
This article outlines a methodology for investigating the coordinate
systems by which movement variables are encoded in the firing
rates of individual motor cortical neurons. Recent neurophysiological
experiments have probed the issue of underlying coordinates by
examining how cellular preferred directions (as determined by the
center-out task) change with posture. Several key experimental
findings have resulted that constrain hypotheses about how motor
cortical cells encode movement information. But while the sig-
nificance of shifts in preferred direction is well known and widely
accepted, posture-dependent changes in the depth of modulation of
a cell’s tuning curve — that is, gain changes — have not been
similarly identified as a means of coordinate inference. This article
develops a vector field framework in which the preferred direction
and the gain of a cell’s tuning curve are viewed as dual components
of a unitary response vector. The formalism can be used to compute
how each aspect of cell response covaries with posture as a func-
tion of the coordinate system in which a given cell is hypothesized to
encode its movement information. Such an integrated approach
leads to a model of motor cortical cell activity that codifies the
following four observations: (i) cell activity correlates with hand
movement direction; (ii) cell activity correlates with hand movement
speed; (iii) preferred directions vary with posture; and (iv) the
modulation depth of tuning curves varies with posture. Finally, the
model suggests general methods for testing coordinate hypotheses
at the single-cell level and simulates an example protocol for three
possible coordinate systems: Cartesian spatial, shoulder-centered,
and joint angle.

Introduction
The activity of neurons in the primary motor cortex (M1) of

primates has been shown to correlate with multiple kinematic

and kinetic parameters of multi-joint movement: direction

(Georgopoulos et al., 1982; Schwartz et al., 1988; Ashe and

Georgopoulos, 1994), movement speed (Schwartz, 1992; Ashe

and Georgopoulos, 1994; Moran and Schwartz, 1999a), hand

position (Georgopoulos et al., 1984; Kettner et al., 1988; Ashe

and Georgopoulos, 1994), movement amplitude (Fu et al., 1993,

1995), arm posture (Scott and Kalaska, 1997), force (Kalaska and

Hyde, 1985; Kalaska et al., 1989; Georgopoulos et al., 1992;

Taira et al., 1996; Sergio and Kalaska, 1997, 1998) and target

direction (Alexander and Crutcher, 1990b; Shen and Alexander,

1997), among others. Further complicating the role of M1 in

motor behavior are established correlations with aspects of

movement planning such as movement preparation (Alexander

and Crutcher, 1990a; Kettner and Marcario, 1996), target

sequence information (Carpenter et al., 1999), and rapid motor

adaptation (Wise et al., 1998). Cell activity in M1, therefore,

shows relations to a multitude of movement variables that span

the sensorimotor spectrum.

Given that cells exhibit differing response sensitivities to

these variables, it makes sense to delineate, as much as possible,

distinct components of cell response for the purpose of

identifying which variables are prominently represented by

which cells. With this information, one can begin to under-

stand how movement commands are assembled in the cortex.

However, the knowledge that a specific movement variable is

encoded in a given cell’s response does not fully specify the

nature of the underlying representation, because a movement

variable can be encoded in any of several possible coordinate

systems. For example, movement direction can be represented

as a spatial direction (Cartesian spatial coordinates), a combin-

ation of joint angle rotations (joint angle coordinates), or a

collection of muscle length changes (muscle-space coordinates).

The encoding of force using these same three coordinate systems

results in the alternative descriptions of Cartesian end-point

forces, joint torques, and muscle forces. Static variables, too,

such as hand position in space, can be encoded in different

coordinate systems (Lacquaniti et al., 1995). Against this

backdrop of manifold coordinate possibilities, it is critical to dis-

ambiguate between alternative coordinate representations of the

same movement variable, because such distinctions constrain

hypotheses about a cell’s role in the overall motor circuit.

The problem of determining an underlying coordinate system

for the encoding of specific movement information can be

referred to as the coordinate inference problem. This paper

develops a combination of analytic techniques and experimental

strategies for solving this problem on the basis of cell response

properties as observed across different motor contexts. The

analysis is conducted at the single-cell level, since brain regions

do not appear to be homogeneous with respect to coordinate

representation (Crutcher and Alexander, 1990). The methods

in this paper, though more generally applicable, focus on the

encoding of two movement variables, movement direction and

movement speed, which together constitute a unitary physical

entity: the velocity vector. These two variables of motion are

robustly represented in the activity of individual M1 cells

(Georgopoulos et al., 1982; Schwartz et al., 1988; Schwartz,

1992; Ashe and Georgopoulos, 1994; Moran and Schwartz,

1999a).

With regard to the encoding of movement direction, a single

instance of a cell’s preferred direction, determined within a

small region of space, cannot support a coordinate inference

since all coordinate descriptions are equally valid locally (Mussa-

Ivaldi, 1988). Therefore, multiple preferred directions, drawn

from distinct workspace positions and/or arm postures, have

been utilized in attempts to distinguish between coordinate

systems (Caminiti et al., 1990; Scott and Kalaska, 1997; Kakei

et al., 1999). But while a cell’s preferred direction has been

identified as a context-dependent response feature important for

adducing coordinates, the depth of modulation of a cell’s tuning

curve — that is, a cell’s gain — has gone essentially unrecognized

as bearing on the coordinate inference problem. Few interpret-

ations have been offered as to what a motor cortical cell’s gain

A Model of Movement Coordinates in the
Motor Cortex: Posture-dependent Changes
in the Gain and Direction of Single Cell
Tuning Curves

Robert Ajemian, Daniel Bullock and Stephen Grossberg

Department of Cognitive and Neural Systems, and Center for

Adaptive Systems, Boston University, 677 Beacon Street,

Boston, MA 02215, USA

Cerebral Cortex Dec 2001;11:1124–1135; 1047–3211/01/$4.00© Oxford University Press 2001. All rights reserved.



represents or why cellular gains are observed to change with

posture (Caminiti et al., 1990; Scott and Kalaska, 1997; Kakei et

al., 1999). Our vector field framework, in which a cell’s gain is

interpreted as a response property coupled to the cell’s

preferred direction, suggests how gain changes   signify

underlying  coordinate representations  and  thus  can  play a

critical role in solving the coordinate inference problem. This

interpretation of cellular gain leads to a model of motor cortical

activity that offers a parsimonious explanation of the

dependency of cell firing rates on both movement direction and

movement speed.

Methods

Model and Approach

An M1 cell’s directional tuning curve, as derived from the standard

center-out task (Georgopoulos et   al., 1982), relates the average

movement-related cell activity to the hand movement direction:

υ(ω) = b0 + b1 cos(ω – ωpd) (1)

where υ is the cell’s firing rate, ω is the hand movement direction, b0 is

the average movement-related response, b1 is the amplitude or depth of

modulation of the tuning curve, and ωpd is the preferred direction (pd),

that is, the movement direction in space that elicits the maximal cellular

response. Georgopoulos et al. (1982) showed that the cosine tuning

model resulted in a good fit for the activity modulation of many M1

neurons. The distribution of preferred directions (pds) across a popu-

lation of cells has been found to span the continuum of possible

movement directions (Georgopoulos et al., 1982; Schwartz et al., 1988).

These two results could be considered to suggest that movement

direction is encoded in a Cartesian spatial coordinate system. However,

Mussa-Ivaldi (1988) showed that cosine tuning would arise even if motor

cortical cell activity is linearly related to the time rate of change of

multiple muscle lengths. Thus, spatial tuning does not necessarily imply a

spatial coordinate representation. Findings that pds vary with position

(Caminiti et al., 1990) and posture (Caminiti et al., 1990; Scott and

Kalaska, 1997) further complicate the notion of a spatial representation.

So far, no consensus has emerged on the issue of coordinates, and a

variety of reference frames covering the sensorimotor spectrum have

been proposed to interpret M1 cell activity (Bullock and Grossberg, 1988;

Mussa-Ivaldi, 1988; Caminiti et al., 1990; Schwartz, 1992; Sanger, 1994;

Tanaka, 1994; Scott and Kalaska, 1997; Kakei et al., 1999; Zhang and

Sejnowski, 1999; Ajemian et al., 2000; Todorov, 2000).

Analysis of the coordinate inference problem motivates an explicit

distinction  between  a  representation of  preferred direction  as  it is

measured in the coordinate system utilized by the experimentalist, the

spatial pd, and direction as it exists in the coordinate system in which

a cell operates by virtue of its placement in the nervous system, the

internal pd. Whereas a spatial pd determination arises naturally from the

fact that experiments are performed and calibrated in extrapersonal

space, determining a corresponding internal pd requires additional steps.

These steps involve the transformations that convert back and forth

between alternative coordinate descriptions of the same underlying

directional entity. Using these transformations as well as the distinction

between an internal pd and a spatial pd, Ajemian et al. (Ajemian et al.,

2000) developed a vector field framework for investigating the issue

of coordinate systems. The original formulation addressed posture-

dependent shifts in a cell’s spatial pd. We will brief ly summarize those

results in the next section before extending the method to address

posture-dependent changes in the depth of modulation of a cell’s tuning

curve and the dependence of cell firing rates on hand speed.

The Model Arm

Analyses in this paper assume a standard two-joint or two-degree-of-

freedom (2-DOF) arm moving on a planar workspace situated within the

horizontal plane passing through the shoulder (Fig. 1A) — see the

Appendix for a mathematical description of the arm. A critical feature of

the 2-DOF planar arm that simplifies our analysis is that hand positions

map one-to-one to arm postures. Thus, the terms ‘hand position’ and ‘arm

Figure 1. Generating vector fields of spatial pds. (A) The 2-DOF planar arm at the
reference posture of (θ, ϕ) = (30°, 120°) corresponding to an end-effector location of
(x, y) = (0, 15). The upper and lower arm lengths are taken to be 15 cm. The spatial pd
for the sample cell at the reference posture is 150°. (B) Vector field of spatial pds for the
sample cell under the assumption of Cartesian spatial coordinates. The spatial pd at the
reference posture is contained in the thick gray box for this and the remaining vector
field plots. All the other arrows are predictions of the spatial pds at other locations
based on the coordinate hypothesis. The arrows surrounded by the thin boxes are
sample spatial pd vector predictions that could be highlighted by the direct sampling
method (see Results). For this coordinate system, spatial pds remain constant across
the workspace. (C) Vector field of spatial pds under the assumption of shoulder-
centered coordinates. Spatial pds change across the workspace in accord with the
shoulder rotation. (D) Vector field of spatial pds under the assumption of joint angle
coordinates. Spatial pds change across the workspace in a pattern that distinctly differs
from either of the other two coordinate systems. Only here do the magnitudes of the
vectors change as well as the direction.
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posture’ can be freely interchanged since the former uniquely defines the

latter, a situation that does not hold for motor redundant arms.

Vector Fields of Spatial pds

Given a spatial pd at only one posture, all coordinate descriptions are

equally valid and the coordinate inference problem is ill-posed. For

example, suppose at some reference posture that a cell’s spatial pd is

measured as 30°. That movement direction in space can, through an

appropriate transformation, be converted into a movement direction in

any well-defined internal space: for joint angle coordinates, the 30° in

space can be converted into a ratio of joint angle rotations; for muscle-

length coordinates, the 30° in space can be converted into a ratio of

muscle-length changes; and so on for any explicitly defined coordinate

system.

However, because the transformation between movement directions

in the internal space and movement directions in external space is in

general posture dependent, additional constraints can be imposed by

spatial pd estimates obtained at multiple postures. Provided that a cell’s

internal pd is fixed (if, for example, a cell encodes a fixed ratio of joint

angle velocities), then knowing its spatial pd at one posture allows unique

predictions of the cell’s corresponding spatial pd at all other postures in

the workspace. This strategy is outlined in a four-step vector field method

for distinguishing between coordinate systems:

1. Measure a cell’s spatial pd at a reference posture.

2. Choose an internal coordinate system and map the cell’s spatial pd

from step 1 to an internal pd using the transformation appropriate

for the chosen coordinate system.

3. Select a new posture and convert the internal pd from step 2 into a

corresponding spatial pd using the reverse transformation between

directions in the two spaces. Because of its posture dependence, this

transformation will, in general, no longer be simply the inverse of the

transformation in step 2. Therefore, the new spatial pd will, in

general, differ from the spatial pd at the reference posture, even

though the internal pd is constant.

4. Using the internal pd from step 2, repeat step 3 for postures that

sample the entire workspace of the 2-DOF planar arm. Determining

a direction and a magnitude over a field of points yields a vector field

of spatial pds. For a given cell, each coordinate-dependent vector

field constitutes a set of predictions that can be compared to actual

measurements to choose a coordinate system of best fit.

The type of coordinate analysis contained in the steps above belongs to

the branch of mathematics known as differential geometry.

Results
In Figure 1B–D, we plot vector fields of spatial pds for three

internal coordinate systems: Cartesian spatial, shoulder-centered,

and joint angle. In each case, a cell’s preferred direction at a

single reference posture has been extrapolated into distinct

vector fields of spatial pds as a function of coordinate hypoth-

esis. The plots shown are based on a simulated sample cell that

has a spatial pd of 150° at the reference posture (see Fig. 1A). For

a mathematical description of these coordinate systems in the

context of the 2-DOF arm as well as empirical motivations for

their usage, see the Appendix or Ajemian et al. (Ajemian et al.,

2000).

Gain Changes

Vectors possess a magnitude in addition to a direction. Since

coordinate transformations in general show posture-dependent

scaling effects as well as directional effects, the length of spatial

pd vectors, as computed in the four-step procedure above, may

vary across the workspace (see Fig. 1D). What, then, is the

physiological interpretation of spatial pd vector magnitude?

Apart from a cell’s preferred direction, the depth of modulation

of a cell’s tuning curve, denoted by b1 in equation (1), is another

important response feature. Hereafter, this b1 term will be

referred to as the cellular gain because it scales the directional

component of cell activity. Just as the direction of a spatial pd

vector represents the direction to which a cell is tuned, the

magnitude of a spatial pd vector represents the degree to which

the cell is tuned, that is, the gain of the response. Specifically, a

cell’s gain at any given posture is directly proportional to the

magnitude of the spatial pd vector at that posture. With this gain

interpretation incorporated into our vector field formalism, a

spatial pd vector embodies two aspects of cell response: the

vector direction corresponds to the spatial pd and the vector

magnitude corresponds to the gain. The mathematical model

thus allows a cell’s spatial pd and gain measured at a reference

posture to be converted into coordinate-dependent predictions

of the spatial pd and gain at all postures.

Intuitively, the link between spatial pd vector magnitude and

cellular gains can be explained as follows. Suppose that a cell is

tuned to a joint synergy in its internal space. At some postures, a

fixed joint displacement in the direction of that synergy will

transform into a relatively large spatial displacement of the hand;

at other postures, the same joint displacement will lead to a

relatively small hand displacement. In those postures where the

cell’s preferred joint synergy is particularly effective at induc-

ing hand motion, the cell will be prominently recruited as a

significant contributor to movement and the cell’s directional

activity will be heavily modulated. Conversely, a cell will exhibit

little directional modulation in postures where its preferred joint

synergy is ineffectual at generating hand motion. Thus, accord-

ing to our hypothesis, variable gains ref lect the fact that cell

modulation scales with the biomechanical advantage of the

‘action’ controlled by the cell. This idea is compatible with

findings that the pattern of EMG activity in many muscles,

including the depth of EMG modulation across movement

directions, changes when the center-out task is performed at

different positions/postures in the workspace (Caminiti et al.,

1990; Scott and Kalaska, 1997; Kakei et al., 1999). Presumably,

the differentiated pattern of muscle recruitment stems, at least

in part, from posture-dependent alterations in a muscle’s bio-

mechanical advantage. If M1 cells are viewed as controlling

relatively fixed motor synergies, then their activity should be

modulated by posture according to the same principle.

In Scott and Kalaska (Scott and Kalaska 1997), where the

center-out task was performed in a natural and an abducted

posture, a majority (53%) of cells showed statistically significant

gain changes between postures. Kakei et al. looked  at  the

preferred directions of wrist-related M1 cells in three postures

and found that a majority (63.3%) of cells demonstrated gain

changes of greater than 30% across postures (Kakei et al., 1999).

Vector field analysis suggests that the observed widespread

variability in cellular gain may result from encoding in a

coordinate system, such that the transformation into spatial

coordinates exhibits similarly pronounced posture-dependent

scaling effects.  This hypothesis can be tested by modeling

pertinent joint-based or muscle-based coordinate systems.

The data also show that directional tuning itself occurs in a

posture-dependent fashion: Caminiti et al. and Scott and Kalaska

reported cells that were tuned in one posture/position but not

in another (Caminiti et al., 1990; Scott and Kalaska, 1997). In

Caminiti et al., where the center-out task was performed from

three different workspace locations, 25% of the cells were tuned

in either one or two locations but not all three (Caminiti et al.,

1990). This loss of discernible directional tuning need not result

from an unspecified switching process in which cells are

actively tuned only in a certain postural region; instead, the

phenomenon of posture-dependent tuning may be accounted for
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more naturally as posture-dependent gain attenuation below the

threshold required to make  a  determination  of statistically

significant directional modulation. Therefore, we suggest that

those cells that lose their directional modulation in one or more

postures are displaying gain changes of an extreme type.

For the three internal coordinate systems used in this study,

investigation of posture-dependent gain changes yields several

contrasting conclusions. Neither Cartesian spatial cells nor

shoulder-centered cells will exhibit gain changes since neither

the identity transformation (associated with Cartesian spatial

coordinates) nor the rotational transformation (associated with

shoulder-centered coordinates) engenders posture-dependent

scaling effects. However, cells coding joint angle coordinates

will exhibit significant gain changes across the workspace,

because the Jacobian transformation introduces significant

posture-dependent scaling effects, which can be observed for

our sample cell as vector length variations in Figure 1D. The

Appendix mathematically analyzes the scaling effects of the

Jacobian to derive an explicit expression for a cell’s gain at an

arbitrary point in the workspace as a function of that cell’s gain

at a reference posture. This analysis leads to four experimental

predictions.

1. For all cells, the gain is a monotonically varying function of

the shoulder-to-hand distance, r, either increasing or decreas-

ing, with no additional dependence on the Cartesian position

coordinates x or y considered separately.

2. The variation in gain systematically depends upon the joint

synergy to which the cell is tuned. For example, when the

shoulder component of a cell’s joint synergy is large relative to

the elbow component, the gain changes will be large; con-

versely, when the elbow component is large relative to the

shoulder component, the gain changes will be small. Table 1

shows the link between a cell’s joint synergy and predicted

gain changes for a few sample cells.

3. Since a cell’s spatial pd at a reference posture maps to a joint

synergy  and  since a joint  synergy  maps to specific  gain

changes, a cell’s spatial pd at a reference posture can be

mapped to the gain changes that cell is predicted to undergo.

Such a mapping, depicted in Figure 2, constitutes a novel

experimental prediction of the coupling between spatial pd

values and gain changes.

4. The population statistics of cellular gain changes will vary

across the workspace in a characteristic way. Figure 3 plots

the distribution of gain ratios across a population of joint

synergy cells at four postures assuming a uniform distribution

of internal pds in joint angle space.

Neither Table 1 nor Figure 2 can presently be compared with

published data, since nowhere in the literature has the linkage

previously been made between a cell’s absolute spatial pd at one

posture and the gain change that was exhibited between two (or

more) postures. Figure 3 cannot yet be compared with published

data either since experimentalists have focused on the popula-

tion statistics of directional shifts as opposed to gain changes.

Gain effects can be represented in a cell’s tuning equation by

the following modification of the standard cosine model:

(2)

where the cell’s gain, b1, has been replaced by a constant com-

ponent, ξ, and a variable component, , which is the

magnitude of the posture-dependent spatial pd vector denoted as

. Hereafter, the posture-dependence, (θ,ϕ), will be

implicitly assumed wherever ωpd or appear but will not be

explicitly included in the notation.

Previous studies (Caminiti et al., 1990; Scott and Kalaska,

1997; Kakei et al., 1999) investigated changes in a cell’s

preferred direction as a means to infer an underlying coordinate

system. While variations in gain were noted, they were not

identified as critically factoring into the coordinate inference

problem. However, for the case of joint angle coordinates

applied to the 2-DOF arm, predicted variations in a cell’s gain are

υ ω θ ϕ ξ ω θ ϕ ω ω θ ϕ
r r

pd pd pd, , cos ,b gd i b g b gd i= + −b0

r
ω θ ϕpd ,b g

r
ω θ ϕpd ,b g

r
ωpd

Table 1
Predicted gain changes assuming joint angle coordinates for four cells

Reference pd θ ϕ Gain: r = 10 Gain: r = 15 Gain: r = 25

180° 1.00 0.00 B1 1.50B1 2.50B1
60° 0.00 –1.00 B1 B1 B1
30° –0.71 –0.71 B1 1.26B1 1.86B1
275° –0.50 0.86 B1 0.92B1 0.60B1

Each row corresponds to an individual cell. The first column contains a cell’s spatial pd at the
reference posture [(θ, ϕ) = (30°, 120°) corresponding to (x, y) = (0, 15)], from which the cell’s
normalized joint synergy was computed. The components of that synergy (shoulder and elbow) are
listed in the next two columns, while the next three columns indicate the predicted gains at three
different values of r, the distance of the hand from the shoulder. The gain at r = 10 is arbitrarily
assigned a value of unity and the other two gains are written as multiples of that gain. By reading
across the table, one sees that the first cell, whose spatial pd of 180° corresponds to shoulder
flexion (with no involvement of the elbow joint), is predicted to possess a gain at r = 25 which is
2.5 times greater than the gain at r = 10. Such a discrepancy in gains is clearly discernible by
experiment. On the other hand, a cell with a spatial pd of 60°, which corresponds to a joint
synergy of elbow extension (with no involvement of the shoulder joint), is predicted to possess the
same gain at all points in the workspace. Subsequent rows of the table list additional cells with
mixed joint synergies and the corresponding predictions of gain changes as a function of r. For
some cells, the gain increases with increasing values of r, while for other cells the gain decreases;
thus, some cells are predicted to be strongly tuned in the outer portions of the workspace while
other cells are predicted to be strongly tuned at locations proximal to the shoulder.

. .

Figure 2. Correlation between spatial pd values and gain changes in a population of
joint synergy cells. For a given cell, the gain is evaluated at two different radial
distances from the shoulder as the origin. Let G10 denote the gain at a distance of 10 cm
and G20 denote the gain at a distance of 20 cm. For this case, the percent gain change
is defined as ((G20 – G10)/min(G10,G20)) × 100, so that positive gain changes reflect
increasing gains as r increases. Percent gain changes are plotted against the spatial pd
values at the reference posture in order to illustrate which cells experience which types
of gain changes. Note that cells with spatial pds clustered along the horizontal direction
tend to exhibit large positive gain changes while cells with spatial pds clustered along
the vertical direction tend to exhibit more modest negative gain changes. This plot was
constructed for workspace locations at a radial distance of 10 and 20 cm, respectively.
If the radial separation were increased, the percent gain changes would be amplified.
Note that the percent gain change would be uniformly zero for Cartesian or
shoulder-centered coordinates.
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easier to detect experimentally than predicted shifts in a cell’s

preferred direction. Specifically, for moderate postural changes

(by ‘moderate’ we mean hand position changes of 10–15 cm), a

typical shift in preferred direction is 35–40°. If error bars on

preferred direction determinations are on the order of 20°,

patterns of directional shifts at the single-cell level may be hard

to empirically discern. On the other hand, if one considers gain

changes along a radial projection outward from the shoulder, a

typical gain change for a moderate postural change stands at a

much more distinguishable 50%. Thus, while both directional

shifts and gain changes would signify that a transformation into

motor coordinates has taken place, gain changes may serve as the

more robust indicator for many coordinate systems.

Neurophysiologists have tended to focus on a cell’s preferred

direction as the chief characteristic of cell response. We have

suggested an expanded perspective to response classification

whereby a cell’s preferred direction and its gain are viewed as

dual components of a unitary response vector. By operating

on these vector entities, the vector field formalism provides a

compact, integrated characterization of how two important cell

response properties are predicted to vary across the workspace

as a function of posture for any coordinate hypothesis.

Comparison with an Alternative Interpretation of Gain

Variability

Although we provide one interpretation for the gain changes

observed in motor cortex, other interpretations may apply. For

example, Andersen et al. reported that the position of the eye in

its orbit monotonically modulates the gain of parietal neurons

tuned to a preferred retinotopic location (Andersen et al. 1985).

One interpretation of this phenomenon, supported by compu-

tational studies (Grossberg and Kuperstein, 1986; Zipser and

Andersen, 1988),  is that  information about the retinotopic

position of the target is combined with eye position information

to generate a distributed representation of target location in

head-centered coordinates. Analogously, one might imagine

that a motor cortical cell, tuned to a directional signal in one

coordinate frame, exhibits a gain that is modulated by arm

posture to generate a distributed representation of movement

direction in a different coordinate frame. While this coordinate-

transformational perspective and our vector field framework

share features in describing gain changes (see Fig. 4), the two

formulations differ conceptually in addressing different func-

tional requirements of the motor control system. The body

of work by Anderson and colleagues implicates gain fields as

a mechanism for effecting coordinate transformations. We

propose for M1 that the transformation into some form of

motor coordinates has been completed and that gain variability

arises, as a purely geometric phenomenon, when cells with

fixed ‘motor actions’ are differentially recruited across postures

because of the anisotropy of skeletomuscular mechanics. Both

types of gain changes could be exhibited by different cells

within the same region of cortex, since separate sub-populations

of neurons may mediate these separate functions (Kakei et al.,

1999). However, gain changes that arise from the mechanism we

propose will be patterned, at the single-cell level, in accord with

a distinct biomechanical signature that is illustrated in Figures 2

and 3 for the specific case of joint angle coordinates.

Speed Effects

Several experimental studies have shown cell activity to cor-

relate with hand speed during multi-joint movements (Schwartz,

1992; Ashe and Georgopoulos, 1994; Moran and Schwartz,

1999a), and several modeling studies have indicated reasons to

expect that this speed dependence interacts multiplicatively

with the directional component of cell firing rates (Bullock

and Grossberg, 1988; Mussa-Ivaldi, 1988; Bullock et al., 1998;

Zhang and Sejnowski, 1999). To further refine our model of

Figure 3. Distribution of gain ratios across four postures in a population of 360 joint synergy cells. A uniform distribution of internal pds in joint angle space was assumed. A cell’s
gain ratio at a given posture was computed as the ratio of the gain at that posture divided by the gain at a reference posture corresponding to a radial distance of 15 cm between the
hand and the shoulder. This procedure automatically normalizes to unity the gains at the reference posture. Note that the gain ratios at all postures would be uniformly 1.0 for Cartesian
or shoulder-centered cells.

1128 Movement Coordinates in the Motor Cortex • Ajemian et al.



cortical tuning, we proceed similarly by further decomposing

the original coefficient in the cosine model as follows:

(3)

where υ is the instantaneous cell activity at time t, and is the

magnitude of the hand velocity vector . Equation (3) indicates

that the modulatory component of a cell’s firing rate is scaled

by the instantaneous hand speed in addition to the variable gain

component.

Directional Coding for Arbitrary Trajectories

In work by Schwartz (Schwartz, 1992), monkeys were trained to

(i) perform the standard center-out task and (ii) trace a variety of

sinusoids. The movement direction varied continuously in the

sinusoidal tracing task, and the instantaneous cell activity was

found to vary in continuous accord with the angular difference

between the movement direction and the preferred direction

that was determined in the center-out task. This continuous cor-

relation was not synchronous, but rather cell activity leads that

portion of the movement path to which it shows a directional

correlation by 100 ms on average (Schwartz, 1992; Ashe and

Georgopoulos, 1994; Moran and Schwartz, 1999a), presumably

because of the time it takes for a cortical command to be imple-

mented at the periphery. This result suggests that instantaneous

cell response may conform to the principles of broad directional

tuning about a local preferred direction in arbitrary movement

tasks where the movement direction continuously changes.

Factoring in this continuous directional correlation and the

observed temporal lead, we rewrite equation (3) as:

(4)

where t denotes the time at which the hand movement

parameters are being measured and τ denotes the temporal

offset.

Equation (4) consists of the magnitudes of two vectors (the

hand velocity vector and the spatial pd vector) multiplying the

cosine of the angle between those vectors. This functional form

suggests our final reformulation of the cosine tuning model:

(5)

Equation (5) indicates that the time-shifted instantaneous firing

rate of a cell during arbitrary hand motion equals a movement-

related baseline firing rate, b0 (which is fixed), plus a constant,

ξ, times the dot product of the current hand velocity vector, ,

and the spatial pd vector, , at the current hand position/

posture. Such a dot product formulation of motor cortical cell

activity is not original, as it was proposed by Mussa-Ivaldi and by

Zhang and Sejnowski (Mussa-Ivaldi, 1988; Zhang and Sejnowski,

1999). However, the present treatment imparts specificity to

these generic formulations by interpreting a cell’s spatial pd

vector as being drawn from a vector field whose structure is

determined by an internal coordinate system. Given this specific

interpretation, equation (5) by itself captures four firing rate

dependencies which characterize a large subset of M1 cells:

(i) directional tuning (Georgopoulos et al., 1982; Schwartz et

al., 1988); (ii) correlation with hand speed (Schwartz, 1992;

Ashe and Georgopoulos, 1994; Moran and Schwartz, 1999a);

(iii) variation of spatial pds with hand position (Caminiti et

al., 1990) and arm posture (Scott and Kalaska, 1997); and

(iv) variation of cellular gains with hand position (Caminiti et al.,

1990) and arm posture (Scott and Kalaska, 1997).

Experimental Design for Investigating Coordinates

There are two general methods for capitalizing on differences in

vector field structure to attempt to choose between coordinate

systems.

Direct Field Sampling

This method consists of determining spatial pd vectors at a

reference posture and a small number of other hand positions

spread throughout the workspace, as in Figure 1B–D, where the

thick gray box denotes the reference posture and the smaller

thin black boxes denote some other hand locations. On the basis

of a cell’s spatial pd vector measurement (a direction and a gain)

at the reference posture, each coordinate hypothesis makes

predictions of the spatial pd vector values (directions and gains)

at the other hand positions. These predictions can be compared

against the actual spatial pd vector values using least mean-

square error analysis to determine the coordinate system of best

fit on an individual cell basis.

υ ω ν ξ ν ω ω ω
r r r r

pd pd pd, cosd i d i= + −b0

r
ν

r
ν

υ ω ν τ ξ ν ω ω ω
r r r r

pd pd pd, , cost b t t t t− = + −d i b g b g b g b gd i0

υ ω ν τ ξ ω ν
r r r r

pd pd, ,t b t t− = + ⋅d i b g b gd i0

r
ν

r
ωpd

Figure 4. Schematic graphs of two kinds of gain modulation. (A) The activity of a
subset of parietal (area 7a) neurons is a function of both the target’s retinotopic position
and the position of the eye in its orbit (Andersen et al., 1985). When the target position
is plotted in retinal coordinates — as opposed to the spatial coordinates of the experi-
mentalist’s screen — the resulting tuning curves are each centered about the same
point, while the gain of the tuning curves is scaled by eye position. This result suggests
that information about retinal position and eye position is combined to produce a
distributed head-centered representation of target position. (B) Motor cortical cells
often exhibit posture-dependent spatial pds and posture-dependent gains (Caminiti et
al., 1990; Scott and Kalaska, 1997; Kakei et al., 1999). A vector field analysis reveals
that if the spatial pds of a cell encoding a motor synergy were plotted in the ‘correct’
motor coordinates, the resultant tuning curves would all be centered about a single
direction that corresponds to a fixed internal pd, and the gains would vary with posture.
According to this vector field interpretation and consistent with prior modeling studies
(Bullock et al., 1993; Burnod et al., 1999), such gain changes need not imply that
the cells in question are themselves mediating a coordinate transformation. For M1
cells showing postural modulation of spatial pds and gains, it is more likely that the
transformation into motor coordinates is mediated at a prior sensorimotor stage and
that the observed gain variability reflects a dependence of the level of cell recruitment
on the (posture-dependent) biomechanical advantage of the cell’s action. Other cells,
which are mediating a coordinate transformation from spatial into motor coordinates,
might exhibit spatial pds that were invariant under postural changes but subject to large
posture-dependent gain changes. Kakei et al. did find a sub-population of wrist-related,
‘extrinsic-like’ M1 cells that behave in this manner (Kakei et al. 1999).
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Indirect Field Sampling

Curved movements that sweep broadly across the workspace

visit many postures and so implicitly sample the workspace

extensively. With a working model of cell activity over the course

of arbitrary trajectories, one can predict, as a function of co-

ordinate choice, the pattern of path-dependent cellular response

across multiple curved movement paths and so evaluate

alternative coordinate hypotheses. Equation (5) provides such a

model. A cell’s temporal response profile during the traversal of

an arbitrary trajectory can be constructed by: (i) breaking the

trajectory into a large number of small, approximately linear,

path segments or bins; (ii) determining the movement direction

and movement speed within a given bin; and (iii) applying

equation (5) to each of these bins. As a result of coordinate-

dependent differences in vector field structure, the same

movement trajectory will result in a different predicted response

profile for different coordinate hypotheses. Below we simulate

such a paradigm.

Elliptical Motion

Elliptical motions can illustrate effectively the concept of

indirect field sampling. A two-stage experimental protocol [as in

(Schwartz, 1992; Moran and Schwartz, 1999b)] is required. In

stage 1, the center-out task is run at a reference posture in order

to determine a cell’s reference spatial pd and its reference

gain. In stage 2, cell activity is recorded while an elliptical path

is traversed by the hand in both the clockwise and counter-

clockwise directions. The spatial pd computed in stage 1 enables

predictions of a cell’s temporal response profiles in stage 2 as a

function of coordinate hypothesis, and the predicted response

profiles can be compared to the actual response profiles on a

cell-by-cell basis to determine the coordinate system of best fit.

Elliptical trajectories offer several advantages in the context

of indirect field sampling. First, the instantaneous movement

direction over such a path spans the entire angular continuum,

thereby ensuring that the response profiles will ref lect the

full range of directional modulation. Secondly, since elliptical

trajectories can be constructed so that the arm visits a broad

range of postures within a single movement, alternative co-

ordinate hypotheses will generate highly differentiated response

predictions. Thirdly, because of the periodicity of elliptical

motion, the animal need not perform a stereotyped movement

multiple times (as in the center-out task where a movement in a

specific direction is usually repeated five times) but can instead

be instructed to extend a unitary movement cycle for multiple

periods, thereby facilitating a robust observation of cellular

discharge patterns. Finally, since the path curvature changes

continuously in a systematic manner over the course of an

ellipse, the inverse relationship between curvature and hand

speed (Lacquaniti et al., 1983) allows a test of the hypothesis of

speed modulation.

For our simulations, we assumed a population of model cells

whose spatial pds in a center-out task spanned the angular

continuum and whose gains assumed a broad range of values.

Subsequently, given the parameters of a specific cell’s tuning

curve, the cell’s temporal response profiles were simulated for

each coordinate hypothesis during both counterclockwise and

clockwise traversal of the ellipse. The speed profile of the hand

was modeled using the two-thirds power law (Lacquaniti et al.,

1983), which relates path curvature to instantaneous movement

velocity. Figure 5 shows the elliptical path, the curvature along

that path, and the velocity profile of the simulated movements.

Other details of the simulations are in the Appendix.

Alternative coordinate hypotheses generated, for the same

cell, radically different response predictions in the elliptical

tracing task. For example, suppose a cell has the following

tuning curve at the reference posture:

υ(ω) = 30 + 20 cos(ω – 0°)

that is, 0 is the cell’s preferred direction in degrees (the direction

of the spatial pd vector), 20 imp./s is the cell’s gain (proportional

to the magnitude of the spatial pd vector), and 30 imp./s is the

cell’s mean movement-related activity (assumed as a constant

in this model but given a value for specificity). Figure 6A plots

predicted temporal response profiles for this cell under the

assumption of Cartesian spatial coordinates and joint angle

coordinates during two cycles of counterclockwise traversal of

the elliptic path. Although both response profiles are roughly

sinusoidal with the same phase, two distinct response differ-

ences emerge from the plots. First, the joint angle coordinate

hypothesis leads to a significantly greater modulation in firing

rate. The difference between the maximum and minimum firing

rates is 40 imp./s for joint angle coordinates as opposed to

30 imp./s for Cartesian spatial coordinates. Secondly, the mean

firing rate during the task is depressed under the assumption of

joint angle coordinates (21 imp./s) as compared to Cartesian

spatial coordinates (30 imp./s). Note that the baseline level of

Figure 5. Elliptical motion. (A) The spatial configuration of the ellipse. Its traversal is
simulated in both the clockwise and counterclockwise directions. The dashed arc
indicates the bounds of the workspace. (B) A plot of path curvature as a function of
x-coordinate for the ellipse. (C) Tangential velocity profile of the hand as it traverses one
complete cycle of the ellipse starting from its right vertex. The speed is calculated from
the curvature by means of the two-thirds power law, the application of which requires
a constant of proportionality. We chose a constant such that the periphery of the ellipse
(with an arclength of 87 cm) was traversed in 1 s for an average speed of 87 cm/s. If
such an experiment were performed, the actual speed profiles could be measured.
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movement-related activity as determined through the center-out

task, b0, has not changed; rather, the new task engenders differ-

ent mean levels of task response depending on the coordinate

hypothesis.

Simulation results also showed that coordinate-dependent

differences in cell response were strikingly accentuated by

reversing the direction of path traversal from counterclockwise

to clockwise. While trajectory reversal did not change the mean

activity level of any cell under the assumption of Cartesian spatial

coordinates, the mean activity level did shift and sometimes

shifted dramatically for the case of joint angle coordinates

(compare Fig. 6A with Fig. 6B). The Appendix provides an

explanation as to why these shifts arise.

All cells exhibited differences, often quite pronounced, in

their response properties as a function of coordinate system,

although the form of the differences varied from cell to cell. For

some cells, the mean level of cell response was similar under the

alternative coordinate hypotheses but other aspects of its

response profiles — such as the number of peaks, the level of task

modulation, the overall profile shape, etc. — differed radically

(see Fig. 7). While there exists no simple manner for codifying

response profile differences as a function of coordinate hypoth-

esis, the Appendix notes some overall features that were

observed to hold.

Population Distributions of Preferred Directions

Just as the assumption of an internal coordinate system can

predict variations in the preferred direction of an individual

cell, so too can  it  predict  variations  in  the distribution  of

preferred directions over a population of directionally tuned

cells. The single-cell analysis required an instance of a cell’s

spatial pd at a reference posture; analogously, the population

level analysis requires a determination of the distribution of

preferred directions at a reference posture. Some studies have

revealed distributions which are unimodal (Georgopoulos et al.,

1982) or bimodal (Scott and Kalaska, 1997) while others have

demonstrated a more uniform distribution (Lurito et al., 1991).

Although none of these studies confined arm motion to within

the task plane, as is the case for our model 2-DOF planar arm, a

roughly uniform distribution of preferred directions at a central

posture seems like a reasonable assumption. We adopt this

assumption in our simulations, but the vector field approach can

analyze distributional variations associated with any distribution

that is found at a reference posture.

Under the assumption of Cartesian spatial coordinates, a cell’s

preferred direction does not change throughout the workspace;

therefore, the population distribution of preferred directions

does not change. Under the assumption of shoulder-centered

coordinates, a cell’s preferred direction does rotate, but since

each cell’s preferred direction rotates by an equal amount, the

population distribution remains unchanged. When joint angle

coordinates are assumed, however, significant alterations in the

population distribution will occur since the Jacobian rotates

joint angle velocity vectors in a highly non-uniform manner.

Figure 8A plots the distributions of preferred directions at six

workspace locations for a sample population exhibiting a

Figure 6. Predicted response profiles under two coordinate hypotheses for a sample cell whose tuning curve at the reference posture is taken to be υ(ω) = 30 + 20 cos(ω – 0°).
(A) Response profiles when the ellipse is traversed in the counterclockwise direction under the assumption of both Cartesian spatial and joint angle coordinates. (B) Response profiles
when the ellipse is traversed in the clockwise direction under the assumption of both coordinate systems. Different coordinate hypotheses lead to different levels of response alteration
under trajectory reversal. Under the assumption of Cartesian spatial coordinates, the response profile remains the same upon direction reversal, while under the assumption of joint
angle coordinates, the baseline of the response profiles increases significantly from 21 imp./s for the counterclockwise path to 39 imp./s for the clockwise path.
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uniform distribution at a central posture. Each distribution is

represented by a polar histogram plot. The uniform distribution

at the reference posture becomes skewed in a systematic and

geometrically structured manner as a function of workspace

location. The Appendix derives the properties of the skewing

through an analysis of symmetries in the Jacobian matrix.

In generating Figure 8A, a uniform distribution of spatial pds

at the reference posture is transformed into a distribution of

internal pds. This internal distribution, plotted in Figure 8B in a

coordinate system whose axes correspond to shoulder and

elbow rotation rates, will not be uniform because it was

generated by application of the inverse Jacobian. A ‘direction’ in

the coordinate system of Figure 8B indicates the relative shoulder

and elbow components of the joint synergy to which a cell is

tuned. As the plot shows, the most prevalent joint synergies are

those composed of equal parts shoulder extension and elbow

flexion or those composed of equal parts shoulder f lexion and

elbow   extension. Synergies consisting of roughly   equal

percentages of shoulder and elbow extension or of shoulder and

elbow flexion are less numerous, as are synergies corresponding

primarily to single joint rotation. Since bi-articular muscles

induce the same type of rotation in both spanned joints, their

action alone could not produce this type of a distribution.

Instead, if such a distribution were to exist in the internal space,

some higher level functional grouping would be implied

whereby f lexor muscles for one joint and extensor muscles for

the other joint are synergistically innervated through the action

of individual cortical neurons.

Although we assumed a uniform distribution of spatial pre-

ferred directions at a reference posture, we could alternatively

posit a uniform distribution in the internal space and compute

the corresponding spatial distributions. Figure 9B shows the

spatial pd  distributions that result from the assumption of

uniformity in the internal space (depicted in Fig. 9A). Note that

the distributions in Figure 9B are more highly skewed than the

distributions in Figure 8A. In  fact, the spatial distributions

generated by the assumption of a uniform internal distribution

never themselves approach uniformity and, with the exception

of a small range of hand placements close to the shoulder, are

everywhere more skewed than their counterparts in Figure 8A

(see the Appendix for details). Therefore, if a uniform spatial

distribution is revealed at any point in the workspace and if joint

angle coordinates are hypothesized, then the underlying internal

distribution must be significantly skewed. Further, a finding of

uniform spatial distributions throughout the workspace would

provide support for the hypothesis of a spatially based

coordinate system.

Population Vector Encoding

The distributions shown in Figures 8A and 9B are bimodal and,

Figure 7. Predicted profile for another cell under two coordinate hypotheses during counter- clockwise motion. The tuning curve for this cell is υ(ω) = 15 + 20 cos(ω – 90°). Note
how the joint angle response demonstrates greater modulation and sharper burst-like properties than the Cartesian spatial response, although the effective baselines are roughly
equal.

Figure 8. Distributions of spatial pds assuming spatial uniformity. (A) Polar plots of the
distributions of spatial pds at six different workspace locations assuming a uniform
spatial distribution at a central reference posture. The distributions vary in an orderly and
symmetrical fashion that reflects the underlying symmetries of the Jacobian when the
upper and lower arm segments are roughly equal in length. (B) The corresponding
internal distribution of cells that engenders a uniform distribution at the reference
posture. Note the pronounced asymmetry in joint angle space with a bias towards the
axis that corresponds to opposing motions about the two joints. Motion along that axis
could not be induced by cells which activated individual bi-articular muscles since such
muscles will induce either flexion or extension about both joints. Instead, if such an
internal distribution actually exists, some higher level modularization of the motor
periphery, possibly mediated by the spinal circuitry, would be required to generate a
prevalence of joint synergies along the axis indicated.
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hence, do not conform to the criteria necessary to guarantee that

the population vector direction (Georgopoulos et al., 1983) is

colinear with the movement direction (Georgopoulos et al.,

1988; Mussa-Ivaldi, 1988; Sanger, 1994). Despite the strong

bimodality, however, the population vector algorithm remains a

good predictor of movement direction. See the Appendix for

details.

Discussion
Formulating explicit models of cell firing rates as a function of

global movement variables remains a daunting task given the

manifold functional dependencies exhibited by cortical cells in a

variety of behavioral contexts (see Introduction). This paper

restricts the analysis to the representation of movement

direction and speed which together constitute a unitary physical

entity, the movement velocity vector. A cell’s preferred direction

and the depth of modulation of its directional tuning curve —

two experimentally determined parameters commonly used to

describe the encoding of direction — can be viewed as dual

aspects of a single spatial pd vector. If individual cell activity

encodes movement information in a fixed internal coordinate

system, the pattern by which a cell’s spatial pd vector varies

across the workspace serves as a signature of those underlying

coordinates. Finally, a model was proposed of cell firing during

the traversal of an arbitrary trajectory. In this unified model, the

instantaneous level of cell discharge depends upon the dot

product of a cell’s local, posture-dependent, spatial pd vector

(drawn from a vector field of spatial pds) and the current hand

movement vector.

Both Lacquaniti et al. and Scott and Kalaska have investigated

the movement-related responses of neurons under different

coordinate hypotheses including joint-based representations

(Lacquaniti et al., 1995; Scott and Kalaska, 1997). We have

generalized upon their methodologies to (i) incorporate gain

changes, as well as directional shifts, in tackling the coordinate

inference problem with respect to arbitrary coordinate systems;

(ii) include the dependence of cell firing rates on hand speed;

and (iii) consider how population distributions of preferred

directions will systematically change. But even as the method-

ology of this paper is designed to elucidate ‘the’ coordinate

system in which a single cell encodes its movement information,

no guarantee exists that cells utilize invariant coding strategies

across diverse movement tasks. In fact, accumulating evidence

for representational plasticity (Wise et al., 1998; Gandolfo et al.,

2000), combined with the profound overtraining that occurs in

neurophysiological studies, suggests that motor control prob-

lems are solved by the adoption of task-dependent strategies,

which utilize task-dependent coordinate decompositions of the

sensorimotor transformation. Viewed from this perspective,

the implication of a particular representational scheme in a cell’s

response during a specific task need not signify a functionally

invariant role for that cell within the overall motor circuit.

The computational techniques, developed here for the ana-

lysis of arm movements, can be extended to a consideration of

wrist movements or other end-effector motions. Recently, Kakei

et al. (Kakei et al., 1999) conducted a comprehensive direct-

sampling study in which the preferred directions of wrist-related

motor cortical cells during the final 100 ms before movement

onset were determined in three different wrist postures:

pronated,  supinated,  and mid (halfway between the two).

On the basis of the shifts in spatial pds, most cells were grouped

into two different categories: a large class of extrinsic-like cells,

which exhibited relatively small shifts in pds across postures,

and a smaller class of muscle-like cells, which exhibited shifts in

pds similar to the shifts of individual muscle pds determined

from EMG activity. In light of previous results on M1 cells

involved in wrist movements (Evarts, 1968; Cheney and Fetz,

1980) and arm movements (Scott and Kalaska, 1997), and given

the more focused pattern of connectivity from wrist-related M1

cells  to  alpha  motoneurons when compared to arm-related

M1 cells (Kuypers, 1981), the excess of extrinsic-like cells over

muscle-like cells in Kakei et al. (Kakei et al., 1999) may seem

surprising.

Kakei et al. (Kakei et al., 1999), however, did not factor gain

changes into their formulation of coordinate system hypotheses.

In fact, 61% of the extrinsic-like cells were found to exhibit

significant shifts in gain, a number similar to both the 66% of

muscle-like cells that exhibited gain changes and the 74% of

forearm muscles that exhibited gain changes in their EMG

activity. From the vector field perspective, such marked cellular

gain changes themselves indicate that a transformation into

muscle-based coordinates may have already occurred. This

hypothesis may be further supported by the finding that

response properties other than pds shifts (such as onset latency,

threshold for evoking muscle contraction, and general profile

shape) were similar between the two cell populations. Neverthe-

less, it remains to be seen whether a muscle-based explanation of

the Kakei et al. data (Kakei et al., 1999) can engender the clearly

bimodal distribution of pd shifts that was observed.

The activity of many proximal arm-related M1 cells is

modulated in response to variable force conditions imposed

upon the arm during movement (Kalaska et al., 1989; Sergio and

Kalaska, 1998; Gandolfo et al., 2000). While this paper’s analysis

focused purely on kinematic coordinate systems, the vector

field framework can also be used to investigate hypotheses that

Figure 9. Distributions of spatial pds assuming uniformity in joint angle space. (A) The
polar plot of a uniform distribution of pds in joint angle space. (B) The spatial pd
distributions at  the same workspace locations as in Figure 8A when a  uniform
distribution in the internal space is assumed. These distributions are generally more
skewed than their counterparts in Figure 8A. Even the distribution at the central
reference posture demonstrates a strong bias. Ultimately, the spatial pd distributions
must be determined empirically, although coordinate analysis can determine whether
the variation of distributions across the workspace is consistent with a particular
coordinate hypothesis.
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motor cortical cells encode muscle force or muscle activation.

However, to perform such an analysis requires knowledge of

the posture-dependent inertial, viscous, and elastic forces

involved in center-out hand movements, as well as a detailed

biomechanical muscle model and an understanding of cortical

recruitment patterns. Obtaining reliable information of this type

remains an area of ongoing research. Todorov (Todorov, 2000)

developed a model of the direct cortical activation of muscles by

making rough assumptions about the relevant forces and by

restricting the scope of the model to a local analysis conducted

in spatial coordinates. Based on the simple premise that M1

cells provide a feedforward prediction of the muscle activation

necessary to generate the state-dependent muscle forces

required for task performance, the model of Todorov (Todorov,

2000) addresses a wide array of experimental results in a par-

simonious manner. However, because Todorov (Todorov, 2000)

is a population-level model and because the model, constructed

as a local analysis, does not take into account the effects of

skeletomuscular geometry, it cannot clarify nor make predic-

tions of posture-dependent changes in single-cell response

properties. From the perspective of this paper, such variations in

response properties are crucial for investigating functional

hypotheses, not just about the role  of  M1 pyramidal tract

neurons, but about the role of neurons in non-primary motor

areas, parietal areas, and other brain regions implicated in the

sensorimotor transformation.

Beyond making inferences on the basis of any specific dataset,

the analytic framework we propose strives for a refined

single-cell approach to representational issues in motor neuro-

physiology. In the past, analyses have largely been predicated on

the population statistics of cell correlations with movement

variable(s). The methodology of this paper points toward further

studies where detailed information about neuroanatomy, skeleto-

muscular geometry, and movement kinematics/dynamics is

comprehensively integrated with functional hypotheses about

the role of distinct cell sub-populations to investigate single-cell

response across a variety of movement tasks.
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Appendix: the Posture-dependent Gain of a Cell Encoding a Joint
Synergy
For the standard 2-DOF arm [e.g. see (Craig, 1986)], the forward

kinematic equations are:

x = k1 cosθ + k2 cos(θ + ϕ) (A1)

y = k1 sinθ + k2 sin(θ + ϕ) (A2)

where x and y denote Cartesian end-effector coordinates, θ and ϕ denote

the shoulder and joint angles, k1 and k2 denote the lengths of the proximal

and distal arm segments. The Jacobian is:

(A3)

which can be rewritten in a compact form that involves end-effector

coordinates and joint angles:

(A4)

Denote a cell’s internal pd or normalized joint synergy as .

Multiplying this synergy by the Jacobian yields the following spatial pd

vector:

(A5)

The magnitude of this spatial pd vector, which is proportional to the

cellular gain, is:

(A6)

Expanding the above expression and combining terms leaves:

(A7)

where . With equations (A1) and (A2, A7) simplifies to:

(A8)

Using the inverse kinematic equation for ϕ eliminates joint angles

from the expression for gain:

(A9)

For the rest of the Appendix, go to http://www.cns.bu.edu/

pub/ajemian.
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