Cluster Reading Group: Dark Matter Halos

The halo mass function, origins of the NFW profile, and the impact of baryonic physics

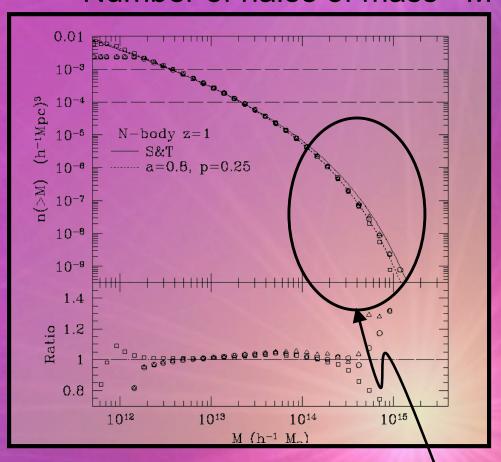
Overview

* The halo mass function

- * What it is and why we care about it
- * Press-Schechter and the peak/background split
- * Calibrations from N-body simulations

The NFW "universal" profile

- *** What is it?**
- * Why is it universal?
- * Trends with age
- * The role of mass accretion history


* The influence of baryons

- * Changes in shape of dark matter halo
- * Changes in profile of dark matter halo
- * Changes in the dark matter power spectrum
- * implications

The halo mass function

- * How does the dark matter organize itself in the universe?
- Dark matter lives in halos
- Mass function breakdown of halo masses
- * Big halos are rare
- Little halos are common
- Mass function evolves with z
 - * Moves to the left as z increases

Clusters

What use is the mass function?

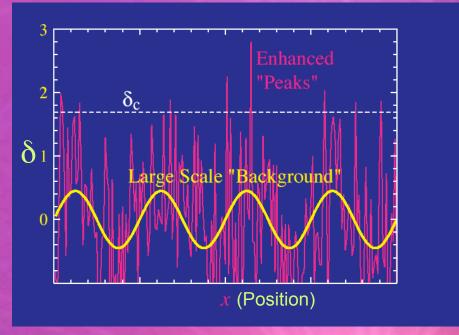
Cosmology

- * Number density of halos is sensitive to the rate of structure formation
- * The growth function is sensitive to several important cosmological parameters
 - lpha Matter density $\Omega_{\rm m}$
 - pprox Normalization of power spectrum σ_8
 - * Dark Energy parameters and evolution
- * Observations of the evolution of the mass function help constrain cosmological parameters

* Applications non-cosmological

* Important for determining abundances and observational rates of extragalactic phenomena that trace the dark matter, as a function of redshift

Where does the mass function come from?


Analytic arguments made by Press and Schechter

* Fraction of volume collapsed

$$f_{\rm coll}(M(R),z) = \frac{2}{\sqrt{2\pi}\sigma(R,z)} \int_{\delta_c}^{\infty} d\delta e^{-\delta^2/2\sigma^2(R,z)}$$

Assumptions

- * Overdensity fluctuations are Gaussian on all scales
- * Cheat in normalization
- Non-linear effects ignored in computation of the rms of the smoothed density field

Number density given by

$$dn(M,z) = -\frac{\rho_m}{M} \frac{df_{\text{coll}}(M(R),z)}{dM} dM$$

Mass Functions with N-body Simulations

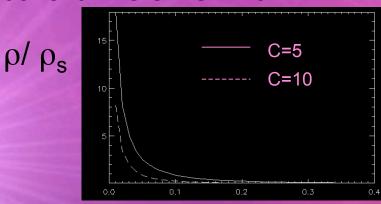
- Press Schechter theory is based on a number of flawed assumptions
 - Numerical simulations confirm that it is pretty accurate (White, Efstathiou & Frenk 1993)
- Not immediately clear why it works
 - * Some theoretical justifications exist (Peacock & Heavens 1990; Bond et al. 1991)
- * Some N-body calibrations of the threshold δ_c for spherical collapse exist
 - * Results so close to δ_c =1.686, the value for SCDM cosmology, that most people just use that value (Eke, Cole & Frenk 1996)
- * Very important extensions to Press Schechter theory exits
 - * Mass functions calibrated with N-body simulations have been widely used, most notably (Sheth & Tormen 1999) but also a more modern fit with larger simulations (Warren et al. 2005)

Meet the NFW profile!

* Dark matter lives in halos, but where in the halo?

$$ho_{
m NFW}(r) = rac{\delta_{
m ch}
ho_{
m crit}}{\left(cr/r_{
m vir}
ight)\,\left(1+cr/r_{
m vir}
ight)^2}$$

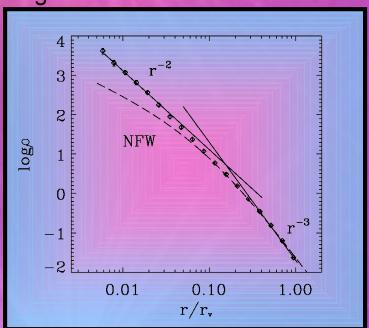
- * Two parameter family with a normalization δ_{ch} and a concentration c
- * The "mass" of the halo is given by


$$M = 4\pi \int_0^{r_{\rm vir}} \rho(r) \, r^2 dr$$

- N-body simulations: the virial radius corresponds to an enclosed overdensity of approximately 200
- * Reduce the number of free parameters to get $\delta_{\rm ch}$ in terms of c

$$\delta_{\rm ch} = \frac{200}{3} \frac{c^3}{[\ln(1+c) - c/(1+c)]}$$

What's concentration?


- * Halos of differing masses have different concentrations
 - * Small galaxy sized halos very concentrated with c~10
 - * Large cluster sized halos are much less concentrated with c~5 for most clusters
- Concentration governs how centralized the mass distribution is

Why is it universal?

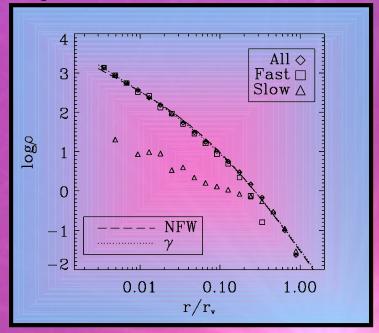
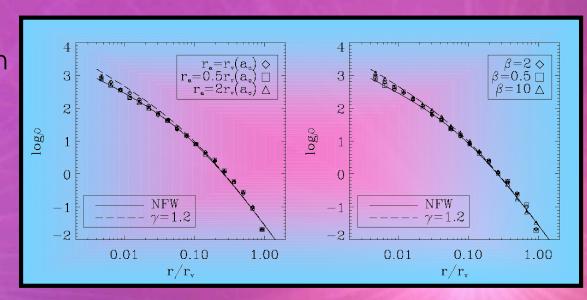

- * Paper I (Lu et al. 0508624) starts to address this question
- * Postulate all halos form in a two stage process

Fig. 1

Slow accretion phase only: pure radial infall

Fig. 2

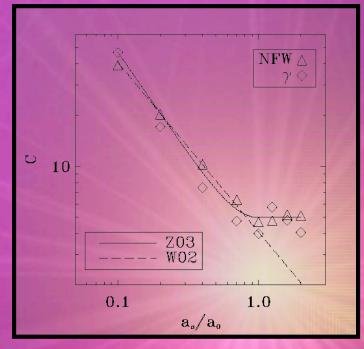

Slow and fast accretion phases: radial infall plus a merger dominated part

Why is it universal?

- * Fast accretion phase dominates inner profile and slow accretion dominates the outer part
- Modify the NFW to accommodate a varying inner slope, and test sensitivity to parameters of the fast accretion

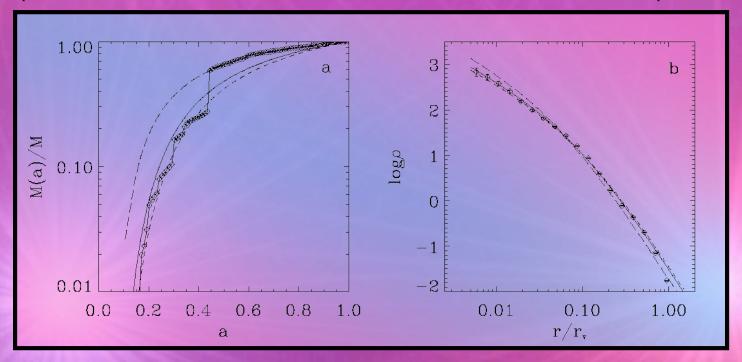
$$ho(r) = rac{\delta_{
m ch}
ho_{
m crit}}{\left(cr/r_{
m vir}
ight)^{\gamma}\,\left(1+cr/r_{
m vir}
ight)^{(3-\gamma)}}$$
 Inner slope

* Vast changes in the fast accretion parameters lead to minimal variation of the inner slope: γ~1 seems to be a generic result

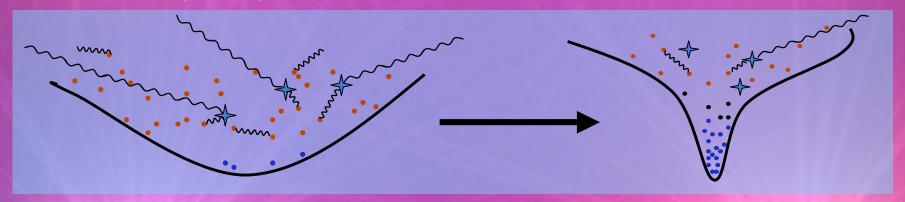


Trends with age (concentration)

- Older halos are, in general, more concentrated
- Smaller halos are older (form earlier) than large ones ⇒
 galaxy sized halos more concentrated than cluster sized
 halos
- * Andreas Berlind quote: "The concentration of the halo reflects the density of the universe at the time that it


formed"

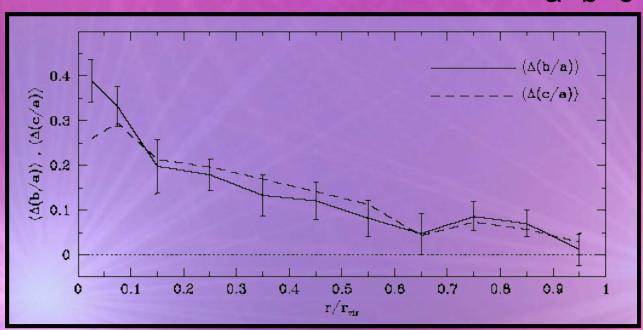
- * The trend of concentration with age seems to be dominated by the slow radial infall accretion phase
- The trend flattens out at late times -- halos in the fast accretion phase have concentration independent of age


The role of mass accretion history

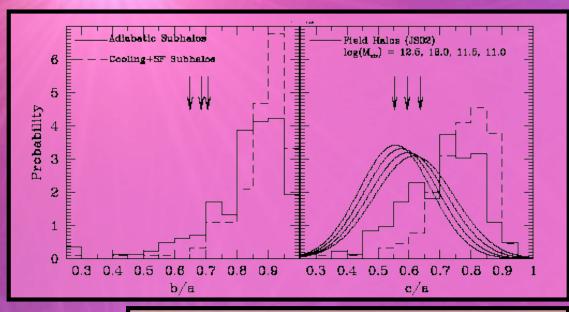
- * In reality, cluster mass is acquired by a sequence of mergers
- Details of the mass accretion history introduce scatter in the age-concentration (or mass-concentrations) relations
- The profile can still be fit by an NFW, but in the event of a big mass jump, a compromise between the recent and past histories must be used to understand the shape

Enter: the Baryons!

- * Baryons make up around %4 of the total energy density
- They differ from dark matter in that they couple to radiation
 - ★ They cool
 - * Through cooling they contract to high densities and form stars and galaxies
 - * They emit photons we can observe

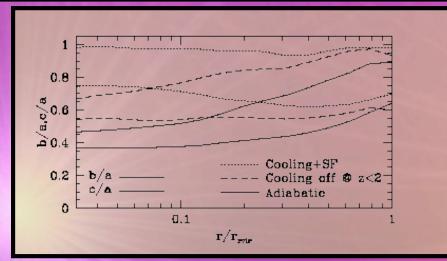


- * The physics is more complex because there is more than just gravity
- * Everything we can observe is touched by the baryons


Baryons change halo shape

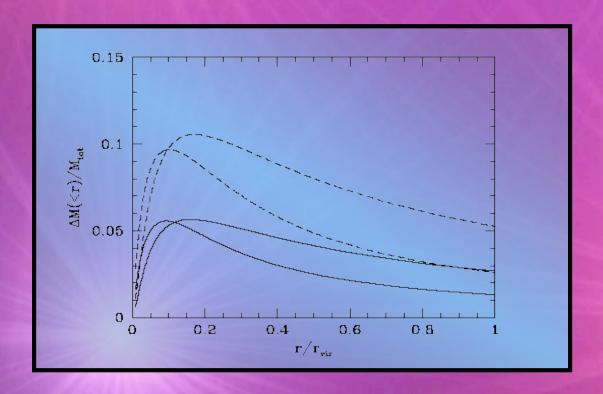
- * Paper II (Kazantzidis et al. 2005) quantifies this effect with numerical simulations
- * Halos are rounder overall with baryon cooling
 - * Inner radii %30-40 rounder(.1 r_{vir})
 - * Outer radii %10-20 rounder (~r_{vir})

a>b>c



Baryon cooling also changes shapes of substructure

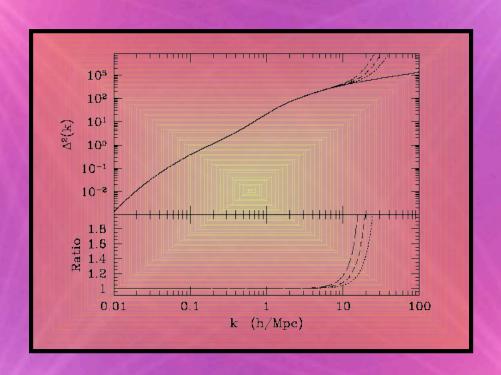
Substructure is rounder


a>b>c

These results are not just because of the overcooling problem in simulations

Baryonic cooling alters the profile and concentration

- * A very good paper I should have made you read: White 2004 (astro-ph/0405593)
- Gas cooling in the center causes the halo to become more concentrated


– – Cooled fraction %10

Cooled fraction %5

Upper curves have c=10 (galaxy)

Lower curves have c=5 (cluster)

Baryons change dark matter power spectrum

Cooled dense baryon clumps drag in the dark matter, and therefore change the power spectrum on small scales

Implications

- * Baryonic physics potentially plays a role in:
 - * Weak lensing power spectra
 - * Weak lensing cluster mass estimation
 - * Cluster X-ray temperature
 - * Cluster SZ decrement
 - * Cluster shapes (which impacts scatter in mass observable relationships)
 - * The nature of cluster substructure (more scatter)
 - * Galaxy profile within large clusters
 - * Hot gas profile within large clusters
 - * Models of galaxy bias
- So it's a good thing we're planning to think about this and learn to model it if we can!