Dynamic Airline Scheduling
- Models and Experiments

Hai Jiang
Cynthia Barnhart

MIT Global Airline Industry Program
IAB Meeting
November 4, 2005
Outline

- Introduction
- The Idea
- Models
- Experiments
- Contribution
Introduction

• Airline planning
 – Starts 6 months to 1 year before departure date
 – Flight times and fleet assignment are developed
 based on passenger demand forecast and available
 resources

• Air travel demand is highly variable
 – Even with an “optimized” flight schedule and fleet
 assignment, flight departures would have empty seats
 while others will experience more demand than
 capacity

• Motivation
 – Develop models to dynamically adjust airline
 networks in the booking process so as to better
 manage demand stochasticity
Background

• Airlines typically operate on a hub-and-spoke network with banked schedules
 – Advantages: “Multiplier” effect, consolidation of traffic
 – Disadvantages: low utilization of aircraft, peaking in aircraft movement and passenger activity

• New Trend: De-Peaking
 – AA (DFW, MIA), LH (FRA), DL (ATL), …
 – Advantages:
 • Increase aircraft utilization
 • Alleviate airport runway/gate congestion
 • Improve schedule reliability
 • Smooth operation in ground operations, ticketing, etc
 – Downside
 • Connecting passengers will have slightly longer waits on the ground
 • This is no longer a big problem
 – In the old times, elapsed time is a key factor
 – Nowadays, fare plays a more important role

• Opportunity in a De-peaked Schedule
Dynamic Airline Scheduling

• The idea
 – Employ both flight retiming and aircraft swapping in the booking process to match capacity to demand

• The impact
 – Provide us a tool to respond to demand variation
 – Enable making wise schedule decision by utilizing information from revealed bookings and improved accuracy in forecast
 • Forecast accuracy improves when we are closer to departure

• Related literature
 – Peterson (1986) was the first to introduce dynamism in airline scheduling
 • Have “rubber” planes that can expand or contract to precisely match the final demand
 – Berge and Hopperstad (1993) followed the idea and developed Demand Driven Dispatch
Experiment Setup

• An original schedule
• A demand forecast engine
• A passenger mix model
• Retime and refleet flights n times during the booking process.
• For simplicity, let $n = 1$.
 – Divide the booking period into Period 1 and Period 2
• Assume: the new schedule obtained are crew and maintenance feasible
Flow Chart

Period 1
- Period 1 pax demand
 - Booking Limit
 - Passenger Mix Model
 - Period 1 Leg pax assigned
 - Assumptions on connecting itineraries’ flexibility
 - Period 2 Pax Demand Forecast
 - Period 1 Flexible pax
 - Itineraries to be Preserved in Period 2
 - Remaining Leg capacity
 - # of Aircraft Overnigh ted At Each Station
 - Re-optimize fleet & flight timing
 - New schedule

Period 2
- Period 2 pax demand
 - Remaining Leg capacity
 - Passenger Mix Model
 - Period 1 Inflexible pax
 - Re-optimize fleet & flight timing
 - # of Aircraft Overnigh ted At Each Station
 - New schedule

Period 2 Static
- Period 1 pax demand
 - Passenger Mix Model
 - Period 1 Leg pax assigned
 - Assumptions on connecting itineraries’ flexibility
 - Period 2 Pax Demand Forecast
 - Period 1 Flexible pax
 - Itineraries to be Preserved in Period 2
 - Remaining Leg capacity
 - # of Aircraft Overnigh ted At Each Station
 - New schedule

Period 2 Dynamic
- Period 2 pax demand
 - Remaining Leg capacity
 - Passenger Mix Model
 - Period 1 Inflexible pax
 - Re-optimize fleet & flight timing
 - # of Aircraft Overnigh ted At Each Station
 - New schedule

Comparison
Experiment Setup

• Airline statistics
 – 832 flights daily
 – 50k path passengers/70k leg passengers daily
 – 302 inbound and 302 outbound flights at hub daily

• Retime window
 – +/- 15 minutes

• Refleet
 – A320 & A319
 – CRJ & CR9

• We experimented with three dates, when daily total demand is:
 – higher than average (Aug 1)
 – at average (Aug 2)
 – lower than average (Aug 3)

• Protect all connecting itineraries sold in Period 1
• Two scenarios about forecast quality
 – Perfect information
 – Historical average demand
Summary of Findings

• Consistent improvement in
 – Profitability
 – Load factor
 – Number of passengers (connecting/nonstop) served
 – Savings in number of aircraft used

• Benefit remains significant when the forecast is reasonably good

• Flight retime effectively increases the number of connecting pax served
Improvement In Profitability

- Consistent improvement in profitability
 - Perfect information
 - 4-8% improvement in profit
 - 70-150k daily (25-55 million annually)
 - Average information
 - 2-5% improvement in profit
 - 40-80k daily (15-30 million annually)
 - not including benefit from aircraft savings, reduced gates and personnel ...
- When demand is higher, benefit is larger
- Accurate forecast is valuable
- Benefit remains significant when forecast quality is reasonably good
Comparison between Retime and Swap

- Retiming has a larger contribution toward profit improvement
- Retiming always improves profitability
- The profit improvement under retiming using historical average as forecast is even greater than that under swap using perfect forecast information
- Swap is more sensitive to forecast quality and can lead to negative return
Increases in Passengers

- Retiming effectively captures connecting passengers
Properties of New Itineraries

- Define two types of new itineraries
- Average connection time for new itineraries
 - 35 minutes for Type I
 - 150 minutes for Type II
- The majority of passengers are on Type I itineraries
Other Statistics

• System load factors went up 0.5-1%

• Aircraft savings

<table>
<thead>
<tr>
<th></th>
<th>perfect + retime + swap</th>
<th>average + retime + swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Aug</td>
<td>1 A320</td>
<td>1 A320</td>
</tr>
<tr>
<td>2-Aug</td>
<td>1 A320 1 CR9</td>
<td>1 A320 1 CR9</td>
</tr>
<tr>
<td>3-Aug</td>
<td>1 A320 2 CR9</td>
<td>1 A320</td>
</tr>
</tbody>
</table>

• Schedule changes
 – About 100 fleet changes
 – 85-90% flights are retimed
 • Average retime of 8 minutes
 • These changes are released well before departure
Another Dimension to Dynamism

- Differentiate passengers according to their flexibility
 - Time-sensitive passenger: a passenger who specifically request an itinerary when booking
 - Flexible passenger: a passenger who is indifferent to a set of itineraries

- Re-route flexible passengers off congested itineraries when high fare inflexible passengers arrive in future

- Related Literature
 - Cook proposed the idea of re-plane
 - Talluri 2001 proposed a flexible booking approach for the case in which passengers are indifferent among a number of routing alternatives (route set) between the OD pair
 - Gallego 2004 introduced flexible product
Preliminary Results

- We assume that passengers are indifferent to alternative itineraries if
 - The alternative itinerary is in the same departure window as the originally assigned itinerary
 - The alternative itinerary has the same level of service: nonstop/connecting
- For all passengers booked in the first period, we randomly select 30% of itineraries that has alternative paths
- Designate half of the passengers on them as flexible ones.
- Results
 - Additional 1-2% increase in profitability
 - 40-50% of total flexible passengers get re-routed
Contribution

• Proposed a framework of dynamic airline scheduling, developed models that integrated a series of dynamic mechanisms.
• Demonstrated its significant improvements in profitability using data from a major airline
• Studied the effectiveness of retiming and swapping
• Quantified the potential benefit to exploit passenger flexibility in a network context