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During the process of skill learning, synaptic connections in our
brains are modified to form motor memories of learned sensori-
motor acts. The more plastic the adult brain is, the easier it is to
learn new skills or adapt to neurological injury. However, if the
brain is too plastic and the pattern of synaptic connectivity is
constantly changing, new memories will overwrite old memories,
and learning becomes unstable. This trade-off is known as the
stability–plasticity dilemma. Here a theory of sensorimotor learn-
ing and memory is developed whereby synaptic strengths are per-
petually fluctuating without causing instability in motor memory
recall, as long as the underlying neural networks are sufficiently
noisy and massively redundant. The theory implies two distinct
stages of learning—preasymptotic and postasymptotic—because
once the error drops to a level comparable to that of the noise-
induced error, further error reduction requires altered network
dynamics. A key behavioral prediction derived from this analysis
is tested in a visuomotor adaptation experiment, and the resultant
learning curves are modeled with a nonstationary neural network.
Next, the theory is used to model two-photon microscopy data
that show, in animals, high rates of dendritic spine turnover, even
in the absence of overt behavioral learning. Finally, the theory
predicts enhanced task selectivity in the responses of individual
motor cortical neurons as the level of task expertise increases.
From these considerations, a unique interpretation of sensorimo-
tor memory is proposed—memories are defined not by fixed pat-
terns of synaptic weights but, rather, by nonstationary synaptic
patterns that fluctuate coherently.

hyperplastic | neural tuning

Sensorimotor skill learning, like other types of learning, occurs
through the general mechanism of experience-dependent

synaptic plasticity (1, 2). As we learn a new skill (such as a tennis
stroke) through extensive practice, synapses in our brain are
modified to form a lasting motor memory of that skill. However,
if synapses are overly pliable and in a state of perpetual flux,
memories may not stabilize properly as new learning can
overwrite previous learning. Thus, for any distributed learning
system, there is inherent tension between the competing require-
ments of stability and plasticity (3): Synapses must be sufficiently
plastic to support the formation of new memories, while chang-
ing in a manner that preserves the traces of old memories. The
specific learning mechanisms by which these contradictory con-
straints are simultaneously fulfilled are one of neuroscience’s
great mysteries.
The inescapability of the stability–plasticity dilemma, as faced

by any distributed learning system, is shown in the cartoon neural
network in Fig. 1A. Suppose that the input pattern of [0.6, 0.4]
must be transformed into the activation pattern [0.5, 0.7] at the
output layer. Given the initial connectivity of the network, the
input transforms to the incorrect output [0.8, 0.2]. Through
practice and a learning mechanism, the weights are adapted to
produce the correct output, and the new synaptic pattern ma-
terially embodies the learned memory “trace”. This conceptual
framework suffices for explaining memory formation, when
a single learned pairing is viewed in isolation. However, what if
these nodes are part of a larger network required to learn many

different distributed and overlapping input–output pairings at
different times across multiple timescales? How can a previously
learned synaptic trace persevere, in a recoverable fashion, when
the network is continuously confronted by a stream of inter-
mingled (and often nonunique) input–output maps arriving in no
predictable order?
Here a theory is proposed to resolve this dilemma for the case

of sensorimotor skill learning. It first assumes that synapses are
perpetually modified at rapid rates. This facet of the theory
ensures the “upside” of plasticity, i.e., a capacity for rapid sen-
sorimotor learning and the behavioral flexibility that follows.
To examine the “downside” of plasticity (i.e., instability), these
highly adaptive synapses are embedded in a conventional artifi-
cial neural network for learning multiple skills over different
timescales. As expected, performance is unstable at high learning
rates. However, when high noise levels and massive redundancy
are also incorporated—two features of biological sensorimotor
systems expected to exert a destabilizing influence—the process
of motor memory formation is, surprisingly, stabilized. The dis-
covery that massively parallel networks can function in this
atypical parameter regime leads to a class of “hyperplastic”
networks that exhibit the following unique properties: (i) weights
that change continuously even in the absence of overt error re-
duction, (ii) a critical postasymptotic phase of learning that is
required for memory permanence given network nonstationarity,
and (iii) a tendency to segregate the internal representations used
in well-rehearsed skills. The distinctive learning dynamics of hy-
perplastic networks are postulated as a unifying principle that may
bridge the cellular and behavioral domains of skill learning.

Significance

The synaptic trace theory of memory posits that the brain
retains information through learning-induced changes in syn-
aptic connections. Once consolidated, a memory is embodied
through its fixed trace. For the case of motor memories, e.g.,
learning how to ride a bicycle, we propose a slight variation on
this theme. Because there are so many different ways for the
motor system to accomplish the same task goal, motor mem-
ories are defined not by fixed patterns of synaptic connections,
but rather by nonstationary patterns that fluctuate coherently
while still generating the same fixed input–output mapping.
This mechanism provides a noisy sensorimotor system with
enough flexibility so that motor learning can occur rapidly with
respect to new memories without overwriting older memories.
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Theoretical Framework
A Neural Network Approach.Artificial neural networks (4) are layers
of processing units connected by adaptive weights that convert input
vectors to output vectors through specific rules of information flow
(Fig. S1). Through use of an error signal and a learning algorithm
for weight adaptation, a neural network can be trained to learn
an arbitrary functional mapping through repeated exposure to
instances of themapping (the desired input–output pairings). Feed-
forward, multilayer perceptrons with gradient descent learning are
used for the simulations shown, not because such networks accu-
rately capture the details of brain function, but because they serve as
an analytically tractable and well-studied connectionist system ca-
pable of illustrating general principles of learning with distributed
computing elements. The use of additional network variants and
learning algorithms is described in SI Methods.
Within a neural network framework, a sensorimotor skill can

be represented as a functional association between a movement
intention expressed as a vector in task space, X

→
, and a corre-

sponding vector of motor activation commands, T
→
, designed to

produce the target movement intention. To learn a set of senso-
rimotor skills, the network must simultaneously learn multiple
associations in the form of a nonlinear functional map (5, 6),

X
→1

;X
→2

; . . . ;X
→p

a T
→1

;T
→2

; . . . ;T
→p

;

where the superscript denotes an individual skill. In general, the
vectors X

→
and T

→
are high dimensional and functions of time.

Solution Manifolds in Weight Space. The adaptable parameters of a
neural network are the values of the weights. In the network of
Fig. S1, where a layer of three nodes fully connects to a layer of
four nodes that fully connects to a layer of two nodes, there are
a total of 20 (3 × 4 + 4 × 2) weights. A given configuration of the
network can be considered as a point, W

→
, in a 20-dimensional

weight space, and each such point corresponds to a function,
fw→ :R3

aR2 or f ðW→;X→Þ ¼ Z
→
. Suppose the network is required to

learn two skills, and . Mathematically, this means the network
must be configured to meet two constraints:

A collection of points in weight space that satisfy a desired con-
straint is called a solution manifold. In Fig. 1B, we plot two

schematic solution manifolds, one for skill and the other for
skill . All points on the manifold embody network configu-
rations that fulfill the first constraint, whereas points on the
manifold satisfy the second constraint. Starting from a point, S,
in weight space, the network must dynamically evolve, through
training, to a point, P, where the two manifolds intersect. The
learning process can be geometrically envisioned as follows (Fig.
1B). Every time skill is practiced, the system moves from its
current location in weight space toward the manifold along
the connecting perpendicular (trial-by-trial learning). The mag-
nitude of the displacement depends on the size of the learning
rate and the error. The same procedure holds true every time
skill is practiced. Although this geometric formulation over-
simplifies actual learning algorithms (e.g., the gradient of the
error function is not necessarily perpendicular to the manifold),
it embodies the key features.
A critical point about neural networks is that they are re-

dundant—that is, many different weight configurations embody
the same functional mapping. Learning algorithms are designed
merely to obtain a solution (not a particular solution). Because
the sensorimotor system is massively redundant at all levels from
neurons to muscles (see below), a neural network model should
also be highly redundant (many more hidden nodes are used
than are required to accomplish the task). In essence, the system
should be so underconstrained that a given weight can assume
a wide range of values and still be part of a solution set. Thus, the
solution manifolds, represented by lines, are actually high-di-
mensional curved surfaces, and the intersection of two solution
manifolds, depicted by a point, is also a high-dimensional sub-
manifold. Exactly what is meant by “high-dimensional” is dis-
cussed in SI Results.

Network Features. Below we identify three features inherent to
biological nervous systems as multijoint controllers that distin-
guish them from artificial neural networks used, for example, to
solve problems in pattern recognition or data mining.
Noisy. Neurons are noisy (7, 8). They are noisy signal processors;
their synapses are noisy signal transducers; synaptic change is
a noisy morphological process. The noise level relative to the
signal may be high (9). Our simulations included all three possible
noise sources ranging from low levels to extremely high levels:
up to 30% of the signal for nodes/weights and 400% for weight
changes (Methods). These noise levels far surpass the levels that
are usually included in neural networks.

Fig. 1. Neural networks. (A) Stability–plasticity dilemma.
See text for details. (B) The gold and green lines correspond
to all solutions in weight space (i.e., a manifold) for skills
and . The manifolds are “blurry” because the presence of
feedback precludes the need for an exact feed-forward
solution. Point P denotes the intersections of these mani-
folds (and α is the intersection angle). The untrained net-
work exhibits a starting configuration, S, and through the
practice/performance of the different skills, the network
approaches P. Three learning steps are illustrated. (C) A
schematic phase portrait of network behavior as a function
of learning rate and noise level. Our network exhibits a
high level of irreducible noise (blue “x”), which forces the
network into a high learning rate. (D) An example of ill-
conditioned oscillatory behavior. Gray lines denote level
curves of the error function, and the black lines denote the
trajectory in weight space.
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Redundant.Biologicalmotor systems aremassively redundant—the
system containsmanymore degrees of freedom than are necessary
to accomplish the task (10). Redundancy applies throughout the
system, as there are excess numbers of cortical neurons, spinal neu-
rons, muscles, joints, etc. Two different types of redundancy exist—
external system redundancy and internal system redundancy—
depending upon whether the redundancy applies to an observable
behavioral variable (external) or an unobservable state variable
(internal). See SI Discussion for examples. Our focus is on in-
ternal system redundancy, although all manners of both types of
redundancy coexist.
Reliant on feedback.Biological motor systems rely on feedback from
multiple sensory/proprioceptive modalities, as well as corollary
discharge, for online self-correction. Feed-forward commands are
inherently imperfect due, in part, to corruption by internal noise
sources, and feedback signals help to compensate. The manifolds
in Fig. 1B are correspondingly fuzzy to depict a buffer zone pro-
viding tolerance for imprecision in the feed-forward command
(this “cloud” extends in all directions in weight space). Feedback
mechanisms also serve as a natural source for generating teaching
signals by which to train the system (11, 12).
Three additional assumptions that could apply to any network

are also incorporated.
Hyperplasticity. This assumption qualitatively characterizes the
learning rate of the system as high: Even when sensorimotor errors
are relatively small, synapses are hypothesized to undergo signifi-
cant changes. In the gradient descent learning algorithm used
in our simulations, weight changes range from 15% to 50% of
the gradient (not the typical 1% used for these types of networks)
(Methods). Hyperplasticity and high noise levels distinguish our
network from other stochastic gradientmethods in that the weights
remain highly malleable at all stages of the learning process.
Trial-by-trial learning.After each instance of practicing/performing
a sensorimotor act, synapses are altered to reduce the experi-
enced error. This assumption, standard for neural networks, is
supported by the rapid error reduction observed in sensorimotor
adaptation experiments (13, 14) and the autocorrelation of errors
seen during unperturbed movements (15).
Equivalence of Internally Redundant Solutions. In dynamical systems
theory, it has long been known that different combinations of
system parameters can lead to the same output behavior. This
point has been explicitly made for the crustacean pyloric circuit
(16). For connectionist learning systems, network configurations
can exhibit different patterns of synaptic weights, yet as long as
inputs map correctly to outputs, all solutions are equally valid.
By incorporating these features—most critically, the dual as-

sumptions of hyperplasticity and high noise levels—we construct
a unique type of neural network for understanding the processes
of biological motor memory formation and retention.

Results
Solution Space of Viable Networks. Our analysis focuses on net-
work properties as a function of two parameters: learning rate
and noise level. For every network variant (number of nodes,
input–output mapping, choice of transfer function, etc.) (Meth-
ods), these two critical parameters were systematically varied.
The resulting network behavior was characterized according to
the following three criteria: (i) convergence, (ii) performance
threshold, and (iii) conditionability. The convergence criterion
requires that the network error converges, rather than diverges,
with increasing trial number. The performance threshold criterion
requires that the average error, at asymptote, falls below a desired
threshold value. The conditionability criterion requires that con-
vergent solutions are well behaved (i.e., not ill-conditioned).
For the simulations that were run, a typical phase portrait of

network response is schematized in Fig. 1C. The dashed black
line denotes a boundary of convergence. When the step size is
too large, because the learning rate or noise level (or a combi-
nation of both) is too high, the system diverges as if it were
a control system operating with too high a feedback gain (17).
The solid line is the performance threshold—that is, the level set

(or isocontour) of learning rates and noise levels that exactly
meets the minimum performance requirements (all points above
the line satisfy this constraint). Its exact shape, as well as the
exact shape of the boundary of convergence, depends on the
specific network architecture, learning rule, problem to be solved,
etc. However, the performance threshold must slope upward at
low learning rates: If the noise is increased, the learning rate must
be increased to compensate for the noise, while still maintaining
the same level of performance. It must also tend toward verti-
cality at the point where the noise level is so high that no boost in
learning rate can produce the desired performance.
Divergence is not the only type of instability exhibited by

connectionist systems. If the learning rate is too high, the error
oscillates at asymptote instead of smoothly converging, i.e., the
“cross-stitching” effect (18) shown in Fig. 1D. This problem of
network ill-conditioning (19) arises when the error function is
characterized by sharply different slopes for different directions
in weight space (numerically assessed from the eigenvalues of the
Hessian matrix). Geometrically, ill-conditioning can be envi-
sioned as long, narrow valleys of the error surface that induce
unproductive oscillatory behavior. Noise mitigates the problem
by providing the network with the capacity to “escape” from such
ravines, thereby enabling a network to operate at higher learning
rates without producing oscillations in the error at asymptote. As
a result, if a minimum performance threshold is specified with
regard to a network being properly conditioned, it slopes upward
like the dotted line in Fig. 1C—all points below this line will
satisfy the constraint. A more detailed explanation of how an
increased noise level enables a network to avoid cross-stitching is
contained in SI Results. Here we note that examples of the ex-
ploratory benefits of noise are found in the concepts of simulated
annealing (20), reinforcement learning (21), and other stochastic
learning methods (22).

Hyperplastic and Noisy Networks. The shaded area in Fig. 1C
represents the region in parameter space fulfilling all three cri-
teria above. The first result of this work is that all network var-
iants admitted solutions in regions of the parameter space where
the learning rate and the noise level were both “high”. Here,
a high learning rate is characterized as ranging between 15% and
50% of the gradient. At these learning rates, if the noise in the
system is dropped to zero, the network becomes ill-conditioned
or divergent. High noise levels typically range from 10% to 30%
for the nodes/weights and from 200% to 400% for the weight
changes. At these noise levels, a significant drop in the learning
rate leads to high network error or divergence. Clearly, then,
high learning rates and high noise levels reciprocally interact to
restore network functionality where the effect of a large value of
either parameter alone is otherwise deleterious.
Our theory posits a high level of irreducible noise in biological

systems (the blue “x” in Fig. 1C), and this noise level forces the
network to assume a high learning rate to satisfy the perfor-
mance threshold criterion. Such networks are termed hyper-
plastic and noisy. The rest of the paper investigates the attributes
of these networks compared with conventional neural networks,
i.e., those with a low learning rate and no noise. Our ultimate
conclusion is that the combination of high learning rates and high
noise levels imbues biological sensorimotor systems with many of
their distinctive properties. To our knowledge, hyperplastic and
noisy networks signify an entirely unique construction, presumably
because for most application purposes, it would not make sense to
willfully inject extremely high noise levels into a system.

Adaptive Weights That Never Stop Adapting. The key result ob-
served during the simulation of hyperplastic and noisy networks
is that simple error-based learning gives rise to a permanently
nonstationary network: The weights are perpetually in flux, re-
gardless of whether or not overt learning is taking place at the
behavioral level. Consider the performance of a highly stereo-
typed skill with little or no behavioral variability. As the skill is
performed, system noise generates random perturbations in the
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feed-forward command signals. Because the skill is well learned,
task deviations as a result of these perturbations will be relatively
small, so that feedback can largely compensate for their effect
during performance. After performance, the system automati-
cally attempts to reduce its own feedback-compensated errors via
its usual learning mechanisms of weight adaptation, so that
on the next trial there is no feed-forward error, assuming that
there is no noise. Of course, there is always noise. In essence, the
network adapts its structure to accommodate the noise it expe-
rienced on its last trial, even when feedback prevents the pres-
ence of behavioral error: Learning of some kind is always taking
place. Critical to this conception of learning is the notion that
some level of feedback control is always operative in biological
motor systems, even during the performance of highly practiced
and skilled movements (in contrast to robotics where, absent
external perturbations, canonical movements can be precisely
and repeatedly executed using feed-forward commands alone).
This assumption is supported by findings that precise movements
require online visual (23) and proprioceptive (24) feedback.
If the theory is viewed from a graphical perspective, a skill has

been learned when the network configuration lies at or near
a point in weight space contained on the corresponding solution
manifold. If the skill is then repeatedly practiced, noise-induced
learning will move the weight configuration of the network to-
ward, by definition, some point on the high-dimensional solution
manifold. Given the randomness of the noise and the flexibility
afforded by massive redundancy, the place in weight space where
the network ends up is not necessarily the same place where it
started; i.e., the weight configuration of the network randomly
wanders in the neighborhood of a large null space of solutions.
Fig. 2 illustrates this point for two artificial neural networks that
learn to perform a function approximation task (a simulation of
center–out arm reaches in eight directions—SI Methods). The
network architectures and learning rules are identical. The dif-
ference is that one network is hyperplastic and noisy, whereas the
other has a low learning rate and no noise. Although the net-
works achieve similar levels of performance (Fig. 2 A and B), the
temporal profiles of the weights differ radically: The weights in
the hyperplastic, noisy network (Fig. 2D) are always changing,
even after performance asymptotes. The weight changes are
driven by random noise but are not wholly random, as lying on
a solution manifold represents a strong constraint for the pop-
ulation of weights as a whole.
The idea that experience-dependent synaptic change is always

taking place at high rates, even in adulthood, comports with
a growing body of evidence attesting to the remarkable degree of
plasticity inherent in the vertebrate central nervous system. This
evidence includes cellular operant conditioning studies showing
that the firing rates of individual neurons are significantly mod-
ulated (50–500%) on the timescale of minutes (25), single-cell
recording studies showing rapid in-session changes in motor
cortical activity during adaptation tasks and continued post-
asymptotic activity changes (26, 27), and recent two-photon
microscopy studies revealing that dendritic spines and axonal
boutons continuously sprout and retract (see Dendritic Spine
Fluctuation). However well motivated, though, the hyper-
plasticity assumption still seems to lead to a functional paradox:
How can a perpetually nonstationary network stably retain pre-
vious learning? Hyperplasticity appears well suited only to ex-
plain the “plasticity” half of the “stability–plasticity” dilemma,
leaving unexplained the stability of long-term memories. Here
we propose a resolution to this dilemma, and a metaphor for the
answer can be drawn from statistical thermodynamics in the
concept of a dynamical equilibrium: A closed liquid–vapor sys-
tem held at thermal equilibrium maintains constant thermal
properties even as individual molecules are rapidly transitioning
across different physical states of matter. Similarly, a learned
skill need not entail a fixed configuration of synapses within
a sensorimotor network (28). Individual synapses can rise and
fall as long as the network is properly balanced on a global scale.
How is this global balance achieved and what form does it take?

The Orthogonal Manifold Theory. Consider Fig. 1B again. Learning
skill slightly unlearns skill . Geometrically, the reason for this
“interference” is that a movement of Δd along the perpendicular
of the manifold leads to a movement of Δd cosðαÞ away from
the perpendicular of the manifold. Suppose the network is
configured at a point in weight space where the manifolds are
orthogonal to one another: cos

�
π=2

� ¼ 0. The learning of
does not unlearn —there is no interference. More gen-
erally, suppose a network is configured at or near a point of in-
tersection between two solution manifolds. What condition ensures
that the network remains configured at or near such an intersection
point, despite the network’s nonstationarity, during continued
practice of the two skills? The answer is that the normal vectors
to the manifolds must be perpendicular at the intersection point.
Weight space is high dimensional and manifolds are curved, so

the condition of noninterference must be phrased generally in
differential-geometric terms. If a network is configured near an
intersection point of solution manifolds and , the skills will
not interfere with each other when the weight change induced by
the error in practicing is guaranteed to be parallel to the
local tangent plane of the manifold and vice versa. Specif-
ically, let the network be represented as Z

→ ¼ f ðW→;X→Þ and sup-
pose the network is configured near an intersection point so that

Fig. 2. Comparison of network performance between a nonhyperplastic,
noiseless network and a hyperplastic, noisy network. The values of key
parameters distinguishing the two are displayed at the top. (A and B) The
total error approaches a similar value for both network types, albeit slightly
lower for the noiseless network. (C and D) The time course of six weights
taken from all three network layers. (E and F) The “angle” (Methods) be-
tween two specific skills is plotted across trials. This angle approaches 908 in
the hyperplastic network.
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and . The weight change experi-
enced after practicing/performing skill , denoted as ,
depends on the specific learning rule used. For this weight
change to avoid generating increased error in the subsequent
practice/performance of skill , it must be contained within the
local tangent plane of skill ,

where ∇Ef is the gradient of the error of the network function, f,
taken with respect to the current weight vector, and the super-
script means evaluated at .
This new condition allows us to formulate sensorimotor skill

learning as more than a function approximation problem. Sup-
pose that a biological learning system must learn n patterns, with
the ith pattern denoted , and the network itself is
represented as the function f: Z

→ ¼ f ðW→;X→Þ. Then full learning is
said to have occurred when the network configuration lies within
a manifold in weight space such that any point contained within
that manifold, called W

→
M, fulfills the following two conditions:

i) Static equilibrium.

This is the standard definition of associative learning cast as
a function approximation problem: Points in weight space exist
such that each input pattern is mapped to its corresponding out-
put pattern, meaning that the overall error is small. The network
starts at a random configuration in weight space and, through use
of a learning rule, moves to such a point.
ii) Dynamic equilibrium.

For learning to be maintained given the perpetual nonstationar-
ity of the weights, the network configuration must arrive at a re-
gion in weight space such that the skills in a skill set fulfill the
orthogonality constraint: The movement in weight space induced
by practicing a given skill is roughly orthogonal to the gradient
of all other skills. Because the inner product between the error
gradient and the weight change trivially goes to zero if the
magnitude of the weight change goes to zero (as naturally hap-
pens in noiseless neural networks), the inner product must be
divided by the norm of the weight change. Condition ii must
hold generally for any noisy learning system, regardless of net-
work architecture or choice of learning rule. For a standard
feed-forward neural network with gradient-descent learning,
we show the neurophysiological consequences of this condition
in Neurophysiological Consequences of Orthogonality.
What guarantees that a dynamic equilibrium will be reached or

approached when the only mechanism for weight change is simple
gradient descent? First, it must be established that orthogonal
intersections exist, which can be done if the dimensionality of
weight space is sufficiently large. Simple calculations on the
number of synaptic connections within real neural circuits suggest
that more than enough redundancy exists (SI Results). Given the
existence of orthogonal solutions, the network is guaranteed to
move toward them with sufficient practice because weight change
is proportional to error, and for networks whose weights never
settle, orthogonal solutions minimize error across a skill set. This
fact is illustrated in Fig. 3A, where the network is configured near
the orthogonal intersection of two solution manifolds. When
skill is practiced and subsequent movement of the configura-
tion in weight space takes place, the deterministic movement
component projects in the direction of the gradient of , which is
locally parallel to the manifold of skill . Thus, the error in skill
does not, on average, increase through practice of skill (Fig. 3A

and SI Results). In contrast, when learning has concluded for
a noiseless network with a low learning rate, the intersection
angles are immaterial, because—regardless of local geometry—
the error is already minimized and the weights have stabilized.
It is important to realize that, for hyperplastic and noisy net-

works, the path of convergence to orthogonal solutions is proba-
bilistic, not deterministic. The system is not designed to specifically
seek out orthogonal intersections over nonorthogonal inter-
sections. Rather, by always acting to reduce error, the network
statistically gravitates (with sufficient practice) to regions of weight
space where the desired constraint of Eq. 3 is fulfilled. A loose
analogy for this process is found in the concept of a biased random
walk: On a given trial, a step can occur in any direction, yet
movement in the long run always takes place in the direction of bias.
For hyperplastic and noisy networks, the mechanism of conver-
gence is somewhat inverted. The system constantly steps through
weight space with an average step size that is a function of the in-
tersection angles of the solution manifolds, so that displacement
is minimized when the solutions are orthogonal. Thus, the con-
straint of Eq. 3 acts something like an attractor because once the
network enters, through exploration, a region of orthogonality, its
tendency to leave is minimized. Unlike a conventional attractor,
there is no mechanism to specifically pull the network inside, only
a tendency to prevent it from leaving. For this reason, extensive
repetition is required after behavioral asymptote to attain an
orthogonal solution.
Fig. 2F plots an example of how the angle of intersection be-

tween a single pair of solution manifolds tends toward 908 after
extended practice, despite wild fluctuations in the “intersection”
angle at the beginning. [The concept of an intersection angle is ill-
defined early in practice when error is high because an in-
tersection point, by definition, requires low error (SI Methods).]
This tendency of moving toward orthogonality is found for all
possible pairs of solution manifolds (Fig. S2). As network re-
dundancy is decreased (SI Methods), the tendency toward or-
thogonalization is reduced and the time course of convergence
lengthened. For a nonhyperplastic and noiseless network, the
angle of intersection quickly settles at an arbitrary nonorthogonal
value (Fig. 2E).

A Geometric Interpretation of Skill Learning. The condition of dy-
namic equilibrium leads to a geometric interpretation of skill
learning. For a set of multiple skills, practice eventually drives

Fig. 3. Stages of learning. (A) This schematic shows a single practice trial of
skill during the late stage of learning of both skill and skill when the
network is near an orthogonal intersection. The black circle represents the
network configuration at the start of the trial, and the dotted lines denote
movement from performing skill . The black dotted line represents the
deterministic movement component resulting from error reduction in the
direction of the gradient, i.e., perpendicular to the manifold. The red
dotted lines represent potential displacements due to noise in the weight
change process itself: displacements that can occur both in the direction of
the gradient and perpendicular to the gradient. Because of orthogonality,
the configuration does not, on average, move away from the manifold
(minimal interference). (B) In early learning, the network configuration
approaches an intersection point of the manifolds of desired skills. (C) In late
learning, the network explores the space of intersections, tending toward
solutions that fulfill the orthogonality constraint.
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the weight configuration to a location in weight space where the
gradients of the solution manifolds are mutually orthogonal, so
that each skill is insulated from noise-induced weight changes
that result from the practice/performance of other skills. Con-
vergence to this end goal occurs through a two-stage process: (i)
The system approaches an intersection area of the solution
manifolds, and (ii) the system moves along the intersection area
toward a more desirable (i.e., orthogonal) solution. These stages
are now characterized further.
In the early or preasymptotic stage of learning (stage I), the

network is driven toward a weight configuration where the so-
lution manifolds for the different skills intersect. At this point in
the process, individual learning trials act, on average, to appre-
ciably reduce the considerable distance between the current
weight configuration and the solution manifold of the practiced
skill (Fig. 3B). What matters most during stage I learning are the
global metric properties of the solution manifolds—specifically,
the distance from the current weight configuration to the closest
region of intersection.
Once behavioral asymptote has been reached, however, the

network dynamics change. It becomes difficult to move any
closer to a solution manifold because of the effects of noise and
hyperplasticity, which together induce “jumps” in weight space of
comparable magnitude to the distance from the manifold. At this
point, a late or postasymptotic learning stage (stage II) com-
mences, whereby significant error reduction occurs not from
positioning the network closer to a solution manifold, but from
moving the network toward locations within a region of in-
tersection where the solution manifolds more closely approach
orthogonality (Fig. 3C). The strong stochastic component to the
weight change process ensures that the network will take steps in
the “wrong” direction, i.e., away from an orthogonal intersection.
Nonetheless, as the simulations show, after asymptote the weight
configuration migrates, on balance, along the intersection man-
ifold from regions far from orthogonality to regions close to
orthogonality. What matters most during stage II learning is the
local geometry of the intersecting solution manifolds. The two
learning stages exist as emergent network properties, not built-in
assumptions, because only the single mechanism of trial-by-trial
error reduction drives learning.
If skills are naturally orthogonal because they engage distinctly

different skeletomuscular machinery—such as threading a nee-
dle vs. kicking a field goal, for which skills nonoverlapping neural
circuits are engaged—stage II learning is not necessary, because
each skill will automatically be stable with respect to the practice/
performance of the other skill. However, if the skills share many
of the same skeletomuscular requirements—for example, a slice
backhand and a backhand volley—the manifolds of the skills will
not be orthogonal at the initial intersection point, and orthogo-
nality can be attained only through extensive practice.

A Reversal of Learning Transfer—Prediction and Experiment. This
two-stage geometric formulation of learning gives rise to a clear
prediction: In the case of highly similar skills, a reversal of learning
transfer will occur across the two stages. Consider a highly similar
skill pair (by which is meant that the sensorimotor requirements
of the two skills overlap significantly). Because of the shared
sensorimotor structure, the solution manifolds will occupy similar
regions of weight space. Thus, as stage I learning begins from a
distant starting point in weight space, movement toward one
manifold brings the network closer to the other manifold: Learning
transfers. This prediction is common to all learning models.
However, as learning continues after asymptote, ourmodel makes
a very distinct prediction. In the initial region of manifold in-
tersection, the intersection angle between the manifolds is
expected to be highly acute, once again because of the shared
sensorimotor structure. Thus, during the onset of stage II learn-
ing, the two skills will interfere with each other, as noise-induced
weight changes of one skill displace the network from the so-
lution manifold of the other skill. The sensorimotor similarity
that facilitates transfer during early learning ends up creating

interference during late learning when high levels of expertise
are sought.
We tested this prediction of transfer reversal, using a target

reaching task performed under the visuomotor perturbation of
a cursor rotation (29). Subjects learn to control an onscreen
computer cursor with a robotic manipulandum (Fig. 4A), while
direction of handle movement is dissociated from direction of
cursor movement by a rotation of 608. Subjects move to two
neighboring targets only—D1 and D2 in Fig. 4B—so that the two
movement tasks are highly similar. First, we investigated transfer
during stage I learning. The results replicated the well-established
finding (SI Methods) that de novo learning of the visuomotor ro-
tation to either D1 or D2 in isolation transfers significantly to the
other target.
Next, we tested the more distinct prediction that during the

onset of stage II learning, movements to D1 and D2 will interfere
with one another. Fig. 4C outlines the protocol, and Fig. 4D and
Fig. S3 show the data. After an initial period of practicing D1 and
D2 in alternation so that behavioral asymptote is just reached
(stage II onset), subjects repeat movement D2 by itself 120 times
(15 cycles). Performance of movement D1 is then briefly assessed
after the extended practice of D2. There is a huge jump in error
for movement D1 from 10.8° at cycle 18 to 23.3° during the first
movement of cycle 34 (Fig. 4D and Fig. S3). Although this initial
rise in error (an increase of 12.5°) is highly significant (P <
0.00001, n = 12), it fades quickly (back down to 11.0° after four
movements). Thus, the extended practice of D2 generates a tem-
porary increase in error for D1 after the two skills were learned in
tandem just to asymptote. This increase in error cannot be at-
tributed to a surprise or novelty effect because subjects were ex-
plicitly informed of the upcoming change in target sequence
(SI Methods).
After cycle 34, both movements are practiced in a pseudoran-

dom fashion for 48 cycles (192 movements to each target). Then
movement D2 is again practiced, by itself, 120 times from cycle 82
to cycle 97. When performance in movement D1 is assessed this
time, the error no longer jumps significantly: The error for
movement D1 at cycle 82 is 8.6°, compared with 9.7° during the
first movement of cycle 98 (Fig. 4D and Fig. S3). Thus, practicing
one skill repeatedly can actually unlearn a similar skill if as-
ymptote has just been reached. Once the skills have been re-
petitively practiced in tandem after asymptote, such disruption
does not occur. These observations are simulated with good
results, using a hyperplastic, noisy network (Fig. 4E). Fig. 4F
illustrates that motor memory “stabilization” occurs within the
model because the two solution manifolds become orthogonal
during the extended period of mixed practice after asymptote. A
noiseless distributed network cannot replicate this result because
once the error reaches asymptote, the network configuration
remains static (Fig. 2C), and the error never jumps. Finally, the
model predicts that the transfer reversal effect will increase in
magnitude as the two skills are made more similar, because the
orientations of the two solution manifolds within the initial re-
gion of intersection correspondingly become more similar.
We liken this phenomenon to the striking asymmetric transfer

observed in sports science studies (30), whereby the backhand of
a skilled tennis player who has never played squash will transfer
positively to a squash backhand, even though—at the same time—
continued practice of the squash backhand is well known to neg-
atively impact the expert tennis stroke. Asymmetric transfer is one
of many heuristics emanating from the sports science/kinesiology
communities (e.g., variability of practice effect, rapid deadaptation,
warm-up decrement, etc.) that form the basis of our current ped-
agogy on skill instruction (30) and are codified by the invocation
of hyperplastic and noisy networks (31).

Dendritic Spine Fluctuation
Neurophysiological support for the model would consist of direct
experimental evidence showing that synaptic weights fluctuate
significantly in mature animals, even when behavioral learning
has reached asymptote with little or no behavioral error. Here,
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we examine the existing cellular imaging data on dendritic spine
turnover and address the question of whether the model can be
used to simulate these data.
Standard neural networks represent the aggregate connection

strength by which one neuron (or neural population) affects the
firing rate of another neuron (or neural population) with a single
continuous-valued weight (e.g., 0.57). In real neural circuits,
neurons are interconnected through a multitude of synapses,
each of which links (in most cases) a single axonal bouton to
a single dendritic spine. The overall synaptic input convergent
upon an individual neuron can therefore be modulated by (i)
altering the efficacy of existing synapses (such as long-term po-
tentiation or depression), (ii) adding and/or removing boutons/
spines without global remodeling of axonal and dendritic arbors,
or (iii) larger-scale remodeling of axonal or dendritic arbors as
happens during development. From an experimental stand-
point, it is difficult to establish the occurrence of i. However,
with the advent of two-photon microscopy for bioimaging (32),
it is now possible to observe within the cerebral cortices of be-
having animals the turnover of dendritic spines and larger-scale
restructuring of axonal and dendritic arbors. Numerous studies
from multiple laboratories have produced detailed observations
on dendritic structures as they vary on timescales from hours to
days over a variety of behavioral conditions for adult behaving
animals (33–36). These studies largely agree on the following
three findings:

Significant large-scale remodeling of axonal and dendritic arbors
does not appear to take place in adult animals even under con-
ditions of behavioral manipulation and learning.

Under conditions that are conducive to adaptation/learning
(such as the alteration of sensory input or the learning of a novel
motor task), significant turnover occurs within the population
of dendritic spines on the timescale of hours to days.

Even under control conditions when no overt learning takes
place, there is still a fairly significant baseline level of dendritic
spine turnover.

The first observation reinforces the understanding that the basic
skeletal outline for global synaptic connectivity within neural cir-
cuits is laid down during development and likely not modified sig-
nificantly thereafter. The second observation affirms the widely
held hypothesis that experience-dependent plasticity—including
the growth and retraction of dendritic spines—underlies the
adaptive formation of new memories in response to novel envi-
ronmental conditions. The third observation, however, is intuitively
puzzling for someof the same reasons discussed in the Introduction.
Why should dendritic spines come in and out of existence even
when there is no overt learning? Will perpetual synaptic flux de-
stabilize a learning system and erase old memories?
A pair of recent two-photon microscopy studies looked at

the addition and subtraction of dendritic spines in the primary
motor cortices of mice while the mice learned a new motor task
(35, 36). Fig. 5A shows the key result from ref. 36. After 2 d of
training on a new motor task, roughly 8% of the total population
of observable dendritic spines are newly formed (and a compa-
rable percentage of existing spines have been removed). Pre-
sumably, the development of these spines has something to do
with the adaptive reorganization of the relevant cortical circuits
to better perform the behavioral task. However, even in the case
of control mice where no overt learning takes place, there is
still significant dendritic spine turnover: After 2 d, over 3% of
the spines have been newly formed. These results typify the
two-photon microscopy data in adult mice across a variety of
perceptual manipulations and motor adaptations. Although the
exact numbers depend on the specific preparation and task, after
2 d of learning somewhere between 8% and 12% of the dendritic
spines are newly formed in the treatment group, whereas 3–5%
of the dendritic spines are newly formed in the control group. It

Fig. 4. Reversal of learning transfer for the visuomotor
rotation task. (A) Robotic manipulandum controlling on-
screen cursor. (B) Two targets are used. (C) The order of
target presentation for the experiment is displayed. There
are eight targets in a cycle, and each cycle contains either
D2 only or a pseudorandom mixture of D1 and D2 (except
for cycles 34 and 98). (D) The black and blue points denote
the error for movements to target D1 (shown with SE),
whereas gray points denote movements to target D2 (error
bars omitted). Individual trial movement data are shown
instead of cycle averages for cycles 34 and 98. (E) Simula-
tion results for the same experiment are shown. Because
the model includes high noise levels, 1,000 simulation
results are averaged. (F) The angle between the two skill
manifolds is plotted over time after asymptote is reached.
The model reproduces the data through an increase in
the orthogonality of the two skills as interleaved practice
occurs beyond asymptote.
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is a remarkable, although unexplained, finding that the baseline
level of dendritic spine turnover consistently comprises 30–50%
of the learning-induced turnover.
To simulate the basic paradigm of refs. 35 and 36, we modify

our neural network simulations of visuomotor adaptation such
that each pair of interconnected neurons is linked by a huge
number of potential dendritic spines. Specifically, an aggregate
connection strength between two neurons is represented by the
percentage of activation of a pool of 10,000 potential excitatory
synapses and a pool of 10,000 potential inhibitory synapses
(neurons are typically believed to make roughly 10,000 synaptic
connections). These synapses are considered to be binary valued,
either 1 or 0 (i.e., active or inactive), so that this model does not
incorporate changes in synaptic efficacy (SI Methods). A dendritic
spine, once created, is active; if not active, it is removed. With this
formalism in place, the same gradient descent learning scheme
can be implemented, only now a weight change entails the crea-
tion/removal of a certain number of excitatory/inhibitory synapses
(and, correspondingly, a weight value entails the current activa-
tion/deactivation of a certain percentage of excitatory/inhibitory
synapses). As before, we run the simulations in a nonhyperplastic,
noiseless mode and a hyperplastic, noisy mode.
Fig. 5B shows a simulation run for the hyperplastic, noisy net-

work. The percentage of new dendritic spines is plotted vs. the
number of trials of practicing/performing a motor task (visuo-
motor adaptation). There are two different conditions. In the
“novel learning” condition, the subject has not been exposed to
a visuomotor perturbation and must learn it. In the “simple
repetition” condition, the subject has already learned the visuo-
motor perturbation to asymptote and merely continues repeating
trials. This condition resembles a control condition because no
new learning is taking place. The basic phenomenon revealed in
the two-photon microscopy literature is captured. After 100 trials,
roughly 8% of the dendritic spines are new in the novel learning
condition. This percentage continues to increase even after be-
havioral asymptote is reached (the “A” in Fig. 5B), although at
a significantly slower rate. In the simple repetition condition, just
under 3% of the spines are new after 100 trials, and this per-
centage, too, continues to increase, albeit at a slower rate.
Clearly, these simulations are not perfectly analogous to the

paradigms used in refs. 35 and 36, and a variety of simplifications
are necessarily made (SI Methods) that preclude a quantitative
comparison with the data. Nonetheless, from a qualitative
standpoint, hyperplastic and noisy networks robustly capture the
central features of these (and other) two-photon microscopy
studies in a parameter-independent fashion—that is, for all com-
binations of simulation parameters (SI Methods), the following re-
sults always held for this type of network:

Dendritic spine turnover in the novel learning condition varies
between 5% and 20% after the first 100 trials.

The percentage of new dendritic spines arising after 100–200
trials in the simple repetition condition constitutes between
15% and 45% of the percentage of new spines arising in the
novel learning condition for an equivalent number of trials.

Just as significantly, the nonhyperplastic, noiseless network
fails to reproduce either of these phenomena under any pa-
rameter setting, as illustrated in Fig. S4. In the novel learning
condition, the spines turn over at a much lower rate and on
a much longer timescale compared with the hyperplastic, noisy
network (thousands of trials are required to achieve 2% new
spine growth). More tellingly, in the simple repetition condition,
the percentage of spine turnover remains essentially at 0% the
entire time, an expected result given that neural networks usually
“freeze” a system’s parameters once an acceptable solution has
been reached for a fixed learning problem.

Neurophysiological Consequences of Orthogonality. If the orthogo-
nality constraint does constitute a fundamental organizing prin-
ciple of the central nervous system, how are its consequences

reflected in activity patterns of single neurons? The answer is
that orthogonality leads to the development of specialized neural
representations embodied, in part, by sharpened neural tuning
curves. To deduce this result, one must evaluate the orthogo-
nality constraint for a specific learning rule, error function, and
network architecture. Here we assume gradient descent learning,
a quadratic error function, and a purely feed-forward multilayer
perceptron (see SI Discussion for other assumptions).
From Eq. 1 and gradient descent learning, orthogonality is

quantified by (i) computing the gradient of the network error
function with respect to all of the weights for each skill separately,
(ii) taking the inner product of these gradients for each skill pair,
and (iii) summing these inner products. The gradient of the error
function can be decomposed and simplified into an expression
involving the gradients of the activity of individual output nodes
(Eq. S3). In the presence of noise, the entire summand goes to
zero when each of the following terms goes to zero (SI Results),

where the gradient ∂Zk

∂W
→ means that individual output node activity

is differentiated with respect to every weight in the network
(i and j index skills, and k denotes output node). At this point,
the modularity of feed-forward neural networks can be exploited
by dividing an arbitrarily large multilayer network into pairs of
successive layers connected by a corresponding weight matrix (SI
Results). Given this hierarchical decomposition of network struc-
ture into modules, the inner product of Eq. 4 can be recast as the
module-by-module sum of inner products involving only the par-
tial derivatives of output node activity taken with respect to the
corresponding weight matrices (SI Results). By computing this
quantity across all pairs of skills, we gain insight into how each
module of a feed-forward network contributes to the overall
measure of orthogonality.
Unfortunately, this formulation of orthogonality is still not

useful because no obvious empirical method exists for measuring
the values of individual weights. The network quantities most
accessible to measurement are the nodal activities. Thus, if the
vector of partial derivatives with respect to weights can be al-
ternatively expressed in terms of nodal activations, then the or-
thogonality constraint can be cast into an interpretable form. Fig.
6A depicts a network module. R neurons in layer I feed forward
to S neurons in layer II, νr is the activation of neuron r in layer I,

Fig. 5. Turnover in dendritic spines. (A) Data from Yang et al. (36). (B)
Simulated turnover in dendritic spines (relative to t = 0). As skill learning
commences in the novel learning condition, the dendritic spines appear and
disappear fairly rapidly, with roughly 8% of the spines newly formed after
100 trials. After behavioral asymptote is reached (the “A” in B), the rate of
turnover slows down. In the simple repetition condition, the dendritic spine
turnover is slower at the outset but still significant. Note that after asymp-
tote is reached, the rates across the two conditions become comparable.
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wrs is an individual term of the weight matrix W that connects
neurons in layer I to neurons in layer II, g is the neural activation
function, Is is the total input to neuron s in layer II, us is the
activation of neuron s in layer II, and ∂Zk

∂us is the derivative of
output node Zk with respect to us. The contribution to network
orthogonality made by this module can be written as (see SI
Results for complete derivation)

where is the gradient of the output node Zk with respect to

I
→
, the vector of inputs into layer II, during performance of skill
. Neural activations, such as ν→, are measurable through stan-

dard physiological techniques, and the quantity ∂Zk

∂I
→ is conceivably

measurable through a combination of current injection and mul-
tisite recording. The left-hand side of Eq. 5 will tend toward zero
when the product of the two terms tends to zero, as happens
when one or both of the following conditions are satisfied:

i) The inner product of the neural activity vectors arising in layer
I across any pair of skills tends to zero. Because activities are
taken to be positive only, this condition corresponds directly
to representations that do not overlap within that layer. If two
activity patterns do not overlap, then the two skills use separate
sets of weights in transmitting signals from layer I to layer II
(Fig. 6A), meaning that changing a weight inW alters the down-
stream activity for one skill but yields no net change in down-
stream activity for the other skill.

ii) The inner product of the change in activity of an output node
with respect to the vector of input activity at layer II tends to
zero across all skill pairs. This condition is harder to interpret
intuitively. Basically, it means that the network has reconfig-
ured itself to exhibit an internal structure that decouples,
across skills, the output effects of changing the inputs to the
layer, so that weight changes that impact an output for one
skill exert no influence on any outputs for the other skills.

During training, a hyperplastic noisy network will generally
increase its orthogonality by reducing the value of both inner
products in Eq. 5. Condition i indicates that a tendency toward
task specificity of neural activity—as reflected through sharpened
neural tuning curves—is a strong neurophysiological prediction
that follows directly from the orthogonality constraint. A simu-
lation of the phenomenon for tuning to movement direction in
the center–out task is shown in Fig. 6B. In a hyperplastic, noisy
network, the neuron’s tuning curve becomes significantly sharper
after extensive postasymptotic training, despite the absence of
specific sharpening mechanisms, e.g., a recurrent feedback ar-
chitecture of lateral on-center excitation and off-surround in-
hibition (37). Intuitively, the idea of enhanced neural selectivity
makes sense. An effective way to insulate one skill from the noise
of other skills is to segregate—as much as possible—the cell

subpopulations responsible for each skill, so that the system au-
tonomously acts to reduce the overlap of its own internal repre-
sentations. Even if the activity of neurons overlaps significantly
across different skills, orthogonality can still be achieved through
fulfillment of condition ii. Finally, we note that in more realistic
neural networks with feedback across layers and recurrence within
a layer, Eq. 5 could not be cast into such a simple form, and the
extent to which the same consequences would be expected inmore
realistic neural networks is considered in SI Discussion.

Discussion
All existing paradigms of biological memory posit the storage of
information through the formation and retention of a “synaptic
trace”—that is, a novel pattern of synaptic connectivity imprin-
ted through experience. Because these synaptic memory traces
are embedded within the context of distributed neural circuits,
they can be degraded or interfered with through a variety of
means (e.g., damage to the circuit). Nonetheless, current doc-
trine asserts that the essence of a memory is embodied in the
degree to which the constitutive integrity of its original synaptic
trace remains intact; ideally, a synaptic trace will remain un-
altered from its original conception. Here we argue that, for the
case of motor memories, the pattern of synaptic connectivity is
perpetually nonstationary and that our view of motor memory
formation must be accordingly modified. Mnemonic permanence
is to be found not at the level of synaptic structure but, more so,
in the patterns of neural activity thereby elicited. With each
neuron connecting, on average, to 10,000 other neurons, the
nervous system is highly redundant so that a given pattern of
neural activity can be actualized by many different patterns of
synaptic connectivity. According to our theory, all such solutions
are equivalent and, as a result of hyperplasticity and high noise
levels, they are randomly interchanged through continued prac-
tice of the corresponding motor skill.
The full power of redundancy in driving a hyperplastic system

to explore its underlying solution space was understated in the
analysis of this paper, because a motor goal was represented as
an invariant activation pattern across a set of output neurons
(analogous to neurons in the motor cortex). This formulation
takes into account only internal redundancy, whereas external
redundancies are ignored. If the ultimate objective of a motor act
is more broadly construed as accomplishing a task in the envi-
ronment (38), then additional redundancies arise from motor
cortical neurons to spinal motoneurons, from spinal motoneur-
ons to muscle activations, and from muscle activations to joint
degrees of freedom to end-effector and task degrees of freedom.
These additional redundancies further enhance the flexibility of
the system in achieving a desired task goal and may further re-
duce the identifiable invariance of a motor memory to little more
than a circuit-wide configuration that yields the correct input–
output mapping.
The hypothesized link between the degree of neural tuning

and the level of behavioral expertise potentially resolves one of
the most puzzling aspects of motor neurophysiology. Decades of
studies have reported a bewildering multiplicity of movement

Fig. 6. (A) Two layers of a feed-forward network
with associated signals (arrow denotes direction
of information flow). See text for definition of
terms. (B) A simulation of sharpening of a tuning
curve (to movement direction) for a model neu-
ron. The black curve represents a neuron’s tuning
in the hyperplastic, noisy network when the
learning curve has begun to asymptote. The gray
curve represents the same neuron’s tuning curve
20,000 trials later. Although network performance
improves minimally over this span, the tuning
curve sharpens noticeably. For the hyperplastic,
noisy network, the tuning curves of 35% of the
model neurons sharpened by at least 10%.

[5]
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parameters, both high level and low level (e.g., muscle activa-
tions, joint torques, hand position, movement direction, move-
ment velocity, movement curvature, serial order, etc.), all
prominently represented throughout the motor cortices (39, 40).
However, surely the motor system need not—and from a com-
putational efficiency perspective should not (41)—explicitly
represent all aspects of the motor behaviors it can perform. A
resolution to this paradox lies in the way the experiments are
conducted. To test for the representation of a specific movement
parameter, a nonhuman primate is deliberately overtrained in
behaviors that vary widely across the dimension(s) in which that
movement parameter is measured. Regardless of whether or not
the movement parameter was recognizably encoded before
training, the cortex reorganizes (according to the theory) through
training to segregate the neural representations of the practiced
behaviors. Thus, the parameter’s heightened saliency in neural
response may emerge circularly from the experimental design,
with neural representation reflecting, in part, the statistical
structure of affordances present in the prevailing environment. If
true, neural response properties before a period of intensive
behavioral training lasting months or years may be very different
from those observed afterward (see SI Discussion for examples).
On the surface, this notion of constant network recalibration

may appear inconsistent with the known permanence of certain
motor memories even in the absence of practice: One never
forgets how to ride a bicycle. However, these two ideas are easily
reconciled by considering the level of intrinsic interference be-
tween the memorized skill and other routinely performed tasks.
If a finely tuned skill exhibits little sensorimotor overlap with
common tasks, then the skill will tend to persevere over time,
degrading slowly. If, however, the skill’s sensorimotor overlap

with daily activity is significant, then routine tasks will interfere
with skill maintenance, and performance will be degraded more
rapidly (just as practice of D2 disrupted D1 in the experiment
above). See SI Results for a more detailed analysis of the mne-
monic permanence of bicycle riding and other skills, and see SI
Discussion for how hyperplastic and noisy networks may even be
consistent with declarative memory.
The key hypothesis of themodel—and the one likely to generate

the most controversy—is hyperplasticity. What, exactly, does it
mean for a network to be hyperplastic and how can hyperplasticity
be inferred? A quantitative definition is not straightforward, be-
cause system-level in vivo learning rates cannot be determined
experimentally and, even if they could, the numerical threshold
for hyperplasticity varies according to network architecture, input
preprocessing, output postprocessing, and other factors (SI
Discussion). These caveats aside, five operational definitions of
hyperplasticity are provided in SI Results, along with a distinction
between developmental plasticity and adult hyperplasticity.

Methods
Two different types of methods are used in this paper: neural network
modeling (including the basic effect, simulations of the psychophysical results,
and simulations of dendritic spine turnover) and motor psychophysics. The
neural network modeling adheres to standard connectionist practices with
the exception of using hyperplastic learning rates and high noise levels. See SI
Methods for a detailed exposition of all methods. The mathematical deri-
vations are contained in SI Results.
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