

Quantifying Potential Fuel Burn Savings from Optimal Cruise Speed and Altitude

Jonathan Lovegren R. John Hansman Tom Reynolds Massachusetts Institute of Technology

Motivation

- Strong interest in operational mitigations to reduce environmental impact of aviation
- Joint effort between Purdue and MIT to systematically identify, evaluate and prioritize potential near-term operational changes
- Improving vertical and speed efficiency in cruise identified as promising area
- Preliminary effort to identify potential benefits pool

This work was funded by the FAA, under FAA Award Nos.: 06-C-NE-MIT, Amendment No. 017 07-C-NE-PU, Amendment No. 024.

> Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA, NASA, or Transport Canada

Partial List of Selected Mitigations

Mitigation	Fuel (F)	Climate (C)	Air Quality	Noise	Implementability	Potential Impact
SURFACE (S)						
S-1: Queue Management Systems		 				
S-1.2: Advanced Systems (optimized strategies)	S	S	Р	S	Medium	Strong
S-2: Taxi Fuel Minimization						
S-2.4: Improved surface situational awareness, harvesting ASDE- X data	S	S	Р	S	Easy	Mod
S-5: Improved coordination tools						
S-5.1: Improved information sharing	S	S	S	S	Medium	Strong
S-5.2: Flight plan change delivery over datalink	S	S	S	S	Medium	Mod
DEPARTURE (D)						
D-1: Departure procedures						
D-1.10: Operating in best noise configuration	0/A	0/A	0/A	Р	Easy	Strong
D-2: Increased flexibility in departure routes						
D-2.1: RNP/RNAV Enabled SIDs	S	S	Р	S	Medium	Mod
CRUISE (C)						
C-1: Horizontal Route Efficiency						
C-1.1: RHSM, multi-laning	Р	Р	0	0	Hard	Strong
C-1.2: Minimize lateral route inefficiency	D	D	0	0	Med	Strong
C-2: Vertical Routing Efficiency						
C-2.2: Increased directional airways	Р	Р	0	0	Easy	Mod
C-2.3: Cruise climb	Р	Р	0	0	Med	Strong
C-2.4: Step-climb	Р	Р	0	0	Easy	Mod
C-2.5: Increase priority for giving requested/optimal altitudes	Р	Р	0	0	Easy	Mod
C-3: Speed Efficiency						
C-3.1: Individual aircraft fuel-optimized cruise speeds	Р	Р	0	0	Hard	Strong
C-3.2: Cruise Mach reductions	Р	Р	0	0	Easy	Strong
C-3.3: More efficient passing options	Р	Р	0	0	Med	Strong

C-2/3: Cruise Vertical/Speed Efficiency

Fuel	Climate	Air Quality	Noise	Implementability	Pot. Impact	
Р	Р	0	0	Medium	Moderate/Strong	
 Each aircraft altitude and s Air traffic cor preferences operations Many mitigat nearer their o Increased Cruise clin Increased Cruise Ma More effic 	t has an idea speed ntrol restrictio often result i tions may all optimal altitu directional air mb priority for red ach reductions ient passing o	I minimum f ons and airli n off-optima ow aircraft t de and spee ways quested altitu ptions	fuel burn ne al o fly ed, e.g.: de/speed		Has a second sec	

Speed and Altitude Analysis: Data Sources

ETMS Flight Data for 1 day

- All domestic flights, 9/21/2009
- Trajectory data in 1 min steps
 - > Altitude
 - > Latitude/Longitude
 - > Groundspeed
- Filed flight plan information

NOAA Atmospheric Data

- Temperature
- Wind components
- Vertically spaced at 30 different pressure levels
- Laterally spaced at 32-by-32 km gridpoints

Piano-X Aircraft Performance

- Primary focus on Standard Air Range (SAR): distance flown per kg of fuel
- SAR table of speed vs altitude mapped for each aircraft at one weight
- Fundamental correlation applied to include SAR sensitivity to weight

- Utilized step climb profiles in Piano-X to match optimum altitude with weight
 - Validated results by checking that weight changed approximately proportionally with air density

B757-200 Altitude Sensitivity

Standard Air Range Comparison

Flight Path Detailed Breakdown

Analyzing the Actual Flight Path

Developing The Ideal Flight Path

Sample Flight: B757-200 from BOS to SFO

Selection of Cases for Analysis

 The relative improvement from actual is calculated for several profiles:

Case	Speed	Altitude		
1	Best	Best		
2	Best	Actual		
3	Best	Step 1000 ft		
4	Best	Step 2000 ft		
5	Actual	Best		
6	LRC	Best		

- Commonly used aircraft spanning a variety of payload and range classes were chosen
- Routes were selected based on range diversity, frequency, and applicability to the aircraft type

Aircraft	Route* (and back)	Distance (nm)	# Flights	
B737/A320	LA X– SFO	290	29/34	
	JFK – ORD	640	14/30	
	LA X – ORD	1510	12/11	
	JFK – LAX	2150	6/26	
B757	ATL – MIA	520	22	
	LAX – ORD	1510	18	
	BOS – SFO	2340	12	
MD82	JFK – ORD	640	33	
	DCA – DFW	1030	25	
CRJ 200	JFK – DCA	190	16	
	LAX – SFO	290	17	
Dash 8 Q400	JFK – DCA	190	8	
	JFK – PIT	270	15	

*Airport codes are representative of the city; other major airports in each metro area are included

Secondary Effects

- Temperate deviations from ISA can be significant
 - ISA + 10C at FL390 increases density altitude by 1000 ft
 - Cruise climbs are on the order of 1000s feet
- Optimal altitude is a function of density altitude, but aircraft fly pressure altitude
- Maintaining correct density altitude can mean unusual profiles

- Extra fuel is burned in the cruise climb
- This is mostly recovered in descent, but must be included
- A cruise climb, excluding the benefit of descent, can appear worse than level flight

B737-700 Los Angeles to Chicago

Long Range Example: B757-200

Medium Range Example: B737-700

Short Range Example: MD82

Short Range Example: B737

Altitude Sensitivity Example

Altitude Sensitivity Example

Performance Sensitivity to Weight Estimate

- 3 Flights from Washington to Dallas
- MD82s
- Examined sensitivity to initial weight estimate
- Plots show fuel burn reduction from actual to improved
- Varying bar height indicates volatility to weight estimate
- Shorter bars represent cases where given weight estimate brings improved case closer to actual

Very Short Range Flights

- Short flights often lack significant cruise leg
- Alternative analysis required to develop optimum profile

- Short flights often cannot reach ideal altitude
- Operators stay low for speed, simplicity
- Weight estimation unclear

Speed and Altitude Optimization Overview

- Speed and Altitude Optimization Identified as Potential Opportunity
- Focused on Vertical and Speed Cruise Optimization for a limited scope of flights and aircraft type
- 2-5% cruise fuel burn reduction appears possible
 - 1-2% from altitude improvements
 - 2-4% from speed improvements
- Next steps
 - Additional aircraft types and routes
 - Attempt to obtain data set with actual weights
 - Larger time scope (more than 1 day)
 - Include optimal climbs and descents