Abstract
The existence of 2d Mott insulators which exhibit no symmetry breaking yet gapless excitations is suggested both by experiment and theory. Such putative “critical spin liquids” are the bosonic analog of the non-Fermi liquid phases which are arguably required in order to account for the behavior observed in the cuprates at optimal doping and in the pseudo-gap regime. Regrettably the only gapless quantum fluid states that are well understood are the Bose superfluid and the Fermi liquid.

In this talk I will describe a novel quantum fluid phase of 2d bosons on the square lattice which possesses relative d-wave two-body correlations -- a d-wave Bose liquid. The electronic analog, a d-wave metal, will be briefly discussed.