

PRICING AND REVENUE MANAGEMENT RESEARCH Airline Competition and Pricing Power

Presentations to Industry Advisory Board Meeting November 4, 2005

- "Pricing and Competition in Top US Markets" (Celia Geslin)
 - Fare, Traffic and Revenue Changes 2000 to 2004

• "Impacts of Airline Fare Simplification" (Maital Dar)

- MIT PODS Research Consortium
- Simulations of Revenue and Traffic Impacts
- "Adapting Revenue Management Systems" (Peter Belobaba)
 - Development of New Forecasting and Optimization Algorithms

MIT International Center for Air Transportation

AIRLINE PRICING AND COMPETITION IN TOP US MARKETS

Célia Geslin

Preliminary analysis of airline pricing power in US markets:

- How have air fares changed in domestic markets in the past 5 years?
- Differences by length of haul?
- Differences between LCC and non-LCC markets?

Empirical analysis of largest domestic markets

- Top 100 US 2004 Markets from O&D Plus Data
- Aggregate analysis and overall trends between 2000 and 2004
- Analysis by carrier and type of carrier (legacy, LCC)

Fares continue to decrease. On average, fares were 19.3% lower in 2004 compared to 2000.

Total Passengers in Top 100 US Markets

Passenger volumes have rebounded to 2000 levels after dropping by over 11%.

MIT

Huge revenue drop of 25.4% by 2002. Slow recovery since then, but still 19% below 2000.

- Market share losses for network carriers, gains for LCCs led by JetBlue
- Southwest is MS leader in Top 100 Markets, in both 2000 and 2004

Market Share by Carrier Group

Overall, LCC group MS increased from 26% to 37%, while Legacy group MS dropped from 60% to 53%

Average fares have dropped by 36% in long haul markets, while short haul fares actually increased slightly compared with 2000.

Passenger traffic in short haul markets dropped 18%, while increasing 10-13% in medium and long haul markets

Total Revenues decreased most in long haul markets despite traffic growth – down 27% overall

- In 2000, 27 of Top 100 US Markets without LCC presence
- By 2004, only 10 Top 100 US Markets without LCC presence (6 when Hawaii markets excluded)
 - 84 of the Top 100 US Markets with more than 10% LCC MS

- Average Fare decreased more for markets with a small 2004 LCC market share than the markets with well-established LCC presence.
- Largest (31%) decrease in fares observed for markets with new entry by LCC between 2000 and 2004.

Passenger Traffic and LCC Presence

- Markets with LCC presence showed traffic growth of 4.51%
- But in O&D markets with small or no LCC market share, traffic is still 16% below the 2000 level.

Overall trends in largest US markets 2000-2004

- Traffic has rebounded to peak 2000 levels
- But average fares have dropped 19%, with a corresponding total revenue decrease

Major differences identified:

- By carrier type Legacy carriers have lost 5% market share and over 9% revenue share
- Long-haul market fares have dropped the most, with greatest traffic growth. On the other hand, short-haul traffic is down, and average fares stable. Substantially lower total revenues in all distance categories.
- Markets with LCC new entry saw the greatest drop in average fares between 2000 and 2004

Expand the sample to 500 or 1000 Top US Markets

- Identify relevant factors in the evolution of pricing and competition in airline markets:
 - Length of haul
 - Low-fare carrier competition
 - 🥪 Hub vs. non-hub markets

Broader questions include:

- How has willingness to pay (price elasticity) changed? Are people less willing to pay for air travel?
- How has airline pricing power been reduced? How can we quantify this effect?

MIT International Center for Air Transportation

IMPACTS OF AIRLINE FARE SIMPLIFICATION

Maital Dar

- Airline revenue management research at MIT funded in large part by PODS Research Consortium
 - Focus on forecasting and optimization models for seat inventory control (seat allocation)
 - Findings used to help guide each airline's RM system development
- Most member airlines have renewed; new member added in 2005

Continental Airlines Scandinavian Airlines System Delta Air Lines Air New Zealand Lufthansa German Airlines Northwest Airlines KLM/Air France LAN Airlines (new)

Fares have been decreasing

- The lower fares are due in part to LFA competition, but not exclusively
- RM system shortcomings are also involved
- Passenger choice process has changed, but RM systems have not
 - Airline customers have learned how to get cheaper fares, but existing revenue management systems in use largely don't take this new reality into account
- Traditional RM systems all based on:
 - Identifiable and independent demand for different fare products with restrictions associated with lower fares

BOS-SEA Traditional Fare Structure American Airlines, October 2001

Roundtrip	Cls	Advance	Minimum	Change	Comment
Fare (\$)		Purchase	Stay	Fee?	
458	Ν	21 days	Sat. Night	Yes	Tue/Wed/Sat
707	M	21 days	Sat. Night	Yes	Tue/Wed
760	M	21 days	Sat. Night	Yes	Thu-Mon
927	H	14 days	Sat. Night	Yes	Tue/Wed
1001	Н	14 days	Sat. Night	Yes	Thu-Mon
2083	В	3 days	none	No	2 X OW Fare
2262	Y	none	none	No	2 X OW Fare
2783	F	none	none	No	First Class

Simulation of Leg-Based RM Benefits Differentiated Fare Structure

Revenue Gain When Both Airlines Implement EMSRb

■AL1 ■AL2

- Recent trend toward "simplified" fares compressed fare structures with fewer restrictions
 - Initiated by low-fare airlines in many parts of the world
 - Early in 2005, implemented in all US domestic markets by Delta, matched selectively by legacy competitors

• Simplified fare structures characterized by:

- Little or no minimum stay restrictions, but advance purchase and non-refundable/change fees
- Lower fare ratios from highest to lowest published fares, typically no higher than 5:1 in affected US domestic markets

Example: BOS-ATL Simplified Fares Delta Air Lines, September 2005

One Way	Bkg	Advance	Minimum	Change	Comment	
Fare (\$)	Cls	Purchase	Stay	Fee?		
\$124	Т	21 days	0	\$50	Non-refundable	
\$139	U	14 days	0	\$50	Non-refundable	
\$199	L	7 days	0	\$50	Non-refundable	
\$224	K	3 days	0	\$50	Non-refundable	
\$259	Q	0	0	\$50	Non-refundable	
\$444	В	3 days	0	\$50	Non-refundable	
\$494	Y	0	0	No	Full Fare	
\$294	А	0	0	No	First Class	
\$594	F	0	0	No	First Class	

2 carriers, single market, both use EMSRb leg RM controls
6 fare classes, 3.5:1 fare ratio:

Class	1	2	3	4	5	6
Fare	425.00	310.00	200.00	175.00	150.00	125.00

BASE CASE: Restricted and Differentiated Fares

Fare Class	АР	MIN Sat Night	Chg Fee	Non- Refund
1	0	0	0	0
2	3	0	1	0
3	7	1	0	0
4	10	1	1	0
5	14	1	1	1
6	21	1	1	1

Revenue Impact of Each "Simplification"

Loads by Fare Class

Revenues by Fare Class

Effectiveness of Traditional Leg RM

Percentage improvement over No RM Controls

Summary – Impacts of Fare Simplification

- Simplified fares have contributed to large revenue losses for US airlines
 - PODS simulated revenue losses in line with 15% impacts quoted by airlines

• Fare class mix is also affected

 "Simplified" fare structures have changed the types of products passengers buy

• The fundamental assumptions of RM systems:

- Are no longer appropriate under changing conditions
- May even be hurting airline revenues

MIT International Center for Air Transportation

ADAPTING RM SYSTEMS AND MODELS

Peter Belobaba

- RM systems were developed for restricted fares
 - Assumed independent fare class demands, because restrictions kept full-fare passengers from buying lower fares
- Without modification, these RM systems <u>will not</u> <u>maximize revenues</u> in less restricted fare structures
 - Unless demand forecasts are adjusted to reflect potential sell-up, high-fare demand will be consistently under-forecast
 - Optimizer then under-protects, allowing more "spiral down"

• RM system limitations are affecting airline revenues

 Existing systems, left unadjusted, generate high load factors but do not increase yields

- Need to forecast demand by willingness to pay (WTP) higher fares with same restrictions (i.e., sell-up)
- "Q-forecasting" approach requires estimates of passenger WTP by time to departure for each flight
 - Approach is to forecast maximum demand potential at lowest (Q) fare, and convert into "partitioned" forecasts for each fare class
- Then, modified WTP forecasts can be fed as demand inputs to RM optimizers:
 - Standard EMSRb for Leg-based RM
 - Dynamic Programming methods
 - Network optimization methods for O+D Controls

• Typical values exhibit an S-shape reflecting the changing business/leisure mix across time frames

Hybrid Forecasting For Simplified Fare Structures

- Separate forecasts for price and product oriented demand
- A passenger is counted as *price-oriented* if the next lower class from the one booked is closed
- A passenger is counted as *product-oriented* if the next lower class from the one booked was open.

• Combine standard RM forecasts and WTP forecasts

- For product-oriented demand, bookings are treated as a historical data for the given class, and standard time series forecasting applied.
- For price-oriented demand, forecasts by WTP based on expected sellup behavior
- Combined forecasts fed into optimizers

Airline 1 Hybrid Forecasting and EMSRb Airline 2 Standard Pick-up Forecasting and EMSRb

Airline 1 revenues increase by 1.36%, with greater protection for higher classes and fewer seats sold in classes 5 and 6, leading to lower Load Factor

• Combining Hybrid Forecasting and Dynamic Programming (DP) for optimization of seat inventory further improves revenues.

Impact on Fare Class Mix: DP w/HF

Traditional RM

DP w/ Hybrid Forecasts

DP with hybrid forecasting increases revenues by capturing more high yield passengers in middle and upper classes.

- Relaxed fare restrictions increase the importance of effective RM controls to airline revenues
 - But, traditional RM methods do not maximize revenues
 - Modifications required to better forecast consumer choice
- New approaches to "hybrid" forecasting of price- vs. product-oriented demand show good potential
 - Incremental revenue gains over traditional RM methods
- Need to estimate passenger WTP, affected by competitor's RM method and seat availability
 - Focus of current research is how to actually ESTIMATE these values, required to generate the modified forecasts