Quantifying Potential Fuel Burn Savings from Optimal Cruise Speed and Altitude

Jonathan Lovegren
R. John Hansman
Tom Reynolds
Massachusetts Institute of Technology
Motivation

- Strong interest in operational mitigations to reduce environmental impact of aviation
- Joint effort between Purdue and MIT to systematically identify, evaluate and prioritize potential near-term operational changes
- Improving vertical and speed efficiency in cruise identified as promising area
- Preliminary effort to identify potential benefits pool

This work was funded by the FAA, under FAA Award Nos.: 06-C-NE-MIT, Amendment No. 017 07-C-NE-PU, Amendment No. 024.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA, NASA, or Transport Canada
Partial List of Selected Mitigations

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Fuel (F)</th>
<th>Climate (C)</th>
<th>Air Quality</th>
<th>Noise</th>
<th>Implementability</th>
<th>Potential Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1: queue management systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1.2: advanced systems (optimized strategies)</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>Medium</td>
<td>Strong</td>
</tr>
<tr>
<td>S-2: Taxi fuel minimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2.4: Improved surface situational awareness, harvesting ASDE-X data</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>Easy</td>
<td>Mod</td>
</tr>
<tr>
<td>S-5: improved coordination tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-5.1: Improved information sharing</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>Medium</td>
<td>Strong</td>
</tr>
<tr>
<td>S-5.2: Flight plan change delivery over datalink</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>Medium</td>
<td>Mod</td>
</tr>
<tr>
<td>DEPARTURE (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-1: Departure procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-1.10: Operating in best noise configuration</td>
<td>0/A</td>
<td>0/A</td>
<td>0/A</td>
<td>P</td>
<td>Easy</td>
<td>Strong</td>
</tr>
<tr>
<td>D-2: Increased flexibility in departure routes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-2.1: RNP/RNAV Enabled SIDs</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>Medium</td>
<td>Mod</td>
</tr>
<tr>
<td>Cruise (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1: horizontal route efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1.1: RHSM, multi-laning</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Hard</td>
<td>Strong</td>
</tr>
<tr>
<td>C-1.2: Minimize lateral route inefficiency</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Medium</td>
<td>Strong</td>
</tr>
<tr>
<td>C-2: Vertical Routing Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-2.2: Increased directional airways</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Easy</td>
<td>Mod</td>
</tr>
<tr>
<td>C-2.3: Cruise climb</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Med</td>
<td>Strong</td>
</tr>
<tr>
<td>C-2.4: Step-climb</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Easy</td>
<td>Mod</td>
</tr>
<tr>
<td>C-2.5: Increase priority for giving requested/optimal altitudes</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Easy</td>
<td>Mod</td>
</tr>
<tr>
<td>C-3: Speed Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-3.1: Individual aircraft fuel-optimized cruise speeds</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Hard</td>
<td>Strong</td>
</tr>
<tr>
<td>C-3.2: Cruise Mach reductions</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Easy</td>
<td>Strong</td>
</tr>
<tr>
<td>C-3.3: More efficient passing options</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>Med</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Each aircraft has an ideal minimum fuel burn altitude and speed
Air traffic control restrictions and airline preferences often result in off-optimal operations
Many mitigations may allow aircraft to fly nearer their optimal altitude and speed, e.g.:
- Increased directional airways
- Cruise climb
- Increased priority for requested altitude/speed
- Cruise Mach reductions
- More efficient passing options
Speed and Altitude Analysis: Data Sources

- **ETMS Flight Data for 1 day**
 - All domestic flights, 9/21/2009
 - Trajectory data in 1 min steps
 - Altitude
 - Latitude/Longitude
 - Groundspeed
 - Filed flight plan information

- **NOAA Atmospheric Data**
 - Temperature
 - Wind components
 - Vertically spaced at 30 different pressure levels
 - Laterally spaced at 32-by-32 km gridpoints

Sample lateral flight profiles

US Surface Temperature Profile

Altitude profiles
Piano-X Aircraft Performance

- Primary focus on Standard Air Range (SAR): distance flown per kg of fuel
- SAR table of speed vs altitude mapped for each aircraft at one weight
- Fundamental correlation applied to include SAR sensitivity to weight

- Utilized step climb profiles in Piano-X to match optimum altitude with weight
 - Validated results by checking that weight changed approximately proportionally with air density

![B737-700 SAR (% Below Max)](image)

![B757-200 Altitude Sensitivity](image)
- SAR contours represent performance sensitivity to speed and altitude, at a single weight
- SAR increases approximately linearly as weight decreases
Flight Path Detailed Breakdown

- **Single Segment**
 - Cruise Climb Angle
 - Distance

- **Altitude**
- **Speed**
- **Mach**

- Actual speed calculation noisy due to limited ETMS position accuracy
- Moving average smoothes data for processing

- Distance (nm)
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700

- Altitude (100s ft)
 - 0
 - 100
 - 200
 - 300
 - 400

- Minutes
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120

- Mach
 - 0
 - 0.2
 - 0.4
 - 0.6
 - 0.8

- Distance
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
Analyzing the Actual Flight Path

Estimate Initial Aircraft Weight
- Uses initial filed altitude as surrogate for weight estimate
- Assumes start of cruise occurs at optimum altitude
- May underestimate weight

Segment Info:
- Location
- Altitude
- Speed
- Climb Angle

Determine Winds

Loop Over Flight

Lookup SAR

Recalculate Aircraft Weight

Calculate Fuel Burn Over Segment

Total Fuel Burn

Performance Calculations
Developing The Ideal Flight Path

- Estimate Initial Aircraft Weight
- Cruise Climb Angle Determination
- Cruise Climb Path
- Minimum Fuel Burn

Performance Calculations:
- Segment Info:
 - Location
 - Altitude
 - Speed
 - Climb Angle
- Determine Winds
- Select Speed That Minimizes Wind-Adjusted SAR
- Determine Ideal Alt
- Recalculate Aircraft Weight
- Calculate Fuel Burn Over Segment

Best Case:

- Uses same weight determined in “actual” fuel burn calculation

Graph:
- Altitude (FL)
 - Actual
 - Ideal

Paths:
- Best Case
- Loop Over Flight
Sample Flight: B757-200 from BOS to SFO

Speed Profile
- Headwind increases ideal airspeed

Altitude Profile
- **Fuel Burn Savings**
 - 2.88% Total
 - 0.57% from altitude-only improvement
 - 2.16% from speed-only improvement

Altitude Profile
- MACH 0.7
- MACH 0.88%

Tailwind Profile

Instantaneous Standard Air Range (SAR, nm/kg)
- Persisting operations below the “ideal” SAR line indicate improvement potential
- Spikes correlate with climbs and descents
The relative improvement from actual is calculated for several profiles:

- Commonly used aircraft spanning a variety of payload and range classes were chosen
- Routes were selected based on range diversity, frequency, and applicability to the aircraft type

<table>
<thead>
<tr>
<th>Case</th>
<th>Speed</th>
<th>Altitude</th>
<th>Aircraft</th>
<th>Route* (and back)</th>
<th>Distance (nm)</th>
<th># Flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Best</td>
<td>Best</td>
<td>B737/A320</td>
<td>LA X—SFO</td>
<td>290</td>
<td>29/34</td>
</tr>
<tr>
<td>2</td>
<td>Best</td>
<td>Actual</td>
<td></td>
<td>JFK—ORD</td>
<td>640</td>
<td>14/30</td>
</tr>
<tr>
<td>3</td>
<td>Best</td>
<td>Step 1000 ft</td>
<td></td>
<td>LA X—ORD</td>
<td>1510</td>
<td>12/11</td>
</tr>
<tr>
<td>4</td>
<td>Best</td>
<td>Step 2000 ft</td>
<td></td>
<td>JFK—LAX</td>
<td>2150</td>
<td>6/26</td>
</tr>
<tr>
<td>5</td>
<td>Actual</td>
<td>Best</td>
<td>B757</td>
<td>ATL—MIA</td>
<td>520</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>LRC</td>
<td>Best</td>
<td></td>
<td>LAX—ORD</td>
<td>1510</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B757</td>
<td>BOS—SFO</td>
<td>2340</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MD82</td>
<td>JFK—ORD</td>
<td>640</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DCA—DFW</td>
<td>1030</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRJ 200</td>
<td>JFK—DCA</td>
<td>190</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAX—SFO</td>
<td>290</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dash 8 Q400</td>
<td>JFK—DCA</td>
<td>190</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JFK—PIT</td>
<td>270</td>
<td>15</td>
</tr>
</tbody>
</table>

*Airport codes are representative of the city; other major airports in each metro area are included
Secondary Effects

- Temperate deviations from ISA can be significant
 - ISA + 10C at FL390 increases density altitude by 1000 ft
 - Cruise climbs are on the order of 1000s feet
- Optimal altitude is a function of density altitude, but aircraft fly pressure altitude
- Maintaining correct density altitude can mean unusual profiles

- Extra fuel is burned in the cruise climb
- This is mostly recovered in descent, but must be included
- A cruise climb, excluding the benefit of descent, can appear worse than level flight

B737-700
Los Angeles to Chicago

Descent must be included to make up for climb energy
Long Range Example: B757-200

- Boston – San Francisco (2,340 nm)
- B757-200
- Headwind Case
- Avg Improvement: 3.73%
 - Altitude Alone: 1.36%
 - Speed Alone: 2.52%
Medium Range Example: B737-700

- Los Angeles – Chicago (1,510 nm)
- B737-700
- Tailwind Case
- Avg Improvement: 1.53%
 - Altitude Alone: 0.69%
 - Speed Alone: 1.29%
Short Range Example: MD82

- New York – Chicago (640 nm)
- MD82
- Avg Improvement: 1.81%
 - Altitude Alone: 0.35%
 - Speed Alone: 1.68%
Short Range Example: B737

- B737, New York – Chicago (640 nm)
 - Eastbound Avg: 1.37%
 - Altitude Alone: 1.10%
 - Speed Alone: 0.83%
 - Westbound Avg: 3.31%
 - Altitude Alone: 1.71%
 - Speed Alone: 2.25%
Altitude Sensitivity Example

- Washington – Dallas (1,030 nm)
- MD82
- Avg Improvement: 2.30%
 - Altitude Alone: 1.40%
 - Speed Alone: 1.35%
- *Results possibly skewed by weight estimate
- Sensitivity to weight estimate for #3, 5, and 9 examined
Altitude Sensitivity Example

- Washington – Dallas (1,030 nm)
- MD82
- Avg Improvement: 2.30%
 - Altitude Alone: 1.40%**
 - Speed Alone: 1.35%
- Altitude improvement potential may be exaggerated due to weight estimate
- Sensitivity to weight estimate for #3, 5, and 9 examined

Examined sensitivity to weight estimate on following slide
Performance Sensitivity to Weight Estimate

- 3 Flights from Washington to Dallas
- MD82s
- Examined sensitivity to initial weight estimate
- Plots show fuel burn reduction from actual to improved
- Varying bar height indicates volatility to weight estimate
- Shorter bars represent cases where given weight estimate brings improved case closer to actual
Very Short Range Flights

- Short flights often lack significant cruise leg
- Alternative analysis required to develop optimum profile

CRJ-200
LAX – SFO (290 nm)

Dash 8 Q400
JFK – PIT (270 nm)

- Short flights often cannot reach ideal altitude
- Operators stay low for speed, simplicity
- Weight estimation unclear

Ideal trajectories using alternate weight estimates
Speed and Altitude Optimization Overview

- Speed and Altitude Optimization Identified as Potential Opportunity

- Focused on Vertical and Speed Cruise Optimization for a limited scope of flights and aircraft type

- 2-5% cruise fuel burn reduction appears possible
 - 1-2% from altitude improvements
 - 2-4% from speed improvements

- Next steps
 - Additional aircraft types and routes
 - Attempt to obtain data set with actual weights
 - Larger time scope (more than 1 day)
 - Include optimal climbs and descents