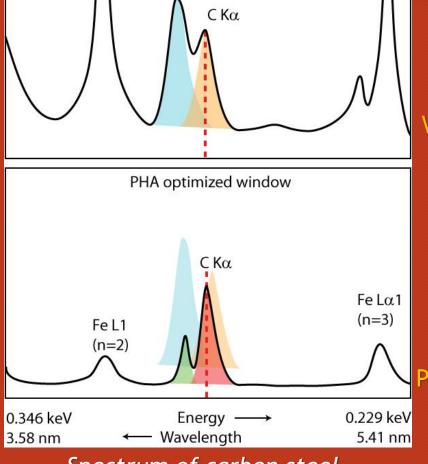
X-ray intensity measurement


Long counting times are used to achieve statistical precision

X-ray background measurement: special case

incorrect

Peak overlap in X-ray spectra



Overlap between Peak 1 and Peak 2 results in a broad single peak

PHA reduces peak and background overlaps

Fe L1

(n=2)

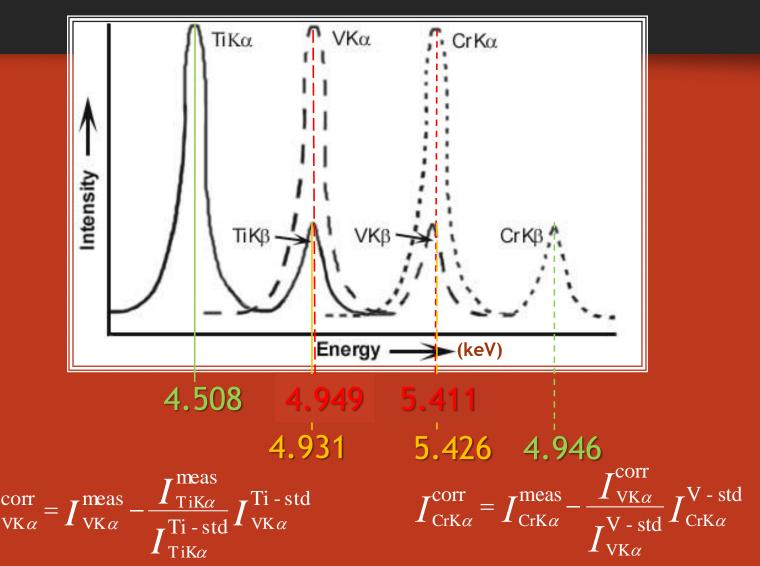
Wide window

Ni L α 1 (n=3)

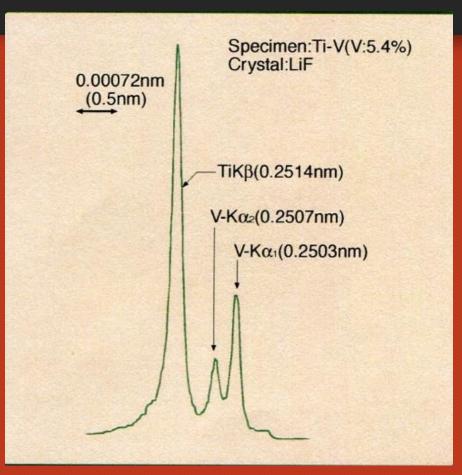
Fe La1

(n=3)

Wide open SCA voltage window


PHA optimized SCA voltage window

Spectrum of carbon steel


Peak overlap: $K\alpha$ and $K\beta$ of Ti, V and Cr

Ele- ment	No.	Ko	80(:)	Keb	-to	US ₁ (*)	1//2(*)	172(*)	1 _{Hab}	Lplab	Lab	38	Ele- ment	Atm. No.	Ke	Kp(-)	Kus	Lo	101(*)	102(*)	Ly2(*)	Lillah	Lillah	Link	M
LI	3	0.052		0.055									Cd	10001	23.106	26.081(18	Andrew Co.	3.133	3.316(42)	3.528(25)		3.537	3.727	4.018	0.606
Be	4	0.109		0.112									In C-	10.516	24.136	27,260(18)		3.286	3.487(75)	3.713(17)		3.730	3.939	4.237	
B	2	0.183		0.192									Sn Sb		25.191 26.271	28.467(19		3,443	3.662(75)	THE RESERVE OF THE PERSON NAMED IN COLUMN		3.928	4.157		0.691
M	7	0.277		0.284	10 10			**					Te		27,468	29.396(19)		3,604	3.843(75) 4.029(75)	THE PERSON NAMED IN COLUMN		4.132	4.381		0.733 0.778
0	8	0.525		0.532	A 18 1 1 1			K	α		Κβ		1		28.607	32.272(19		3.937	4.220(75)	4.507(17)		4.341	4.612 4.853	4.939 5.191	0.770
F	9	0.677		0.687	/	TI	20		-		1.00	12	Xe	54	29.774	33.600(20		4.109	4.420(50)	4.720(20)		4.781	5.103	5.452	
Ne	10	0.848		0.867		11	22	4.1	508	1	4.93	7	Cs	55	30.968	34.960(20		4.286	4.619(50)	4.935(20)		5.011	5.357	5.720	
1000	11	1.041		1.071			00		240				Ba	100000	32.188	36,354(21)		4.465	4.827(50)	5.156(20)		5.246	5.622	V/0000000	0.972
Mg	12	1.253		1.303		V	23	4.5	349		5.42	Ь	La	57	33.436	37.771(21		4.650	5.041(50)	5,383(20)		5.483	5.888	970000	0.833
Al	13	1.486	/	1.560			7.00	200	100				Ce Pr		34.714	39.223(21		4.839	5.261(50)	5.612(20)		5.723	6.160	40.4	0.883
Si	14	1.739	2.139(4)	1.840		Ur	24	5.4	111		5.94	6	Nd		36.820 37.355	40.771(21)	43.574	5.833	5.488(50) 5.721(50)	5.849(20) 6.088(20)		5.962	6.438	C. C. C. C. C.	0.929
S	16	2.307	2.465(7)	2.143	7.00		-		0.136	U.104	U.193		Pm	61	38,718		45.198	5.432	5.960(50)	6.338(20)		6.288	6.722 7.013	7.128 7.434	0.510
CI	17	2.621	2.815(5)	2.819					0.100	0.203	0.133		Sm	62	48,111		46.849	5.635	6.204(50)	6.586(20)		6.716	7.312	0.000000	1.081
Ar	18	2.957	3.190(10)	170000000000000000000000000000000000000					100000000000000000000000000000000000000		0.287		Eu	63			9777565	5.845	6.455(50)	6.842(20)		6.979	7.518	CALENDON	1.131
K	19	3.312	3.589(10)	10000000					0.294	0.297	0.341		Gd	64				6.056	6.712(50)	7.102(20)		7.242	7.930	8.385	1.185
Ca	20	3.690	4.012(10)	10000000	0.341				0.349		0.399		Tb	65				6.272	6.977(50)	7.365(20)		7.514	8.251	7.55	1.240
	21	4.088	4.460(13)		0.395 0.452				0.406		0.462		Dy Ho	66 67				6.494	7.246(50)	7.634(20)		7.880	8.582	9.050	1.293
V	23	4.949	5.426(13)		0.452				0.454		0.530		Er	68				6.719 6.947	7.524(50) 7.889(50)	7.910(20) 8.188(20)		8.066 8.356	8.915 9.260	9.398 9.756	1.347
Cr	24	5.411	5.946 121		0.573				0.512	0.519	0.604		Tm	69				7.179	8.100(50)	8.467(20)	9.424(5)	8.648		10.119	1.462
	25	5.894	6.489(13)	200000	0.637				0.639		0.762		Yb	70				7.414	8.400(50)	8.757(20)	9.778(5)	8.942		10.489	1.521
Fe	26	6.398	7.057(13)		8.705				0.707	0.721	0.849		Lu	71				7.654	8.708(50)	9.038(20)	10.142(6)	9.247		10.872	1.581
140000	27	6.924	7.648(13)		0.776				0.779	0.794	0.929		Hf	72				7.898	9.021(50)	9.346(20)	10.514(10)		10.734	11.272	1.644
	28	7.471	8.263(13)		0.851				0.853		1.015		Ta	73				8.145	9.342(50)	9.650(20)	10.893(10)	9.875		11.680	1.709
	29	8.040	8.904(13)	7500000	0.930				0.933		1.100		W	74 75				8.396	9.671(50)	9.960(20)	11.284(18)	10.198		12.098	1.774
	31	8.630 9.241	9.570(13) 10.262(14)		1.012				1.022		1.198		Os	76				8.651	10.008(50) 10.354(50)	10.274(20)	12.003(10)	10.529		12.529	1.842
	32	9.874	10.978(14)		1.188				1.117	1.145	1.303		Ir	77				9.174	10.706(50)	18 919(20)	12.510(10)	11 210	220000	12.969 13.421	1,977
		10.530	11.722(15)		1.282				1.323		1.529		Pt	78				9,441	11.069(50)	11.249(20)	12.940(10)	11.560		13.880	2.048
Se	34	11.207	12.494(16)		1.419				1.434		1.652		Au	79				9.712	11.440(50)	11.583(20)	13.379(10)	11.919	13.734	10 FORESTA	2.121
10000		11.907	13.286(16)		1.480				1.553		1.781		Hg	88				9.987	11.821(50)	11.922(20)	13.828(10)	12.284	14.212	1111111111	2.195
1000		12.631	14.107(16)		1.586				1.677		1.916		Ti	81				10.267	12.211(50)	12.270(20)	14.289(10)	12.658		VOSSTOR:	2.267
		13.373	14,956(16)		1.694				1.806		2.063		Pb Bi	82				10.550	12.612(50)	12.621(20)	14.762(10)	13.038		15.852	2.342
	1000	14.140	15.830(16) 16.731(17)		1.806				1.941		2.217		Po	84				11 120	13.021(50) 13.445(50)	12.978(20)	15.245(10)	13.424		10 months (m)	2.419
	C001	15.744	17.660(18)		2.042	2.124(45)			2.079		2.376 2.541		Al	85				11.425	13.874(50)	14.065(10)	16.249(10)	14 215	16.244 16.784	16.935	
1000	1000	16.581	18.729(8)	110000000000	2.166	2.257(45)			2.370			0.355	Rn	86					14.313(50)					18,058	
	2000	17.441	19.599(17)		2.293	100000000000000000000000000000000000000			2.523			0.331	Fr	87				12.029	14.768(50)	14.448(20)	17.300(10)	15.028		18.638	
13.527.1		18.325	20.608(16)		2.424	2.536(45)			2.677		3.855		Ra	88				12.338	15.233(50)	14.839(20)	17.845(10)	15.441		19.234	
A 1/2/2017		19.233	21.646(16)		2.558	2.683(45)			2.837		A 1 4 4 4 4 4	0.461	Ac	89				12.658	15.710(50)	15.929(10)	18.405(10)	15.865		19.842	
CA1000	10000	20.165	22.712(16)		2.696	2.834(40)	3.001(25)		3.002		(T) (1) (1) (1)	0.496	Th	90				12.967	16.199(50)	15.621(20)	18.979(10)	16.296		20.459	2.991
15210	10000	21.121	23.806(17)		2,838	2.990(48)	3.171(25)		3.172		7500000-	0.532	Pa U	91 92				13.288	15.699(50)	16.022(20)	19.565(10)	16.765	20.358		3.077
Ag	47	22.101	24.928(17)	25.512	2.984	3.150(40)	3.347(25)	70 20 20 20	3.350	3.525	3,807	0.568	U	37.				13.012	17.217(50)	10.425(20)	20.164(10)	17.162	20.943	21.766	3.185

Peak overlap correction for Ti-V-Cr

Peak resolution with LIF

LIF is able to resolve the TiK β , VK α_1 and VK α_2 peaks

XCE type spectrometer with Xe counter

EPMA Quantitative analysis

X-ray intensity is proportional to the concentration, $C \propto I$

$$\frac{C_i}{C_{(i)}} \propto \frac{I_i}{I_{(i)}}$$

 C_i , I_i : concentration and intensity in sample $C_{(i)}$, $I_{(i)}$: concentration and intensity in standard

$$\frac{I_i}{I_{(i)}} = k_i \text{ (k-ratio)}$$

$$\frac{C_i}{C_{(i)}} = k_i \cdot [ZAF]_i$$

ZAF Matrix corrections:

Z: Atomic Number correction

A: Absorption correction

F: Fluorescence correction

Typical quantitative analysis output

		k-ratio	Element		Oxide		Atomic		
			Wt%		Wt%		proportion	1	
Element		k-Ratio	El-Wt%	MDLel%	Ox-Wt%	MDLox%	At-Prop	Error%	
SiO2	Ka	0.9119	17.30	0.03	37.01	0.05	2.960	0.68%	
TiO2	Ka	0.0021	0.13	0.05	0.22	0.09	0.013	20.28%	
Al2O3	Ka	0.5200	11.46	0.03	21.66	0.05	2.042	0.86%	
Cr2O3	Ka	0.0000	0.00	0.06	0.00	0.08	0.000	99.00%	
FeO	Ka	1.0431	21.43	0.07	27.57	0.09	1.844	1.58%	
MnO	Ka	0.0809	2.89	0.08	3.73	0.11	0.253	4.29%	
MgO	Ka	0.0781	1.36	0.02	2.26	0.04	0.269	2.93%	
CaO	Ka	0.3565	5.20	0.04	7.28	0.05	0.624	1.82%	
Na2O	Ka	0.0011	0.01	0.04	0.02	0.05	0.003	99.00%	
O			39.95			†	12.000		
Total:			99.75		99.75	Cation	: 8.007		
				Minimum detection limit (El-Wt%)		Minimum detection limit (Ox-Wt%)	Uncertain Cation Sum based on a certain #0		

Typical quantitative analysis output

	Oxide	Atomic	
	Wt%	proportion	
Element	Ox-Wt%	At-Prop	
SiO2	37.01	2.960	
TiO2	0.22	0.013	
Al2O3	21.66	2.042	
Cr2O3	0.00	0.000	
FeO	27.57	1.844	
MnO	3.73	0.253	
MgO	2.26	0.269	
CaO	7.28	0.624	
Na2O	0.02	0.003	
O		12.000	
Total:	99.75	8,007	

- A typical mineral analysis reports Oxide wt% and Atomic proportions
- The wt% total and cation sum give us an idea of the quality of the analysis
- Atomic proportions give us the formula: Mg_{0.27}Fe_{1.84}Mn_{0.25}Ca_{0.62}Al_{2.04}Si_{2.96}O₁₂ (garnet)