
Theoretical Framework
A Neural Network Approach. Arti� cial neural networks (4) are layers
of processing units connected by adaptive weights that convert input
vectors to output vectors through speci� c rules of information � ow
(Fig. S1). Through use of an error signal and a learning algorithm
for weight adaptation, a neural network can be trained to learn
an arbitrary functional mapping through repeated exposure to
instances of themapping (the desired input–output pairings). Feed-
forward, multilayer perceptrons with gradient descent learning are
used for the simulations shown, not because such networks accu-
rately capture the details of brain function, but because they serve as
an analytically tractable and well-studied connectionist system ca-
pable of illustrating general principles of learning with distributed
computing elements. The use of additional network variants and
learning algorithms is described in SI Methods.
Within a neural network framework, a sensorimotor skill can

be represented as a functional association between a movement
intention expressed as a vector in task space, X

�
, and a corre-

sponding vector of motor activation commands, T
�
, designed to

produce the target movement intention. To learn a set of senso-
rimotor skills, the network must simultaneously learn multiple
associations in the form of a nonlinear functional map (5, 6),
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where the superscript denotes an individual skill. In general, the
vectors X

�
and T

�
are high dimensional and functions of time.

Solution Manifolds in Weight Space. The adaptable parameters of a
neural network are the values of the weights. In the network of
Fig. S1, where a layer of three nodes fully connects to a layer of
four nodes that fully connects to a layer of two nodes, there are
a total of 20 (3 × 4 + 4 × 2) weights. A given con� guration of the
network can be considered as a point, W

�
, in a 20-dimensional

weight space, and each such point corresponds to a function,
fw� :R3a R2 or f ðW

�
;X

�
Þ ¼Z

�
. Suppose the network is required to

learn two skills, and . Mathematically, this means the network
must be con� gured to meet two constraints:

A collection of points in weight space that satisfy a desired con-
straint is called a solution manifold. In Fig. 1B, we plot two

schematic solution manifolds, one for skill and the other for
skill . All points on the manifold embody network con� gu-
rations that ful� ll the � rst constraint, whereas points on the
manifold satisfy the second constraint. Starting from a point, S,
in weight space, the network must dynamically evolve, through
training, to a point, P, where the two manifolds intersect. The
learning process can be geometrically envisioned as follows (Fig.
1B). Every time skill is practiced, the system moves from its
current location in weight space toward the manifold along
the connecting perpendicular (trial-by-trial learning). The mag-
nitude of the displacement depends on the size of the learning
rate and the error. The same procedure holds true every time
skill is practiced. Although this geometric formulation over-
simpli� es actual learning algorithms (e.g., the gradient of the
error function is not necessarily perpendicular to the manifold),
it embodies the key features.
A critical point about neural networks is that they are re-

dundant—that is, many different weight con� gurations embody
the same functional mapping. Learning algorithms are designed
merely to obtain a solution (not a particular solution). Because
the sensorimotor system is massively redundant at all levels from
neurons to muscles (see below), a neural network model should
also be highly redundant (many more hidden nodes are used
than are required to accomplish the task). In essence, the system
should be so underconstrained that a given weight can assume
a wide range of values and still be part of a solution set. Thus, the
solution manifolds, represented by lines, are actually high-di-
mensional curved surfaces, and the intersection of two solution
manifolds, depicted by a point, is also a high-dimensional sub-
manifold. Exactly what is meant by “high-dimensional” is dis-
cussed in SI Results.

Network Features. Below we identify three features inherent to
biological nervous systems as multijoint controllers that distin-
guish them from arti� cial neural networks used, for example, to
solve problems in pattern recognition or data mining.
Noisy. Neurons are noisy (7, 8). They are noisy signal processors;
their synapses are noisy signal transducers; synaptic change is
a noisy morphological process. The noise level relative to the
signal may be high (9). Our simulations included all three possible
noise sources ranging from low levels to extremely high levels:
up to 30% of the signal for nodes/weights and 400% for weight
changes (Methods). These noise levels far surpass the levels that
are usually included in neural networks.

Fig. 1. Neural networks. ( A) Stability –plasticity dilemma.
See text for details. ( B) The gold and green lines correspond
to all solutions in weight space (i.e., a manifold) for skills
and . The manifolds are “blurry ” because the presence of
feedback precludes the need for an exact feed-forward
solution. Point P denotes the intersections of these mani-
folds (and � is the intersection angle). The untrained net-
work exhibits a starting con � guration, S, and through the
practice/performance of the different skills, the network
approaches P. Three learning steps are illustrated. ( C) A
schematic phase portrait of network behavior as a function
of learning rate and noise level. Our network exhibits a
high level of irreducible noise (blue “x”), which forces the
network into a high learning rate. ( D) An example of ill-
conditioned oscillatory behavior. Gray lines denote level
curves of the error function, and the black lines denote the
trajectory in weight space.
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Redundant. Biologicalmotor systems aremassively redundant—the
system containsmanymore degrees of freedom than are necessary
to accomplish the task (10). Redundancy applies throughout the
system, as there are excess numbers of cortical neurons, spinal neu-
rons, muscles, joints, etc. Two different types of redundancy exist—
external system redundancy and internal system redundancy—
depending upon whether the redundancy applies to an observable
behavioral variable (external) or an unobservable state variable
(internal). See SI Discussionfor examples. Our focus is on in-
ternal system redundancy, although all manners of both types of
redundancy coexist.
Reliant on feedback. Biological motor systems rely on feedback from
multiple sensory/proprioceptive modalities, as well as corollary
discharge, for online self-correction. Feed-forward commands are
inherently imperfect due, in part, to corruption by internal noise
sources, and feedback signals help to compensate. The manifolds
in Fig. 1B are correspondingly fuzzy to depict a buffer zone pro-
viding tolerance for imprecision in the feed-forward command
(this “cloud” extends in all directions in weight space). Feedback
mechanisms also serve as a natural source for generating teaching
signals by which to train the system (11, 12).
Three additional assumptions that could apply to any network

are also incorporated.
Hyperplasticity. This assumption qualitatively characterizes the
learning rate of the system as high: Even when sensorimotor errors
are relatively small, synapses are hypothesized to undergo signi� -
cant changes. In the gradient descent learning algorithm used
in our simulations, weight changes range from 15% to 50% of
the gradient (not the typical 1% used for these types of networks)
(Methods). Hyperplasticity and high noise levels distinguish our
network from other stochastic gradientmethods in that the weights
remain highly malleable at all stages of the learning process.
Trial-by-trial learning. After each instance of practicing/performing
a sensorimotor act, synapses are altered to reduce the experi-
enced error. This assumption, standard for neural networks, is
supported by the rapid error reduction observed in sensorimotor
adaptation experiments (13, 14) and the autocorrelation of errors
seen during unperturbed movements (15).
Equivalence of Internally Redundant Solutions. In dynamical systems
theory, it has long been known that different combinations of
system parameters can lead to the same output behavior. This
point has been explicitly made for the crustacean pyloric circuit
(16). For connectionist learning systems, network con� gurations
can exhibit different patterns of synaptic weights, yet as long as
inputs map correctly to outputs, all solutions are equally valid.
By incorporating these features—most critically, the dual as-

sumptions of hyperplasticity and high noise levels—we construct
a unique type of neural network for understanding the processes
of biological motor memory formation and retention.

Results
Solution Space of Viable Networks. Our analysis focuses on net-
work properties as a function of two parameters: learning rate
and noise level. For every network variant (number of nodes,
input–output mapping, choice of transfer function, etc.) (Meth-
ods), these two critical parameters were systematically varied.
The resulting network behavior was characterized according to
the following three criteria: (i) convergence, (ii ) performance
threshold, and (iii ) conditionability. The convergence criterion
requires that the network error converges, rather than diverges,
with increasing trial number. The performance threshold criterion
requires that the average error, at asymptote, falls below a desired
threshold value. The conditionability criterion requires that con-
vergent solutions are well behaved (i.e., not ill-conditioned).
For the simulations that were run, a typical phase portrait of

network response is schematized in Fig. 1C. The dashed black
line denotes a boundary of convergence. When the step size is
too large, because the learning rate or noise level (or a combi-
nation of both) is too high, the system diverges as if it were
a control system operating with too high a feedback gain (17).
The solid line is the performance threshold—that is, the level set

(or isocontour) of learning rates and noise levels that exactly
meets the minimum performance requirements (all points above
the line satisfy this constraint). Its exact shape, as well as the
exact shape of the boundary of convergence, depends on the
speci� c network architecture, learning rule, problem to be solved,
etc. However, the performance threshold must slope upward at
low learning rates: If the noise is increased, the learning rate must
be increased to compensate for the noise, while still maintaining
the same level of performance. It must also tend toward verti-
cality at the point where the noise level is so high that no boost in
learning rate can produce the desired performance.
Divergence is not the only type of instability exhibited by

connectionist systems. If the learning rate is too high, the error
oscillates at asymptote instead of smoothly converging, i.e., the
“cross-stitching” effect (18) shown in Fig. 1D. This problem of
network ill-conditioning (19) arises when the error function is
characterized by sharply different slopes for different directions
in weight space (numerically assessed from the eigenvalues of the
Hessian matrix). Geometrically, ill-conditioning can be envi-
sioned as long, narrow valleys of the error surface that induce
unproductive oscillatory behavior. Noise mitigates the problem
by providing the network with the capacity to “escape” from such
ravines, thereby enabling a network to operate at higher learning
rates without producing oscillations in the error at asymptote. As
a result, if a minimum performance threshold is speci� ed with
regard to a network being properly conditioned, it slopes upward
like the dotted line in Fig. 1C—all points below this line will
satisfy the constraint. A more detailed explanation of how an
increased noise level enables a network to avoid cross-stitching is
contained in SI Results. Here we note that examples of the ex-
ploratory bene� ts of noise are found in the concepts of simulated
annealing (20), reinforcement learning (21), and other stochastic
learning methods (22).

Hyperplastic and Noisy Networks. The shaded area in Fig. 1C
represents the region in parameter space ful� lling all three cri-
teria above. The � rst result of this work is that all network var-
iants admitted solutions in regions of the parameter space where
the learning rate and the noise level were both “high”. Here,
a high learning rate is characterized as ranging between 15% and
50% of the gradient. At these learning rates, if the noise in the
system is dropped to zero, the network becomes ill-conditioned
or divergent. High noise levels typically range from 10% to 30%
for the nodes/weights and from 200% to 400% for the weight
changes. At these noise levels, a signi� cant drop in the learning
rate leads to high network error or divergence. Clearly, then,
high learning rates and high noise levels reciprocally interact to
restore network functionality where the effect of a large value of
either parameter alone is otherwise deleterious.
Our theory posits a high level of irreducible noise in biological

systems (the blue “x” in Fig. 1C), and this noise level forces the
network to assume a high learning rate to satisfy the perfor-
mance threshold criterion. Such networks are termed hyper-
plastic and noisy. The rest of the paper investigates the attributes
of these networks compared with conventional neural networks,
i.e., those with a low learning rate and no noise. Our ultimate
conclusion is that the combination of high learning rates and high
noise levels imbues biological sensorimotor systems with many of
their distinctive properties. To our knowledge, hyperplastic and
noisy networks signify an entirely unique construction, presumably
because for most application purposes, it would not make sense to
willfully inject extremely high noise levels into a system.

Adaptive Weights That Never Stop Adapting. The key result ob-
served during the simulation of hyperplastic and noisy networks
is that simple error-based learning gives rise to a permanently
nonstationary network: The weights are perpetually in � ux, re-
gardless of whether or not overt learning is taking place at the
behavioral level. Consider the performance of a highly stereo-
typed skill with little or no behavioral variability. As the skill is
performed, system noise generates random perturbations in the
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we examine the existing cellular imaging data on dendritic spine
turnover and address the question of whether the model can be
used to simulate these data.
Standard neural networks represent the aggregate connection

strength by which one neuron (or neural population) affects the
� ring rate of another neuron (or neural population) with a single
continuous-valued weight (e.g., 0.57). In real neural circuits,
neurons are interconnected through a multitude of synapses,
each of which links (in most cases) a single axonal bouton to
a single dendritic spine. The overall synaptic input convergent
upon an individual neuron can therefore be modulated by (i)
altering the ef� cacy of existing synapses (such as long-term po-
tentiation or depression), (ii ) adding and/or removing boutons/
spines without global remodeling of axonal and dendritic arbors,
or (iii ) larger-scale remodeling of axonal or dendritic arbors as
happens during development. From an experimental stand-
point, it is dif� cult to establish the occurrence of i. However,
with the advent of two-photon microscopy for bioimaging (32),
it is now possible to observe within the cerebral cortices of be-
having animals the turnover of dendritic spines and larger-scale
restructuring of axonal and dendritic arbors. Numerous studies
from multiple laboratories have produced detailed observations
on dendritic structures as they vary on timescales from hours to
days over a variety of behavioral conditions for adult behaving
animals (33–36). These studies largely agree on the following
three � ndings:

Signi� cant large-scale remodeling of axonal and dendritic arbors
does not appear to take place in adult animals even under con-
ditions of behavioral manipulation and learning.

Under conditions that are conducive to adaptation/learning
(such as the alteration of sensory input or the learning of a novel
motor task), signi� cant turnover occurs within the population
of dendritic spines on the timescale of hours to days.

Even under control conditions when no overt learning takes
place, there is still a fairly signi� cant baseline level of dendritic
spine turnover.

The � rst observation reinforces the understanding that the basic
skeletal outline for global synaptic connectivity within neural cir-
cuits is laid down during development and likely not modi� ed sig-
ni� cantly thereafter. The second observation af� rms the widely
held hypothesis that experience-dependent plasticity—including
the growth and retraction of dendritic spines—underlies the
adaptive formation of new memories in response to novel envi-
ronmental conditions. The third observation, however, is intuitively
puzzling for someof the same reasons discussed in the Introduction.
Why should dendritic spines come in and out of existence even
when there is no overt learning? Will perpetual synaptic � ux de-
stabilize a learning system and erase old memories?
A pair of recent two-photon microscopy studies looked at

the addition and subtraction of dendritic spines in the primary
motor cortices of mice while the mice learned a new motor task
(35, 36). Fig. 5A shows the key result from ref. 36. After 2 d of
training on a new motor task, roughly 8% of the total population
of observable dendritic spines are newly formed (and a compa-
rable percentage of existing spines have been removed). Pre-
sumably, the development of these spines has something to do
with the adaptive reorganization of the relevant cortical circuits
to better perform the behavioral task. However, even in the case
of control mice where no overt learning takes place, there is
still signi� cant dendritic spine turnover: After 2 d, over 3% of
the spines have been newly formed. These results typify the
two-photon microscopy data in adult mice across a variety of
perceptual manipulations and motor adaptations. Although the
exact numbers depend on the speci� c preparation and task, after
2 d of learning somewhere between 8% and 12% of the dendritic
spines are newly formed in the treatment group, whereas 3–5%
of the dendritic spines are newly formed in the control group. It

Fig. 4. Reversal of learning transfer for the visuomotor
rotation task. ( A) Robotic manipulandum controlling on-
screen cursor. (B) Two targets are used. ( C) The order of
target presentation for the experiment is displayed. There
are eight targets in a cycle, and each cycle contains either
D2 only or a pseudorandom mixture of D1 and D2 (except
for cycles 34 and 98). (D) The black and blue points denote
the error for movements to target D1 (shown with SE),
whereas gray points denote movements to target D2 (error
bars omitted). Individual trial movement data are shown
instead of cycle averages for cycles 34 and 98. ( E) Simula-
tion results for the same experiment are shown. Because
the model includes high noise levels, 1,000 simulation
results are averaged. ( F) The angle between the two skill
manifolds is plotted over time after asymptote is reached.
The model reproduces the data through an increase in
the orthogonality of the two skills as interleaved practice
occurs beyond asymptote.
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