1 Introduction

Many autonomous underwater vehicles (AUV) used for ocean exploration and mapping have similar size and mass to marine animals. Fish and marine mammals are known for their outstanding agility underwater (Videler [1]), hence offering a novel paradigm for man-made vehicles, which could provide new concepts and technology to significantly enhance their agility underwater. In addition, the use of flapping foils is presently under consideration as a means of improving AUV maneuverability—concurrently with either fully providing propulsion, or assisting propulsion. Such foils can be designed biomimetically to emulate the performance of the fins and tails of live fish.

The rhythmic, oscillatory motion of fish body and fins results from an “impedance matching” between the dynamics of the actively controlled musculature and the fluid loads. This is a classical fluid-structure interaction problem that requires detailed understanding of the control laws employed by fish, the mechanical and material properties of the actuating muscles and the body of the fish, as well as the fluid mechanics of the flow around the body. Observations and studies of fish provide information on the body properties, while fluid mechanics studies provide insight on basic flow mechanisms; the overall problem, however, is still intractable to solve by simulation at high Reynolds numbers. Conceptual advances are needed in order to simplify the problem of fish locomotion, and not only make it tractable, but also provide engineering information to build man-made vehicles. Indeed, such vehicles employ different actuation mechanisms and control laws from fish; hence, it is expected that the “impedance matching” will not be the same, since the actuation methods are different—although the flow mechanisms are the same.

Two fundamental questions then arise, whose answers would benefit applications:

- Is the motion of fish affected by the mechanical and material limitations of their own body and the control laws they employ, i.e., is the final motion nonoptimal as far as fluid mechanics are concerned, due to structural, material, and control-law limitations?
- How can we extract, using biomimetics, optimal flow mechanisms that can also apply to different actuation and control mechanisms?

One must take into account the fact that motion within heavy viscous liquids, such as water, carries a heavy penalty on the energy required for locomotion and maneuvering if the motion is not optimized. It would pay, therefore, at least for the fastest and most agile animals, to exhaust every possible way to optimize the fluid mechanics of their locomotion—at the expense of redesigning their structure and control procedures; to the extent, of course, allowed by the available materials. This must be achieved through optimization of body geometry and structure, as well as body actuation and control.

The procedure we follow in this review is to consider data from live fish and cetaceans, as well as data from engineered flapping foils and fishlike robots. These data are reduced in terms of basic nondimensional parameters, derived on the basis of fluid mechanics scaling laws. These are derived through a combination of theoretical, numerical, and experimental methods in order to optimize the power needed for propulsion, or the energy required for turning and fast starting. The degree to which data from live fish, optimized robots, and experimental apparatus are in accordance with, or deviate from these flow-based laws, allows one to assess limitations on performance due to control and sensing choices, and material and structural limitations. This review focuses primarily on numerical and experimental studies of steadily flapping foils for propulsion; three-dimensional effects in flapping foils; multiple foils and foils interacting with bodies; maneuvering and fast starting; the interaction of foils with oncoming, externally-generated vorticity; the influence of Reynolds number on foil performance; scaling effects of flexing stiffness of foils; and scaling laws in fishlike swimming. This review article cites 117 references. [DOI: 10.1115/1.1943433]
input. We also outline the effect of these laws on the state of the boundary layer of the fish or biorobot.

This review focuses on hydrodynamically based scaling laws applicable to fishlike swimming; as such, it is by no means exhaustive of the available literature on fish swimming.

2 Overview of the Literature

Data from live fish and cetaceans have provided detailed description of how these animals employ their flapping body and tail, as well as their fins, to produce propulsive and maneuvering forces [1,2]; and the resulting flow features and patterns [3–9].

Since foils are the basic means for force production in fish, the fluid mechanics of foils have been investigated with the goal of understanding the principles of this different paradigm of propulsion and maneuvering using theoretical and numerical techniques [10–24] and experimentally [25–29]. It was found that unsteady motion of a foil causes the shedding of vorticity from the trailing and side edges and tips of the foil, and possibly from the leading edge as well. Distinct, stable patterns of large-scale vorticity have been discovered through visualization [28,30–38]. The number of large-scale vortices formed per cycle varies with the amplitude and frequency of the motion and the shape of the kinematics employed [28,33]. In Triantafyllou et al. [39,40], a stability analysis of the time-averaged jetlike flow behind thrust-producing flapping foils was performed; it was found that there are specific nondimensional frequencies that are optimal for energy minimization. Data from flapping foils and swimming fish and cetaceans show that they operate at nondimensional frequencies close to the theoretical values for optimal efficiency [41–46]. Freymuth [34] conducted experiments on a heaving and pitching NACA 0015 foil at Reynolds numbers from 5,200 to 12,000; he associates high values of the lift coefficient with the formation of a leading-edge vortex (dynamic stall vortex), which is shed and then amalgamated with trailing-edge vorticity. The mechanisms of leading-edge vortex formation have been investigated by Reynolds and Carr [47]. Mccroskey [48] provides an extensive review of the effects of unsteady flow mechanisms on foils, including dynamic stall vortex formation.

Unsteady vortical patterns play a crucial role in the flight of insects, as reported by Maxworthy [49], Ellington [50,51], Freymuth [36], and Dickinson [52,53]. The mechanisms causing a large increase in the unsteady lift are, in the nomenclature of [53]: (i) delayed stall, (ii) rotational circulation in the form of an unsteady Magnus effect, and (iii) wake capture. Studies in [52,54] have further probed the effect of fin rotation. Ellington [50] and Maresca et al. [55] show a significant delay in stall caused by unsteady effects. Ohmi et al. [56,57] studied a translating and harmonically pitching foil with mean incidence angle of 15 or 30 deg and at Reynolds number from 1,500 to 10,000. They find that the forming vortical structures depend on the relative importance of the translational and rotational motion. When the rotational motion dominates, the governing parameter is the product of the reduced frequency and the amplitude-to-chord ratio—this product is proportional to the Strouhal number. Anderson et al. [28] experimentally studied a harmonically flapping (heaving and pitching) two-dimensional foil, and classified its vortical structures in terms of the following parameters: (i) maximum angle of attack, (ii) nondimensional frequency of oscillation (Strouhal number), and (iii) heave-to-chord ratio. Optimal propulsive performance was associated with moderately large angle of attack, formation of two vortices per cycle in the wake, and the development of small to moderate leading-edge vortices.

The three-dimensional (3D) vortical structure behind a finite aspect ratio rectangular flapping foil was visualized by Freymuth [37], Hart et al. [58], and Ellenrieder et al. [24], showing that leading-edge, trailing-edge, and shed vortices are all interconnected among themselves and with the foil.

Very few data exist for maneuvering foils and fish [6,59]. Similarly, very little is known about the cavitation properties of flapping foils; cavitation inception was found to depend on the reduced frequency and amplitude of oscillation [58].

3 A Review of Scaling Laws

3.1 Steadily Oscillating Foils for Propulsion. Propulsive, harmonically oscillating foils, under steady-state conditions, form a wake whose time-averaged form is that of a jet, as the momentum theorem also requires, in order to produce thrust. A jet flow is characterized by shear layers, i.e., continuous shedding of vorticity. Taking a different view, the foil sheds unsteady vorticity as it oscillates and translates forward; this vorticity organizes to form large-scale patterns, which are compatible with a jetlike time-averaged flow. A “reverse Kármán street,” i.e., a double row of vortices in a staggered configuration producing a jet flow, is one of many such possible patterns, as pointed out in early work by Kármán and Sears, and predicted in the works by Lighthill [10] and Wu [11]. Recent work has shown that the reverse Kármán street holds certain optimality qualities, i.e., for a given thrust it requires the least energy. In two-dimensional (2D) foils, as well as high aspect ratio foils and foils with end plates, a planar cut in the wake shows that two vortices per cycle is the optimal pattern, i.e., a reverse Kármán street; more than two vortices may form, symmetrically or asymmetrically [33,60], resulting in a decrease of thrust generation or propulsive performance [28,33]. Foils performing only a pitch motion [33], foils performing a heave motion [38], and heaving and pitching foils [25,28] may produce reverse Kármán streets under proper conditions. Multiple vortices may form outside the proper parametric range; also, instabilities may form. For example, for large Strouhal number, foils under heave motion develop a vortex street at an angle with respect to the oncoming velocity, resulting in steady lift as well as thrust. The instability may develop on either side of the foil, depending on the starting conditions, while switching from side to side is possible due to external forcing [38,61].

The shedding and subsequent organization of vorticity is an essential mechanism for propulsion, and the stable coexistence of the unsteady vortical patterns with a jetlike time-averaged flow is a characteristic of optimally operating foils. Since the time-averaged flow is unstable to small perturbations in the form of a highly tuned amplifier, such dynamic equilibrium would require that the unsteady patterns formed behind the foil have frequency and wavelength close to that of the most unstable mode of the time-averaged flow ([39,40]). An analysis of jetlike profiles measured behind flapping foils shows that the optimal nondimensional frequency has a value in the range of 0.25 to 0.35. The reduced frequency parameter in flapping foils was named the Strouhal number in [39,40] to bring attention to the similarities between the vortical flows behind bluff bodies (where the name originated after Strouhal’s pioneering studies [62]) and flapping foils. There is also, however, a basic difference between the two types of flow, since the Strouhal number is a “natural frequency” of the bluff body wakes, which are characterized (locally) as absolutely unstable flows. Jet flows behind flapping foils are also unstable, but have no such “natural frequency,” because they are convectively unstable [40], spatially amplifying an imposed excitation. Hence, a more suitable name would be the reduced frequency, as also used in bluff bodies when considering forced oscillation flows; nonetheless, the Strouhal number has been established, and is widely used now in the literature, defined as the ratio of the product of the frequency times the width of the jet formed behind the foil, divided by the average flow in the wake

$$St = f a / U_\infty$$

The width of the jet A and the average velocity in the jet U_∞ are difficult to calculate a priori since the width of the wake is typically not available, while the average flow velocity in the wake (accounting for the increase in velocity within the jetlike flow) depends on the thrust level and the kinematics of the flow, and is
also unavailable. As a result, \(A \) is approximated by the excursion of the trailing edge of the foil \(\Delta z \); and instead of using an average jet speed, the forward speed \(U \) is employed:

\[
St = fA / U
\]
(2)

There are limitations to this definition: When the foil is heavily loaded, i.e., producing a large thrust coefficient, the average jet velocity will be substantially different from the forward velocity \(U \); this is especially true under steady hovering conditions, \(U=0 \), when the Strouhal number in Eq. (2) is undefined; Eq. (1) can still be used, but \(U_m \) has to be measured or calculated. Also, the width of the wake may be different from the excursion of the foil. For pitching foils, the excursion of the foil varies significantly along the chord; we employ the maximum excursion of the trailing edge. The basic fact is that the Strouhal number is a wake parameter, and only indirectly a foil parameter; definition (2) should be used with this clarification in mind. In [23], the efficiency of a two-dimensional flapping foil was studied as a function of the frequency; it was shown that for moderate Strouhal numbers, optimal efficiency is obtained close to the frequency of maximum spatial amplification predicted by the average jet flow, i.e., in agreement with optimal Strouhal number scaling.

The Strouhal number provides a basic scaling law for the hydrodynamics of flapping foils under steady-state conditions. Returning to the original question of the effect of the impedance matching between structure and flow, it appears from the analysis of fish data that the Strouhal scaling law is a basic governing parameter, i.e., there does not appear to be a significant deviation from the law due to the elastic properties of the actuating muscles or the body. In [43], several observational data from marine mammals are presented and analyzed. Most reduced data fall in the range of \(St \) between the values of 0.20 and 0.40. Agreement is good, since one must take into account that the tails of fish operate within their own body’s wake; interactions between oncoming body-generated vorticity and caudal fin vortices alters the average jet flow [63]. We may conclude that the structural parameters are capable of conforming—and have in fact conformed—to this hydrodynamic requirement.

There are special requirements for the fish structure, its material properties, and the actuation and control mechanisms employed for the fish body and fin motion. A central requirement, for example, is the recovery of the inertia energy during a complete cycle of motion. Indeed, the unsteady rhythmic motion of fish requires, for efficiency, to be able to recover the inertia energy within a cycle, store it as potential energy, and then use it again. This can be achieved only if the combination of the virtual body mass (accounting for added mass) and the body elastic stiffness provides a natural frequency very close to the frequency of operation. Since it is known that the amplitude of motion of the fish tail does not vary substantially [1], the frequency of tail flapping must vary linearly with speed, at least in the high-performance range; this would require a dynamic control of body elasticity in order to commensurately change the natural frequency of the body and, hence, recover energy efficiently (see Fig. 1).

The requirement for energy recovery places similar restrictions on man-made flapping foils: The amplitude of motion of the foil is likely to remain constant—as in the case of fish; the reason for this is hydrodynamic efficiency. It has been found that in 2D foils, a heave motion with amplitude approximately equal to one chord length is associated with the largest efficiency. Hence, frequency must be varied linearly with the speed of operation in order to preserve the optimal Strouhal value. This would imply a dynamically controlled natural frequency of the structure in order to have matching between Strouhal frequency and structural natural frequency.

There are several other parameters in steady propulsion. Taking the case of a heaving and pitching foil with a bias angle, there are six physical parameters: the forward speed \(U \), the heave amplitude \(h_o \), pitch amplitude \(\theta \), bias pitch amplitude \(\theta_b \), frequency \(f \), and phase angle between heave and pitch \(\psi \). In addition to the Strouhal number \(St \), there are five other nondimensional quantities: the heave to chord ratio \(h/c \), maximum angle of attack \(\alpha_{max} \), pitch bias angle \(\theta_b \), the phase angle \(\psi \), and the Reynolds number \(Uc/\nu \), where \(\nu \) is the kinematic viscosity. The maximum angle of attack, as shown in Fig. 2, is defined as the maximum value over a period of oscillation of the angle of attack \(\alpha(t) \)

\[
\tan[\alpha(t) + \theta(t)] = (dh/dt)/U
\]
(3)

where \(\theta(t) \) denotes the pitch motion and \(y(t) \) the heave motion

\[
h(t) = h_o \sin(2 \pi ft)
\]
(4)

\[
\theta(t) = \theta_b \sin(2 \pi ft + \psi)
\]
(5)

Some of these parameters lie in narrow ranges; detailed hydrodynamic data on flapping foils show that the maximum efficiency is achieved for \(h/c \) between 0.75 and 1.0, a very narrow range. Also, the phase angle between heave and pitch has a moderate effect on efficiency, with a nominal value of \(\psi = 90 \) deg providing acceptably good efficiency values. The bias angle is needed only when steady transverse forces are to be produced; the bias angle depends on the required magnitude of the steady force. Foils oscillating around a steady pitch angle \(\theta \) produce asymmetric wakes and, hence, generate a steady lift force [36,37]. The wake can be inclined with respect to the oncoming flow, and the vortices on one side of the wake have larger circulation than on the other, while the number of vortices on one side of the wake may be larger than on the other side. In a hovering mode, when \(U=0 \),
a bias angle allows to vector arbitrarily the steady force produced [37].

The maximum angle of attack has a significant effect on efficiency and on the form of the vortical patterns in the wake. Figure 3 [28] provides a synoptic view of the visualization data on the flow around a two-dimensional flapping foil as a function of the two most significant parameters, the maximum angle of attack and the Strouhal number. We distinguish the following regions: In the regions of low Strouhal number, A and B (St<0.2), the wake does not roll up into discrete vortices—instead, it retains a wavelike structure; in region B, a very weak leading-edge vortex appears for \(\alpha_c > 30 \) deg, but the wake retains its wavy form. For moderate St and angles of attack (region C), contained between the parametric values of 7 deg\(<\alpha_c < 50\) deg and 0.2 < St < 0.5, a reverse Kármán street forms, consisting of two vortices per cycle. A leading-edge vortex forms for angles of attack larger than about 10 deg, which increases in strength with increasing angle of attack, but is amalgamated with a trailing-edge vortex—hence, the wake always forms two vortices per cycle. For large St (St >0.5) and for angles of attack smaller than 5 deg (region E), the wake does not form any distinct patterns. For larger angles of attack (region D), leading-edge vortices form that pair with trailing-edge vortices—the wake forms four vortices per cycle. For all St and large angles of attack, larger than about 50 deg, a pistonlike mode appears, where leading- and trailing-edge vortices form simultaneously and roll up in the wake to form four vortices per cycle (region F).

The data shown are for \(h_c=1\): for other values of \(h/c\), qualitatively similar regions are found, although the specific parametric regions depend on \(h/c\).

The presence of a leading-edge vortex affects efficiency; a mildly strong leading edge vortex may increase propulsive performance [28]. The development of a leading-edge vortex depends on the Strouhal number, but is dominated by the angle of attack; the subsequent interaction with trailing-edge vorticity depends on Strouhal number. In region C, for St in the range between 0.2 and 0.5, strong thrust develops from a reverse Kármán street, accompanied by up to a moderately strong leading-edge vortex; this is a region of high propulsive efficiency. In region D, for St larger than 0.5, strong thrust develops accompanied by the formation of four vortices per cycle, consisting of two pairs of counterrotating vortices; in each pair, the two vortices have, in general, different circulations. In regions A and B, low or negative thrust develops, associated with a wavy wake with no distinct vortex formation, while the leading-edge vortex is also very weak. In region E, for very small angles of attack, very small or negative thrust develops.

Although, in most studies, sinusoidal kinematics are employed for flapping foils, it is important to consider whether such a sinusoidal motion is optimal in terms of propulsive efficiency. Koochesfahani [33] experimentally studied various deviations from a purely harmonic pitching oscillation of a foil. He found that, within the optimal Strouhal number range, the purely sinusoidal motion produces a clean reverse Kármán street (two vortices per cycle); whereas any other motion produces additional vortices per cycle. Since a reverse Kármán street is found to require minimal energy for a given thrust level, this indicates that a purely oscillatory pitching motion is indeed optimal. For a heaving and pitching foil, however, Hover et al. [64] found a different result: The optimal kinematics, in terms of providing maximum propulsive efficiency, are not purely sinusoidal heave and pitch motions; instead, maximum efficiency was obtained when a multifrequency heave motion was used that, in combination with a sinusoidal pitch motion, produced a purely harmonic angle of attack. The explanation for this is evident from Eq. (3), where it is found that the angle of attack contains higher harmonics for a purely harmonic heave motion (due to the inverse tangent function). When the heave motion is chosen to contain higher harmonics in such a way as to cancel the high harmonics in the angle of attack, then the wake produces two vortices per cycle, and the highest efficiency is obtained. This means that the angle of attack, as defined in (3), is the major controlling parameter in vortex pattern formation, hence, affecting efficiency.

3.2 Three-Dimensional Effects in Flapping Foils. As found in [65], the performance of oscillating delta wings does not depend on the reduced frequency (or equivalently, the Strouhal number) until large angles of attack are reached. The flow mechanisms are different in the case of delta wings because the dominant vortices (“leading-edge” vortices) forming on the sides of the delta wing remain attached and are convected downstream through a helical fluid motion. Hence, the wake is drastically different from in a rectangular, high-aspect-ratio wing, and there is no characteristic time scale for these leading-edge vortices.

In rectangular three-dimensional flapping foils, the aspect ratio has an effect on the vortical patterns and, hence, potentially on the scaling laws. Since the vortical patterns must connect with each other and with the foil producing them, the dynamics of the large-scale vortical patterns are influenced by the span-to-vortex spacing ratio. Lighthill [10] sketched an idealized chain of alternately inclined, with respect to the direction of motion, interconnected vorticity rings; this has been shown experimentally to adequately represent the flow behind oscillating fish fins [7–9]. Detailed flow visualization in flapping foils provides a more complex picture: The vortical patterns form closed-ring loops; the vorticity of each loop connects all the way back to the foil [35,37,58] in the same way that Kármán vortices formed behind bluff bodies interconnect with themselves and to the body. Overall, the three-dimensional effect of the aspect ratio on the forces is reduced as frequency increases because the tip vortices are of alternating sign, hence, the induced velocities are significantly reduced. As Freymuth [37] remarks, the overall picture in three-dimensional wings is a “cru- cious mixture of two-dimensional and three-dimensional vortex developments...” This was confirmed by Karpouzian et al. [15], Cheng et al. [66], Martin [67], Martin et al. [68], and Dickinson et al. [53] for flying animals.

Freymuth [37] shows pictures for rectangular, low aspect ratio foils under high angle of attack, where both leading- and trailing-edge vorticity form; the trailing-edge vortices form rings connecting to the foil edges with alternating sign tip vortices, while the leading-edge vortices form separate rings through shedding; El-lennieder et al. [24], in experiments at Reynolds number 160, and
Guglielmini [61], using direct numerical simulation (DNS) at the same Reynolds number, explored the vortical structure of flapping foils with aspect ratio 3: Vortical structures have the expected structure of interconnected rings at moderate Strouhal numbers and angles of attack, with the leading-edge vortices contributing significantly to the vortex formation. The rings may resemble “irregular pancakes,” or may contain additional, secondary loops [24]. For high St, the flow develops into two diverging concatenated chains of rings [61].

Maxworthy [49] proposed that, in nonrectangular wings, leading-edge vortices are helical vortices that connect to the tip vortices. Numerical simulations of the wing of a hovering insect [13,20] show a similar structure. This is a different vorticity shedding mechanism than in two-dimensional foils, because a helical vortex continuously convects downstream.

Scherer [25] reports efficiency in rectangular, moderate aspect ratio wings of up to 70%; his Strouhal numbers were kept moderately low and did not reach the regions where maximal efficiency is anticipated. Lai et al. [27] report efficiencies up to about 75% for a flapping rectangular NACA 16-012 foil with aspect ratio 4. DeLaurier and Harris [26] report efficiencies in the range of 18 to 50% for a rectangular NACA 0012 flapping foil with aspect ratio 4, oscillating with heave amplitude equal to 0.625 chords, at Reynolds number 30,000.

Kato [69–71] has considered the forces generated by a foil hinged at a single point, with aspect ratio of order 1—the aspect ratio found typically in the pectoral fins of fishes [1]. The foil performed three types of motion: (i) rowing, i.e., forward-backward motion, or surge in the notation of Fig. 1; (ii) feathering, i.e., a twisting (or pitching) motion about the axis of the fin; and (iii) flapping motion, i.e., rolling motion about the root attachment of the fin transversely to the flow, when a steady stream exists. The propulsive efficiency of feathering or flapping foils, which is lift based, is larger than the efficiency of drag-based rowing foils, in agreement with Walker and Westneat [72], who show a maximum efficiency of 10% for drag-based propulsion, contrasted with about 60% maximum efficiency for lift-based propulsion. Rowing is better suited for still water (zero forward motion) force generation, providing potentially better maneuverability at such speeds. A nonsinusoidal feathering motion combined with a sinusoidal rowing motion produces thrust accompanied by smaller transverse forces. Maximum efficiencies of the order of 45% are reported for the lift-based mode of propulsion by Kato [70,71].

3.3 Multiple Foils and Foils Interacting With Bodies

When two or more foils operate side by side (such as employed by penguins [73]), or foils operate near a wall or are attached to a vehicle, there are important interaction effects taking place. In [74], a streamlined vehicle equipped with two flapping foils in close proximity was studied. Force and efficiency measurements, as well as flow visualization, show strong interaction effects that require additional parameters compared to single foils. Flow visualization in two side-by-side foils shows that when they oscillate very close to each other, a strong drag wake-like flow develops between the foils causing efficiency deterioration. The wakes of two flapping foils may develop the following forms [75]:

1. The two wakes can collapse into a single wake.
2. The wakes interact strongly, forming two jets divided by a backflow region, which can deteriorate performance severely.
3. The wakes are well separated, providing good thrust performance.

When foils flap against a body, or against a second foil, the conditions of the Weis-Fogh mechanism apply. Large forces are produced, but these include large drag forces, while the resulting vortical patterns are different from those for single foils. In Tsutahara and Kimura [76], the Weis-Fogh mechanism is used to produce thrust for ship propulsion. The mechanism was first associated with high lift production in insect flight by Weis-Fogh [77]: Two identical 3D wings initially rest against each other. The first stage of motion begins with a rotational motion whereby both wings rotate away from each other, while hinged at one of their edges. The second stage consists of the foils detaching completely, when large bound circulation develops in the foils (of opposite sign in each wing), resulting in high lift force production. Subsequently, a reverse rotational motion brings the foils together, and so on (Maxworthy [49]). In [78], two rectangular plates with aspect ratio 1.8 were used up to Reynolds number 300,000. The efficiency was up to 58% for angular amplitude of 15 deg, lower for other conditions.

In [74,78], two foils flapping against a middle flat plate were employed. Efficiencies up to 30% are reported, while the vortical patterns form a rapidly expanding wake.

3.4 Maneuvering and Fast-Starting Foils

Maneuvering is an essential function in fish with important lessons for technological applications [79,80]: fast-starting fish exhibit outstanding performance [81,82]. In maneuvering and fast starting, a foil must also provide either a steady transverse force or a transient, high-magnitude force. The generation of unsteady vortical patterns is at the root of the performance of maneuvering foils, hence there are similarities with steadily flapping foils. The details differ, however, and hence the physical mechanisms and properties have differences as well. Published data include foils performing a transient motion [29,68,83]; steadily flapping foils around a bias angle, in order to develop steady lift forces [29,56,57,84]; and foils in combination of rowing, plunging and feathering motions, together with bias angles to develop nonsinusoidally varying lift [55,69,70,85,86]. Hertz [87] and Ahlborn et al. [59] showed that a flapping foil develops a pair (or pairs) of interconnected vortices (which appear like rings in a three-dimensional view) when starting from a position of rest and performing a complete cycle of heave or pitch motion. Drucker and Lauder [7,8] show the formation of sequences of inclined, interconnected ringlike structures in the wake of flapping pectoral fins of live fish. Ohnmi et al. [56] report that the bias angle in a pitching foil plays a significant role in determining the flow patterns up to a threshold nondimensional frequency, proportional to the Strouhal number. In [29,57], a bias angle is used to produce steady lift in unsteadily flapping foils. Significant steady and unsteady lift, higher by up to an order of magnitude than under steady conditions, can be produced. The moderate aspect ratio, three-dimensional foil in Martin et al. [68] produced steady and unsteady lift forces comparable to those experienced by the two-dimensional foil employed by Read and Hover [84]. This demonstrates once more that end effects are less important in unsteady foils than steady foils, in accordance with the findings in [14,29,52].

As shown in Fig. 4, a three-dimensional foil performing two angular harmonic motions about a single hinge point, one transverse to the oncoming flow and one about its long axis (roll motion as defined in Fig. 1), can develop steady lift coefficients of order three, much higher than for steadily translating foils, while it can also develop thrust.

In a fast-starting foil, the specific kinematics employed can have a significant effect on the resulting forces. Figure 5 shows the specific kinematics employed in a 2D foil, wherein the motion starts with a maximum heave and pitch motion, undergoes a complete harmonic cycle, and returns to its original position. The resulting thrust and lift forces (Fig. 6) undergo large variations, which are determined by the heave and pitch acceleration (added masslike forces) and heave and pitch velocity; the velocity-dependent terms are dominated by the shedding of large-scale vortices, which have their own time constants [89,90], governed by laws analogous to the Strouhal laws of steadily flapping foils [39,40] and the impulsive vortex-ring formation laws [91–93].

230 / Vol. 58, JULY 2005 Transactions of the ASME
3.5 The Interaction of Foils With Oncoming, Externally Generated Vorticity. Foils operating within unsteady flows, such as turbulent streams, ocean waves, or within the wakes of upstream objects, can, under favorable conditions, extract energy from the oncoming flow. There are two paradigms of foil-unsteady flow interaction: a foil flapping within waves ([94]), and a foil interacting with oncoming vortices. For the latter case, reports are provided in Sparenberg and Wiersma [95], Koochesfahani and Dimotakis [96], Gopalkrishnan et al. [97], Streitlien et al. [18], and Beal et al. [98]. Gopalkrishnan et al. [97] identified three modes of foil-vortex interaction:

1. Oncoming vortices interact destructively with trailing-edge foil vortices of the opposite sign, forming a street of weak vortices (destructive mode); propulsive efficiency increases.
2. Oncoming vortices merge with same-sign foil-generated

![Mean thrust and lift coefficients for Pitch Bias](image)

Fig. 4 Mean lift and mean thrust coefficient of a three-dimensional pitching and rolling foil, for bias angle from −10 to 30 deg. Equivalent heave is defined at 0.75 of the radius; the curve marked Static provides the data for a steadily towed foil at an angle of attack [88].

![Kinematics of fast-starting two-dimensional foil in heave and pitch motion](image)

Fig. 5 Kinematics of fast-starting two-dimensional foil in heave and pitch motion [29]

![Heave and pitch velocity and resulting thrust and lift forces](image)

Fig. 6 Heave and pitch velocity (upper figure) and resulting thrust and lift forces (lower figure), as functions of time for the kinematics shown in Fig. 6 [29]
vortices (constructive mode); reduced efficiency results.

3. Upstream vortices pair with opposite-sign foil-generated vortices (pairing mode), with varying effect on efficiency.

Anderson [4] showed that leading-edge vorticity can interact earlier with oncoming vortices than trailing vortices. The resulting patterns resemble, overall, the three major patterns of [97], although differing in several details in the flow, especially close to the foil, hence affecting performance.

In order for a foil to extract energy from oncoming unsteady patterns, two conditions must hold:

1. The foil must flap at a frequency close to the frequency of the oncoming vortices.
2. The size of the oncoming vortices must be comparable to the foil chord.

Hence, any sensing and control scheme employing a foil must satisfy these two basic conditions. Observations with live fish swimming behind bluff cylinders confirm these laws [99,100], using the fish length as the proper length scale.

3.6 The Influence of Reynolds Number on Foil Performance. Fishes span a wide range of length L and swimming speed U, and hence of Reynolds number based on fish length, $Re = U/L \nu$, where ν the water kinematic viscosity—from 10^2 to 10^8. The tail has an average chord length of the order of 10% of its length L; hence, the Reynolds number Re based on the average tail chord length c_e is in the range from 10^2 to 10^7, while the majority of experimental and computational data is obtained for relatively low Re. The effect of Re is to alter the boundary layer of the foil, especially in the transition between laminar and turbulent flow, and hence affect the formation of vortices.

One basic question is on the value of the drag of a flapping foil, which cannot be measured directly since drag and thrust are inseparably interconnected. The drag coefficient of a steadily towed foil c_D is defined as

$$c_D = D/(1/2 \rho U^2 A_f)$$ (6)

where D is the measured drag force (frictional plus form drag), ρ is the density of water, A_f is the foil area (average chord times average span), and U is the towing velocity.

In the case of a flapping foil, the measured axial force is the total force, the sum of drag and thrust components. A way to estimate the drag coefficient of a flapping foil is to compare the experimentally measured thrust and efficiency of a flapping foil with the thrust and efficiency predicted by ideal flow (inviscid) theory. Figures 7 and 8 provide the thrust and power coefficients, c_t and c_p, respectively, as functions of the Strouhal number, defined as $St = 2hf/U$, where h is the heave amplitude; for constant maximum angle of attack (15 deg) and heave-to-chord ratio (0.75) for an NACA0015 foil.

The coefficients are defined as

$$c_t = T/(1/2 \rho U^2 A_f)$$ (7)

$$c_p = P/(1/2 \rho U^2 A_f)$$ (8)

where T is the average (net) thrust, P is the time-averaged power required, and the other quantities are defined as in Eq. (6).

The experimental data, obtained at $Re=37,000$, are compared against linear inviscid theory [11,10] and nonlinear inviscid theory [17]; the theory can be viewed as an “infinite Reynolds number limit.” It is clearly seen that the power coefficient is very close to the theory across the entire St range, while the thrust coefficient of the experiment is lower than the theoretical one, by almost a constant value within a relatively wide range. An average value of $c_t=0.063$ can be inferred from Fig. 7 across the St range; this is the average distance between experiment and nonlinear theory, which can be thought of as the unsteady drag coefficient of the foil. Measurements of the drag coefficient for a nonflapping foil, towed at zero angle of attack, provide a value of $c_d=0.068$ for $Re=30,000$ and $c_d=0.05$ for $Re=40,000$. For comparison, Oster [101] provides a value of $c_d=0.043$ for a 13% thick foil and $c_d=0.06$ for 20% thick foil, both values at $Re=40,000$. These values of the drag coefficient under steady conditions are very close to the value of the unsteady drag coefficient.

In conclusion, the principal effect of the Reynolds number, based on chord length, appears to be a decrease in the drag coefficient as Re increases—at least for subcritical Reynolds numbers, i.e., below Re approximately equal to 5×10^5, for which we have available experimental data. The change in the drag coefficient of the flapping foil, as the Reynolds number changes, appears to be quantitatively close to the change in the drag coefficient of a nonflapping foil. This also means that there is no significant drag increase in a flapping foil due to its unsteady motions, at least for St values of <0.5. Efficiency, as a result, increases as Reynolds number increases, when all other parameters are kept the same.

Motani [45] uses an empirical power law connecting the power required for fish propulsion to the Reynolds number; then he com-

Fig. 7 Thrust coefficient as function of Strouhal number for 15 deg angle of attack and $h/c=0.75$. Triangles denote experimental data, solid line linear inviscid theory, circles nonlinear inviscid theory [28]

Fig. 8 Power coefficient as function of Strouhal number for 15 deg angle of attack and $h/c=0.75$. For symbols, see Fig. 7.
3.7 Scaling Effects of Flexing Stiffness of Foils. Fish fins are known to be flexible, in the spanwise and chordwise directions; some fish have very flexible fins, others have stiffer fins, although fin flexibility appears to be largely passive. Theoretical, inviscid calculations on the effect of chordwise flexibility predict a decrease in thrust coefficient accompanied by an increase in propulsive efficiency, compared with a rigid foil [102]. Recent experimental work [103,104] shows that chordwise flexibility can improve efficiency substantially relative to a stiff foil, up to 38%, accompanied by only a small decrease in the thrust coefficient. Figure 9 shows the thrust coefficient and the propulsive efficiency as function of the maximum angle of attack for several two-dimensional foils of varying chordwise flexibility, classified according to Shore toughness. The Strouhal number is $St=0.30$, the heave-to-chord ratio is equal to 1, the phase between heave and pitch is 90 deg, and the Reynolds number $Re=37,000$. As shown, the thrust coefficient varies little; the maximum efficiency, however, varies substantially from a value of 0.62 for the rigid foil to a value of 0.86 for a foil with optimum flexibility.

Since the propulsive foil efficiency can vary by more than 38%, reaching values in excess of 0.80, flexibility appears to be a prime parameter in designing efficient flapping foils. As shown in Premprameerach et al. [104], the prime scaling flexibility parameter is the following ratio, Δ:

$$\Delta = \frac{(45/2)(pc_iU^2/E)(c/h)^3}{\Delta}$$ \hfill (9)

where p is the density of water, c_{li} is the lift coefficient (which is typically of order 1), U is the speed of operation, E is the equivalent Young’s modulus, c is the chord, and h is the average thickness of the foil. The optimal value is found around $\Delta = 1/3$.

Spanwise flexibility is considered theoretically in [105,106]. Actively controlled flexibility is proposed in [107] as a means employed by fish to increase their efficiency.

Spanwise fin flexibility also plays a significant role on the forces, power required, and efficiency of propulsion, as observations and studies in animals show [107–111]. References [107,108] suggest that actively controlled spanwise flexibility is employed by animals.

3.8 Scaling Laws in Fish-like Swimming. Fish employ a different paradigm of locomotion, involving large-amplitude flexing of their body. Biomimetically designed fishlike robots [112,113] demonstrate that different flow control mechanisms are involved in fishlike propulsion. The propulsive wake is characterized by the dynamic interaction of large-scale vortices arranged in a manner to efficiently induce a propulsive jet. As a result, based on hydrodynamic grounds, the frequency is expected to be dominated by a Strouhal-like law as outlined in the section on flapping foils. Measurements from live fish support this scaling [39,40,43,45,46].

Since the body wave flexure has the form of a traveling wave of increasing amplitude from head to tail, there are two additional characteristics to consider:

1. the wavelength λ of the traveling wave
2. the form of the amplitude envelope

The form of the amplitude envelope is controlled by the requirements to reduce backlash from the unsteady lateral motion of the body, and the need to reduce separation to the extent possible; as a result, the faster fish employ an amplitude envelope that restricts motion to the last half or one-third of the body length.

Theoretical arguments show that the phase speed c_p of the traveling wave must be larger than the forward speed U_o in order for the body to contribute to the thrust production [11]. As a result

$$c_p/U_o = f\phi/U_o > 1$$ \hfill (10)

Techet [114] and Techet et al. [115] showed that the turbulence intensity in the boundary layer of a robotic tuna like fish, as well as in the boundary layer of a plate undergoing traveling wave motion within a stream of velocity U_o, is minimized anisotropically, but substantially, for all Reynolds numbers up to a value of 106 that was tested (see Fig. 10). Also, separation was found to be reduced significantly, as also reported in Taneda [116]. Turbulence intensity is reduced as c_p/U_o increases, reaching a minimum value for a value around $c_p/U_o=1.2$; a flat minimum in the range of c_p/U_o between 1.1 and 1.5 is found. Beyond this range, turbulence intensity starts increasing again. At the phase speed of minimum turbulence intensity, separation appears to be completely eliminated. DNS calculations at Reynolds number up to 18,000 show that the total drag coefficient reaches a minimum value as well [117].

This requirement of $c_p/U_o=1.2$ is in accord with the condition for thrust production by the body, which is $c_p/U_o > 1$. It places a much tighter range on the wavelength λ, which can now be directly estimated, once the frequency f_o is found on the basis of a Strouhal-like law, through the relation

$$f_o\lambda/U = 1.1 \sim 1.5$$ \hfill (11)

In [1], values of c_p/U_o are reported for two species: (i) for cod, it is found that c_p/U_o is in the range between 1.29 and 1.37; and (ii) for the saithe, a single measurement of 1.19 is reported. As with foils, the problem of fish swimming requires “impedance matching” between the structure and the fluid. The actuation of body flexing is one of the most complex flow-structure interaction problems because the integral of the side force must be as close to zero as possible and the effective drag must be minimized, while a thrust force equal to the body drag must be produced. Nonetheless, the Strouhal law appears to dominate the frequency of oscillation because the large-scale vortices play such a central role in the hydrodynamics of fish swimming.

4 Conclusions

Available scaling laws in aquatic locomotion and fishlike swimming have been reviewed, grouped as follows:
1. Steadily flapping, high aspect ratio foils, used for propulsion; the Strouhal number, the amplitude of motion-to-chord ratio, and the maximum angle of attack are the dominant parameters because they affect the vertical patterns in the wake and, hence, thrust production and efficiency.

2. Three-dimensional effects in flapping foils: the aspect ratio and geometric shape (rectangular versus delta shape) of the foil—as for steadily towed foils—are the principal parameters for three-dimensional foils; in addition to the parameters applicable to high aspect ratio foils.

3. Multiple foils and foils interacting with bodies: vortical interactions among the wakes of multiple foils and interaction of shed vorticity with walls control foil interaction phenomena. Hence, the ratio of the transverse size of the foil wake compared to the principal distance to other foils and walls is the principal controlling parameter.

4. Maneuvering and fast-starting foils: the time to develop a full vortex ring is the principal parameter controlling rapid maneuvering and fast starting, in analogy with the Strouhal law for steadily flapping foils and the formation number in impulse-started jets.

5. The interaction of foils with oncoming, externally generated vorticity: the three parameters affecting flapping foil interaction with oncoming vorticity are (i) timing of arrival of oncoming eddies, in accordance with vortex-to-vortex interaction laws; (ii) chord size to vortex size, which must be of order one; (iii) frequency matching between foil frequency and vortex frequency of arrival.

6. The influence of Reynolds number on flapping foil performance: the Reynolds number Re has a small to moderate effect, increasing thrust and, hence, efficiency as Re increases.

7. Scaling effects of flexing stiffness of foils: chordwise flexibility can have a significant beneficial effect on propulsive efficiency; measured to be up to 38%. The nondimensional flexibility parameter Δ defined in Eq. (9) must have a value around 1/3 for optimal efficiency.

8. Scaling laws in fishlike swimming: for fishlike swimming, employing a traveling wave along the body and flapping caudal fin, the principal parameters are the same as for flapping foils (Strouhal number, angle of attack, amplitude of motion-to-chord length ratio); in addition, the phase speed of the traveling wave along the body must exceed the forward velocity—not only to produce thrust by body action, but also to minimize turbulence in the boundary layer.

Acknowledgments

Support by NAVSEA, the Office of Naval Research (Dr. T. McMullen and Dr. P. Bandyopadhyay, monitors), and by the MIT Sea Grant Program is gratefully acknowledged.

References

Propulsors and Caviation, Hamburg, Germany, pp. 121–127.

Alexandra H. Techet received her B.S.E. degree in mechanical and aerospace engineering at Princeton University, Princeton, NJ, USA in 1995, and her MS and PhD degrees in oceanographic engineering from the Massachusetts Institute of Technology (MIT), Cambridge, MA/Woods Hole Oceanographic Institute (WHOI), Woods Hole, MA, joint program in 1998 and 2001, respectively. She joined the faculty in the Ocean Engineering Department at MIT in 2002, as assistant professor, and was awarded the H. L. Doherty Professorship in Ocean Utilization (2002–2004). Her research interests include experimental marine hydrodynamics, ship-breaking waves, fluid-structure interactions, and fishlike swimming and maneuvering. Professor Techet is a member of the American Society of Mechanical Engineers, American Physical Society, Marine Technology Society, and the International Society of Offshore and Polar Engineers.
Franz S. Hover received his B.S. in Mechanical Engineering from Ohio Northern University (Ada, Ohio) in 1987, and his S.M. and Sc.D. degrees in 1989 and 1993 in oceanographic and mechanical engineering from the Woods Hole Oceanographic Institution/Massachusetts Institute of Technology Joint Program. He was a postdoctoral fellow at the Monterey Bay Aquarium Research Institute and has been a regular consultant to industry. He is currently a Principal Research Engineer at the Massachusetts Institute of Technology Department of Ocean Engineering. Areas of research interest include design and applied control of marine systems. Dr. Hover is a member of the American Society of Mechanical Engineers.

Dick K.P. Yue is the Associate Dean of Engineering and Professor of Hydrodynamics & Ocean Engineering at MIT. He received his degrees (SB, SM, and ScD) from MIT. He has been a faculty member since 1983. He is active in research and teaching in marine fluid mechanics and ocean engineering, focusing on ocean and coastal wave dynamics, large-amplitude motions of ships and platforms, nonlinear wave mechanics, hydrodynamics of fish swimming, and the application of these principles to the design of underwater vehicles; and vortical and turbulent flows at the air-sea interface, and their effects on interfacial processes. Yue is a member of the Society of Naval Architects & Marine Engineers and the American Physical Society.