Baryon oscillations in simulation

Alexia Schulz

Eric Huff
David Schlegel
Mike Warren
Martin White

Overview

MOTIVATION:

- Why study baryon oscillations in galaxy power spectra?
- Why worry about scale dependent bias?

MODELS:

- Scale dependent bias with the halo model
- 3 Other models of scale dependence

METHODS:

- Simulations and HODs
- S Fourier and configuration space methods

GRESULTS:

- 3 Halo model inspired bias model performance
- Comparison with other model performances

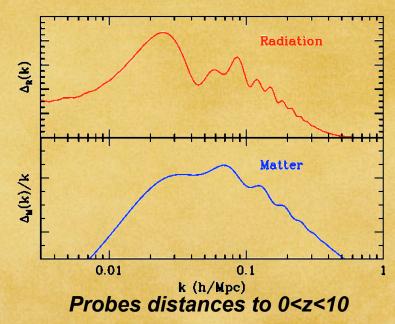
CONCLUSIONS:

- Implications for baryon oscillation experiments
- Unanswered questions

Why study baryon oscillations?

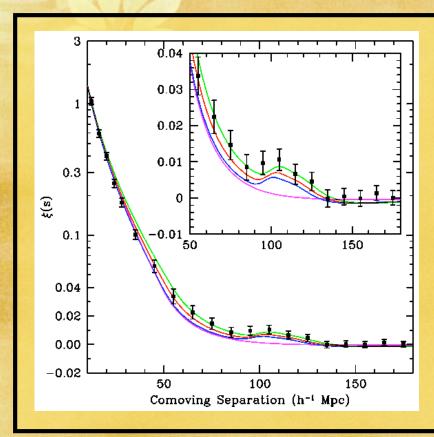
- Models of structure formation predict Baryon (Acoustic)
 Oscillations, a series of features in the matter power spectrum similar to the CMB anisotropies
- The location of the peaks provide a standard ruler that probes the expansion history of the universe, and provides a sensitive new measurement of cosmological parameters

Probes distances to z~1000

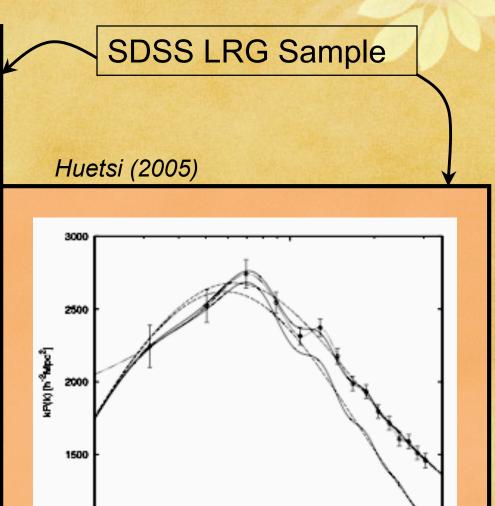


Baryon oscillations have been seen!

1000



Seo & Eisenstein (2005)

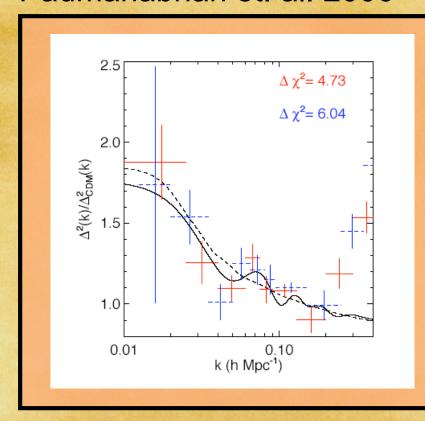


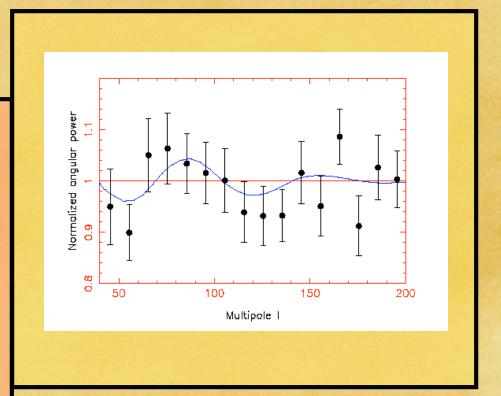
k [hMpc⁻¹]

Baryon oscillations have been seen!

... and photometrically.

Padmanabhan et. al. 2006

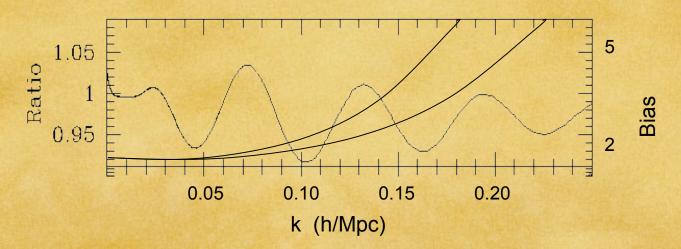




Blake et. al. 2006

Why study bias?

- The linear dark matter power spectrum cannot be directly observed -- need galaxies
 - **Galaxy bias**
 - **Mon-linear structure evolution**
 - **Redshift space distortions**
- Numerical simulations suggest that the galaxy bias has scale dependence on scales of interest
- Scale dependence in the bias can shift the relative positions of peaks and troughs in the baryon oscillations



Method: The Halo Model

- All matter and galaxies in the universe live in virialized halos characterized by their masses
- The 2-point correlation function is the sum of inter-halo and intra-halo pair contributions
- Contribution from pairs in separate halos dominates on large scales (the 2-halo term)
- Contributions from pairs in the same halo dominate on small scales (the 1-halo term)

The Halo Occupation Distribution (HOD)

- The halo model can be extended to galaxies that act as tracers of the dark matter
 - We divide the galaxy population into central and satellite galaxies

$$\langle N_c
angle = \Theta(M-M_{
m min}) \ \langle N_s
angle = \Theta(M-M_{
m min}) \left(rac{M}{M_{
m sat}}
ight)^a$$
 1 $M_{
m min}$ $M_{
m sat}$ Halo Mass

3 The mean galaxy number density is

$$ar{n}_{
m gal} = \int_{M_{
m min}}^{\infty} dM \, n_h(M) \, \left(1 + \left(rac{M}{M_{
m sat}}
ight)^a
ight)$$

Only satellites trace the halo dark matter profile

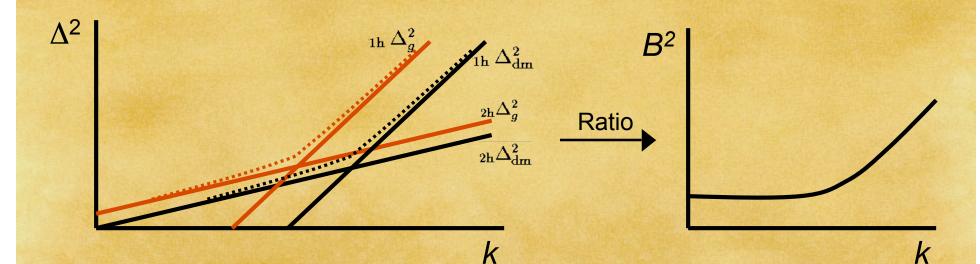
Galaxy Bias

If we choose to define galaxy bias as the ratio of the power spectra then____

$$B^2(k) \equiv rac{2\mathrm{h}\Delta_g^2 + 1\mathrm{h}\Delta_g^2}{2\mathrm{h}\Delta_\mathrm{dm}^2 + 1\mathrm{h}\Delta_\mathrm{dm}^2}$$

Relative shift in each depends on the HOD

In general, $_{2h}\Delta_g^2 > _{2h}\Delta_{\rm dm}^2$ and $_{1h}\Delta_g^2 > _{1h}\Delta_{\rm dm}^2$ but the two terms do not shift proportionally



Trends in Scale Dependence of Bias

- At fixed n_a, scale dependence increases as the tracers become more biased
- At fixed bias, scale dependence increases as n_a decreases, i.e. more scale dependance for rarer objects.
- The scale dependence is not sensitive to the distribution within the halo, only the number of galaxies per halo
- The halo model treatment suggests a more natural description of galaxy bias than B(k)

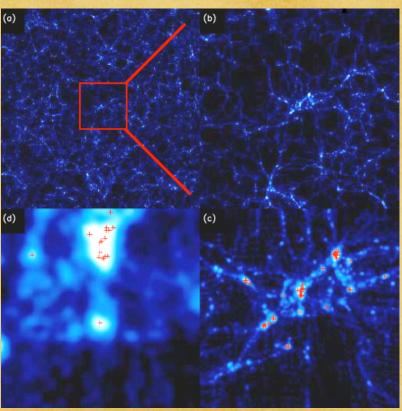
$$\Delta_{\text{gal}}^2(k) = b^2 \Delta_{\text{lin}}^2(k) e^{-(k/k_2)^2} + (k/k_1)^3$$

Determined by **HOD** parameters

Halo exclusion

N-body Simulations

- N-body simulations used to study structure formation as a function of cosmological parameters
- Some dark matter particles can be "painted" to represent galaxies
- A range of Halo Occupation Distributions (HODs) can be studied in this context (Huff, Schulz, Schlegel, Warren and White; in prep)



An Example

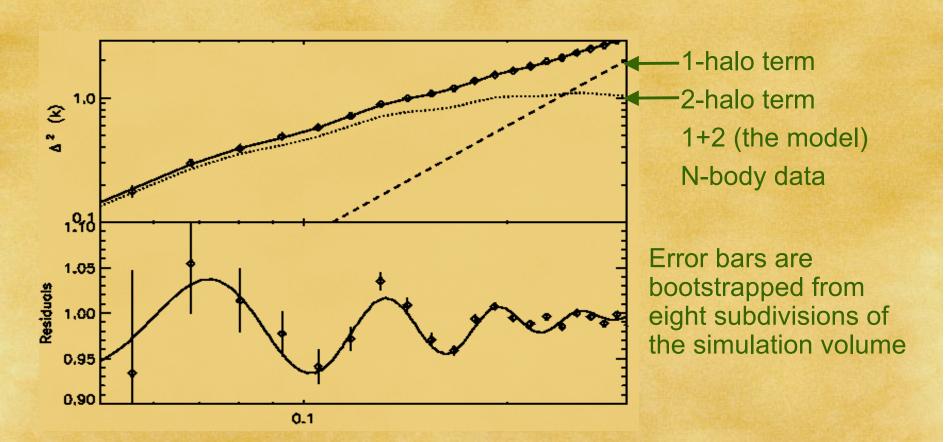
- •A 10 Mpc/h slice through a ~Gpc³ simulation
- Each panel zooms in a factor of 4
- •Color scale is logarithmic, from just below mean density to 100x mean density
- •Red points mark the galaxy positions

White 2005

Testing the halo model inspired treatment

This form agrees well with numerical simulations

$$\Delta_{\text{gal}}^2(k) = b^2 \Delta_{\text{lin}}^2(k) e^{-(k/k_2)^2} + (k/k_1)^3$$



Forms of galaxy bias tested

3 Blake & Glazebrook

$$\Delta^2(k) = \Delta_{ ext{ref}}^2(k) \left[1 + Ak \, \exp\left\{ -\left(rac{k}{k_s}
ight)^{1.4}
ight\} \sin\left(rac{2\pi k}{k_A}
ight)
ight]$$

G Q-model used in SDSS

$$\Delta^2(k) = b^2\,\Delta_{ ext{lin}}^2(k)rac{1+Qk^2}{1+ak}$$
a=1.7 Mpc/h

3 Halo Model Inspired

We introduce α to study the degeneracy between the model parameters and the position of the sound horizon

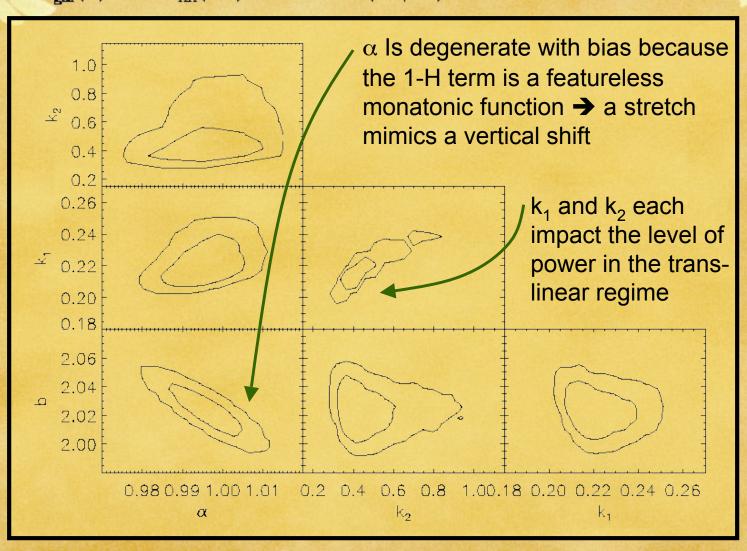
$$\Delta_{\mathrm{gal}}^2(k) = b^2 \Delta_{\mathrm{lin}}^2(lpha k) e^{-(lpha k/k_2)^2} + (lpha k/k_1)^3$$

3 Lagrangian Displacement

$$\Delta_{
m gal}^2(k) = b^2 \Delta_{
m lin}^2(lpha k) e^{-(lpha k/k_2)^2} + \left(lpha k/k_1
ight)^3 + \left(1 - e^{-(lpha k/k_2)^2}
ight) b^2 \Delta_{
m ref}^2(lpha k)$$

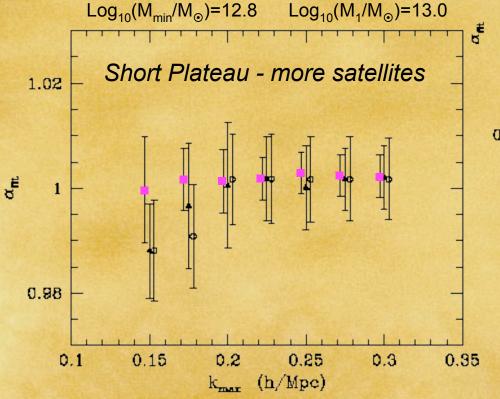
Degeneracy of the acoustic scale with HOD

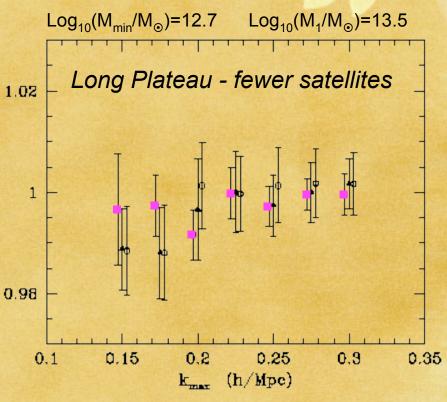
$$\Delta_{
m gal}^2(k) = b^2 \Delta_{
m lin}^2(lpha k) e^{-(lpha k/k_2)^2} + (lpha k/k_1)^3$$



Model comparison I

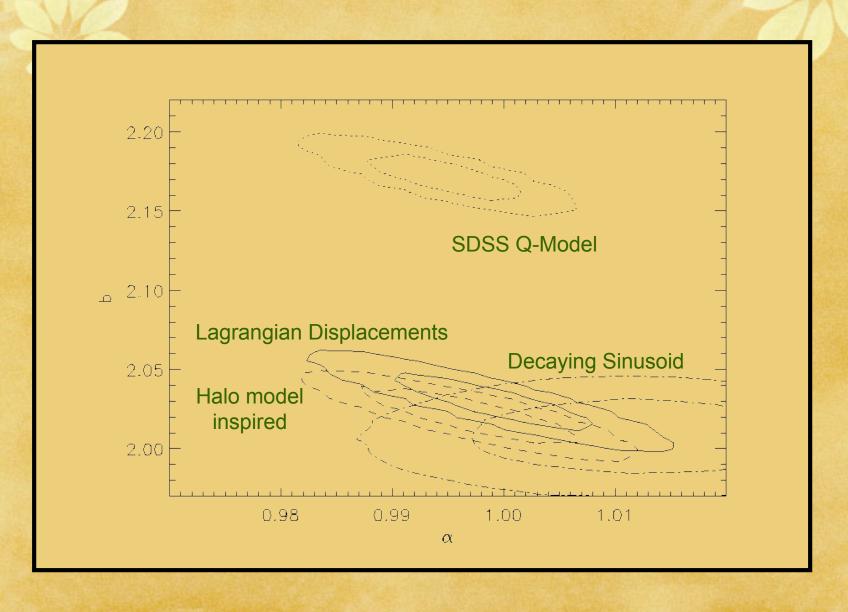
- For most galaxy bias models, the recovered sound horizon is unbiased, even for fits to k_{max}=0.3
- Without treatment of scale dependant bias, models with more satellites can return up to %10 bias in α





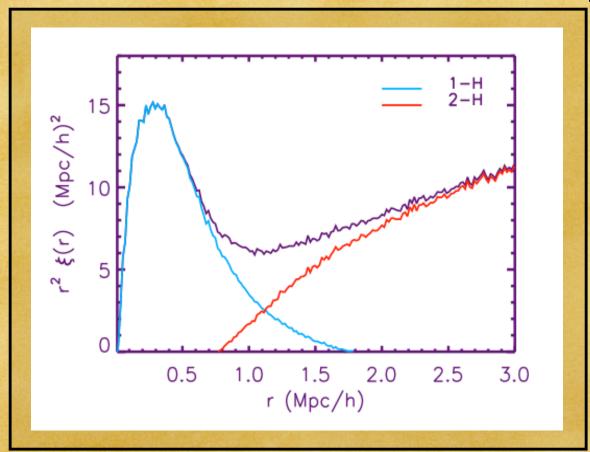
- SDSS Q-Model
- O Halo-model inspired
- ▲ Lagrangian reconstruction

Model comparison II



Virtues of the correlation function

- Studying the correlation function at ~100 Mpc/h is comparatively less scale dependent than the power spectrum
- It is often cleaner to account for irregular survey geometry
- The 1-halo term is confined to halo sized scales ~1 Mpc/h



Irritations of the correlation function

- Data in adjacent bins are very highly correlated -error propagation difficult
- Measuring ξ in a periodic simulation can be problematic
 - sensitivity to low k modes
 - cs errors inherited from the mean density estimate
- In observation ξ is systematically underestimated on scales approaching the survey size -- the integral constraint
- We need an estimator that is more robust for both observations and N-body simulations

A configuration space band power estimator

We find the following quantity to be much less sensitive while containing the same information

$$\Delta \xi(r) \equiv \bar{\xi}(< r) - \xi(r) = \frac{3}{r^3} \int_0^r x^2 dx \ \xi(x) - \xi(r)$$

$$\Delta \xi(r) = \int \frac{dk}{k} \ \Delta^2(k) \ j_2(kr) \simeq \int \frac{dk}{k} \ \Delta^2(k) \left[\frac{(kr)^2}{15} - \frac{(kr)^4}{210} + \cdots \right]$$

Use Insensitive to low k modes as compared to $\xi(r)$

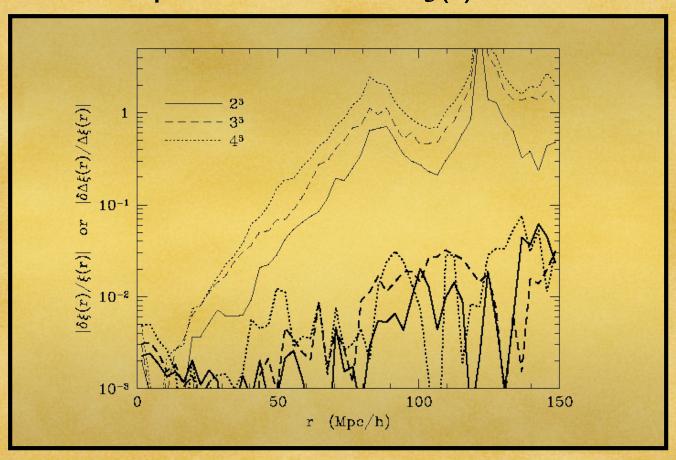
$$\xi(r) = \int \frac{dk}{k} \, \Delta^2(k) \, j_0(kr) \simeq \int \frac{dk}{k} \, \Delta^2(k) \left[1 - \frac{(kr)^2}{6} + \cdots \right]$$

Uncertainty at large scales has been traded for uncertainty at small scales -- but we know the functional form

$$\Delta \xi(r) = \Delta \xi_{\text{model}}(r) + \frac{A}{r^3}$$
 with $A \equiv 3 \int_0^r r'^2 dr \left[\xi(r') - \xi_{\text{model}}(r') \right]$

The virtues of the configuration space band power estimator

 $\Delta \xi(r)$ is much less susceptible to the integral constraint problem than is $\xi(r)$

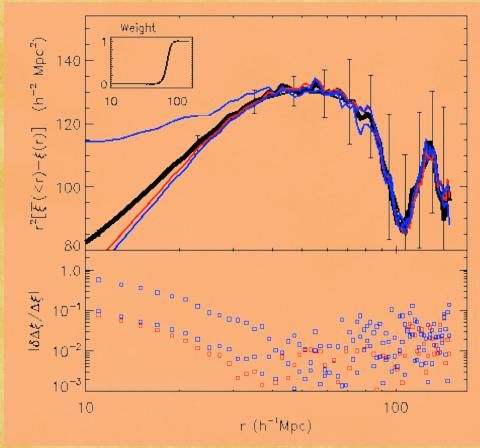


Virtues of the correlation function

Near the baryon feature the correlation functions for different HOD models differ principally by a *constant* multiplicative bias factor

Blue, red and purple curves have been fit to the black curve in the region of the baryon feature

	M_{min}	M _{sat}	Shift
Blue	12.83	13.0	1.81
Black	12.65	13.5	1.00
Red	12.59	14.0	0.80
Purple	12.58	14.5	0.73

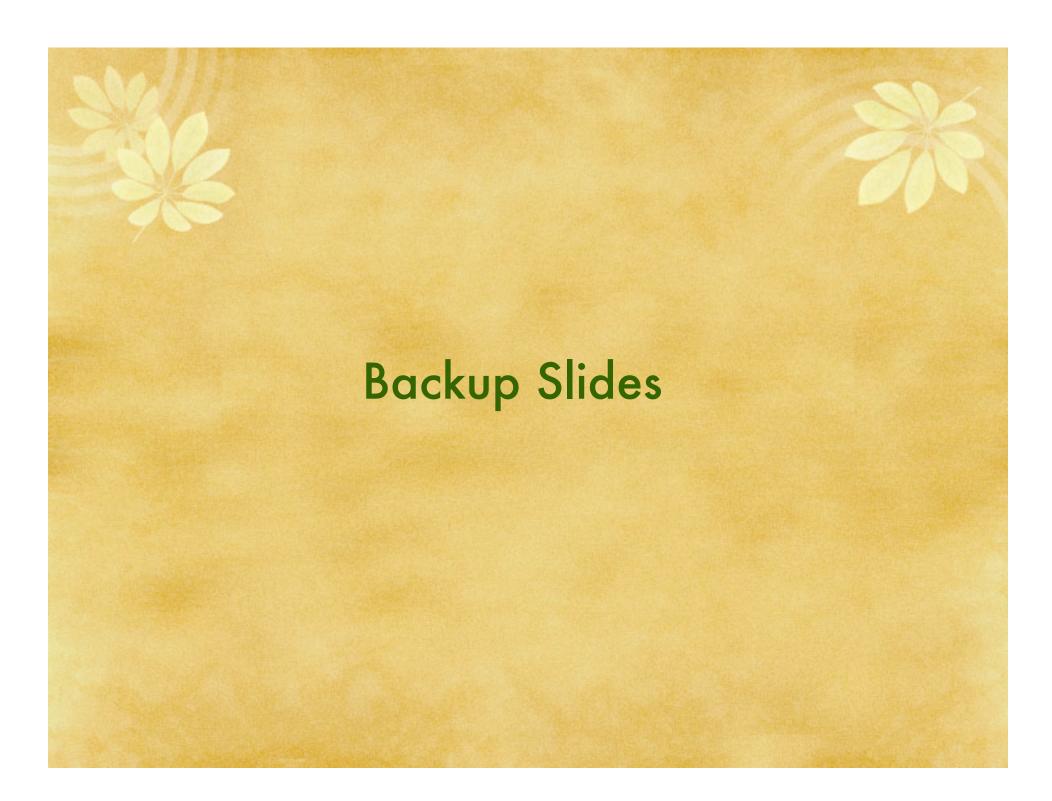


Conclusions

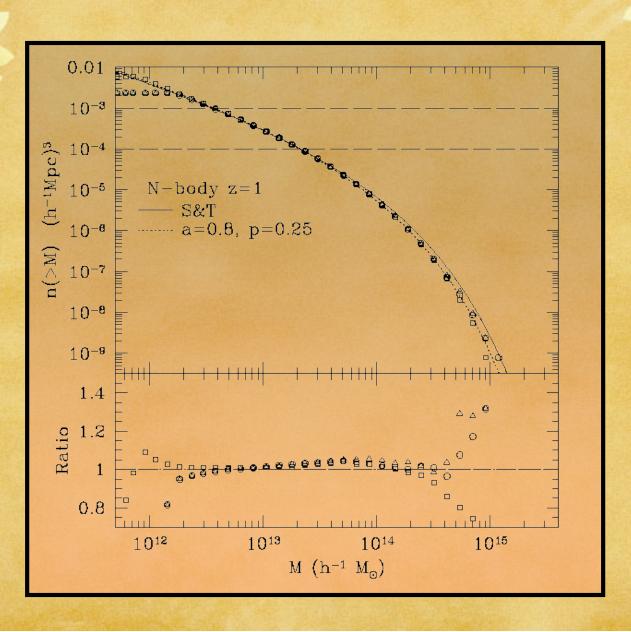
- Baryon oscillations in galaxy power spectra hold promise of a new observational handle on the expansion history of the universe
- Key to tapping this potential is the reduction of theoretical uncertainties regarding
 - cs Galaxy bias
 - os Non-linear structure evolution
 - cs Redshift space distortions
- The halo model inspires an additive term in the galaxy power spectrum to account for non-linear collapse

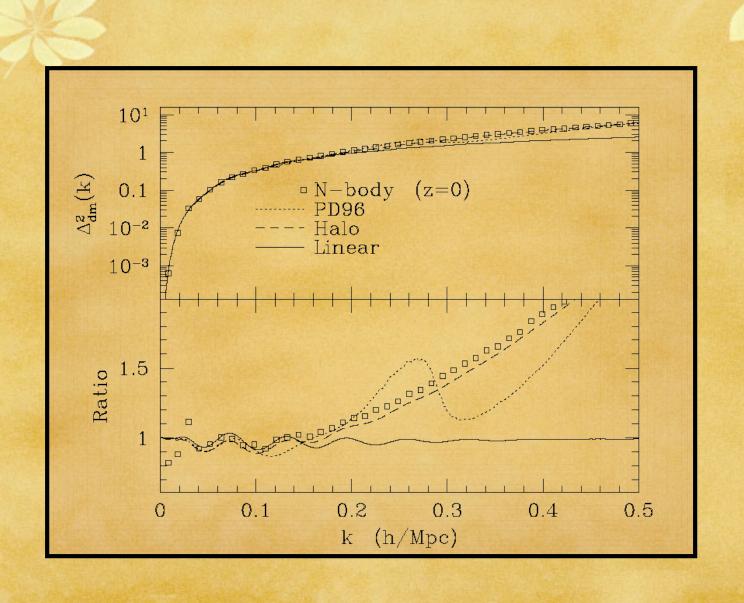
$$\Delta_{\text{gal}}^2(k) = b^2 \Delta_{\text{lin}}^2(k) e^{-(k/k_2)^2} + (k/k_1)^3$$

- N-body simulations have confirmed that this and other treatments of galaxy bias can be used to obtain an unbiased measure of the acoustic signature.
- We have developed an improved estimator the correlation function that can bypass many of the canonical problems by marginalizing over an known functional form
- We are close to a turn-key method of analyzing mock observations of galaxy clustering that will return an unbiased estimate of the acoustic scale



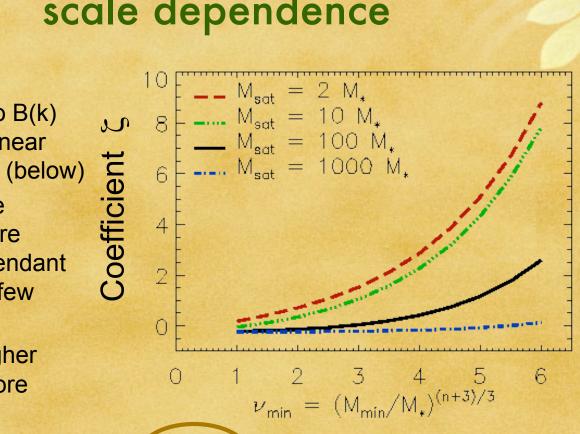
The halo mass function





How HOD parameters impact scale dependence

- There is a good approximation to B(k) in terms of the linear power spectrum (below)
- HODs with more satellites (red) are more scale dependant than those with few (blue)
- M_{min} are also more biased



$$B^2(k) \cong b^2(1+\zeta P_{lin}(k)^{-1}+...)$$

Determined by HOD parameters

The only scale dependent term

\bigcirc Redshift space distortions for $\xi(r)$ and $\Delta\xi(r)$

