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ABSTRACT. Professional athletes involved in sports that require
the execution of fine motor skills must practice for a consider-
able length of time before competing in an event. Why is such
practice necessary? Is it merely to warm-up the muscles, tendons,
and ligaments, or does the athlete’s sensorimotor network need to
be constantly recalibrated? In this article, the authors present a
point of view in which the human sensorimotor system is charac-
terized by: (a) a high noise level and (b) a high learning rate at
the synaptic level (which, because of the noise, does not equate
to a high learning rate at the behavioral level). They argue that
many heuristics of human skill learning, including the need for
a prolonged period of warm-up in experts, follow from these
assumptions.
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Immediately prior to participating in a competitive event,
professional athletes who play sports that require the exe-

cution of fine motor skills (e.g., tennis, golf, baseball) spend
a considerable amount of time warming up to enhance their
performance. Some of this time is spent stretching or doing
various exercises to properly warm up their muscles, tendons,
and ligaments. But most of this time is spent practicing the
same highly skilled activity to be performed in the compe-
tition that follows. For example, professional tennis players
spend at least an hour on the court hitting balls before a
match. Golf professionals spend a significant amount of time
on the putting green and the driving range prior to teeing
off in competition. The ritual of pregame batting practice has
long been a tradition of major league baseball. And so it goes
with every such sport.

This pre-event practice embodies far more than an effort by
conscientious professionals to gain every conceivable com-
petitive edge. Rather, it is a necessary component of their
ability to execute fine motor acts at the high level of per-
formance for which their motor systems have been indelibly
attuned through a lifetime of training. Without such practice,
it is well known that the initial level of skilled performance
drops considerably. A professional tennis player who has not
taken a single warm-up stroke is likely to lose the first set
played against an inferior opponent. A golf player who has
not taken a single warm-up stroke is almost certain to per-
form poorly on the first couple of holes. A baseball player
who has not taken batting practice is not likely to get a hit in
the first at-bat.

This effect, observed in a range of motor skills across many
levels of performance, is known as the warm-up decrement,

and it has been systematically studied since at least the late
19th century (for review, see Adams, 1961). Various psycho-
logically oriented hypotheses have been proposed as poten-
tial explanations (Schmidt & Lee, 1999), including the idea
of a motor set. None of these explanations has proven partic-
ularly successful, and the matter is still studied today, albeit
sporadically, in the kinesiology and sports science communi-
ties. Interestingly, we know of no instance where this effect
has been studied by motor neuroscientists. Why is that? Is
the observation really so obvious or uninteresting, from the
perspective of motor neuroscience, that it tells us little about
motor learning? Is it not somewhat paradoxical that even
though a fine motor skill, once learned, is never forgotten, a
significant amount of warm-up time is required to bring it to
the surface at a peak level of expression?

Certainly, robotic devices that perform fine motor skills
require negligible warm-up time. Robotic ping-pong players
have been developed (e.g., Andersson, 1988), and these de-
vices, once turned on, require only a brief amount of warm-up
time so that all parts achieve their appropriate operating con-
ditions (temperature, state of lubrication, etc.). When that
short interval has passed, the robot is ready to play ping-
pong at whatever level it is capable of playing ping-pong. It
does not need the extended period of warm-up that an expert
human ping-pong player needs to perform to its fullest po-
tential. Does this difference between humans and robots in
the performance of fine motor skills have any consequences?

There are two ways to explain an expert’s need for exten-
sive pre-event warm-up in the performance of a fine motor
skill. One possibility is that humans, similar to machines,
need to ensure that all of their important actuating parts
have achieved the appropriate operating conditions. To this
end, the muscles, tendons, and ligaments need to be prop-
erly stretched and exercised before an event to ensure peak
performance. These human actuators happen to require a
much longer period of warm-up than robot actuators in order
to reach their peak operating state. If true, this explanation
suggests that no great insight into the motor system can be
gleaned from the warm-up decrement.

There is, however, another possible explanation. Perhaps
the experts need the practice time to properly retune or recali-
brate their motor systems. Thus, even if a skill is practiced on
a daily basis, the motor system can become slightly miscali-
brated from one day to the next so that it needs recalibration
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to enable peak performance. If this explanation is correct,
then it leads to further questions. How is it that the system
became miscalibrated in the first place, however slightly, if a
distinct motor memory trace exists separating this skill from
other skills? How is it that this same motor memory trace can
persist at some level through years of disuse, if miscalibra-
tion can occur from one day to the next? These are questions
that we seek to answer with a new framework for learning
that has been posited for biological motor control (Ajemian,
D’Ausilio, Moorman, & Bizzi, 2010).

Theoretical Framework

In a previous study (Ajemian et al., 2010), we made cer-
tain assumptions about the motor system. The first is that
all motor skills are learned in a distributed fashion in an
overarching sensorimotor network (i.e., it is useful to think
of a single distributed network as learning everything). Fur-
ther, at any point in time, the network will exhibit a sin-
gle configuration, which dictates the extent to which any
skill can be executed and which embodies the totality of all
previous learning. These assumptions in no way preclude
motor memory traces from becoming localized in the net-
work, particularly as the level of expertise increases. But it
does suggest that interference between skills always looms
as a major problem because the motor system, being dis-
tributed, contains no hardwired mechanisms for explicitly
segregating the neural resources devoted to a particular task.
Of course, if different skills involve totally different sets of
end effectors, then obviously a certain amount of segregation
emerges for free simply from anatomical connectivity and
topographic structure. Some models in the literature, such as
the MOSAIC model (Wolpert & Kawato, 1998), begin with
the assumption of explicit segregation of neural resources to
different tasks without explaining how this segregation may
emerge during the course of natural behavior. We feel that
the problem of how such segregation arises is a central issue
in understanding biological sensorimotor control and motor
memory formation.

From our perspective, then, it is possible to envision the
motor system as a huge sensorimotor network that is capa-
ble of mapping sensory inputs into motor outputs and self-
organizing in response to error signals (see Figure 1). Further,
the state of the system at any instant in time is fully charac-
terized by the current network configuration, which can be
represented as a single point in a high-dimensional abstract
weight space. During learning, this point moves around in
weight space in order to reduce the error of the practiced
skills. More specifically, when an error arises, the system
adjusts its internal configuration and therefore moves closer
in weight space to a configuration that embodies the solution
for the desired skill. To have learned multiple skills means
that the network has arrived at a point in weight space that
embodies the overlapping solutions for the different skills.

FIGURE 1. A single distributed sensorimotor network. At
the input layer a pattern, P, is entered and its values are
propagated forward through the network via weighted con-
nections to downstream nodes. One can imagine multiple
intermediate or hidden layers, along with numerous feed-
back connections. The important point is that the activation
values, Z, at the output layer are compared with the target
values, T, to generate an error signal which is then fed back
through the system to adjust the weights.

The goal of this network is to learn a set of sensorimotor
skills, which in this framework can be represented as an
arbitrary nonlinear functional map from inputs to outputs:

〈 �X1, �X2, . . . �Xp〉 �→ 〈 �T 1, �T 2, . . . �T p〉

where the superscript corresponds to the number of the skill
(P distinct skills are being learned in this example). So far,
nothing has been done other than recapitulate the classical
neural network framing for learning theory, for which there
are many different specific instantiations (e.g., Grossberg,
1982; Haykin, 1999; Hertz, Krogh, & Palmer, 1991; Sutton
& Barto, 1998).

This framework immediately presents the Stability–
Plasticity dilemma (Carpenter & Grossberg, 1987). The net-
work must be flexible so that new information can be stored.
However, if the network is too flexible, then new learning
may overwrite old learning, a phenomenon known as catas-
trophic interference in the neural network literature (French,
1992). Basically, the problem is that all skills in a distributed
network share the same neural resources (weights and nodes),
and so each time one skill is practiced, it slightly disrupts—or
interferes with—the traces left by previous skills. Repeated
practice of all skills concurrently would alleviate the inter-
ference problem by converging on a solution that accommo-
dates all constraints (as happens with artificial neural net-
works in many data-mining applications). From a biological
standpoint, however, concurrent practice of an entire motor
repertoire is totally unrealistic. Skills are practiced when they
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are practiced—one cannot practice every single old skill at
the same time that one is learning a new skill—and the mo-
tor system must somehow cope with the interference that
naturally arises.

A novel solution to this problem has been proposed in
Ajemian and colleagues (2010). The basic idea is as fol-
lows. Biological signal processing, unlike electronic sig-
nal processing, is an extremely noisy process. This noise
is detrimental from the standpoint of learning. If the learning
rate is low relative to the noise, then learning becomes dif-
ficult, if not impossible, as network reorganization due to
the noise swamps network reorganization due to the signal.
However, suppose that the learning rate is boosted to unusu-
ally high levels. Although high learning rates usually lead
to network instability, it was shown in Ajemian et al. (2010)
that under certain conditions, high learning rates and high
noise levels can coexist in a functioning network. This type
of network exhibits very distinctive characteristics, the most
important of which is that the network weights are always
changing even when there is no behavioral error. This be-
ing said, the unusually high learning rates at the systems
level do not translate into similarly high learning rates at the
behavioral level because of the noise—that is, much of the
network’s weight adaptation is due to noise, as opposed to
signal. In a certain sense, the high noise level and the high
learning rate neutralize each other, giving rise to a dynamic
system with an effectively lower learning rate.

Although the plasticity in the Stability–Plasticity dilemma
is clearly addressed in this framework, what about stability?
If network synapses are constantly changing, then does the
practice/performance of every single skill disrupt the mem-
ory for every other skill that has overlapping sensorimotor
requirements? The answer is a qualified yes. In general, skills
with overlapping sensorimotor requirements interfere. How-
ever, with excessive practice, it is possible for skills to reach
a state of noninterference, which is mathematically repre-
sented by the concept of network orthogonality (Ajemian et
al., 2010). Orthogonal states cannot, in general, be obtained
in normal networks because the learning rate and noise lev-
els are not high enough. Basically, the high learning rate and
high noise level together give the network the “energy” it
needs to explore its configuration space and find orthogonal
solutions. Once the skills in a skill set have become orthogo-
nalized, then future practice/performance of those skills will
not lead to interference.

The overarching point we wish to make in this article is
that the kinesiology and sports science communities have,
for the last several decades, discovered a variety of heuristics
for how humans best learn skills (for a review, see Schmidt
& Lee, 1999). Some examples are the benefits of interleaved
practice effect, accelerated relearning, negative transfer, and
the variability of practice effect. Different high-level theories
have been proposed for explaining these effects, such as mo-
tor programs and motor schema. We are instead proposing
that many of the distinctive characteristics of human skill
learning result from two simple ideas: the human sensorimo-

tor system (a) is very noisy and (b) exhibits a high learning
rate. In support of this claim, networks that exhibit these
two properties are simulated according to different practice
regimens, and the results are presented subsequently as they
pertain to three of the motor-skill learning heuristics (the
benefits of interleaved practice effect is discussed in detail in
Ajemian et al. [2010]).

Simulation Details

Details of the simulation studies are provided in Ajemian
et al. (2010), although we briefly summarize the main points
here. We use standard multilayer perceptrons (Rumelhart et
al.,1986) for the simulations shown. Our networks differ from
conventional multilayer perceptrons in that the learning rate
and noise levels are much higher. Whereas a typical learning
rate is 0.01, we use a learning rate of 0.3 (30 times higher)
in simulations. Similarly, we add high levels of noise to our
neural networks at all three levels of operation: nodal signal
processing (15%), weight multiplication (15%), and weight
change as a result of trial error (200%). These noise levels are
at least an order of magnitude higher than what we have seen
previously reported. As a control, we also run simulations
using a conventional neural network, which exhibits a low
learning rate (0.01) and no noise. In short, the simulations are
run using two different types of neural networks: the network
we propose, which exhibits a high learning rate and a high
noise level and a conventional network, used as a control.

The basic task we simulate is a center–out reaching task,
since this task serves as the basis for so many studies in neu-
rophysiology and psychophysics. The input to the network
is a target location and the output is a movement command.
There are two input nodes for the input representation, and
these nodes represent the Cartesian coordinates of the target
location. There are eight output nodes cyclically arranged
(the 1st node is a neighbor to the 2nd node and to the 8th
node, etc.) for the motor output representation. Two hidden
layers contain variable numbers of hidden nodes in different
simulation runs. Error update is done using standard gradient
descent, and the error is computed as a mean squared error
between the actual output and the desired target output (Since
the inputs and outputs are treated as numeric vectors without
units, the error has no units.). For a given simulation run, all
parameters are the same for the two different types of the net-
work, so that the only differences are contained in the learn-
ing rate and the noise level. With these two different types of
networks, we simulate, for a reaching task and perturbations
of a reaching task, the following three well-known heuris-
tics of motor skill learning: accelerated relearning, negative
transfer, and the variability of practice effect.

Results

Accelerated Relearning

Once a subject has adapted to a perturbation during, say,
reaching movements, if the subject is exposed to that same
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perturbation a second time, relearning is faster than the ini-
tial learning. Some have referred to this effect as savings
(Krakauer & Shadmehr, 2006). This terminology is some-
what unfortunate because the analogy to Ebbinghaus’ orig-
inal use of the term in the context of syllable learning is,
strictly speaking, incorrect. Whatever term is used to la-
bel this effect, its genesis remains straightforward from a
qualitative standpoint: the motor system, having been ex-
posed to the perturbation previously, somehow retains some
trace of the learning and that residual trace facilitates more
rapid relearning. The question at a more quantitative level is
how to model the formation and retention of a motor memory
trace. This problem has been recently addressed through a
model that posits the existence of two distinct adaptive pro-
cesses that operate on different timescales, one long and one
short (Smith, Ghazizadeh, & Shadmehr, 2006). Certainly, the
additional machinery of multiple adaptive processes operat-
ing on different timescales can be used to explain phenomena
such as accelerated relearning. But why stop at two processes
when more could be included? If a subject relearns a per-
turbation repeatedly and becomes correspondingly faster at
relearning, do more processes need to be included on addi-
tional timescales in order to provide accurate fits? And what
is the neurophysiological basis for these distinct processes?

We instead propose that the dynamics of accelerated re-
learning emerge naturally in distributed learning systems
tasked with learning multiple similar skills in sequence. The
basic idea is that the weights of the system are always mov-
ing to accommodate the most recently executed motor skill.
When a perturbation has been learned, the network has mi-
grated to a point in configuration space that enables a par-
ticular skill to be performed under that perturbation. From
that moment onward, the network configuration will move in
other directions depending on what other motor behaviors are
practiced/performed, including the baseline skill without the
perturbation if that is next in the sequence. However, since the
network has had to arrive on at least one previous occasion
at a solution point for the skill under perturbation, its con-
figuration remains nearer to another such solution point than
it would otherwise be. This is how the previous experience
leaves a “trace,” that is, it biases the system to locations that
are closer to points on the same solution manifold, thereby
allowing a new solution point to be more rapidly reached.
This effect is seen with both types of neural networks that
we simulate, so it is simply a property of distributed learn-
ing systems and requires no further explanation within that
framework.

Figure 2 shows accelerated relearning for a network with
a high learning rate and high noise level. The network is ini-
tially trained on the basic competence, in this case reaching
to targets, such that the sensory input vectors of reach di-
rection are transformed into the corresponding motor output
vectors. Then a perturbation (in this case, a visuomotor ro-
tation) is added for 2,500 trials, and performance under this
perturbation is embodied by the initial learning curve shown
with the dotted line. A washout block of 1,000 trials follows

FIGURE 2. Accelerated relearning. Reaching to targets un-
der a perturbation is simulated. Even though the exact same
overall competency is being learned with the exact same
sequence of targets, note how the learning curve is signifi-
cantly steeper the second time around. Eventually, the two
curves asymptote at the same place.

(data not shown). Then, another learning block under the
same perturbation is performed for 2,500 trials. The learning
curve for this second block of 2,500 trials is aligned with the
first learning block and presented as the solid line. It can be
clearly seen that the second learning curve is steeper than
the first, even though the sensorimotor network itself always
uses the same learning rate. This finding is quite robust, as it
arises across extensive variations in simulation parameters.

We emphasize that accelerated relearning is also seen in
the case of a network with a low learning rate and no noise.
Therefore, we cannot use this effect to distinguish between
the two types of networks. Rather, these simulations demon-
strate that accelerated relearning can be explained by the
framework of a single neural network, with distributed repre-
sentations, being asked to learn two similar skills in sequence.
There is nothing new in this demonstration. Scientists famil-
iar with neural networks have been aware of this effect for
decades, because the idea of rapid relearning of a skill after
perturbation is quite similar to rapid relearning after network
“lesioning.” In the latter case, a neural network is perturbed
(the weights are changed, nodes are eliminated, etc.) after
some function has been learned; in the former case, the func-
tion itself, not the network, is perturbed after it is initially
learned. Rapid relearning after network lesioning has been
studied extensively at least since the 1980s (e.g., Rumelhart
et al., 1986). To our knowledge, the effect of savings has not
been specifically explored in the neural network literature,
and this circumstance derives not from any subtlety required
in replicating the effect (since it is trivial), but from the pecu-
liarity of what a perturbation means in the context of motor
control. In partcular, a perturbation, such as a visuomotor
perturbation or a dynamic perturbation, means that the same
input (target direction) is mapped to different outputs (motor
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commands) depending on whether or not the perturbation
is being applied. Hence, a neural network cannot simulta-
neously learn the reaching competency and its perturbation,
since the problem is mathematically ill-posed.

Negative Transfer

If an individual is an expert tennis player, then he or she
should not play squash because the individual’s tennis game
will suffer due to the similarity of the skills. This effect,
known as negative transfer (Schmidt & Lee, 1999), seems
quite surprising, because clearly an expert tennis player is
better at playing squash for the first time than an individ-
ual who has played neither racket sport. So, the direction
of transfer is asymmetric: In the example, the individual’s
tennis expertise transfers to squash, but the squash practice
interferes with the tennis expertise. Further, a novice tennis
player who starts playing squash for the first time may actu-
ally improve in tennis. Once again, there is an asymmetry in
transfer, as the practice of squash affects an expert versus a
novice tennis player differently.

The model explains these effects through the concept of
orthogonality. Basically, for someone to become an expert
at tennis, that individual must have practiced tennis so much
that the tennis strokes have become “orthogonalized” in the
network—that is, each tennis stroke is orthogonal to each
other tennis stroke and to every other skill in that individ-
ual’s repertoire. Squash strokes are rather similar to ten-
nis strokes, meaning that there is considerable sensorimotor
overlap between the two. Thus, in a network whose weights
are constantly changing, the practice of squash will displace
the network from its finely tuned location in weight space
where all the tennis strokes are orthogonal to each other and
to everything else. In essence, the practice of squash disrupts
the orthogonality of tennis in an expert. However, the expert
tennis player will clearly be superior to the novice tennis
player in terms of playing squash, because the network of
the expert tennis player is already configured closer to a so-
lution point for squash as a result of the sensorimotor overlap
between the sports.

To demonstrate the effect of negative transfer, we first
simulated a basic center-out reaching competence for 50,000
trials so that performance was at an expert level, and the
movements in each reach direction were as orthogonal as
possible to the movements in other reach directions. Then,
we defined a similar competence (by similar, we mean math-
ematically similar in the functional sense, such that slightly
different inputs are mapped to slightly different outputs so
that the two mappings, although not identical, are nearby in
function space). The network was subsequently trained on
this similar competence for a variable number of trials, after
which the network was once again presented with the orig-
inal competence. Figure 3 shows a plot of the decrement in
the basic reaching competence as a function of the amount
of practice of the similar competence. The performance is an
inverted exponential, meaning the decrease in performance

is initially rapid with respect to the amount of practice of the
new competence, but at some point it levels off: no matter
how much the new skill is practiced, performance at the old
skill becomes no worse. This finding is robust, as it arises
across variations in simulation parameters (including varia-
tions in the similar competence).

A conventional neural network with a low learning rate
and no noise cannot replicate this effect. If, after the related
competence is learned, the original competence is once again
performed, the previous expertise returns almost immediately
without an intervening performance decrement. There is no
negative transfer in this case. The explanation lies again with
the concept of orthogonality. In the case of networks with
a high learning rate and high noise level, expertise requires
that the network find a configuration in which the condition
of orthogonality is satisfied. Through practice of a similar
competence, the network can be displaced from this solution
because of the high learning rate. However, in the case of
the network with a low learning rate and no noise, expertise
is not acquired by arriving at a network configuration for an
orthogonal solution; rather, expertise is acquired simply by
moving from the configuration of a good solution to an “ex-
pert” solution. Once this expert solution is attained, practice
of a related competence is not sufficient to stop the system
from immediately returning to an expert solution.

Variability of Practice Effect

According to this effect, the conditions of practice should
be varied, rather than held constant, to maximize learning and
retention during subsequent testing. Unfortunately, the term

FIGURE 3. Negative transfer. First, the reaching compe-
tency is learned to an expert level. Then a similar skill is
learned. Learning this closely related skill does indeed dis-
rupt performance of the original skill. Further, the more the
new skill is practiced, the greater is the disruption, although
the effect is modest in that performance only decreases a few
percent.
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FIGURE 4. A schematic of the variability of practice effect.
S denotes the initial weight configuration of the sensorimotor
system. A and A∗ denote the configuration that needs to be
reached for two related skills. Through points exist in an
abstract, high-dimensional weight space such that each point
is a network configuration. Through practice, the network
takes steps moving in the direction of those skills. Note
in this example that practicing A twice does not bring the
network as close to the solution for that skill as practicing
A∗ once followed by A.

subsequent testing has two distinct usages in the literature.
In one case, it is used to mean that the tested task is one
of the practiced tasks. In a second case, the tested task is
supposed to differ from the practiced tasks. For example,
suppose that one group practices only task A0, whereas a
second group practices task A0 together with the related
tasks A1, A2, A3, and A4. The tested task could be task
A0 or it could be some different task, A5, that lies outside of
the span of the initial tasks. In the latter case, the ability of
the sensorimotor system to generalize across tasks is being
explored. It is well known that neural networks are capable
of better functional generalization when more examples of
the function are provided during training. So the variability
of practice effect holds trivially when the tested task differs
from the practiced tasks. Subsequently, we focus on the case
when the tested task is the same as the practiced task, and
generalization is not an issue.

Consider the simplest case in which a skill is envisioned as
a single instance of an input–output mapping. The variability
of practice effect follows conceptually from the simple as-
sumption that weight change is proportional to error in neural
networks. Look at the simple schematic in Figure 4: S is the
starting point in weight space, A is a point in weight space
that accomplishes task A, and A∗ is a point in weight space
that accomplishes a close variant of task A. Mixing in both
tasks can initially speed up the learning process by increas-
ing the error—and hence the weight change—during each
learning trial, without ever steering the learning process sig-
nificantly off course. The variability of practice effect cannot,
according to this explanation, persist once the network has
arrived at or near A, so the theory would predict that it only
applies during the initial stages of learning.

Now, we simulate the variability of practice effect, with
a high learning rate and high noise network, as it pertains
more broadly to a competency or set of skills. For example,

suppose an individual wants to learn how to roller-skate on
a specific smooth surface such as wood. According to this
effect, if the individual is given a fixed amount of practice,
it is best to devote some practice time to roller-skating on
additional surfaces that vary along the rough–smooth contin-
uum, even when all testing occurs on wood. To demonstrate
this effect, we again simulated the learning of a reaching
competency, which is a mapping of input vectors in sen-
sory space to output vectors in motor space, across a circu-
lar workspace. However, there were two distinctly different
learning schedules. In one condition (specific), the network
was always presented with examples of the desired mapping.
In the second condition (the variability of practice condition),
the network was presented 60% of the time with examples
from the desired mapping; the other 40% of the time the
network was presented randomly with one of four similar
mappings representing reaching under various mild pertur-
bations. These mappings, when compared with the desired
mapping, took slightly different input vectors to slightly dif-
ferent output vectors (so the mappings are nearby in function
space). The simulation results are shown in Figure 5. To as-
sess the progress that was being made toward learning the
desired competency, we defined an overall performance er-
ror. This quantity was computed offline at each time step
by taking the present network configuration and running all
the desired input patterns through the network in a noiseless
fashion to see what the average error would be across all
instances of the competency.

According to the overall performance error metric, the
network initially learns the desired reaching competency
slightly quicker with the variable practice schedule. When
one stops to think about it, this result is counterintuitive.
The variable practice schedule, which involves practicing
input–output mappings that are slightly different from the de-
sired input–output mapping, initially enables quicker learn-
ing of the desired mapping than a practice schedule in which
only the desired mapping is practiced. How can this be? How
can learning something other than what you are trying to learn
allow you to learn faster? The answer is found in Figure 5B,
which plots the actual error on a trial-by-trial basis. The on-
line trial-by-trial error is greater during the variable practice
schedule since the network is being asked to learn more, that
is, multiple similar mappings rather than a fixed mapping.
This greater error can lead to faster learning, as long as the
mappings are sufficiently similar so that the network con-
figuration is not being asked to move in radically different
directions within weight space (see Figure 4). Here we see a
tradeoff between learning speed and error size: faster learn-
ing can ultimately be achieved if higher short-term errors are
tolerated.

It must be noted in Figure 5 that the variability of prac-
tice effect only holds up during the initial phase of learning.
At some point (after about 180 trials) the specific practice
schedule overtakes the variable practice schedule in perfor-
mance level. According to the theory, such a crossover point
must exist when the network moves to a point at or near the
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FIGURE 5. Variability of practice effect. (A) The overall performance error is plotted as a function of trial number. (B) The
trial-by-trial error is plotted as a function of trial number. The overall performance error in (A) only considers the desired reaching
competency.

desired competency. Thus, a prediction of the theory is that
the variability of practice effect should diminish with time
as skill performance improves. Finally, unlike the previous
two effects, the variability of practice effect is not robust in
our simulations, as it disappears for many parameter settings.
The literature seems similarly ambiguous on the topic as the
effect only seems to hold for some skills and not others.

This effect does not occur in conventional neural networks
where the learning rate is low and there is no noise. The
reason is straightforward: when the learning rate is low, order
of practice effects (e.g., the benefits of interleaved practice)
cannot occur at the level of a single or a few trials (Ajemian et
al., 2010). They can only occur when the learning rate is high
such that movements in configuration space are large relative
to the geometry of the solutions themselves. (A mathematical
analogue is the noncommutativity of rigid-body rotations
in three-dimensional space: the order of rotations strongly
influences the final configuration, except when the rotations
are differential, in which case the order does not matter.)

Decrement Warm-Up

We began with the observation that professional athletes
engaged in sports involving fine motor skills must extensively
practice prior to performance in order to obtain the best pos-
sible performance results. The framework discussed offers
a possible explanation. When an expert finishes practice the
night before an event, the expert’s sensorimotor system is
finely calibrated at a point in weight space that enables a
high level of performance. Suppose that the event is not
scheduled until the next afternoon. The athlete has several
waking hours (ignoring the effects of sleep) during which
time other activities are performed, even if only rudimentary
activities such as walking or playing a video game. Under the

assumptions of a high noise level and a high learning rate,
the weights of the athlete’s sensorimotor network continue
to change, thereby causing the network to become slightly
miscalibrated (the state of orthogonality is perturbed). To
restore the network to its previous level of expertise, prac-
tice is required. Note that for anyone other than a highly
skilled athlete, the difference in performance with and with-
out warm-up practice may not be as noticeable or not as
much warm-up would be required to eliminate the perfor-
mance differential. But at the highest skill levels where even
slight performance decrements are noticeable and where the
skills must be delicately refined until a state of orthogonality
is achieved, even a few hours of normal network weight
change may be sufficient to cause notable diminution of
performance.

Discussion

We advocate the point of view that many of the distinguish-
ing characteristics of human sensorimotor learning arise from
two assumptions: our sensorimotor networks are very noisy,
and they exhibit an unusually high learning rate. These two
assumptions lead to unique network dynamics where the
weights are constantly changing, even when there is little or
no behavioral error. How can this framework be falsified or
supported by further experiments? Although Ajemian et al.
(2010) contains several such tests, here we propose a new
one. If our theory is correct, then the reason why an expert
athlete must warm up prior to performing has nothing (or at
least very little) to do with simply warming up the muscles,
tendons, and ligaments. Rather, the athlete is practicing to
recalibrate a sensorimotor network that has become slightly
miscalibrated. Therefore, no amount of generic warm-up of
the relevant muscles, tendons, and ligaments should be able
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to substitute for actual practice of the motor skills them-
selves, which is necessary to restore these skills to a state
of finely tuned orthogonality. In fact, the theory would even
predict that a group experiencing an hour or more of warm-
up of the relevant muscles, tendons, and ligaments should
perform no better than a group experiencing five minutes of
such warm-up.
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