Refining Photometric Redshift Distributions with Cross-Correlations

Alexia Schulz

Institute for Advanced Study

Collaborators: Martin White

Talk Overview

* Introduction

- Weak lensing tomography can improve cosmological constraints
- Accurate source galaxy redshift distribution is essential
- Calibration with cross-correlations may be a better way to calibrate it

* Method

- The idea and how it works
- N-body simulations used to test it

* Results

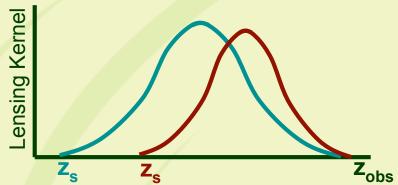
- Spectroscopic sub-sample
- Other tracers of the dark matter
- Relationship to galaxy bias

※ Conclusions

- Advantages
- Outstanding theoretical questions

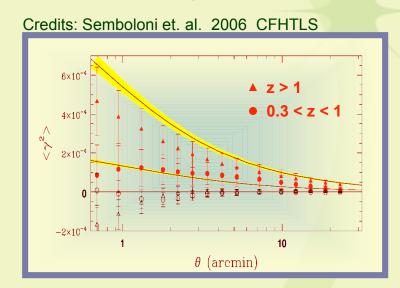
Why is the source galaxy distribution important for weak lensing?

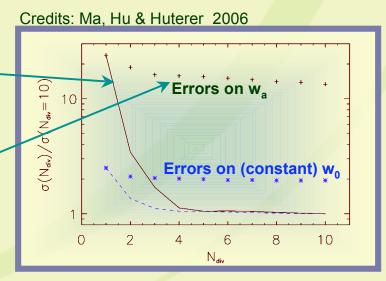
* Sources at different redshifts are lensed differently



* Using just a few source redshift bins can drastically improve constraints on parameters (solid lines)—

* Improvement is close to nothing if source distribution is unconstrained (points)

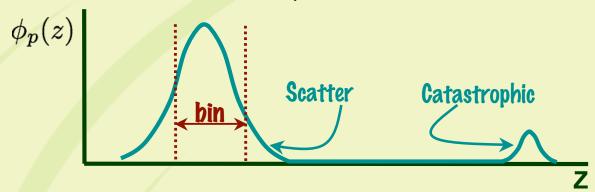




Recontres De Moriond 2008

What if there are unknown errors in the photometry?

* In a photometric bin, the true redshift distribution has some scatter, and at some redshifts catastrophic errors

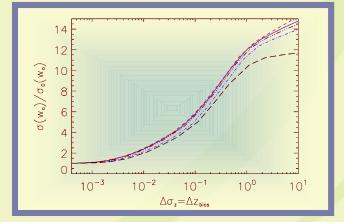


* Weak lensing tomography is very sensitive to (unknown) errors in the

source galaxy distribution

Fractional increase in the constraint on w_a versus prior knowledge of scatter and offset in mean redshift

Credits: Ma, Hu & Huterer 2006



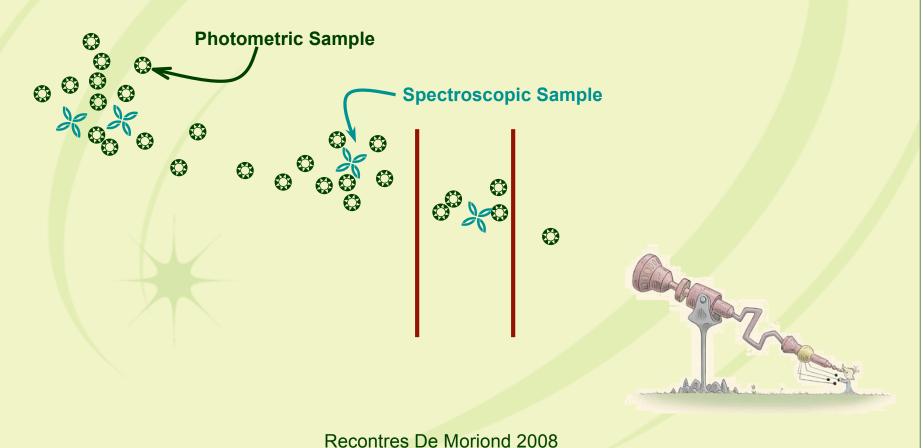
* To use tomography effectively, the true distribution must be well understood

Why use the cross-correlation technique?

- * Large upcoming photometric galaxy surveys (DES, DUNE, Hyper SupremeCam, LSST, PanStarrs, PAU, SNAP, Vista and others) will increase the current number of survey galaxies by 2 orders of magnitude
- * Some of the surveys will be very faint, and very deep
- * Spectroscopic follow-up of a calibration sample could be very time consuming and expensive -- not very practical
- * The cross-correlation technique proposed most recently by J. Newman (http://astron.berkeley.edu/%7Ejnewman/xcorr/xcorr.pdf) may not require such extensive spectroscopic follow up observations
 - Any other tracer (LRGs, quasars, etc.) as calibrating sample
 - May be able to use legacy data (SDSS)
 - Requirement: spatially overlapping

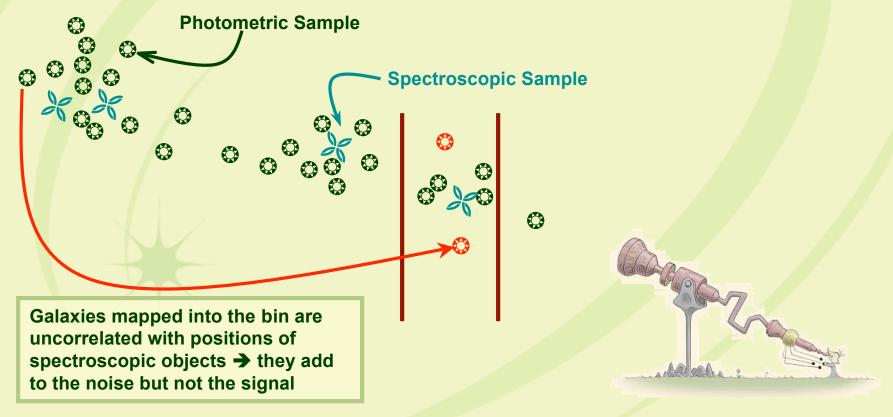
How does it work? (Picture people)

- * Objects in the photometric and spectroscopic samples trace the same underlying dark matter structures
- * Positions of photometric objects will be correlated with those of spectroscopic objects at the same redshift (physically close)



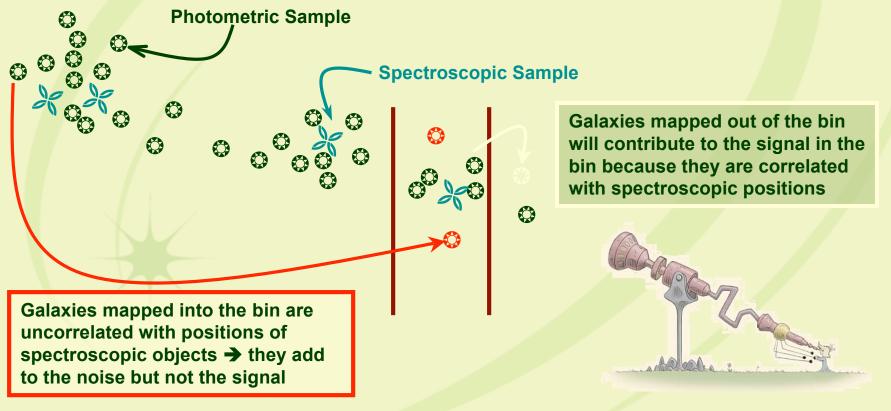
How does it work? (Picture people)

- * Objects in the photometric and spectroscopic samples trace the same underlying dark matter structures
- * Positions of photometric objects will be correlated with those of spectroscopic objects at the same redshift (physically close)



How does it work? (Picture people)

- * Objects in the photometric and spectroscopic samples trace the same underlying dark matter structures
- * Positions of photometric objects will be correlated with those of spectroscopic objects at the same redshift (physically close)



Recontres De Moriond 2008

How does it work? (Equation people)

* The fundamental assumption relates the 3D cross-correlation function to the observable 3D autocorrelation function of the spectroscopic sample

20 Angular cross-correlation 30 cross-correlation function photometric selection function
$$\omega_{ps}(\theta,z_s) = \int dz\,\xi_{ps}(z,z_s,\theta)\,\phi_p(z)$$

At large (linear) scales assume:

$$\xi_{ps}(z,z_s, heta)\propto \xi_{ss}(z,z_s, heta)$$

$$\omega_{ps}(heta,z_s) \propto \int dz \;\; \xi_{ss}(z,z_s, heta) \;\; \phi_p(z)$$

How does it work? (Equation people)

* The fundamental assumption relates the 3D cross-correlation function to the observable 3D autocorrelation function of the spectroscopic sample

27 Angular cross-correlation grant cross-correlation function
$$\omega_{ps}(\theta,z_s) = \int dz \, \xi_{ps}(z,z_s,\theta) \, \phi_p(z)$$

At large (linear) scales assume:

$$\xi_{ps}(z,z_s, heta)\propto \xi_{ss}(z,z_s, heta)$$

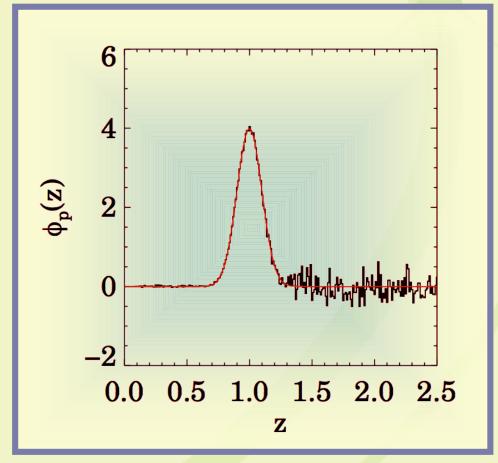
$$\frac{\omega_{ps}(\theta,z_s)}{\text{Observables}} \propto \int dz \ \frac{\xi_{ss}(z,z_s,\theta)}{\text{Invert integral to solve for the selection function}}$$

Recontres De Moriond 2008

Tests with MCMC

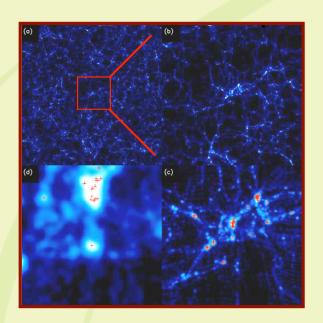
- * 10,000 Monte Carlo realizations of the photometric distribution have been used to test the reconstruction technique.
- * Each realization split into redshift bins
- * Error has been added to the true $\phi_p(z)$ for each bin
- * The technique seems promising

http://astron.berkeley.edu/%7Ejnewman/xcorr/xcorr.pdf



Test with N-body simulations

* Perform cosmological dark matter simulations



Volume: 1 (Gpc/h)³

Dark matter halos: 7.5 Million

Halo masses: $M > 5 \times 10^{11} M_{\odot}/h$

Central galaxy at gravitational potential minimum

Satellite galaxies trace dark matter

Satellite galaxies Poisson distributed about $\langle N_s \rangle$

* Use halo model to populate with "galaxy" populations of differing biases

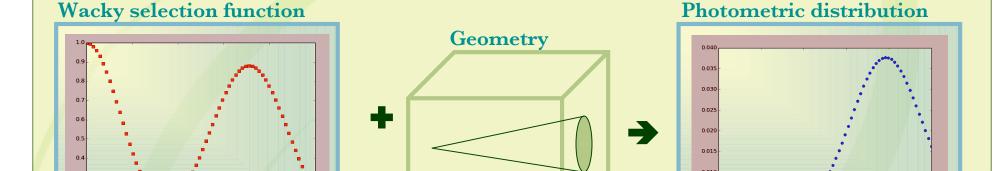
One parameter family for
$$\langle \mathcal{N}_{gal} \rangle$$

$$\langle N_{\rm gal}(M) \rangle = \Theta(M-M_{\rm min}) \left(1+\frac{M-M_{\rm min}}{10\,M_{\rm min}}\right)$$
 1
$$M_{min}$$
 Halo Mass

Recontres De Moriond 2008

Test with N-body simulations

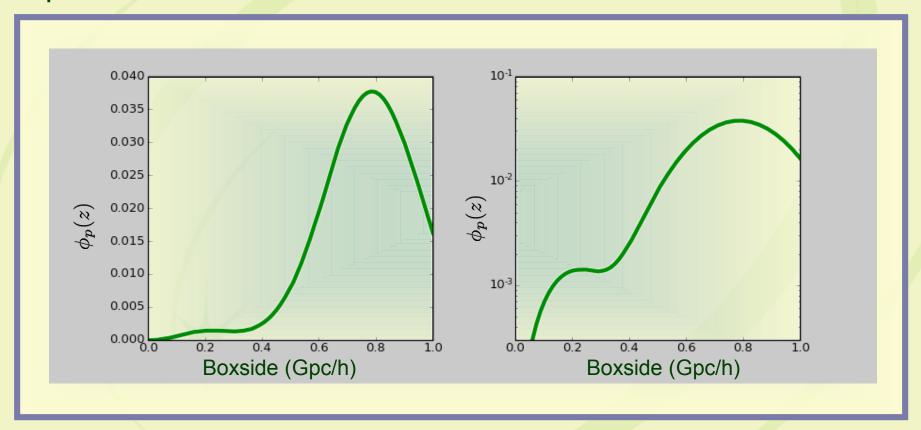
* Impose a selection function and survey geometry on the mock photometric sample to be calibrated (these lead to a $\phi_p(z)$)



- * Compute $\omega_{ps}(\theta, z_s)$ and $\xi_{ss}(\theta, z, z_s)$, and invert the relation to obtain the reconstructed photometric distribution $\phi_p(z)$
- * Compare to the input photometric redshift distribution
- * Test 1: A fair sub-sample of the photometric galaxies $(\xi_{ss} = \xi_{ps})$
- * Test 2: A completely unrelated class of tracer with a different bias
- * Test 3: Tests 1 and 2 in a light cone with evolving ξ_{ss} and ξ_{ps}

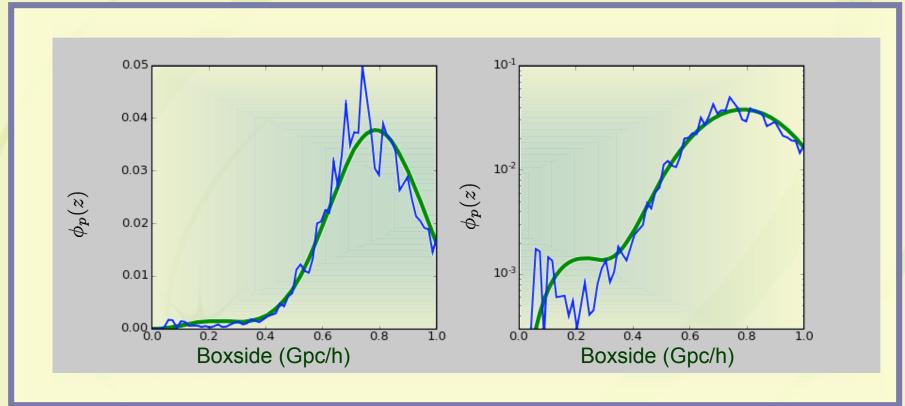
Test 1: Spectroscopic sub-sample

Input redshift distribution



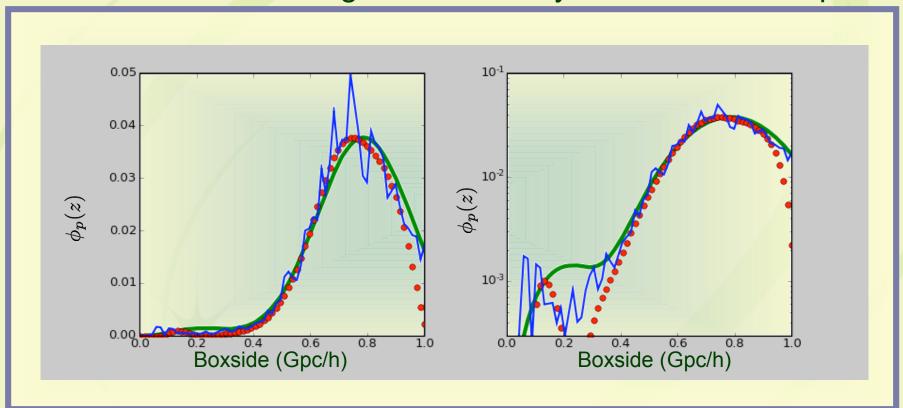
Test 1: Spectroscopic sub-sample

One realization of galaxies in halos (M_{min}=5e11 M_☉/h)



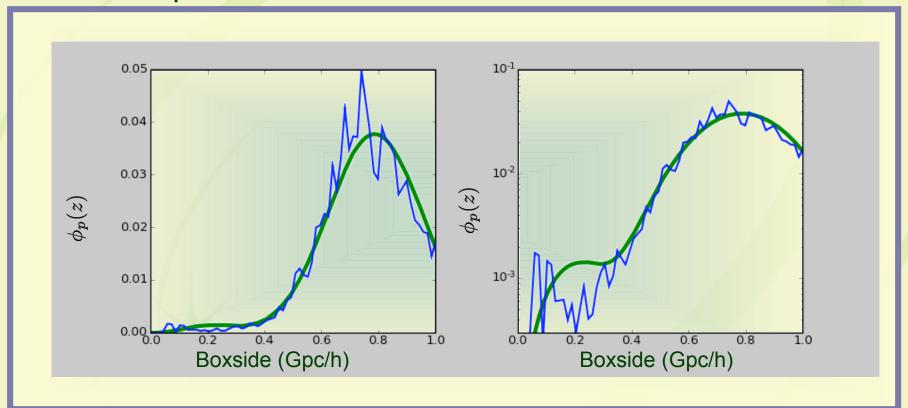
Test 1: Spectroscopic sub-sample

Our reconstruction using 1/10 randomly selected subsample



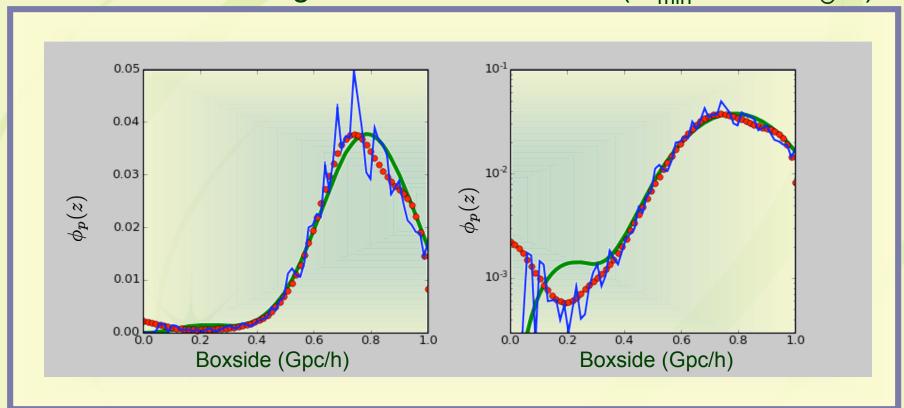
Test 2: Other tracers as calibrators

Same setup



Test 2: Other tracers as calibrators

Reconstruction using more biased tracers (M_{min}=7e12 M_☉/h)



Test 3: Light cones with evolving biases

- * DNE (yet!)
- * It's crucial to investigate light cone evolution due to a potential degeneracy between $\phi_p(z)$ and $b_p(z)$

$$\xi_{ps}(r,z)=rac{b_p(z)}{b_s(z)}\,\xi_{ss}(r,z)$$
 \Longrightarrow $\left(b_p(z)\phi_p(z)\right)$ In terms of observables

 $* \omega_{pp}(\theta)$ does not break this degeneracy:

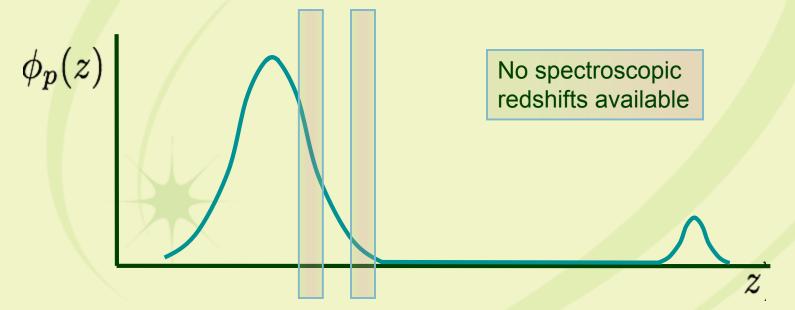
$$\xi_{pp}(r,z) = \left(\frac{b_p(z)}{b_s(z)}\right)^2 \, \xi_{ss}(r,z)$$

$$\omega_{pp} = \int dz_1 \int dz_2 \, \phi_p(z_1) \, \phi_p(z_2) \, \xi_{pp}(\theta, z_1, z_2)$$

- \rightarrow $(b_p(z)\phi_p(z))^2$ In terms of observables
- * Could be difficult to put a reasonable prior on $b_p(z)$
- * Fair sub-sample will avoid this problem (but is inconvenient)

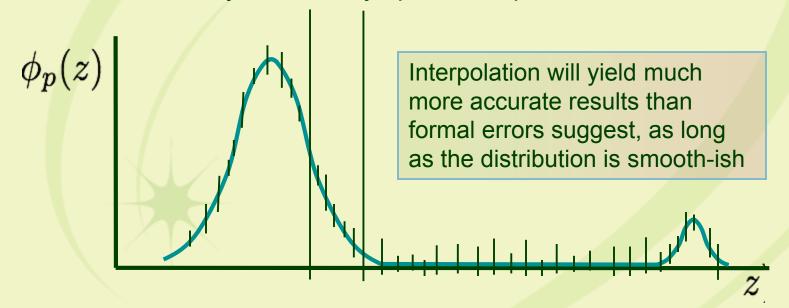
Cross-correlations may have some advantages over direct calibration

- * If a fair sub-sample is needed, one might still use the crosscorrelation method to help calibrate the photometry
- * Contains some independent information: improve calibration
- * Insensitive to catastrophic errors in photometry
- * Not adversely affected by spectroscopic redshift deserts



Cross-correlations may have some advantages over direct calibration

- * If a fair sub-sample is needed, one might still use the crosscorrelation method to help calibrate the photometry
- * Contains some independent information: improve calibration
- * Insensitive to catastrophic errors in photometry
- * Not adversely affected by spectroscopic redshift deserts



Conclusions

- * Weak lensing constraints on cosmological parameters are highly improved by splitting source galaxies into redshift bins
- * Tomographic lensing measurements are quite sensitive to uncertainties in source galaxy redshift distribution
- * Upcoming surveys will yield an unprecedented volume of photometric data, making spectroscopic follow-up inconvenient
- * Cross-correlations are a promising method for calibrating galaxy redshift distributions
- * Potential degeneracy between the redshift distribution and evolution of the bias of the photometric sample may compel sub-sample follow-ups
- * The cross-correlation method may have some advantages over conventional direct calibration methods, even with spectroscopic follow up observations