# EPMA Quantitative analysis

X-ray intensity is proportional to the concentration,  $C \propto I$ 

$$\frac{C_i}{C_{(i)}} \propto \frac{I_i}{I_{(i)}}$$

 $C_i$ ,  $I_i$ : concentration and intensity in sample  $C_{(i)}$ ,  $I_{(i)}$ : concentration and intensity in standard  $\frac{I_i}{I_{(i)}} = k_i$  (k-ratio)

$$\frac{C_i}{C_{(i)}} = k_i \cdot [ZAF]_i$$

## Matrix (ZAF) corrections

**Z**: atomic number correction

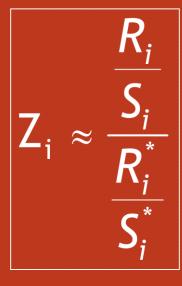
for lost signal due to elastic (back-scattering) and inelastic (energy loss) scattering of the beam electrons that diminish x-ray generation

**A** : absorption correction for lost signal due to absorption of x-rays within the sample

**F**: fluorescence correction for excess signal due to secondary x-rays generated by primary, higher

energy x-rays within the sample (that are absorbed while causing ionizations)

## Atomic number (Z) correction



\* sample

**R**: Electron backscattering factor

x - rays actually generated

x - rays would be generated if there were no backscattering

R approaches 1 at low atomic numbers

**S**: Electron stopping power

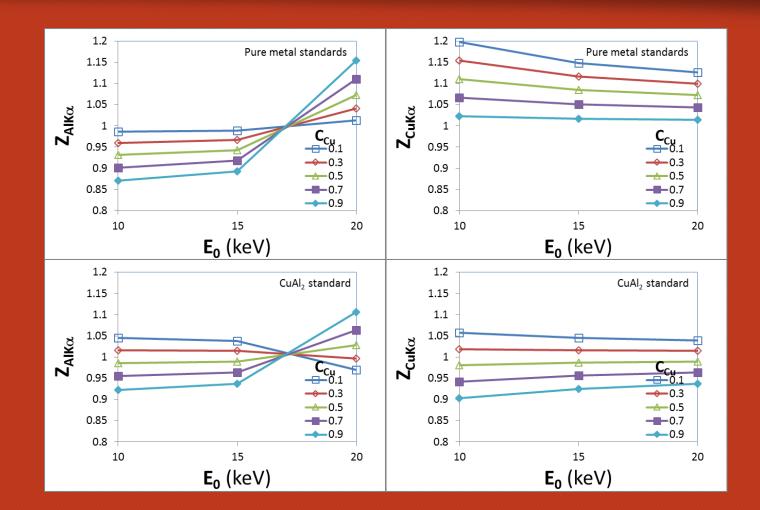
energy lost by beam electron with distance traveled, dE/ds density,  $\rho$ 

## Z, a function of $E_0$ and composition

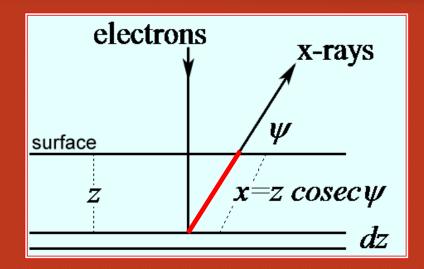
#### Duncumb-Reed-Yakowitz method:

$$R_i = \sum C_j R_{ij}$$
  
 $R_{ij} = R'_1 - R'_2 \ln (R'_3 Z_j + 25)$   
 $R'_1 = 8.73 \times 10^{-3} \ U^3 - 0.1669 \ U^2 + 0.9662 \ U + 0.4523$   
 $R'_2 = 2.703 \times 10^{-3} \ U^3 - 5.182 \times 10^{-2} \ U^2 + 0.302 \ U - 0.1836$   
 $R'_3 = (0.887 \ U^3 - 3.44 \ U^2 + 9.33 \ U - 6.43) / U^3$   
 $S_i = \sum C_j S_{ij}$   
 $S_{ij} = (\text{const}) \left[ (2Z_j / A_j) / (E_0 + E_c) \right] \ln[583(E_0 + E_c) / J_j \right]$   
where,  $E_0$  and  $E_c$  are in keV, and  $J$  is in eV, and  $J$  (eV) =  $9.76Z + 58.82Z^{-0.19}$ 

## Z, a function of $E_0$ and composition



## X-ray absorption



$$I = I_0 \exp^{-(\mu/\rho)(\rho x)}$$
$$= I_0 \exp^{-(\mu/\rho)(\rho z \cos ec \psi)}$$

*I* : Intensity emitted

 $I_0$ : Intensity generated

 $^{\mu}/_{\rho}$ : mass absorption coefficient

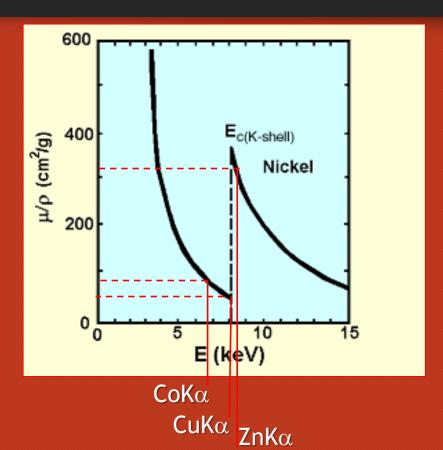
 $\rho$ : density

z: depth

 $\psi$ : take-off angle

# Mass absorption coefficient, $(\mu/\rho)_{absorber}^{x-ray}$

Variation of  $({}^{\mu}/_{\rho})_{Ni}^{x-ray}$  as a function of x-ray energy



Sharply increases at the critical excitation energy of Ni K-shell,  $E_{c(Ni\ K-shell)}$ 

Any x-ray with a slightly higher energy than  $E_{c(Ni\ K-shell)}$  (e.g.,  $ZnK\alpha$ ) is efficiently absorbed as it ionizes the Ni K-shell and generates (fluoresces) the NiK $\alpha$ 

## Absorption (A) correction

$$A_i = \frac{f(\chi_i)}{f(\chi_i)^*}$$

\* sample

Absorption function,

$$f(\chi_i) = I_{i(emitted)}/I_{i(generated)}$$

## A, a function of $E_0$ , $\psi$ and composition

#### Philibert method:

$$f(\chi_i) = \left[ \left( 1 + \frac{\chi_i}{\sigma_i} \right) \left( 1 + \frac{\chi_i}{\sigma_i} \frac{h_i}{1 + h_i} \right) \right]^{-1}$$

where,

$$\chi_i = \left(\frac{\mu}{\rho}\right)_{\text{specimen cosec}}^{i_x - ray} \text{ cosec } \psi$$

$$h_i = 1.2A_i/Z_i^2$$

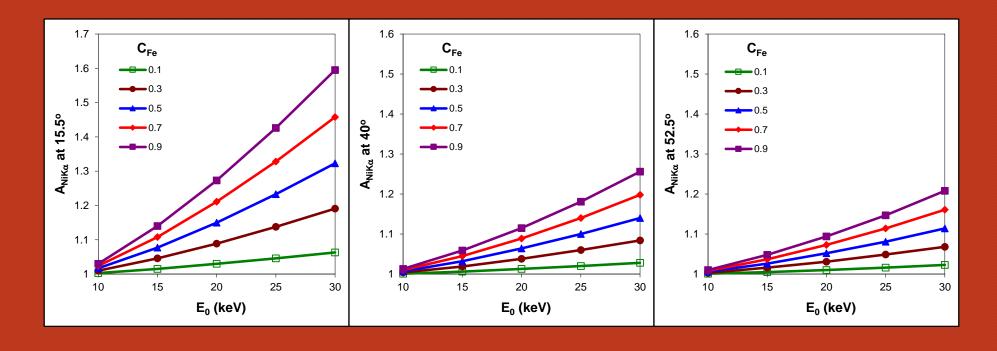
$$\sigma_i = 4.5 \times 10^5 / (E_0^{1.65} - E_{i(c)}^{1.65})$$

For compounds:

$$h_{i} = \sum_{j} h_{j} C_{j}$$

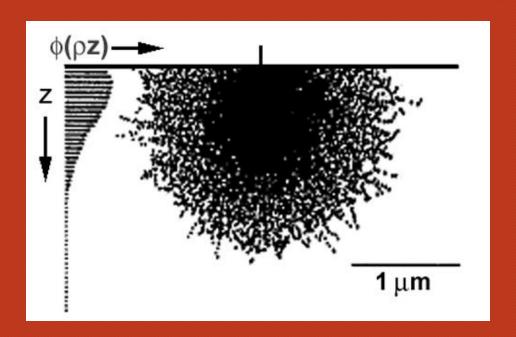
$$(\mu/\rho)_{specimen}^{i-x-ray} = \sum_{j} (\mu/\rho)_{element 'j'}^{i-x-ray} C_{j}$$

## A, a function of $E_0$ , $\psi$ and composition



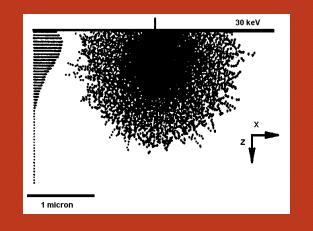
A<sub>NiKα</sub> in Fe-Ni alloy

# Depth-distribution of generated X-rays: the $\phi(\rho z)$ function



$$\phi(\rho z)$$
 at depth  $z=\frac{x$  -ray intensity from a layer of thickness dz at depth z  $\phi(\Delta \rho z)$ , x -ray intensity from a free - standing layer of thickness dz

## Total X-ray intensity: generated vs. emitted



### Total generated intensity

$$I_{gen} = \phi(\Delta \rho z) \int_0^\infty \phi(\rho z) d(\rho z)$$

## Total emitted intensity

electrons
$$x$$
-rays
$$y$$

$$z$$

$$z$$

$$z$$

$$z$$

$$dz$$

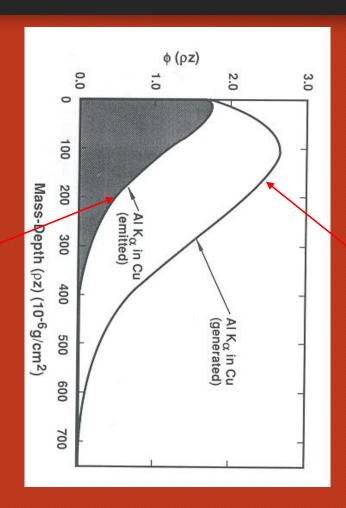
$$I_{emit} = I_{gen} \exp^{-(\mu/\rho)\rho \operatorname{zcosec}\psi}$$
  
=  $\phi(\Delta \rho z) \int_0^\infty \phi(\rho z) \exp^{-\chi \rho z} d(\rho z)$   
where,  $\chi = (\mu/\rho) \operatorname{cosec}\psi$ 

## Total X-ray intensity: generated vs. emitted

**Emitted** 

Intensity

curve



Generated Intensity curve

AlKa is efficiently absorbed by Cu in Al-Cu alloy

## $\phi(\rho z)$ matrix correction

Combined atomic number and absorption corrections

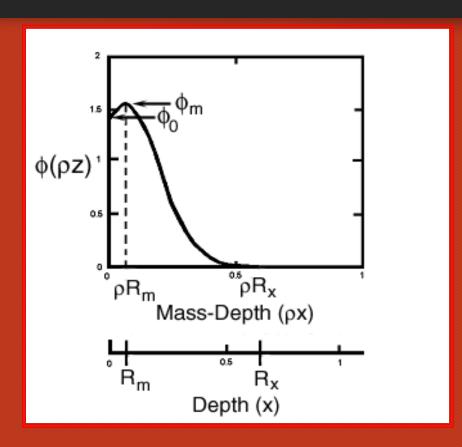
Ratio of emitted intensities in standard  $(I_{emit})$  to sample  $(I_{emit}^*)$ 

$$I_{emit} = \phi(\Delta \rho z) \int_{0}^{\infty} \phi(\rho z) \exp^{-\chi \rho z} d(\rho z)$$

$$I_{emit}^{*} = \phi(\Delta \rho z) \int_{0}^{\infty} \phi^{*}(\rho z) \exp^{-\chi^{*} \rho z} d(\rho z)$$

$$\mathbf{Z_i A_i} = \frac{\int_0^\infty \phi_i(\rho z) \exp^{-\chi_i \rho z} d(\rho z)}{\int_0^\infty \phi_i^*(\rho z) \exp^{-\chi_i^* \rho z} d(\rho z)}$$

## $\phi(\rho z)$ matrix correction



 $\phi_0$ : the value of  $\phi(\rho z)$  at  $\rho z=0$ 

 $R_m$ : the depth at which  $\phi(\rho z)$  is maximum  $(\phi_m)$ 

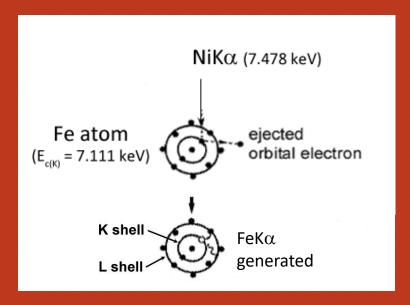
 $R_x$ : the maximum depth of X-ray production (X-ray range)

 $Z_iA_i$  is modeled in terms of  $\phi_0$ ,  $R_m$ ,  $R_x$ , and the integral of the  $\phi(\rho z)$  function (Pouchou and Pichoir: PAP method)

## X-ray fluorescence

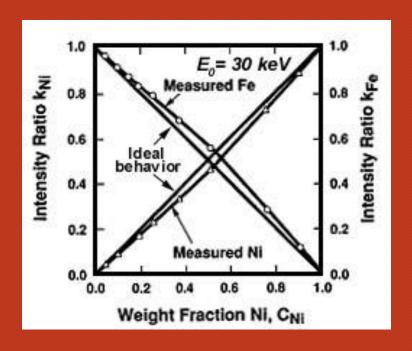
#### A consequence of X-ray absorption when

 $E_{absorbed X-ray} > E_{c(absorber shell)}$ 



- NiK $\alpha$  is absorbed by Fe atom
- FeK $\alpha$  is fluoresced

## X-ray fluorescence



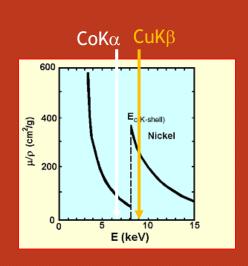
- NiK $\alpha$  is absorbed by Fe atom
- FeK $\alpha$  is fluoresced

## X-ray fluorescence

| Absorber     | E <sub>Kα</sub> | $E_{\kappa \beta}$ | $E_{c(K)}$   | $(\mu/ ho)$ NiK $lpha$ Absorber |
|--------------|-----------------|--------------------|--------------|---------------------------------|
| (Atomic No.) | (keV)           | (keV)              | (keV)        | (cm <sup>2</sup> /g)            |
| Mn(25)*      | 5.895           | 6.492              | <u>6.537</u> | <u>344</u>                      |
| Fe(26)*      | 6.4             | 7.059              | <u>7.111</u> | <u>380</u>                      |
| Co(27)       | 6.925           | 7.649              | 7.709        | 53                              |
| Ni(28)       | <u>7.472</u>    | 8.265              | 8.331        | 59                              |
| Cu(29)       | 8.041           | 8.907              | 8.98         | 65.5                            |
|              |                 |                    |              |                                 |

<sup>\*</sup> NiK $\alpha$  fluoresces MnK $\alpha$ ,K $\beta$  and FeK $\alpha$ ,K $\beta$ 

| Element $K\alpha, K\beta$ | Radiation causing fluorescence                                                                     |
|---------------------------|----------------------------------------------------------------------------------------------------|
| Mn                        | FeK $\beta$ , CoK $\alpha$ , CoK $\beta$ , NiK $\alpha$ , NiK $\beta$ , CuK $\alpha$ , CuK $\beta$ |
| Fe                        | CoKβ, NiKα, NiKβ, CuKα, CuKβ                                                                       |
| Co                        | NiKβ, CuKα, CuKβ                                                                                   |
| Ni                        | CuKβ                                                                                               |
| Cu                        | none                                                                                               |



## Characteristic fluorescence (F) correction

$$F_{i} = \frac{\left(1 + \sum_{j} \left\{\frac{I_{ij}^{f}}{I_{i}}\right\}\right)}{\left(1 + \sum_{j} \left\{\frac{I_{ij}^{f}}{I_{i}}\right\}\right)^{*}}$$

\* sample

 $I_{ij}$ : x-ray intensity of element 'i' fluoresced by element 'j'

 $I_i$ : x-ray intensity of element 'i' generated by electron beam

Fluorescence correction includes the summation of intensities of the element fluoresced by all other elements in the compound

## F, a function of $E_0$ and composition

#### Castaing-Reed method:

$$\frac{I_{ij}^f}{I_i} = C_j Y_0 Y_1 Y_2 Y_3 P_{ij}$$

$$Y_0 = 0.5 \left[ \frac{r_i - 1}{r_i} \right] \left[ \omega_j \frac{A_i}{A_j} \right]$$
 where,  $\omega_j$ : fluorescent yield

$$Y_{1} = \left[\frac{U_{j} - 1}{U_{i} - 1}\right]^{1.67} \qquad Y_{2} = \frac{\binom{\mu}{\rho}^{j-x-ray}_{element"i"}}{\binom{\mu}{\rho}^{j-x-ray}_{specimen}}$$

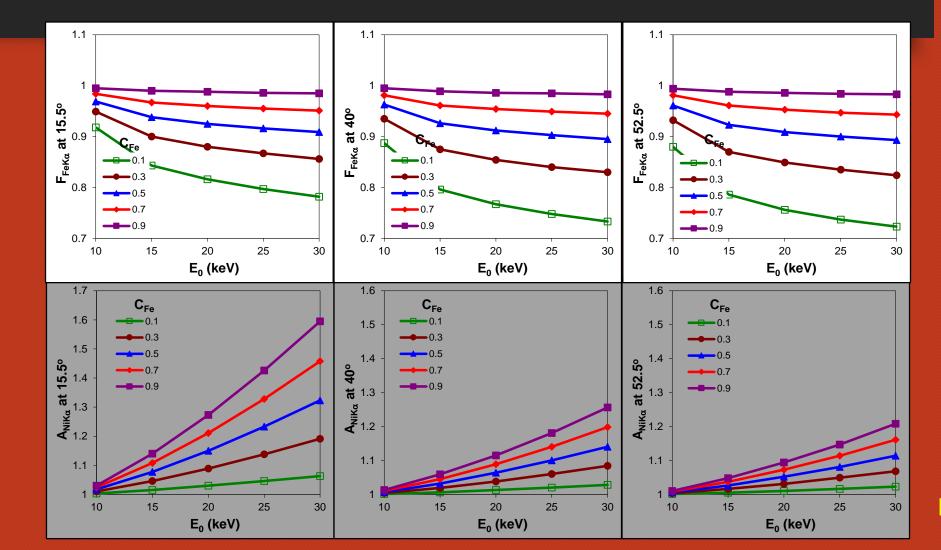
$$Y_{3} = \frac{\ln(1+u)}{u} + \frac{\ln(1+v)}{v} \qquad \text{where,} \qquad u = \begin{bmatrix} (\mu/\rho)_{i\_x-ray}^{i\_x-ray} \\ (\mu/\rho)_{specimen}^{j\_x-ray} \end{bmatrix} cosec \psi$$

and 
$$v = \frac{3.3 \times 10^5}{\left[ (E_0^{1.65} - E_c^{1.65}) (\frac{\mu}{\rho})_{specimen}^{j_- x - ray} \right]}$$

 $P_{ii}$  = 1 for K fluorescing K; 4.76 for K fluorescing L; 0.24 for L fluorescing K

## F, a function of $E_0$ and composition





 $A_{NiK\alpha}$ 

Fe-Ni alloy

## Matrix correction flowchart

$$k \xrightarrow{} ZAF_1 \xrightarrow{} C_1 \ (= C_{std}k * ZAF_1)$$

$$C_1 \xrightarrow{} ZAF_2 \xrightarrow{} C_2 \ (= C_{std}k * ZAF_2) \ (if C_2 = C_1, stop here)$$

$$C_2 \xrightarrow{} ZAF_3 \xrightarrow{} C_3 \ (= C_{std}k * ZAF_3) \ (if C_3 = C_2, stop here)$$
and so on....