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SUMMARY

Do neurons in primary motor cortex encode the gen-
erative details of motor behavior, such as individual
muscle activities, or do they encode high-level move-
ment attributes? Resolving this question has proven
difficult, in large part because of the sizeable uncer-
tainty inherent in estimating or measuring the joint
torques and muscle forces that underlie movements
made by biological limbs. We circumvented this
difficulty by considering single-neuron responses in
an isometric task, where joint torques and muscle
forces can be straightforwardly computed from
limb geometry. The response for each neuron was
modeled as a linear function of a ‘‘preferred’’ joint
torque vector, and this model was fit to individual
neural responses across variations in limb posture.
The resulting goodness of fit suggests that neurons
in motor cortex do encode the kinetics of motor
behavior and that the neural response properties of
‘‘preferred direction’’ and ‘‘gain’’ are dual compo-
nents of a unitary response vector.

INTRODUCTION

The question of whether the activity of neurons in primary motor

cortex (M1) signals specific muscular details causal to move-

ment or, instead, high-level motor commands has been central

to the study of M1 function ever since the advent of experimental

neurophysiology over a century ago. Fritsch and Hitzig’s discov-

ery in 1870 of a motor cortex that, when electrically stimulated,

evoked twitches in a small group of related muscles was chal-

lenged (in its interpretative details) three years later by Ferrier’s

experiments, in which electrical stimulation of motor cortex

was suggested to evoke components of natural behaviors (Phil-

lips, 1975; Taylor and Gross, 2003). The first direct recording ev-

idence that the activity of individual neurons in M1 is often better

correlated with the causal mechanisms underlying motor behav-

ior (muscle force or activation) than with an overt kinematic de-
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scription of the behavior itself (joint angle position) was obtained

through the single-joint neurophysiological studies of Evarts

(1968, 1969). Nevertheless, other single-joint studies indicated

that some M1 activity was related to noncausal motor output pa-

rameters, such as the current joint angle and the direction of the

next movement in a repeated sequence (Thach, 1978). When the

domain of neurophysiological inquiry expanded to the study of

multijoint reaching movements (Georgopoulos et al., 1982), the

converse notion gained further credence: M1 activity may indeed

reflect the encoding of high-level parameters of motor behavior,

such as end-effector velocity or position, rather than the gener-

ative details of movement. Indeed, most current brain-machine

interfaces for the control of robotic devices are designed to

extract signals about the kinematics of motor output intentions

from the activity of populations of motor cortex neurons

(Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002).

This question of what parameters are encoded in M1—often

expressed as the simplistic dichotomy of ‘‘muscles or move-

ments’’—continues to cause considerable controversy to this

day (Loeb et al., 1996; Georgopoulos, 1995; Scott, 2000). A ma-

jor source of the contention lies in the difficulty of knowing how

the activity of M1 neurons ‘‘should’’ look. In particular, if M1 ac-

tivity is assumed to encode muscle forces or joint torques, then

accurate estimates or measurements of those forces or torques,

as they vary in time, are required to establish this correlation. In

the case of single-joint motions, this requirement does not pose

significant difficulty: the relationship between kinematics (i.e.,

joint angle) and the underlying causal dynamics (joint torque

and muscle forces) is straightforward, and thus can be directly

measured or imputed. However, as soon as movements with

two degrees of freedom (DOF) are considered, it becomes diffi-

cult to accurately estimate or measure muscle forces and joint

torques (Zajac, 1989), and these problems are amplified for

movements with more than two DOFs.

Thus, steep onset of the ‘‘curse of dimensionality’’ compli-

cates the modeling of movement dynamics. This circumstance,

in turn, confounds efforts to establish strong correlations be-

tween movement dynamics and the responses of neurons in

M1. As an alternative to estimating or measuring movement dy-

namics, studies have correlated neural activity with EMG activity

(a proxy of muscle activation signals), but the high noise level and
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poor temporal resolution of EMG measurements complicate

these efforts.

In this paper, the problem of accurately modeling movement

dynamics is circumvented for a four-DOF arm by considering

an isometric task. While isometric tasks are only a subset of

a wider repertoire of motor behaviors, the computations of joint

torques, muscle forces, and muscle activations are rendered

tractable. As a result of this tractability, hypotheses about the

correlations between cell activity and variables related to bio-

mechanical force generation can be tested at a level of rigor

previously unattainable. Specifically, it is demonstrated that pa-

rameters of biomechanical force generation can be mapped to

individual neurons in M1 (as opposed to populations of such

neurons). These fits explain a significant amount of response

variability at the single-cell level, and thus support the hypoth-

esis that M1 controls force output. Finally, the single-neuron

approach unifies our understanding of tuning curve parame-

ters: whereas a cell’s preferred direction and gain were pre-

viously considered independent response components, they

are shown to be dual manifestations of a unitary response

vector.

Background
In the multijoint control of the primate upper limb, neurons in mo-

tor cortex are tuned to the direction of movement in center-out

movement tasks (Georgopoulos et al., 1982; Schwartz et al.,

1988) and to the direction of force exertion in center-out isomet-

ric tasks (Georgopoulos et al., 1992; Taira et al., 1996). The

canonical description of a cell tuning curve is

n uð Þ= b0 + b1cos u�uPDð Þ (1)

where n is a cell’s activity as a function of u, the movement (or

force) direction of the hand; b0 is the cell’s baseline level of activ-

ity; b1 is the depth of modulation or gain of the cell’s tuning curve;

and uPD is the preferred direction of the cell or the direction of

movement (or force) that elicits the maximal cell response.

Of the four parameters on the right-hand side of Equation 1,

three are intrinsic to the cell: b0, b1, and uPD. Each of these intrin-

sic parameters has been shown to vary as a function of behav-

ioral context (Georgopoulos et al., 1984; Kalaska and Hyde,

1985; Kettner et al., 1988; Kalaska et al., 1989; Caminiti et al.,

1990; Lacquaniti et al., 1995; Scott and Kalaska, 1997; Sergio

and Kalaska, 1997, 1998, 2003; Sergio et al., 2005; Kakei et al.,

Figure 1. Experimental Protocol

(A) An isometric center-out task is performed in the horizontal

plane at the nine different workspace locations placed in a

circle (of radius of 8 cm) surrounding a central workspace

location.

(B) A constant force level of 1.5 N must be generated and

maintained for 2000 ms in the appropriate direction.

1999, 2003; Gandolfo et al., 2000; Cabel et al.,

2001; Padoa-Schioppa et al., 2001; Kurtzer et al.,

2005). The parameter uPD has been the most

heavily investigated, because it is the one direct

determinant of cell response as a function of

a task variable (movement direction or the direction of force ex-

ertion). Less is known about a cell’s gain, which is defined as b1.

Because b1 is not an angular measure, it does not indicate a di-

rectional preference in and of itself; nonetheless, as the gain (or

amplitude) of a tuning curve, it does signify the strength with

which a directional preference is instantiated during a particular

task context.

RESULTS

The data in this paper are taken from a neurophysiological exper-

iment in which nonhuman primates performed an isometric task

from nine different hand positions (see Figure 1). A short descrip-

tion of the paradigm is provided in the Experimental Procedures;

more detailed descriptions can be found in Sergio and Kalaska

(1997, 2003). During the task, cell recordings were taken from

the caudal part of M1, with most neurons recorded from that

part of M1 located in the rostral bank of the central sulcus.

From these recordings, distinct tuning curves were assessed

for task-related cells at each of the nine positions, for a total of

nine tuning curves per cell. Note that cell activity was averaged,

for the purposes of this study, over a 2000 ms target-hold epoch,

during which time the hand maintained a state of static force

equilibrium with the manipulandum handle. Note also that each

different location where the hand was positioned corresponds

to a particular arm posture. The joint angles for these arm pos-

tures were recorded and are presented in Table 1.

The model of cell recruitment makes only one assumption:

cells are active within the task according to the rule

n ~tað Þ= b0 +~ta �~tPD½ �+ (2)

where~ta denotes the torque applied by the whole arm during the

task,~tPD denotes a cell’s preferred vector of torque application,

n and b0 remain as defined in Equation 1, ‘‘�’’ denotes a dot prod-

uct, and ½ �+ denotes positive rectification.~tPD is a vector param-

eter intrinsic to the cell that defines the direction in joint torque

space to which the cell responds maximally. It is~tPD, then, which

fully defines the response of a model cell beyond its baseline dis-

charge level. Joint torque space is here 4-dimensional (4D), since

an arm model with four DOF is used (see Experimental Proce-

dures). The dot product formulation generalizes upon the original

cosine formulation of cell tuning by merging the direction and am-

plitude components of tuned response into a unitary vectorial
Neuron 58, 414–428, May 8, 2008 ª2008 Elsevier Inc. 415
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description (Mussa-Ivaldi, 1988; Zhang and Sejnowski, 1999; Aje-

mian et al., 2001). It is shown later that if certain modest assump-

tions are made, a dot product model in joint torques is equivalent,

for the case of an isometric task, to a dot product model of muscle

forces or muscle activations. Therefore, the results apply broadly

toanyof a classof models that emphasizesmusculoskeletal kinet-

ics in interpreting motor cortical output.

Given Equation 2 and the data on arm postures, tuning curves

can be simulated across the workspace for any model cell. The

key step is realizing that in an isometric task, the applied static

force at the hand can be related to the torque of the whole arm

through

~ta = JT qð ÞFh (3)

where JTðqÞ denotes the transpose Jacobian of the kinematic

relationship between joint angles and end-effector position eval-

uated at posture q, Fh denotes the static force applied by the

hand, and ~ta denotes the whole arm torque. Under certain

assumptions, this mapping is unique (see Experimental Proce-

dures for details), and thus, the applied torque is computable.

Population-Level Analyses: PD shifts, Gain Changes,
and Model Geometry
For the population-level analyses, an additional assumption is

made. The distribution of~tPD across a population of cells in mo-

tor cortex is assumed to be uniform in joint torque space. As will

be shown, this assumption, too, can be relaxed considerably

without affecting the results of the paper. It is chosen for the

sake of specificity, since a specific distribution is required to de-

fine a population of cells over which response property changes

can be tabulated. For analyses focusing on PD shifts and gain

changes, b0 can assume any value because it automatically

drops out of the analyses. Thus, these population statistics are

Table 1. Joint Angles and Hand Locations at the Nine Different

Postures

Joint Angles (Deg.) Hand Coordinates (cm)

Hand Location q1 q2 q3 4 x y z

P0 �16 �15 �12 104 14.0 �1.0 15

P1 6 �1 �11 82 19.7 �3.3 15

P2 22 4 �27 64 22.0 �9.0 15

P3 19 17 �31 59 19.7 �14.7 15

P4 �1 21 �37 73 14.0 �17.0 15

P5 �18 5 �47 95 8.3 �14.7 15

P6 �32 �13 �40 113 6.0 �9.0 15

P7 �37 �13 �17 117 8,3 �3.3 15

P8 �11 6 �25 95 14.0 �9.0 15

There are three degrees of freedom at the shoulder: flexion/extension,

abduction/adduction, and internal/external rotation. There is only one de-

gree of freedom at the elbow: flexion/extension. The precise geometry of

the arm model is provided in the Experimental Procedures. Note the rel-

atively modest angular excursions (<60�) for all four angles, particularly

shoulder abduction/adduction and internal/external rotation. The Carte-

sian coordinate system for representing hand location is centered at

the right shoulder, with the x axis pointing away from the body, the y

axis pointing across the body to the right, and the z axis pointing into

the ground.
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generated with zero free parameters, and the model illustrates

response property changes that can be expected wholly on

the basis of biomechanical considerations.

Shifts in Preferred Directions

If cells were encoding endpoint force in a Cartesian spatial

coordinate system, a cell’s preferred direction would, by

definition, be predicted to remain invariant across postures.

However, in agreement with numerous other studies, Sergio

and Kalaska (1997, 2003) consistently showed statistically signif-

icant changes in preferred directions across the workspace. A

cell’s ‘‘PD shift’’ at one of the eight peripheral workspace loca-

tions was defined as its rotation with respect to the cell’s PD at

the central location. With this convention, a population-level

analysis revealed ‘‘a significant difference in the distribution of

PD shifts across the eight peripheral postures’’ (Sergio and

Kalaska, 2003). Figure 2A plots the data on PD shifts for a popu-

lation of cells (see Experimental Procedures for details). The

distribution of PD shifts exhibits a distinct pattern whereby cells

tend to show counterclockwise PD shifts at the leftward loca-

tions and clockwise shifts at the rightward locations. The model

comparison is plotted on the right half of Figure 2A. The model

clearly captures the basic trends in the distribution of PD shifts.

For example, clockwise shifts dominate at the leftward locations

both in the data (81.5%, 77.8%, and 65.4%) and in the model

(75.9%, 79.1%, and 64.3%).

Gain Changes

Sergio and Kalaska (2003) also showed that cells change their

gain across the workspace. The gain change for a cell at a periph-

eral location is defined with respect to the cell’s gain at the cen-

tral location using a measure called the dynamic range (DR) ratio.

While the vast majority of individual cells exhibited statistically

significant gain changes at multiple workspace locations, ‘‘there

was no systematic difference in the distributions of DR ratios as

a function of hand location (ANOVA, P > 0.01).’’ Thus, if there are

systematic spatial biases in a cell’s gain value, the effects are

small in comparison with PD shifts. Nonetheless, it makes sense

to examine whether the proposed model can identify any sub-

threshold trends in the gain change data, because the model

reproduces PD shifts fairly well and because the model treats

PD shifts and gain changes as dual manifestations of a sin-

gle response vector that determines cell activity across all

conditions.

Figure 2B plots the distribution of gain changes across the

workspace for the data and the model. A fractional gain change

(which is simpler than the DR ratio) is used to quantify these

changes:

Dbi
1 =

bi
1 � bc

1

bc
1

where bi
1 denotes the cell’s gain at location i, and bc

1 denotes the

cell’s gain at the central location. Note that this definition results

in a normalized measure of gain change that ignores the cell’s

absolute gain values and takes into consideration only the gain

ratio between the central and peripheral locations. A clear trend

is seen in the simulations, whereby a majority of model cells

show gain decreases when the hand is situated closer to the

shoulder (locations P7, P8, and P1 in Figure 1). At workspace

locations further away (P2, P3, and P4), a majority of cells show
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Figure 2. Response Property Changes across the Workspace

(A) PD shifts for data and model. The location of each histogram within a circle of histograms corresponds to the workspace location of the hand at which the

isometric task is performed. The x axis of each histogram corresponds to the shift in a cell’s PD, at the corresponding posture, with respect to the cell’s PD at the

center workspace location. Positive shifts are counterclockwise (CCW) and negative shifts are clockwise (CW). The bins are each 10�.

(B) Gain changes across the workspace for data and model. The location of each histogram within a circle of histograms again corresponds to the workspace

location of the hand at which the isometric task is performed. The x axis of each histogram corresponds to a cell’s change in gain at the corresponding posture

with respect to the cell’s gain at the center workspace location (see text for definition of gain change). Positive changes signify gain increases. Bin width is 0.15.
gain increases. This same tendency for gain decrease is seen in

the data at the lower postures, although the data do not show

a pronounced tendency for gain increase at the upper postures.

Model Geometry

The model describes cell recruitment as a dot product or vector

projection that takes place in joint torque space. The task, how-

ever, employs an invariant sampling regimen that is uniform in

Cartesian force space (as opposed to joint torque space). There-

fore, insight into how the model explains response property var-

iation follows from an analysis of how the transpose Jacobian,

JTðqÞ, converts a uniform sample of Cartesian forces into a non-

uniform sample of joint torques in a posture-dependent fashion.

Figure 3 illustrates the general properties of transforming by

the transpose Jacobian. The uniform or circular sampling in 2D

Cartesian force space is converted into a skewed or elliptical

sampling in a 2D subspace of the 4D joint torque space. The ma-
jor and minor axes of the torque ellipse, denoted by the red vec-

tors, define a basis for the particular 2D subspace in joint torque

space to which Cartesian force vectors are mapped at that

posture. The ratio of the magnitudes of these axes quantifies

the degree of skewing of the transformation.

At a given posture, a cell’s preferred direction arises from the

relative orientation of the three vectors ~tPD, ~tMAJOR, and ~tMINOR.

A cell’s gain arises from the magnitude of the projection of ~tPD

onto the subspace spanned by~tMAJOR and~tMINOR. While~tPD re-

mains, by assumption, invariant (in joint torque space) across pos-

tures,~tMAJOR and~tMINOR vary across postures because they are

derived from the transpose Jacobian, which itself changes in

a posture-dependent fashion. Therefore, PD shifts and gain

changes observed in cell activity when it is plotted in a 2D Carte-

sian force space arise explicitly from the well-defined global ge-

ometry of the transformation between joint torques and endpoint
Neuron 58, 414–428, May 8, 2008 ª2008 Elsevier Inc. 417
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Figure 3. Transformation of Cartesian Forces into Joint Torques at the Center Workspace Location

The uniform sampling regimen in the isometric center-out task is converted into a skewed distribution of joint torques contained within a 2D subspace of the 4D

joint torque space. The major and minor axes of the torque ellipse constitute a basis set for the 2D subspace. Unit vectors in the directions of these axes are

denoted by the corresponding bar graphs: each bar corresponds to the magnitude of the torque contribution along a particular degree of freedom. tq1 corre-

sponds to the shoulder torque in the flexion/extension dimension; tq2 corresponds to the shoulder torque in the abduction/adduction dimension; tq3 corresponds

to the shoulder torque in the internal rotation/external rotation dimension; and t4 corresponds to the elbow torque. See Experimental Procedures for details.
forces. Figure 4 depicts posture-dependent changes in JTðqÞ by

plotting the joint torque ellipses that arise at each posture.

Single-Cell Analysis: Model Verification, Generalization,
and Consistency
Many models of neural activity in motor cortex have been devel-

oped based on the assumption that cell response reflects move-

ment biomechanics (Mussa-Ivaldi, 1988; Bullock and Gross-

berg, 1988; Sanger, 1994; Tanaka, 1994; Scott and Kalaska,

1997; Bullock et al., 1998; Ajemian et al., 2000; Todorov, 2000;

Scott et al., 2001; Baraduc et al., 2001; Trainin et al., 2007),

and these models have been used to explain a variety of exper-

imental findings. However, a major drawback to all of these

models is that their predictions can only be compared to data

at the population level, either in the form of population statistics

or aggregate population response. In the case of population sta-

tistics, a typical finding is as follows: x% of cells are well-corre-

lated with variable A in the data; y% of cells are well-correlated

with variable A in the model; x approximates y. In the case of ag-

gregate population response, a neural population vector is con-

structed and shown to approximate the vectorial representation

of a movement variable (such as force or velocity).

Thus, these models, while envisioned at the level of single

cells, nonetheless lack single-cell resolution, because parame-

ters of the model cannot be mapped onto individual cells in the

data. As a result, the models can be shown to be generally con-

sistent with data at the population level, but they cannot be falsi-

fied by data at the stricter single-cell level. It is entirely possible

that a model correctly describes the data at the population level,

but fails to correctly predict how any given cell should respond in

a particular task. For example, our model correctly reproduces

the dominant trends in PD shifts and gain changes at the level

of population statistics (Figure 2), but it may not correctly predict

the response profile of any individually chosen neuron.

In the analyses that follow, our model is tested at the single-

cell level by individually mapping the four parameters of the
418 Neuron 58, 414–428, May 8, 2008 ª2008 Elsevier Inc.
model to each of 54 cells. Specifically, a cell is fully described

in the model by its preferred torque vector:

~ti
PDh

* dqi
1

dqi
2

dqi
3

d4i

+

where the superscript i denotes the specific cell from the data-

base; dqi
1; dqi

2; and dqi
3 correspond to the three shoulder com-

ponents of the preferred joint torque vector (see Experimental

Procedures for definition of shoulder DOF); and d4i corresponds

to the elbow component of the preferred torque vector. Once

these four parameters have been determined, the cell’s re-

sponse profile is also determined. Figure 5 shows an example

of a specific preferred torque vector and the resulting cell

response profile.

For each cell, there are 17 data points that constitute its re-

sponse profile: 9 different preferred directions (one at each pos-

ture) and 8 different gain changes (the change in gain relative to

baseline at the eight peripheral postures). Therefore, the power

of the model to fit data at the single-cell level can be systemati-

cally assessed by seeing how well the four model parameters

can explain the 17 data points on a neuron-by-neuron basis.

Here it should be noted that only three of the model parameters

are actually free parameters. This is because the model predicts

the changes in gain and not the absolute values of gain. Thus,

preferred torque vectors are all considered to have a fixed mag-

nitude of unity across cells, and once three model parameters

are specified, the fourth is automatically determined (see Exper-

imental Procedures for details). Below are two methods of fitting

the three free parameters of the model to the 17 data points of

the response profile on a neuron-by-neuron basis.

Model Verification

In this section, two of the three free parameters will be used to

fit a cell’s preferred direction at the central posture. Thus, by



Neuron

Assessing the Function of Motor Cortex
design, the model-preferred direction at the central posture

exactly matches the actual preferred direction at the central

posture (because a single preferred direction requires two model

parameters for specification, and two model parameters are

devoted to that fit). The lone remaining free parameter is used

to fit all eight instances of gain change, and Figure 6A plots all

426 instances of predicted gain change versus actual gain

change across the 54 cells (see Experimental Procedures). As

can be seen, with a single parameter per cell, the model does

a good job of capturing the gain changes across the entire spec-

trum of gain variation from decreases of 50% to increases of

250%. The resulting regression line is

y = 0:96x � 0:01

where the 95% confidence intervals about the slope and y-inter-

cept are, respectively, ½0:88 1:03 � and ½ �0:04 0:03 �. Thus,

this regression line very closely approximates the desired line

of y = x (shown in the Figures 6A and 6B as the dashed line), in

which case the model gain, by itself, predicts the actual gain.

Moreover, the R2 statistic for the model is 0.60, meaning that

Figure 4. Posture-Dependent Variations in the Effect of the

Transpose Jacobian as Shown through Torque Ellipses

The location of each torque ellipse corresponds to the location in the work-

space where the center-out isometric task was performed. The bar graphs de-

pict unit vectors in joint torque space corresponding to the major and minor

axes of the torque ellipse. The tilt of the ellipses corresponds to the net clock-

wise or counterclockwise rotation of PDs across the entire sample of cells.

Note how the skewing of the torque ellipses is more severe at the outer work-

space locations. Note also how the major and minor axes vary significantly

across the workspace. It is the hard-to-visualize geometry of these changes

in 4D joint torque space that give rise to the observed rotation of a cell’s PD.
with a single parameter per cell, the model accounts for 60%

of the variation in all 426 instances of gain change.

Model Generalization

The success of any model depends critically on its ability to gen-

eralize: a model must be shown to explain data outside of the

context in which it is formulated. Mathematically, this means

that if model parameters are fit to data in one context, those

same parameters should apply successfully to data generated

in a novel context. Population-level models (Mussa-Ivaldi,

1988; Scott and Kalaska, 1997; Bullock et al., 1998; Ajemian

et al., 2000; Todorov, 2000; Scott et al., 2001; Trainin et al.,

2007) are incapable of meaningful generalization, because

even when the population-level analyses agree across contexts,

it is impossible to tell if any individual cell showed the predicted

context-dependent behavior with a fixed set of parameters.

Our model assumes a unification of a cell’s preferred direction

and its gain. Therefore, if the model parameters are fit to one of

these response properties, the model should also apply suc-

cessfully to the other response property. To that end, for each

of the 54 cells, we chose three free model parameters to best

fit a cell’s eight measured gain changes (see Experimental Pro-

cedures). None of the model parameters were devoted to ex-

plaining any of a cell’s nine preferred directions. Yet, if the

model’s proposed relationship between gain and preferred di-

rection is correct, the model should be able to predict the pre-

ferred directions with some success. Figures 6B–6D show the

results. In Figure 6B, all 426 instances of gain change across

the 54 cells are plotted. With three parameters per cell devoted

to capturing gain changes, the resulting fit is extremely good.

The regression line is

y = 1:04x

where the 95% confidence intervals about the slope and

y-intercept are, respectively, ½ 0:99 1:09 � and ½ �0:04 0:01 �.
Moreover, the R2 statistic for the model is 0.77, meaning that

with three parameters per cell, 77% of the variation in gain is

captured.
With none of the model’s parameters devoted to fitting a cell’s

preferred direction, the model’s ability to generalize can be as-

sessed by seeing how well the preferred directions are subse-

quently predicted. The median absolute difference between

the actual and predicted PD values is 38.5� (mean 47.7�). Since

angle is a periodic variable (and the angular difference is

bounded at 180�), conventional linear regression cannot be

used to judge the statistical significance of this fit. However,

there is an analogous correlation measure for circular statistics

(see Experimental Procedures), and the circular correlation coef-

ficient is 0.27, which, for a sample size of 480, is statistically

significant at p < 0.001.

Bootstrapping methods can also be used to illustrate the sta-

tistical significance of the model’s PD predictions. Figure 6C

plots a histogram of differences between the actual PD values

and the model PD values. This histogram can be compared

with a histogram of ‘‘random’’ differences (Figure 6D) that is con-

structed by sampling, with replacement, two random PD values

from the pool of 480 PD values (see Experimental Procedures).

Notice that the histogram in Figure 6C is centered about 0�, while

the histogram of Figure 6D is relatively uniform, or even slightly
Neuron 58, 414–428, May 8, 2008 ª2008 Elsevier Inc. 419
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Figure 5. Response Profile for a Specific Preferred Torque Vector

The preferred torque vector is shown at the left of the figure. It consists mostly of shoulder adduction and elbow extension. Such a mechanical action would be

consistent with activation of the Triceps brachii. However, preferred torque vectors in the model do not have to correspond to individual muscles. Rather, they

correspond to the aggregate biomechanical effect of the muscle field of an output neuron in motor cortex. At the right of the figure are the resultant tuning curves

at each of the nine locations. Note that the gain, according to the model, can only be assessed as a multiple of the gain b1 at the central posture. Also note that the

baseline activity level b0 is not a part of the model and so is not explicitly highlighted in the figure.
bimodal. The median absolute difference between the randomly

sampled PD values is 88.5� (mean 89.0�), which is very close to

the median and mean of a uniform random distribution of angular

differences (90.0�).

Model Consistency

Model parameters have been mapped to individual cells using

two different methods. If the model has merit, there should be

some consistency in the results obtained. Table A1 at the end

of the Appendix lists the model parameters—that is, the compo-

nents of ~tPD—as they were mapped to each individual cell for

each method. A correlation measure between the two tabulated

preferred torque vectors is provided in the far right column. Since

the vectors are already normalized, the correlation measure is

simply the dot product. For the most part, the model’s computa-

tion of a preferred torque vector is consistent across the two fit-

ting methods. Using bootstrap techniques, the mean correlation

between two randomly generated unit vectors is 0; the 95th per-

centile of the rank-ordered distribution is 0.81 (see Experimental

Procedures). Only for four cells does the model generate a corre-

lation coefficient of less than 0, while for over 50% of the cells

(29/54), the correlation coefficient exceeded the chance level

of 0.81. Given the noise in the data and joint space redundancy,

it is not surprising that some cells show a slight discrepancy

depending on the method of fit.

The Encoding of Muscle Force or Muscle Activation
The model, as embodied by Equation 2, formulates cell activity

as resulting from the dot product of an applied torque vector

and a preferred torque vector. But one could just as easily—

and perhaps more naturally—conceive of cell activity as reflect-

ing the applied muscle force vector or the corresponding
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muscle activation vector (Fetz et al., 1989; Morrow and Miller,

2003):

nðM!aÞ= b0 + M
!

a �M
!

PD

h i+

(4)

where M
!

a is the applied muscle force vector and M
!

PD is the pre-

ferred muscle force vector. How would the current results on PD

shifts and gain changes be impacted by this reformulation?

In order to answer this question, consider the relationship

between joint torques and muscle forces:

~ta = JT
M qð ÞM!a (5)

where JMðqÞ is the vector derivative of the muscle lengths written

as a function of joint angles; it is also known as the matrix of mo-

ment arms. Because of motor redundancy, it is generally not pos-

sible to invert this matrix to convert joint torques into muscle

forces. However, this matrix can be inverted if a criterion is stip-

ulated as a means of resolving the redundancy. For our purposes,

the exact criterion is irrelevant; what matters is that some criterion

exists and that this criterion remains similar across the work-

space. Under this assumption, the matrix can be inverted by

choosing the specific inverse that fulfills the criterion:

M
!

a = JT
M qð Þ�1

~ta: (6)

With Equations 4 and 6, it is demonstrated in the Appendix that

a recruitment rule based on either muscle forces or muscle acti-

vations would produce results on PD shifts and gain changes at

the population level that are the same as those based on joint

torques. Therefore, these results apply to a broad class of

models that are based on musculoskeletal mechanics, as op-

posed to end-effector forces.
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Figure 6. The Model’s Ability to Fit the Data at the Single-Cell Level

(A) The results of a fit in which two free parameters are devoted to exactly fitting the cell’s PD at the central posture. The remaining free parameter is used to fit the

gain changes as well as possible, and the actual gain changes are plotted versus the model gain changes.

(B–D) The results of a fit in which all three free model parameters are devoted to fitting the gain changes as well as possible. (B) The actual gain changes plotted

versus model gain changes. (C and D) The generalization capacity of the model in predicting a cell’s nine PD values; (C) plots a histogram of differences of actual

and model PD values (note how it is centered on 0), while (D) plots a histogram of bootstrapped differences between two randomly sampled PD values from the

data. Note how the distribution is relatively uniform, or even modestly bimodal.
DISCUSSION

Summary of Results
The first finding of this paper is that a joint torque model of cell re-

cruitment describes quite well the variation in response proper-

ties across a population of neurons in M1 during the performance

of a multijoint isometric task. The second (and more important)

finding is that the joint torque model can be tested at the resolu-

tion of single cells, a level of resolution that, to our knowledge, has

not been attained previously. For the most part, the joint torque

model holds up well to the increased level of scrutiny, explaining

a significant amount of the changes in gain and preferred direc-

tion with only three free parameters per cell.

The issue of what parameters of motor output are encoded in

M1—often expressed by the simplistic dichotomy between mus-

cles or movements—has been the subject of intense debate for

over a century (Phillips, 1975; Taylor and Gross, 2003). Experi-

ments were initially conducted through gross electrical stimula-

tion of the cortex (Fritsch and Hitzig, 1870; Ferrier, 1873). This
coarse approach has evolved into single-cell recording studies

in which neural firing rates are correlated with measured move-

ment variables during stereotyped behaviors (Evarts, 1968;

Georgopoulos et al., 1982). Biomechanical models of the skele-

tomusculature have subsequently been developed and refined

to more rigorously assess the adequacy of hypothesized neural

correlations at the level of population statistics (Mussa-Ivaldi,

1988; Scott and Kalaska, 1997; Ajemian et al., 2000; Todorov,

2000; Trainin et al., 2007). This paper contributes to the debate

by suggesting that models need to be formulated and tested at

the same single-cell level at which data is collected: model pa-

rameters must be mapped onto individual cells for the dual pur-

poses of model verification and model generalization. Only in this

manner will it be possible to more thoroughly resolve matters of

neural representation, whether the brain region in question is

M1, nonprimary motor cortex, or other movement-related brain

structures.

This model captures (1) the aggregate changes in the preferred

directions and gains of the directional tuning functions of
Neuron 58, 414–428, May 8, 2008 ª2008 Elsevier Inc. 421
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a sample M1 neural population, and (2) the coupled changes in

PD and gain of individual M1 neurons as a function of the changes

in joint torques when generating static isometric forces in differ-

ent arm postures. Despite this success, it would be incorrect to

interpret these results as evidence that M1 neurons explicitly en-

code a Newtonian mechanical parameter, joint torque, especially

when that parameter is closely linked to biologically based pa-

rameters such as muscle force or muscle activation. The success

of the model does indicate, however, that the activity of the M1

neurons appears well-correlated to the causal kinetics and intrin-

sic musculoskeletal biomechanics of static isometric force out-

put. The results also argue that the preferred direction and gain

of the directional tuning function of a neuron in a particular behav-

ioral context are not independent properties of the motor output

function of an individual M1 neuron that are acquired empirically

by some adaptive process. Instead, they appear to be causally

linked and determined by musculoskeletal biomechanics.

These conclusions of the present single-neuron modeling

effort are consistent with evidence from more standard neuro-

physiological manipulations that M1 activity encodes informa-

tion closely related to aspects of the casual kinetics of whole-

arm motor output in a variety of task conditions (Kalaska et al.,

1989; Taira et al., 1996; Gribble and Scott, 2002; Sergio and Ka-

laska, 2003; Sergio et al., 2005; Herter et al., 2007). However, this

conclusion applies primarily to the caudal part of M1, from which

most of the neurons in the majority of those studies were re-

corded, and which also contains the greatest concentration of

corticomotoneurons with mononosynaptic connections with spi-

nal alpha motoneurons (Rathelot and Strick, 2006). Neurons in

the rostral part of M1 display response properties that are clearly

transitional between those of the caudal M1 and those of premo-

tor cortex neurons (Crammond and Kalaska, 1996, 2000; Cisek

and Kalaska, 2005).

Finally, it is important to emphasize that the results of this

modeling study are limited to the relation of M1 activity to static

isometric forces. Further developments of the model would be

necessary to attempt to extend it to the behavioral context of dy-

namic (i.e., time-varying) isometric forces and especially to the

causal dynamics of arm movement.

What It Means for the Model to ‘Fit’ Response
Property Variations
With a single parameter per cell, the model fits 60% of the vari-

ation in gain. With three parameters per cell, the model fits 77%

of the variation in gain. The model also exhibits some generaliza-

tion capacity in predicting a cell’s PD values. Overall our model

has three free parameters. How good is its overall performance

compared to rival models? Unfortunately, it is difficult to say, be-

cause the only other model that has been mathematically spec-

ified is the Cartesian force-encoding hypothesis, which predicts

no changes in a cell’s gain or PD (although this model requires

only one free parameter per cell, i.e., angle). Thus, our results im-

ply one of two possibilities: (1) the model performance supports

the hypothesis that many M1 neurons encode joint torques

(closely related to muscle forces), or (2) the model’s performance

is superior to the Cartesian force model because of its additional

free parameters, and any other ‘‘reasonable’’ model with the

same number of additional free parameters would perform about
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as well. No definitive conclusion can be drawn on the basis of the

current study.

Model Shortcomings
While the model explains much of the response property varia-

tion that occurs within single cells, significant residuals remain.

The lack of full correspondence between data and model may

arise because our fundamental assumption—that M1 represents

only the biomechanics of movement—is, by necessity, an over-

simplification. Rather, it is quite possible that (1) no single repre-

sentation or even family of representations may adequately cap-

ture the response of all M1 neurons (Wu and Hatsopoulos, 2006);

(2) motor cortex may be engaged in encoding aspects of move-

ments besides biomechanics (Hocherman and Wise, 1991; Ashe

and Georgopoulos, 1994); and (3) motor cortex may represent el-

ements of movement in a highly adaptive, nonstationary manner

(Wise et al., 1998).

Isometric Tasks versus Movement Tasks
in Single-Cell Analyses
An isometric task is defined as the controlled exertion of force by

an agent while locked in positional equilibrium with the environ-

ment. The ability to perform these tasks comprises only a small

subcompetence of biological motor control, the primary purpose

of which is movement, i.e., to put the body and its end-effectors

in motion for purposes of locomoting, eating, exploring, fighting,

etc. It is not surprising, then, that only a handful of studies have

examined the neural correlates of whole-arm isometric behavior

in motor cortex (Georgopoulos et al., 1992; Taira et al., 1996;

Sergio and Kalaska, 1997, 2003; Boline and Ashe, 2005; Sergio

et al., 2005) compared with the many methodologically similar

studies that have looked at active movement behavior.

Although movement tasks occur with greater frequency than

isometric tasks in naturally behaving animals, this report empha-

sizes the extraordinary practical advantages of isometric tasks in

exploring the neural bases of motor behavior. These advantages

include: (1) simplifying the computations of variables involved in

force/torque generation; (2) obviating the need for a temporal

lag when correlating neural activity with a movement variable;

(3) improving upon the signal-to-noise ratio of the correlation

due to the constancy of task variables, and (4) reducing the con-

found of feedback from the periphery. It is these advantages, we

believe, that make possible single-cell analyses in the case of iso-

metric tasks, while it would not be possible (given the current

state of the field) to conduct similar analyses for a movement task.

While these advantages exist for studying cell response in iso-

metric tasks, it is also possible that two different neural circuits

are employed for isometric behavior and movement behavior.

Few studies have looked at this issue, and the results of the ex-

isting studies are mixed (Sergio et al., 2005; Kurtzer et al., 2005).

Other Means for Single-Cell Analyses
The main point of this paper is that analyses of motor cortical

function through single-cell recording studies should, when pos-

sible, be performed at the single-cell level to enhance their rigor.

We provided one method for assigning model parameters to indi-

vidual cells based on a multiplicity of task conditions and the use

of an isometric task (which enables a virtual equivalence between
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muscle force and joint torque reference frames). However, there

are many other possibilities involving anatomical methods, phys-

iological methods, or a combination of the two. One idea would

be to identify a cell by its cortical connectivity pattern to different

muscles, as revealed through anatomical methods, and then to

map this connectivity pattern to the parameters of a muscle

model. Another possibility would be to identify the downstream

muscle targets of a cell through techniques such as spike-

triggered averaging (Cheney and Fetz, 1980, 1985; Fetz and

Cheney, 1980; Bennett and Lemon, 1996; McKiernan et al.,

2000; Park et al., 2004) and then map that muscle field to model

parameters.

While this paper supports the viewpoint that the activity of M1

neurons largely reflects the kinetic requirements of motor behav-

ior, other studies have hypothesized that neurons in motor cortex

are encoding kinematic parameters of the hand, such as hand

position, hand velocity, or hand acceleration (Ashe and Georgo-

poulos, 1994; Moran and Schwartz, 1999). These hypotheses

are easier to test at the single-cell level because of the relative

ease with which behavioral variables related to hand kinematics

can be accurately measured. For example, suppose that a hand-

velocity encoding model fits a neuron’s response profile well in

one task. Then, if the neuron truly encodes velocity, that same

model should apply equally well in explaining response variation

in a different task. If neural activity correlates best with hand ve-

locity in one task and with hand acceleration in a different task—

or if its tuning parameters otherwise change in a task-dependent

fashion—then the observed correlation is likely artifactual.

A Different Functional Interpretation for Gain Variation
Variations in gain have been found in numerous cortical areas

subserving a variety of cognitive, sensory, and motor functions

(Salinas and Thier, 2000). The classical functional interpretation

of these gain variations postulates a multiplexing of distinct sour-

ces of information for the purpose of effecting a computation. This

interpretation originally arose out of the work of Richard Andersen

and colleagues on the representation of saccadic eye move-

ments in posterior parietal cortex (PPC) (Andersen and Mount-

castle, 1983; Andersen et al., 1985). According to their findings,

neurons in PPC are selectively tuned to a fixed target position in

retinotopic coordinates, while the depth of tuning is monotoni-

cally modulated by eye position. These two sources of informa-

tion—retinotopic target position and eye position—can be com-

bined to generate a head-centered representation of the target

position in space (Grossberg and Kuperstein, 1986; Zipser and

Andersen, 1988; Salinas and Abbott, 1995). This concept of a pla-

nar ‘‘gain field’’ computational mechanism for coordinate trans-

formations has since been extended to other types of represen-

tation in different cortical regions (Brotchie et al., 1995; Snyder

et al., 1998; Kakei et al., 2001; Pesaran et al., 2006).

In contrast, the gain changes in M1 captured by the present sin-

gle-neuron model do not necessarily represent a computational

mechanism by which M1 affects a coordinate transformation.

Rather, they are more likely to be an end result of the computa-

tions (Ajemian et al., 2001) by which M1 transforms inputs about

arm posture and the desired extrinsic spatial direction of static

force output at the hand into an output signal about the intrinsic

(joint- or muscle-centered) spatial kinetics of motor output.
Peter Strick and colleagues have investigated response prop-

erty differences of wrist-related cells in both M1 and the ventral

premotor area (PMv) (Kakei et al., 1999, 2001, 2003). They found

that cells in M1 tended to show sizeable shifts in preferred direc-

tion, similar to muscles, while cells in PMv exhibited spatially

invariant preferred directions. This would suggest that the repre-

sentation of movement in PMv maintains a strong spatial charac-

ter as compared with M1, where the conversion into motor out-

put is more nearly complete. This functional differentiation

between the two areas is also strikingly demonstrated by Cisek

et al. (2003), who showed that many PMd cells are strongly direc-

tionally tuned during the delay period before reaching move-

ments of either the contralateral or ipsilateral arm, with similar ex-

trinsic spatially preferred directions with either arm. In contrast,

most M1 neurons, like proximal-arm muscles, were largely acti-

vated only by movements of the contralateral arm, and any activ-

ity during ipsilateral arm movements usually had very different

directional tuning. In light of the above discussion on alternative

functional interpretations of gain changes, it would be interesting

to see whether the patterns of gain changes in the two areas

reflect such a functional dichotomy as well.

EXPERIMENTAL PROCEDURES

Behavioral Task

Juvenile male rhesus monkeys were trained to exert isometric forces with their

whole arm by grabbing a manipulandum that was attached to a six-DOF force

transducer and clamped to a workspace location. The force level recorded by

the transducer controlled the position of a cursor on a computer monitor, such

that the x and y components of the force vector (where the xy plane is horizontal)

were mapped to a corresponding point on the plane of the video screen. There

were eight targets spaced uniformly along the periphery of a circle, each of

magnitude 1.5 N. When a target appeared, the monkey generated a 1.5 N

force ramp in the appropriate direction, without generating excess force in

the vertical direction. When the cursor reached the target, the monkey main-

tained the position of the cursor—i.e., maintained the 1.5 N force level—for

2000 ms. All data in this paper are taken from this 2000 ms target-hold epoch.

Each of the eight target directions was presented five times in a pseudorandom

fashion.

Data in this paper are taken from recordings of two monkeys: 42 neurons

were recorded from the first monkey, and 12 neurons, from the second.

The manipulandum was clamped at nine different workspace locations

(see Figure 1) contained within a transverse plane slightly below shoulder

level. For the first animal, the spatial positions of the limb joints were

also recorded with optical sensors during one daily session, and the corre-

sponding joint angles were imputed through standard reconstruction tech-

niques. For the second animal, the postures measured with the first animal

were assumed to apply. To the extent this assumption is incorrect, there

will be error introduced into the analyses and, indeed, the single-cell fits

were slightly better for the first monkey. However, we felt this was a reason-

able approximation for three reasons: (1) the distance between the animal’s

shoulder and the manipulandum apparatus was the same in both cases; (2)

the absolute arm lengths and relative arm proportions were similar; and (3)

the animals appeared to assume similar postures from visual inspection. As

there was no statistically significant difference in the single-cell fits across

the two animals, this assumption may be justified. For further details on

the apparatus, task behavior, or data collection methods, see Sergio and

Kalaska (2003).

Computational Model

To simulate cell activity according to Equation 2, the transpose Jacobian of the

kinematic equations must be computed. The following four-DOF arm model

was used:
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where q1 is the angle of shoulder flexion/extension, q2 is the angle of shoulder

adduction/abduction, q3 is the angle of internal/external rotation of the shoul-

der, 4 is the elbow angle, and the order of shoulder rotation proceeds from

q1 to q3. The coordinates x, y, and z signify a Cartesian coordinate system

centered at the shoulder with the x axis aligned in the ventral-dorsal direction,

the y axis aligned in the medial-distal direction, and the z axis aligned in the

cranial-caudal direction. k1 and k2 are the upper and lower limb lengths,

respectively.

Because of motor redundancy, Equation 3 does not uniquely specify the ap-

plied joint torques. There exists a 2D null space of joint torques that add no net

force at the hand, because their effect is to either cancel at the hand or to

induce strain on the joints/connective tissue. Torque vectors from this null

space could be arbitrarily added to a vector in the solution space to create an-

other viable torque vector. We take the Moore-Penrose pseudoinverse, which

implies that the joint torque contribution from the null space is 0 (i.e., a minimum

torque solution). For a well-rehearsed motor task, one might expect that tor-

ques would not be produced if their purpose were simply to cancel at the

hand or add strain to the system. EMG recordings from both of the highly over-

trained monkeys showed strong reciprocal activation of antagonist muscles

during the stable isometric equilibria, with minimal coactivation (Sergio and

Kalaska, 1997, 2003), further validating this assumption.

Equation 2 postulates a linear relationship between joint torques and cell ac-

tivity. At some point when the joint torques reach a high enough level, linearity

can no longer be maintained because neural activity will saturate. If the arm is

not near a singular posture, this saturation occurs when the linearity between

muscle activation and muscle force output breaks down. At submaximal mus-

cle force levels, muscle activation is linearly related to muscle activity (Zajac,

1989). The level of end-effector forces in this experiment is 1.5 N., a level

significantly below the maximal level of force exertion for the species Macaca

mulatta (Graham and Scott, 2003). Nevertheless, saturation of M1 activity at

intermediate force output levels has been observed (Evarts et al., 1983;

Kalaska et al., 1989), and such saturation could contribute to some of the in-

ability of the single-neuron model to predict PD changes and, especially,

gain changes at different postures.

Data Analysis

Standard tuning curves in the form of Equation 1 were computed for each cell

at each posture on the basis of the average firing rate across the target-hold

epoch. However, not all of these tuning curves are necessarily statistically sig-

nificant. To ensure that response tuning was unlikely to have occurred by

chance, a bootstrapping procedure (Georgopoulos et al., 1988; Scott and Ka-

laska, 1997; Sergio and Kalaska, 2003) was used to assess the statistical sig-

nificance of each tuning curve. Of the 42 cells from the first animal, 39 showed

statistically significant tuning curves at all nine postures. For one cell, statisti-

cally significant tuning curves were found at eight postures. For another cell,

the number of postures was seven. And for the final cell, the number of pos-

tures was six. In all cases, the tuning curve was well defined at the central pos-

ture. These 42 cells, together with 12 cells from the second animal, with tuning

curves computed at all postures, constitute the complete data set for both the

population and single-cell analyses.

The analyses were run both including and excluding data from the six pos-

tures across three cells where tuning curves were not well defined. The results

were virtually identical. The reported figures exclude these six instances (be-

cause these tuning curves are not well defined), meaning that for the single-

cell analyses, there are 426 (i.e., 54 3 8 � 6) instances of cell gain and 480

(i.e., 54 3 9 � 6) instances of cell PD measures.

Two methods were used to establish single-cell fits to the data. In the first

method, two free model parameters were used to precisely fit the cell’s PD

at the central posture. With the remaining free parameter, the eight gain

change values per cell were fit using the least mean squares (LMS) criterion
428, May 8, 2008 ª2008 Elsevier Inc.
on the fractional gain changes—that is, the model parameter was adjusted

until the LMS error of the real fractional gain changes with the model fractional

changes reached its minimum. The nonlinear optimization algorithm was run

several times to ensure stable convergence. It is critical to note that the free

model parameters were not simply components of ~tPD along one of the

axes in joint torque space (i.e., the shoulder flexion component). Rather, the

free parameters were simply individual points in the 4D joint torque space

that were, in general, a linear combination of the basis vectors (a parameter

is some combination of all four joint torque components). Standard linear cor-

relation was used to determine the goodness of fit of the model gain changes

to the actual gain changes.

In the second method, all three free model parameters were used to fit the

eight gain change values per cell according to the same LMS criterion. No pa-

rameters were devoted to the PDs. In determining the goodness of fit of the

model PDs to the actual PDs, circular statistics were used (Fisher, 1993). First,

a circular correlation coefficient was computed using the T-linear association

model. The null hypothesis of zero correlation was rejected. Second, a boot-

strap method was used. The histogram of differences between actual and pre-

dicted PD values was compared with a histogram of bootstrapped samples of

differences, which was constructed by sampling two PDs randomly (with

replacement) from the data.

To assess the significance of the correlation between the preferred torque

vectors computed by the two different methods, a bootstrapping analysis

was used. Pairs of 4D vectors were randomly generated by sampling each

component from a uniform distribution on the interval ½�1;1�. These vectors

were subsequently normalized and their dot product was taken.

These simulations were extremely robust across parameter variations. For

details of the sensitivity analyses at both the population level and the single-

cell level, see Supplementary Material.

APPENDIX A

Muscle Force Encoding

Here we show that if the matrix of moment arms varies across the workspace

slowly in comparison to the Jacobian, then the results on PD shifts and gain

changes hold whether the recruitment rule utilizes a dot product of joint tor-

ques or muscle forces. In the Supplementary Material, we actually calculate

the different rates of change of the two matrices and show quantitatively in

the case of a two-DOF arm that the matrix of moment arms varies slowly

compared with the Jacobian.

Suppose cells are activated according to Equation 2. Then a cell’s preferred

direction, uPD, as determined by an experimenter at arm posture qk, can be

written as

uPD = ui: max{~tT
PDJT

qkð Þ F
!

i} (A1)

uPD = ui: max{~tT
PDJT

qkð ÞkFk
cos ui

sin ui

� �
} (A2)

where kFk is the magnitude of the force vector used in a center-out isometric

task, and ui is the angle of exertion. Note how the dot product has been

replaced by vector multiplication using the transpose operation. If instead

cells are activated according to Equation 4, and if the matrix of moment

arms can be inverted as in Equation 6, then a cell’s preferred direction can

be written as

uPD = ui: max{M
!T

PDJT
M qkð Þ�1JT

qkð ÞkFk
cos ui

sin ui

� �
}: (A3)

For the sake of simplicity, assume that the set of muscles can be divided into

agonist/antagonist pairs that act about the same joint (or joints in the case of
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biarticular muscles). In this way, a negative component of the muscle force

vector indicates that the antagonist force exceeds the agonist force.

A preferred muscle force vector, M
!

PD, can exist anywhere in the high-

dimensional muscle space. However, only those vector components that

project into the space of actually utilized muscle forces contribute to cell

activity. Since a specific inversion of the matrix of moment arms has been

assumed, the space of actually utilized muscle forces is the 4D image space

of JT
MðqkÞ�1. Note that this does not mean that only four muscle pairs are

used during force generation; rather, it means that the criterion used to resolve

redundancy leads to a 4D muscle force space, where a basis vector can be

a high-dimensional combination or ‘‘synergy’’ of muscle forces. Therefore,

the preferred muscle force vectors can, through projection onto this space

and subsequent conversion into torque space, be written as JT
MðqkÞ�1~tPD,

leading to

uPD = ui: max{ JT
M qkð Þ�1

~tPD

� �T

JM qkð Þ�1
� �T

JT
qkð ÞkFk

cos ui

sin ui

� �
} (A4)

where the distribution of~tPD is uniform if the distribution of M
!

PD is uniform (i.e.,

directions are being mapped to directions). Rewriting yields

uPD = ui: max{~tT
PDJM qkð Þ�1 JM qkð Þ�1

� �T

JT
qkð ÞkFk

cos ui

sin ui

� �
}: (A5)

Although moment arms are posture dependent, both experimental and

modeling studies in humans indicate that moment arms remain relatively con-

stant across ‘‘small’’ regions of the workspace (Amis et al., 1979; An et al.,

1981; Winters and Kleweno, 1993; Murray et al., 1995). For example, Murray

et al. (1995) demonstrated through measurements and computer simulation

that elbow flexors/extensors vary about 30% over a 95� range. In comparison,

the components of the Jacobian matrix will change sign over the same angular

range. The only study that rigorously investigated the variation of moment

arms in nonhuman primates is Graham and Scott (2003). Overall, they found

similarly moderate variations in moment arms for 14 muscles spanning the el-

bow and shoulder in the species M. mulatta, which is the same species em-

ployed in the isometric task of Drs. Sergio and Kalaska. In the Supplementary

Data, we use the data of Graham and Scott (2003) to compute variation in the

matrix of moment arms in a circular region of space for a two-DOF arm. We

compare this variation to the variation in the Jacobian and show that the

variation in the Jacobian is much greater.
Therefore, we consider JT
MðqkÞ to be constant relative to JTðqkÞ, and we can

make the approximation that ðci; jÞ : i; j = 1.9 JMðqki
ÞzJMðqkj

Þ. With this

approximation,

uPD = ui : max{~tT
PDSJT

qkð ÞkFk
cos ui

sin ui

� �
} (A6)

where S = JMðqÞ�1ðJMðqÞ�1ÞTremains constant across postures. As the

product of a matrix and its transpose, S is a positive semidefinite matrix;

further, since the matrix of moment arms has more rows than columns

(there are more muscles than joint DOFs), S is strictly positive definite. The

transpose of a positive definite matrix is itself, so Equation A6 can be

rewritten as

uPD = ui : max{ S~tPDð ÞTJT
qkð ÞkFk

cos ui

sin ui

� �
}: (A7)

Note that in this expression, only JTðqkÞ varies with posture, and thus it alone

determines the PD shifts and gain changes. The expression ðS~tPDÞT indicates

that the assumption of muscle force coding with a uniform distribution of pre-

ferred muscle force vectors reduces to the case of joint torque coding, with

a nonuniform distribution of preferred joint torque vectors as determined by

the effect of the transformation S. As indicated in the text, altering the distribu-

tion of preferred joint torque vectors does not materially change the results on

PD shifts and gain changes, as long as S is not singular (or near singular). Be-

cause S is positive definite (and not merely positive semidefinite), it is guaran-

teed to be nonsingular.

Muscle Activation Encoding

In an isometric task, the relationship between muscle activation and muscle

force can be written as follows (Zajac, 1989):

Mi = liEifl fv (A8)

where Mi is the force exerted by the ith muscle, Ei is activation of the ith muscle,

fl is a normalized force-length curve, fv is a normalized force-velocity curve,

and li is a muscle-specific scale factor that does not depend on muscle state.

In an isometric task, the muscle shortening velocity is 0 and the muscle length

is held constant. The former implies that fv = 1 and so can be eliminated; the

latter implies that fl is constant at a given posture across all force directions,
Table A1. Preferred Torque Vectors as Computed with the Two Different Methods

Method 1 Method 2

dq1 dq2 dq3 d4 dq1 dq2 dq3 d4 C

Cell 1 0.58 0.34 �0.57 �0.47 0.63 0.35 �0.52 �0.47 0.99

Cell 2 0.14 0.87 �0.44 �0.15 �0.53 0.79 �0.19 �0.22 0.73

Cell 3 �0.59 0.02 0.09 0.80 �0.55 0.17 0.32 0.75 0.96

Cell 4 0.28 0.31 0.74 0.53 �0.08 0.14 0.77 0.62 0.92

Cell 5 �0.08 0.75 �0.64 �0.13 �0.44 0.44 �0.75 0.23 0.82

Cell 6 �0.55 �0.16 0.81 0.12 �0.97 0.02 0.22 0.07 0.72

Cell 7 �0.55 �0.28 0.78 0.05 �0.51 �0.28 0.81 0.05 0.99

Cell 8 �0.52 �0.56 0.50 0.42 0.54 �0.37 0.44 0.61 0.40

Cell 9 0.48 0.75 �0.06 �0.46 �0.48 0.71 �0.18 �0.49 0.54

Cell 10 �0.60 0.03 0.79 0.15 �0.58 0.04 0.80 0.13 0.99

Cell 11 0.43 0.58 �0.04 �0.69 0.20 0.72 �0.21 �0.64 0.95

Cell 12 0.16 0.49 0.29 0.81 �0.30 0.66 0.68 0.06 0.52

Cell 13 0.43 0.02 0.67 0.61 �0.13 �0.11 �0.04 0.98 0.51

Cell 14 �0.70 �0.10 0.68 �0.17 �0.87 �0.06 0.45 �0.19 0.95

Cell 15 �0.29 �0.18 0.42 �0.84 �0.35 �0.24 0.23 �0.87 0.97

Cell 16 0.23 �0.25 �0.04 0.94 0.23 �0.25 �0.03 0.94 0.99

Cell 17 �0.09 �0.93 �0.35 0.06 �0.09 �0.70 �0.38 �0.60 0.76

(Continued on next page)
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Table A1. Continued

Method 1 Method 2

dq1 dq2 dq3 d4 dq1 dq2 dq3 d4 C

Cell 18 0.56 0.70 �0.03 �0.45 0.61 0.67 0.15 �0.41 0.99

Cell 19 0.32 0.29 �0.69 �0.59 �0.47 0.28 �0.51 �0.66 0.67

Cell 20 0.32 �0.66 0.41 �0.54 0.37 �0.78 0.30 �0.40 0.97

Cell 21 �0.29 0.31 0.85 �0.32 �0.56 0.43 0.71 0.09 0.87

Cell 22 �0.21 0.21 0.95 0.02 �0.56 0.22 0.41 0.69 0.57

Cell 23 0.63 0.65 0.06 �0.42 �0.06 0.92 �0.32 0.24 0.44

Cell 24 �0.05 0.65 0.25 0.72 �0.28 0.84 0.25 0.39 0.90

Cell 25 0.05 0.59 �0.80 �0.05 0.41 0.55 �0.73 �0.07 0.93

Cell 26 0.23 �0.54 0.74 0.33 �0.58 �0.39 0.56 0.44 0.64

Cell 27 �0.50 0.84 �0.04 0.20 0.26 0.83 0.09 0.48 0.66

Cell 28 0.49 �0.37 0.74 �0.28 0.89 �0.36 �0.07 0.26 0.44

Cell 29 �0.33 0.59 0.65 0.35 0.25 0.60 0.52 �0.55 0.42

Cell 30 �0.33 0.06 0.89 �0.30 �0.73 0.16 0.38 0.55 0.42

Cell 31 �0.44 �0.44 �0.30 0.72 �0.07 �0.40 �0.91 �0.12 0.39

Cell 32 �0.17 �0.46 �0.39 0.78 0.20 �0.60 �0.72 0.28 0.74

Cell 33 0.81 �0.53 �0.24 0.01 0.09 0.85 �0.17 0.49 �0.33

Cell 34 0.57 �0.55 �0.40 0.46 0.16 �0.91 �0.18 0.33 0.82

Cell 35 �0.20 0.39 0.89 �0.13 �0.33 0.36 0.87 �0.04 0.99

Cell 36 �0.13 0.66 0.15 0.73 �0.54 0.68 0.37 0.34 0.82

Cell 37 0.52 0.15 �0.74 �0.40 0.19 0.01 �0.88 �0.44 0.93

Cell 38 �0.33 0.39 0.86 0.01 �0.47 0.41 0.77 0.12 0.98

Cell 39 0.35 �0.12 �0.36 0.86 0.25 0.13 0.27 �0.92 �0.82

Cell 40 �0.01 �0.84 0.35 �0.42 0.36 �0.39 �0.28 0.80 �0.11

Cell 41 �0.54 �0.24 0.18 �0.79 �0.50 �0.44 0.23 �0.71 0.98

Cell 42 �0.35 �0.36 �0.23 �0.83 0.19 �0.65 �0.74 0.06 0.29

Cell 43 0.35 �0.43 �0.73 �0.40 0.17 �0.57 �0.80 �0.14 0.94

Cell 44 �0.05 �0.56 �0.81 0.19 0.38 �0.48 �0.69 �0.38 0.74

Cell 45 0.62 �0.18 �0.34 �0.68 0.57 �0.05 �0.15 �0.81 0.96

Cell 46 0.03 0.77 �0.07 0.62 0.08 0.23 0.04 0.97 0.78

Cell 47 �0.32 0.15 0.92 �0.16 �0.34 0.14 0.92 �0.14 0.99

Cell 48 �0.05 0.62 �0.10 0.78 0.04 0.60 �0.06 0.80 0.99

Cell 49 0.86 �0.20 �0.47 �0.02 0.50 �0.16 �0.78 0.33 0.82

Cell 50 �0.53 0.05 0.19 0.83 �0.48 0.12 0.28 0.82 0.99

Cell 51 0.33 �0.16 �0.46 �0.81 0.39 �0.10 �0.32 �0.86 0.99

Cell 52 0.08 0.77 0.36 0.52 0.37 �0.56 �0.34 0.66 �0.18

Cell 53 �0.42 �0.09 0.23 0.87 0.07 0.23 0.54 0.81 0.78

Cell 54 �0.47 0.43 0.16 0.75 �0.18 0.52 �0.05 0.83 0.92

In Method 1, two free parameters were used to fit the preferred direction at the center location, and the remaining free parameter was used to fit the

peripheral gains. In Method 2, all three free parameters were used to fit the peripheral gains. Details are in the Experimental Procedures. The correlation

between these measures was assessed using a dot product. The first 42 cells are from the first animal.
and so will end up being incorporated into b0, the baseline level of cell activity.

As a result of these simplifications, muscle force can be related to muscle

activation via a diagonal matrix, and this relationship can be inverted. Thus,

the arguments of the previous subsection (Muscle Force Encoding) can be

extended to the case of muscle activation coding.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/3/414/DC1/.
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