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Abstract

We study the trade-offs faced by a manufacturer signing a portfolio of option contracts with its
suppliers and having access to a spot market. The manufacturer incurs inventory risk when purchasing
too many options and spot price risk when buying too few. We quantify these risks for a single selling
period by studying mean and variance of the profit for a given contract. Similarly to Markowitz’s
Capital Asset Pricing Model, we characterize the efficient portfolios of options that the manufacturer
must hold in order to obtain dominating mean-variance pairs. Among these, we emphasize the maximum
expectation portfolio, obtained by solving the classical newsvendor problem, and the corresponding
minimum variance portfolio. We provide bounds on the efficient frontier. Finally, we characterize the
upper-level sets of a mean-variance utility function and prove that they are connected. Hence, a greedy
method will find the portfolios on the efficient frontier.

1 Introduction

For most manufacturers, effective supply chain strategies require careful consideration of pro-

curement decisions. These decisions need to take into account not only the many aspects of the

manufacturing process, but also the balance between overstocking and shortages. Traditionally,

the academic literature has modeled this trade-off by introducing, in particular, the newsven-

dor model: in this framework, it is assumed that the consequence of a shortage is lost revenues

while the impact of overstocking is the production of an item that must be disposed or sold at

a loss. This tool has allowed manufacturers to quantify stocking and purchasing decisions.

One of the drawbacks of this approach is that it is based on the assumption that decision

makers, the manufacturers, are risk neutral and hence optimize their expected profit. However,

recent experiences, such as Cisco’s $2.5 billion inventory write-off in April 2001, suggest that risk

matters, as illustrated in [2]. Thus, the challenge for the operations management community is

to develop risk management models to complement current purchasing tools. This is especially

important when, together with inventory and shortage risk, manufacturers face spot price risk.

That is, by committing in advance to a given contract, manufacturers take the risk of not being

able to take advantage of a low spot market price; similarly, when they do not secure enough

supply in advance, they take the risk of paying a high spot market price.

This is especially obvious when one looks at the way the financial industry addresses similar

issues. Since the emergence of the Capital Asset Pricing Model (CAPM), financial theory has
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developed models that quantify the trade-offs between risky returns with higher average returns

and risk-free returns. Thus, the market is risk-averse in the sense that it requests larger average

profits when these profits are uncertain. The first financial models in the 1960s were quickly

transferred into industry, triggering the development of mutual funds. A company’s returns

risk could be evaluated through its ”beta”, i.e. its correlation with the market index variations.

With these methods, investors could manage market risk while seeking high returns. This is in

contrast with the way managers make purchasing decisions.

The objective of this paper is to present a model where risk, measured by the variance

of profit, is considered together with expected profit. We assume that a variety of supply

options, including firm-commitment contracts, are available to the manufacturer, with different

reservation and execution unit prices, and these can be purchased in advance of knowing demand

and spot market price. We define, in a single-period setting, the set of efficient mean-variance

profit pairs, similarly to the CAPM, as a function of the amounts purchased for every option.

We emphasize the challenges of a newsvendor model compared to traditional financial model.

Indeed, in finance, portfolio decisions can be reversed in the sense that investors can sell what-

ever asset they hold at any time; in manufacturing, however, once inventories are ordered, they

are written off at high cost, i.e., sold at a low salvage value, since the components are somehow

engineered for a particular manufacturer, see the Cisco case alluded to before.

Our analysis of the trade-off between profit mean and variance highlight two special port-

folios: a maximum expected profit portfolio, obtained by the classical risk-neutral newsvendor

model, and a minimum profit variance portfolio. The characterization of this second portfolio

is new, and is similar to the minimum variance portfolio in the CAPM without risk-free assets.

Between these two ”extreme” portfolios, we find a set of mean-variance efficient portfolios, for

which we give bounds. The main difference between our model and the financial CAPM is that

in the later model the efficient frontier is typically unbounded, while in our newsvendor model

we show that the efficient frontier is bounded. In addition, we characterize the upper-level sets

of mean-variance utility functions and prove that they are connected. Hence, a greedy method

will find the portfolios on the efficient frontier.

This research is a natural extension of recent development in the analysis of portfolio con-

tracts for supply chains. Mart́ınez-de-Albéniz and Simchi-Levi [9] first presented a general

multi-period framework where portfolios could be optimized in terms of expected profit. These

techniques have been applied in a number of high-tech firms, and will no doubt be increasingly

popular as a way to better react to uncertain demands and spot market prices.

The literature on risk in supply contracts is quite limited. An exception is the work of Lau

[7], who proposes alternative optimization objectives for the newsboy problem, and in particular
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the objective of maximizing the probability of achieving a given level of profit. For this purpose,

Lau presents formulas for the moments of the profit for a general demand distribution.

The most common approach to deal with risk in an industrial setting has come from the

financial world. The objective in this stream of literature is to analyze a stochastic inventory

model together with trading in the market, and to hedge the inventory project with a financial

operation. The single period problem has been studied by Anvari [1], followed by Chung

[4]. They apply the financial CAPM theory to provide a market valuation of an inventory

project, and derive an optimal ordering quantity provided that the market index and the

demand follow a bivariate normal distribution. In a more general setting, a lot of research

has been done on the so-called mean-variance hedging problem. Duffie and Richardson [5],

Schweizer [13], Gouriéroux, Laurent and Pham [6], for instance, have analyzed the problem of

dynamically hedging some asset with the available assets in the market. The objective is to

minimize the final deviation between the asset and the hedge with respect to some stochastic

metric. Caldentey and Haugh [3] have applied this approach to the newsvendor problem, thus

generating a dynamic trading strategy in the financial markets together with a single-period

inventory decision. We should point out that this research does not consider the intrinsic risk

of the inventory project, and uses the correlation between customer demand and the market

returns to reduce risk. In contrast, the purpose of our paper is to describe the intrinsic risk

of an inventory decision, as a function of inventory and component price risk, without the risk

associated with financial markets.

We start by presenting in Section 2 the traditional financial formulation, i.e., following the

CAPM, of the profit as a function of the amounts of options purchased by the manufacturer.

In this part, overstocked inventory can be returned at the spot market price. We remove this

assumption in Section 3, where we present the newsvendor model for a portfolio of options. We

analyze the model in Section 4 and define the maximum expectation and minimum variance

portfolios, both for the single and multiple suppliers cases, together with bounds on the efficient

portfolios. We then characterize the level sets of mean-variance objectives and show that a

greedy algorithm always finds the optimal portfolio.

Finally, we discuss in Section 5 the challenges of a multi-period extension and provide

concluding remarks in Section 6.

2 Hedging Earnings with Financial Options

Consider a firm that sells a product at a predetermined price p. To manufacture the product

the firm uses a component that can be found in a spot market at a spot price S, and production
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only takes place when p > S. The firm’s profit is thus

Π0 = (p− S)+Q,

and it depends on a stochastic demand, Q, and a stochastic spot price, S.

Assume now that this firm is able to sign contracts in advance with suppliers. This enables

the firm to become less sensitive to spot price fluctuations. For example, buying supply through

an forward contract can reduce the exposure of the firm to the spot price.

We assume that n suppliers are available, each offering a supply option contract for a

reservation fee of vi per unit and an execution fee of wi per unit, i = 1, . . . , n. Traditionally,

these options have been used as a side-bet with no real consequences: they are mechanisms

that arrange side-payments as a function of the spot price. That is, in this setting the firm is

using the contracts not only to provide raw-material for production, but also to sell back excess

capacity to the spot market.

Under this framework, the profit of the buyer, denoted by the superscript F (for financial),

can be written as

ΠF = (p− S)+Q+
n
∑

i=1

{

(S − wi)
+ − vi

}

xi, (1)

where xi ≥ 0 is the amount of options purchased from supplier i, i = 1, . . . , n. These options

can therefore be treated like assets with returns (S − wi)
+ − vi but no up-front cost. This

setting is equivalent to the Capital Asset Pricing Model (CAPM), where xi is the amount of

stock i purchased and (S − wi)
+ − vi is the return of the stock.

In Markowitz’s CAPM, a mean-variance optimal trade-off is found, the so-called efficient

frontier. One can similarly determine an optimal mean-variance frontier in our case. Specifi-

cally,

EΠF = E
[

(p− S)+Q
]

+
n
∑

i=1

E
[

(S − wi)
+ − vi

]

xi, (2)

and
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
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









V ar
[

(p− S)+Q
]

+
n
∑

i=1

V ar
[

(S − wi)
+ − vi

]

x2
i

+2
n
∑

i=1

Covar
[

(S − wi)
+ − vi, (p− S)+Q

]

xi

+2
∑

i<j

Covar
[

(S − wi)
+ − vi, (S − wj)

+ − vj

]

xixj .

(3)
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The mean-variance optimal trade-off curve is defined by the points (V arΠ,EΠ) found in the

optimization programs

min
x≥0

V arΠ subject to EΠ ≥ µ, (4)

for µ ∈ R, or equivalently

max
x≥0

EΠ subject to V arΠ ≤ σ2, (5)

for σ2 ∈ R+, or also,

max
x≥0

EΠ− λV arΠ, (6)

for λ ∈ R+.

Figure 1 shows the trade-off curve (efficient frontier) between expected profit and variance

of profit for the model discussed in this section. In this setting, we do not have a risk-free

asset, which is often used in the financial literature. The ”mutual fund” theorem, described in

Sharpe [14], Mossin [12] or Merton [10], does not hold, since there is no riskless bond; there is

no market price for systematic risk. Instead, we can work with the efficient frontier, and have

the manufacturer (and every other buyer in this market) choose its own efficient portfolio.

3 A Newsvendor Model

Of course, the financial model described above does not capture some of the constraints asso-

ciated with real world purchasing practices. These constraints are either contractual, i.e., the

supplier does not allow the buyer to resell the component, or operational, i.e., design constraints

that are typically associated with product specification requiring specializing the component to

the buyer’s needs. This type of constraint implies that it is difficult or costly for the buyer to

resell the components back to the market.

To capture these issues, we propose the following model which is a generalization of the

newsvendor problem to portfolio contracts. Details can be found in Mart́ınez-de-Albéniz and

Simchi-Levi [9]. The manufacturer can not sell back excess supply to the spot market, and thus

we we restrict the use of capacity to serving the demand faced by the manufacturer. Hence,

unused capacity is lost, in the sense that the manufacturer is unable to exercise the options

and sell the corresponding supply units to the spot market, at the spot price. We thus rule

out the possibility of the manufacturer becoming a trader and gaining financial advantage from

speculation.
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Figure 1: Simulation of mean-variance curve for a single supplier as a function of the amount bought from

this supplier

Assuming without loss of generality that w1 ≤ . . . ≤ wn, and letting vn+1 = 0, wn+1 = p,

we define for i = 1, . . . , n, yi =
i
∑

j=1

xj , and

Zi =
{

min(S,wi+1)−min(S,wi)
}

, Z0 = (p− S)+ = p−min(S, p).

The manufacturer’s profit, denoted now with the superscriptN (for newsvendor), can be written

as

ΠN = pmin(Q, yn) + (p− S)+(Q− yn)
+ −

n
∑

i=1

vixi −
n
∑

i=1

min(S,wi)min {xi, (Q− yi−1)
+}

Using the relationship (x− y)+ = x−min(x, y) for any x, y, we can reformulate

pmin(Q, yn) + (p− S)+(Q− yn)
+ = pmin(Q, yn) + {p−min(S, p)}{Q−min(Q, yn)}

= Z0Q+min(S, p)min(Q, yn),

and
min {xi, (Q− yi−1)

+} = min {yi − yi−1, (Q− yi−1)
+}

= min(Q, yi)−min(Q, yi−1).
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We can plug these expressions into ΠN and observe that min(Q, yn) =
n
∑

i=1

{min(Q, yi) −

min(Q, yi−1)}. We thus obtain

ΠN = Z0Q+min(S, p)min(Q, yn)−
n
∑

i=1

vixi −
n
∑

i=1

min(S,wi){min(Q, yi)−min(Q, yi−1)}

= Z0Q−
n
∑

i=1

vi(yi − yi−1) +
n
∑

i=1

{min(S, p)−min(S,wi)}{min(Q, yi)−min(Q, yi−1)}

= Z0Q+
n
∑

i=1

(vi+1 − vi)yi +
n
∑

i=1

Zimin(Q, yi).

(7)

Of course, a similar transformation shows that

ΠF = Z0Q+ (S − p)+yn +
n
∑

i=1

(vi+1 − vi)yi +
n
∑

i=1

Ziyi.

Evidently, the difference between the two profit functions stems from the assumption that

in the newsvendor model the buyer is not able to sell excess supply to the spot market.

4 Properties of Supply Option Portfolios

To proceed with the mean-variance analysis of a portfolio, we make the following assumption.

Assumption 1 The customer demand Q is independent of the spot market price S.

The assumption thus implies that demand faced by the buyer does not drive spot market

prices. This is typically the case when the buyer’s product does not capture a large portion of

the component’s demand.

Assumption 2 Q and S follow respectively distributions with p.d.f. fQ > 0 (on R) and fS

that are continuous and c.d.f. FQ and FS.

In addition, we define FQ = 1− FQ and F S = 1− FS .

The analysis of mean and variance of profit is similar to Equations (2) and (3):

EΠN = E[Z0Q] +

n
∑

i=1

{

E[Zi]
∫ yi

0
FQ(q)dq − (vi+1 − vi)yi

}

, (8)

and
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V arΠN =






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



V ar
[

Z0Q
]

+
n
∑

i=1

V ar
[

Zimin(Q, yi)
]

+2
n
∑

i=1

Covar
[

Zimin(Q, yi), Z0Q
]

+2
∑

i<j

Covar
[

Zimin(Q, yi), Zj min(Q, yj)
]

.

(9)

As derived in Mart́ınez-de-Albéniz and Simchi-Levi [9], the expected profit of the buyer is

a concave function of the variables (x1, . . . , xn), or equivalently of a linear transformation of

them, (y1, . . . , yn). In particular, using the independence of Q and S,

dEΠN

dyi
= vi+1 − vi + E[Zi]FQ(yi). (10)

To understand the behavior of variance, define

Ai =
1

2
V ar

[

Zimin(Q, yi)
]

,

Bi = Covar
[

Zimin(Q, yi), Z0Q
]

,

Cij = Covar
[

Zimin(Q, yi), Zj min(Q, yj)
]

.

Thus, the variance can thus be expressed as

V ar
[

Z0Q
]

+ 2
n
∑

i=1

(Ai +Bi) + 2
∑

i<j

Cij ,

and hence,
1

2

dV arΠN

dyi
=

dAi

dyi
+
dBi

dyi
+
∑

j<i

dCji
dyi

+
∑

i<j

dCij
dyi

.

The formulas for such expressions are presented below, and are detailed in the appendix.

dAi

dyi
= FQ(yi)

(

E[Z2
i ]yi − E[Zi]2

∫ yi

0
FQ(u)du

)

dBi

dyi
= FQ(yi)

(

E[Z0Zi](yi +

∫∞

yi
FQ(u)du

FQ(yi)
)− E[Z0]E[Zi]E[Q]

)

dCij
dyi

= FQ(yi)
(

E[ZiZj ](yi +

∫ yj

yi
FQ(u)du

FQ(yi)
)− E[Zi]E[Zj ]

∫ yj

0
FQ(u)du

)

dCij
dyj

= FQ(yj)
(

E[ZiZj ]yi − E[Zi]E[Zj ]
∫ yi

0
FQ(u)du

)

(11)
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4.1 Single supplier case

In the case of a single supplier, we define the quantity yE as the portfolio maximizing expected

profit, obtained by solving the equation

FQ(y
E) =

v

E[(S − w)+]
. (12)

Observe that yE is well defined since F is decreasing. Of course, when v = 0, we select

yE =∞, and when v ≥ E[(S − w)+], we choose yE = 0.

Similarly, yV is defined as the portfolio minimizing profit variance. Using Equation (11),

we observe that the sign of the variance is the same as the right-hand side of the following

equation. Thus, yV is determined by solving

0 = E[(S − w)+
2
]yV − E[(S − w)+]2

∫ yV

0
FQ(u)du

+E[(p− S)+(S − w)+(yV +

∫ ∞

yV

FQ(u)du

FQ(yV )
)

−E[(p− S)+]E[(S − w)+]E[Q]

(13)

The right-hand side of Equation (13) is increasing: its derivative is

E[(S − w)+
2
]FQ(y

V ) + V ar[(S − w)+]FQ(y
V )

+E[(p− S)+(S − w)+]fQ(y
V )

∫ ∞

yV

FQ(u)du

[FQ(yV )]2

> 0.

In addition, we notice that the right-hand side of Equation (13) tends to infinity when y →∞

and is equal to E[(p− S)+(S −w)+]E[Q]− E[(p− S)+]E[(S −w)+]E[Q] ≤ 0 when y = 0, since

Covar[(p−S)+, (S−w)+] ≤ 0. This implies that yV is well-defined. Moreover, this shows that

the variance is quasi-convex as a function of y.

y < yE > yE < yV > yV

Expected Profit ↑ ↓

Variance of Profit ↓ ↑

This implies the following proposition.

Proposition 1 When the buyer maximizes its quadratic utility function, defined in Equation

(6), it always purchases an amount in the interval [yE , yV ] (if yE ≤ yV ) or [yV , yE ] (if yE ≥

yV ).
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This proposition is illustrated by the crossed curve in Figure 2. We observe that in this case

yV < yE . As y increases, starting from 0, variance decreases and expectation increases at first;

then, when y > yV , variance starts to increase while expectation keeps growing; finally, when

y > yE , variance still increases (but reaches a limit though) as expectation starts to decrease.

When compared to the benchmark, i.e. the financial model following the CAPM, we observe

that the expected profit is always smaller for the same level of risk. Also, as the amount y

bought from the supplier increases, variance is bounded from above in the newsvendor model

but grows unbounded for CAPM. In other words, using the financial model in a situation where

the newsvendor model is more appropriate may lead to a major underestimation of profit risk,

for a given level of expected profit.
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Figure 2: Comparison of the mean-variance curves for the different models: financial (circled line) and

newsvendor (crossed line)

4.2 Multiple suppliers case

When multiple suppliers are available, the expected profit behaves in a similar way to the single

supplier case. Indeed, in Mart́ınez-de-Albéniz and Simchi-Levi [9] we show the following.

Proposition 2 The expected profit is a strictly concave function of the amounts purchased

from each contract. It attains a unique maximum for a portfolio yE.
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Unfortunately, the variance of profit behaves in a more complicated way. The following

proposition provides some information about the first and second moments of the variance.

Proposition 3 For each i, i = 1, . . . , n, we have that

dV arΠN

dyi
= FQ(yi)Φi(y)

for some functions Φi. Moreover, we have that

H =
(d2V arΠN

dyidyj

)

(i,j)
Â











. . . 0

−fQ(yi)Φi(y)

0
. . .











,

where A Â B means that the matrix A−B is definite positive.

All the proofs are presented in the appendix.

We use this result to characterize the behavior of the profit variance. Let

F =
{

y

∣

∣

∣0 ≤ y1 ≤ . . . ≤ yn

}

. (14)

Define also the following notation.

Definition 1 Consider a twice-differentiable function f : F → R, where F is defined in Equa-
tion (14). For any I ⊂ {1, . . . , n}, let

AI = F ∩
{

y

∣

∣

∣yi = yi−1 for i /∈ I
}

. (15)

We can write I = {i1, . . . , im}, and thus define, for 0 ≤ z1 ≤ . . . ≤ zm,

yi(z) = zj for every j such that ij ≤ i < ij+1.

Let

g(z1, . . . , zm) = f
(

y(z)
)

.

Let y ∈ AI . y is a I-unconstrained critical point of f if and only if for j = 1, . . . ,m,

dg

dzj

(

y(z)
)

= 0.

Intuitively, an I-unconstrained critical point for a function f is a portfolio y such that the

function f , restricted to AI , has a critical point at y.
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Definition 2 Given a function f : F → R, the lower-level set at c is
{

y ∈ F |f(y) ≤ c
}

,

and the upper-level set at c is
{

y ∈ F |f(y) ≥ c
}

.

Proposition 4 For some I, let y ∈ AI and assume that y is an I-unconstrained critical point

of the variance. Then, portfolio y is a strict local minimizer of the variance in the set AI .

The previous result implies the following important qualitative result.

Proposition 5 The lower-level sets of the variance of a portfolio are connected. That is, for

any c, for any y0,y1, if V arΠN (y0) ≤ c and V arΠN (y1) ≤ c, then there is a continuous path

y(·) such that y(0) = y0, y(1) = y1 and for all t ∈ [0, 1], V arΠN (y(t)) ≤ c.

Corollary 1 Any portfolio that minimizes the variance locally is a global minimizer. Moreover,

such a portfolio, yV, is unique. Thus, a greedy search method will lead to the global minimum,

yV.

An interesting by-product of the proof of Proposition 5 is the existence of M <∞ such that

the global minimum belongs to a bounded ”box” B,

B =
{

y

∣

∣

∣
0 ≤ y1 ≤ . . . ≤ yn ≤M

}

.

We construct this bound M as follows. For every k = 1, . . . , n, the expression

E[(Zk + . . .+ Zn)
2]y(k) − E[Zk + . . .+ Zn]

2

∫ y(k)

0
FQ(u)du

+E[Z0(Zk + . . .+ Zn)](y(k) +

∫ ∞

y(k)

FQ(u)du

FQ(y(k))
)− E[Z0]E[Zk + . . .+ Zn]E[Q]

is strictly increasing and tends to +∞ when y(k) → +∞. Thus, there is Mk > 0 such that the

expression is non-negative for y(k) > Mk. We then define M = max{M1, . . . ,Mn}.

In general, the lower-level sets of variance are not convex. Figure 3 shows this observation

for the following data. We consider two different options, with reservation and execution fees

equal to v1 = 5, w1 = 0 and v2 = 1, w2 = 6 respectively. Customer price is p = 10 and spot

market price follows a truncated normal distribution with mean 8 and standard deviation 1.

Finally demand follows a truncated normal distribution with mean 60 and standard deviation

20.
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Figure 3: The lower-level sets of variance are not always convex

The non-convexity of the lower-level sets raises the following challenge. How does the vari-

ance behave when the feasible portfolio set is not F , but a smaller set? In particular, what

happens when the feasible portfolio y is constrained within a line, i.e. there are y0 and ∆y

such that all feasible portfolios can be expressed as y = y0 + t∆y for some t?

This situation may arise when the manufacturer owns a portfolio (y1, . . . , yi−1, yi−1, yi+1, . . . , yn)

already and is approached by a new supplier, which offers a new contract i, with parameters

(wi, vi). Notice that at this point xi = 0. Increasing xi to xi + t implies changing (yi, . . . , yn)

to (yi + t, . . . , yn + t). Of course, in this instance, we have ∆yj = 1 for j ≥ i and 0 otherwise.

Using Proposition 3, we have that

dV arΠN

dt
=

n
∑

i=1

∆yiFQ(yi)Φi(y)

and
d2V arΠN

dt2
≥ −

n
∑

i=1

∆y2
i fQ(yi)Φi(y).

This inequality does not, in general, allow us to characterize the structure of V arΠN (t). How-

ever, in specific cases, we can show that this function is quasi-convex. This happens when the

following two conditions are satisfied.

13



(1) The demand is exponentially distributed, i.e. there is µ > 0 such that FQ(u) = e−µu, and

hence fQ(y) = µFQ(u).

(2) ∆yi = 0, 1 for all i, i = 1, . . . , n.

Indeed, observe that
n
∑

i=1

∆yiF (yi)Φi(y) = 0 implies that

d2V arΠN

dt2
≥ −

n
∑

i=1

∆y2
i f(yi)Φi(y) = −µ

n
∑

i=1

∆yiFQ(yi)Φi(y) = 0.

Thus, the variance is a quasi-convex function of t in this case.

The situation depicted above can be easily treated using the quasi-convexity of the variance.

In other words, the problem of adding a contract i to an existing portfolio is as easy as the

single supplier case of Section 4.1. This is true since here ∆yj = 1 for j ≥ i and 0 otherwise.

4.3 The efficient frontier

We can now turn to solving the problem posed by Equation (6), finding the mean-variance

trade-offs where more expectation of profit is preferred to less, and less variance is preferred

to more. The efficient frontier, in terms of average profit and profit variance, will clearly be

defined between the minimum variance portfolio yV, defined in Corollary 1, and the maximum

expectation portfolio yE, defined in Proposition 2. Since expectation and variance of profit are

continuous, we can find a continuum of mean-variance pairs in the efficient frontier, between

these two portfolios, i.e. between yE and yV. These belong in the bounded set

E =
{

y

∣

∣

∣
0 ≤ y1 ≤ . . . ≤ yn ≤ ȳ

}

,

where ȳ = max(M,yEn ).

The next proposition summarizes the results regarding this problem.

Proposition 6 For λ ≥ 0, let the manufacturer’s utility function be

U(y) = EΠN − λV arΠN .

Then, for each i, i = 1, . . . , n, we have that

dU

dyi
= −ai + FQ(yi)Ψi(y)

for some functions Ψi and the scalars ai = vi − vi+1. Moreover, we have that

H =
( d2U

dyidyj

)

(i,j)
≺











. . . 0

−fQ(yi)Ψi(y)

0
. . .











.
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When v1 ≥ . . . ≥ vn ≥ 0, the utility upper-level sets are connected and the utility has a

unique local maximum y∗. A greedy algorithm will lead to the global maximizer of the utility

function, y∗.

This first part of the proposition is similar to Proposition 3, and the final part is derived

using the same ideas of Proposition 5 and Corollary 1.

Observe that, in the proposition, we assumed that v1 ≥ . . . ≥ vn ≥ 0. This is not a restrictive

assumption, given that 0 ≤ w1 ≤ . . . ≤ wn. Indeed, an option that has a lower execution price

should have a higher reservation price. Otherwise, we would be able to identify some option

that is dominated by some other, i.e. find i, j such that vi ≤ vj and wi ≤ wj . We could then

eliminate option j from the pool of ”acceptable” contracts, because it is too expensive.

We must point out that even though the mean-variance frontier is continuous, the corre-

sponding efficient portfolios might not change continuously. Since the variance level sets are

connected but not convex, as observed in Figure 3, we might find discontinuous jumps in the

efficient portfolios.

5 Discussion

5.1 Scope of application

So far we have discussed a single period model where a manufacturer chooses a portfolio of

options based on a profit mean-variance trade-off. As seen in Mart́ınez-de-Albéniz and Simchi-

Levi [9], when the manufacturer maximizes its expected profit, it is possible to extend the

analysis to a multi-period case. However, as we will discuss in the following section, we have

encountered important difficulties in extending the analysis for mean-variance objectives.

The single period model is nevertheless applicable in itself, in a multi-period environment.

This can typically be done when the component is perishable or non-storable. In this case,

since inventory is not transferred from one period to the next, one can apply this model for

every period independently. For example, the model is applicable for fashion items or other

products with short life-cycle, e.g., laser printers.

5.2 Multi-period models

In the financial literature, the CAPM has been extended to a multi-period setting by Merton

[11] and others.

However, extending mean-variance objectives to a multi-period environment has encoun-

tered significant problems. For instance, recently, Li and Ng [8] have formulated, in a dynamic
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programming framework, the problem of maximizing expected return of investment under vari-

ance constraints. They provide through a clever relaxation of the problem a way to keep track

of the initial variance constraint as we go by in the dynamic program. Unfortunately, the

model formulation is not completely intuitive. Specifically, it assumes that once the problem

is posed at the beginning of the horizon, the investor, as it moves forward in a scenario tree,

keeps record of the variance constraint posed at the root of this tree. This implies that when

it moves to a branch with more wealth than average, it will consciously choose less return in

order to reduce the variance of returns across all branches of the tree. This point makes such

formulation inappropriate for real situations.

A multi-period extension of the present newsvendor model has some additional difficulties.

Indeed, when dealing with financial models, the portfolio holder can liquidate its portfolio

at the beginning of every time period and reinvest the corresponding cash into a brand new

portfolio. However, this is not possible in the model analyzed in this paper since we focus on

components that cannot be sold back to the market since they are tailored for the buyer or due

to contractual constraints.

We now present an example that illustrates the challenges with a multi-period model. Con-

sider a two-period model with a single supplier providing a fixed commitment contract, i.e. an

option with zero execution price, to be executed in the first period. The sequence of events is

the following:

(i) Before period 1, the manufacturer can reserve x1 units of capacity (to be used in period

1) at price v1 per unit.

(ii) At the beginning of period 1, it observes the realization of demand Q1 and spot price S1.

The manufacturer then uses the available capacity x1 (at zero execution price) and the

spot market to purchase supply, serve demand and stock I units of inventory.

(iii) At the end of period 1, I units of inventory are left.

(iv) At the beginning of period 2, Q2 and S2 are observed. Demand is satisfied using the

on-hand inventory I and any units purchased in the spot market.

The stocking decision I is similar to the single-period mean-variance trade-off discussed in

this paper. Since it is likely that I ≥ x1−Q1, because the manufacturer can raise the inventory

up to the level x1 −Q1 for free, I can be dependent of Q1, x1 and S1.

Thus,

Π = p1Q1 − v1x1 − S1(Q1 + I − x1)
+ + p2Q2 − S2(Q2 − I)+.

Once Q1 and S1 become known, at the beginning of the first period, the decision on I

involves a trade-off between the second period’s expected profit and variance. Observe that
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when I < x1 −Q1 an additional unit of inventory costs 0, whereas, when I ≥ x1 −Q1, it costs

S1. It is clear that S1, together with x1 − Q1, is important in determining the level IE that

maximizes expected profit, as described in Proposition 1. We also notice that the variance of

the second period’s profit is independent of S1: this implies that IV is independent of Q1, x1

and S1. In general, the manufacturer’s decision on I will be within [IE , IV ] (or [IV , IE ]), and

thus depend on the values of Q1, x1 and S1.

It is now clear that when we analyze the variance of profit at the beginning of period 1, as

a function of x1, most of the complications come from the fact that the decision I(Q1, x1, S1)

is random. This implies that the function I depends on the level of risk that the manufacturer

takes as a function of Q1, S1. For instance, if the manufacturer is risk-averse (i.e., selects

I = IV ) when S1 is high and risk-neutral (i.e., selects I = IE(x1 − Q1, S1)) when S1 is low,

then I(Q1, x1, S1) will have a high variance. As a result, this variance will influence the total

variance of Π.

Formally, by using the conditional variance formula, and assuming that (Q2, S2) are inde-

pendent of (Q1, S1), we have

V arΠ = E

[

V ar

(

p1Q1 − v1x1 − S1(Q1 + I(Q1, x1, S1)− x1)
+

+p2Q2 − S2(Q2 − I(Q1, x1, S1))
+

∣

∣

∣

∣

∣

S1, Q1

) ]

+ V ar

[

E

(

p1Q1 − v1x1 − S1(Q1 + I(Q1, x1, S1)− x1)
+

+p2Q2 − S2(Q2 − I(Q1, x1, S1))
+

∣

∣

∣

∣

∣

S1, Q1

) ]

= E
[

V ar
(

p2Q2 − S2(Q2 − I(Q1, x1, S1))
+
∣

∣

∣S1, Q1

) ]

+ V ar





p1Q1 − v1x1 − S1(Q1 + I(Q1, x1, S1)− x1)
+

−E
(

S2(Q2 − I(Q1, x1, S1))
+|S1, Q1

)





We see that now the choice of x1 will have an influence on the random inventory decision

I(Q1, x1, S1) and this implies that controling the variance is difficult. In the case where I = IV ,

and thus independent of x1, the problem of minimizing variance in terms of x1 ≥ 0 is equivalent

to minimizing the function

V ar
[

p1Q1 − v1x1 − S1(Q1 + IV − x1)
+
]

. (16)

In this particular case, the analysis is similar to the single period case, except that we must

work with a modified demand, equal to Q1 + IV . Similarly, we can extend this example to

a multiple period case, provided that at every time period we minimize the ”variance-to-go”,

disregarding the expected profit. The manufacturer in this case finds the minimum variance

portfolio for a demand Qt + IVt+1.
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To summarize, the insight provided here is the following. A single period model allows a

manufacturer to consider mean-variance trade-offs, and the problem can be described by some

interesting properties, involving a maximum-profit-expectation portfolio yE, and a minimum-

profit-variance portfolio yV. Between these two portfolios, a continuum of efficient mean-

variance pairs exist. However, in a multi-period setting, we face many complications. First,

similarly to financial theory, it is difficult to pose an optimization problem since intermediate

decisions depend on intermediate mean-variance trade-offs, thus requiring a complete specifica-

tion of the preferences of the manufacturer in all the states of the world. Second, by using an

inventory model that does not allow to sell back inventory to the spot market, past inventory

decisions create constraints on present inventory decisions, and this in turn modifies the present

mean-variance trade-off.

Hence, we see that multi-period models are significantly more difficult than single-period

models. There are two important exceptions to this conclusion: when the manufacturer only

cares about expected profit or when it only cares about future variance. The first case is

studied in Mart́ınez-de-Albéniz and Simchi-Levi [9]. A solution to the second case is suggested

by Equation (16).

6 Conclusion

Most inventory decisions imply tremendous risks for a buyer, especially when this stock is

limited to in-house production and there is no way to get rid of it after purchasing, e.g., the

recent Cisco case. Thus, this type of decisions should take into account not only expected profit

but also the associated risk. For this purpose, we propose, as has been done in the financial

literature, to apply a mean-variance analysis to procurement contracts.

Our focus in this paper is on a single-period inventory setting where purchasing decisions

create both inventory risk, i.e. created by demand uncertainty, and price risk, i.e. created by

alternative spot sourcing uncertainty. The contracts used in our model are portfolios of simple

option contracts, which can replicate fixed commitment contracts, quantity flexibility contracts

or buy-back contracts, as shown in Mart́ınez-de-Albéniz and Simchi-Levi [9].

We show that there is an efficient frontier bounded by the maximum expectation portfolio

and the minimum variance portfolio, and provide bounds for this frontier. These two portfolios

would be selected by a risk-neutral buyer and a risk-obsessed, i.e. with infinite risk aversion,

buyer, respectively. We investigate structural properties of mean-variance utility objectives,

which, even though they are not concave in general, can be shown to have connected upper-

level sets. Such a result provides a theoretical foundation to the use of greedy algorithms to
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solve these trade-offs to optimality.

Finally, we need to point out an important extension of our model to situations when the

buyer can sell back to the spot market any remaining inventory at the end of the season. If the

market is perfect, i.e., the buying and selling spot prices are equal, then the financial model

analyzed in Section 2 applies. If, on the other hand, there is a bid-ask spread in the spot market

the situation is significantly more complex.
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A Variance analysis

The following equations describe the gradient of the variance as a function of y1, . . . , yn.

Ai(y) =
1

2
E[Z2

i ]E[min(Q, yi)
2]−

1

2
E[Zi]2E[min(Q, yi)]

2

dAi

dyi
= E[Z2

i ]yiFQ(yi)− E[Zi]2E[min(Q, yi)]FQ(yi)

= FQ(yi)
(

E[Z2
i ]yi − E[Zi]2

∫ yi

0 FQ(u)du
)

dAi

dyj
= 0 for j 6= i

Bi(y) = E[Z0Zi]E[Qmin(Q, yi)]− E[Z0]E[Zi]E[Q]E[min(Q, yi)]
dBi

dyi
= E[Z0Zi](yiFQ(yi) +

∫ ∞

yi

FQ(u)du)− E[Z0]E[Zi]E[Q]FQ(yi)

= FQ(yi)
(

E[Z0Zi](yi +

∫∞

yi
FQ(u)du

FQ(yi)
)− E[Z0]E[Zi]E[Q]

)

dBi

dyj
= 0 for j 6= i

Cij(y) = E[ZiZj ]E[min(Q, yi)min(Q, yj)]− E[Zi]E[Zj ]E[min(Q, yi)]E[min(Q, yj)]
dCij
dyi

= E[ZiZj ](yiFQ(yi) +

∫ yj

yi

FQ(u)du)− E[Zi]E[Zj ]FQ(yi)

∫ yj

0
FQ(u)du

= FQ(yi)
(

E[ZiZj ](yi +

∫ yj

yi
FQ(u)du

FQ(yi)
)− E[Zi]E[Zj ]

∫ yj

0
FQ(u)du

)

dCij
dyj

= E[ZiZj ]yiFQ(yj)− E[Zi]E[Zj ]FQ(yj)

∫ yi

0
FQ(u)du

= FQ(yj)
(

E[ZiZj ]yi − E[Zi]E[Zj ]
∫ yi

0
FQ(u)du

)

B Proofs

B.1 Proposition 3

Proof. We have that for all i = 1, . . . , n,
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1

2

dV arΠN

dyi
= FQ(yi)





















































E[Z2
i ]yi − E[Zi]2

∫ yi

0
FQ(u)du

+E[Z0Zi](yi +

∫ ∞

yi

FQ(u)du

FQ(yi)
)− E[Z0]E[Zi]E[Q]

+
∑

j>i

E[ZiZj ](yi +

∫ yj

yi

FQ(u)du

FQ(yi)
)− E[Zi]E[Zj ]

∫ yj

0
FQ(u)du

+
∑

j<i

E[ZiZj ]yj − E[Zi]E[Zj ]
∫ yj

0
FQ(u)du





















































Thus, we can define Φi where

2Φi(y) = E[Z2
i ]yi − E[Zi]2

∫ yi

0
FQ(u)du

+E[Z0Zi](yi +

∫ ∞

yi

FQ(u)du

FQ(yi)
)− E[Z0]E[Zi]E[Q]

+
∑

j>i

E[ZiZj ](yi +

∫ yj

yi

FQ(u)du

FQ(yi)
)− E[Zi]E[Zj ]

∫ yj

0
FQ(u)du

+
∑

j<i

E[ZiZj ]yj − E[Zi]E[Zj ]
∫ yj

0
FQ(u)du

such that
dV arΠN

dyi
= FQ(yi)Φi(y).

We can know compute the Hessian of the variance. For i, j = 1, . . . , n, we have

1

2

d2V arΠN

dy2
i

= −
1

2
fQ(yi)Φi(y) + FQ(yi)



































E[Z2
i ]− E[Zi]2FQ(yi)

+E[Z0Zi]

fQ(yi)

∫ ∞

yi

FQ(u)du

FQ(yi)2

+
∑

j>i

E[ZiZj ]
fQ(yi)

∫ yj

yi

FQ(u)du

FQ(yi)2



































; (17)
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for i < j,

1

2

d2V arΠN

dyidyj
= FQ(yi)

(

E[ZiZj ]
FQ(yj)

FQ(yi)
− E[Zi]E[Zj ]FQ(yj)

)

= FQ(yj)E[ZiZj ]− FQ(yi)FQ(yj)E[Zi]E[Zj ];

(18)

and for i > j,

1

2

d2V arΠN

dyidyj
= FQ(yi)

(

E[ZiZj ]− E[Zi]E[Zj ]FQ(yj)
)

= FQ(yi)E[ZiZj ]− FQ(yi)FQ(yj)E[Zi]E[Zj ].

(19)

We claim that the Hessian without the diagonal terms −fQ(yi)Φi(y) is a positive definite

matrix.

Define αn+1 = 0, αi = FQ(yi) and ∆i = αi−αi+1 for i = 1, . . . , n. Clearly, ∆1 + . . .+∆n =

α1 ≤ 1, we will use this inequality later. Using Equations (17), (18) and (19), together with

(using here Assumption 2) the fact that

E[Z0Zi]

fQ(yi)

∫ ∞

yi

FQ(u)du

FQ(yi)2
+
∑

j>i

E[ZiZj ]
fQ(yi)

∫ yj

yi

FQ(u)du

FQ(yi)2
> 0,
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we obtain that

2H − 2











. . . 0

−fQ(yi)Φi(y)

0
. . .











Â





















. . .
. . .

αiE[Z2
i ]− α2

iE[Zi]2 · · · αjE[ZiZj ]− αiαjE[Zi]E[Zj ]
...

. . .
...

αjE[ZiZj ]− αiαjE[Zi]E[Zj ] · · · αjE[Z2
j ]− α2

jE[Zj ]2
. . .

. . .





















=





























α1E[Z2
1 ] · · · αiE[Z1Zi] · · · αjE[Z1Zj ] · · ·

. . .
...

αiE[Z2
i ] · · · αjE[ZiZj ] · · ·

. . .
...

... αjE[Z2
j ]

. . .





























− E





















α1Z1

...

αiZi
...

αnZn





















E





















α1Z1

...

αiZi
...

αnZn





















′

(20)

Define

Ui =

























Z1

. . .

Zi

0

. . .

0

























.

We observe that



























α1Z
2
1 · · · αiZ1Zi · · · αjZ1Zj · · ·

. . .
...

αiZ
2
i · · · αjZiZj · · ·

...
. . .

...

αjZ
2
j

. . .



























=
∑

i

∆i



























Z2
1 · · · Z1Zi 0 · · · 0
...

. . .
...

...
...

Z1Zi · · · Z2
i 0 · · · 0

0 · · · 0 0
...

...
...

. . .

0 · · · 0 · · · 0



























=
∑

i

∆iUiU
′
i
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and also




















α1Z1

...

αiZi
...

αnZn





















=
∑

i

∆iUi.

We can now express the right hand side of Equation (20) as:

∑

i

∆2
iE
[

UiU
′
i

]

+
∑

i

∆i(1−∆i)E
[

UiU
′
i

]

−
∑

i

∆2
iE
[

Ui

]

E
[

U ′i

]

−
∑

i,j i6=j

∆i∆jE
[

Ui

]

E
[

U ′j

]

.

Since a variance-covariance matrix is positive semi-definite, we have that for all i,

E
[

UiU
′
i

]

º E
[

Ui

]

E
[

U ′i

]

.

This implies that the first term minus the third term is the sum of n positive semi-definite

matrices.

Also, as pointed out before,

1−∆i ≥
∑

j j 6=i

∆j .

Thus, the second term minus the fourth term is greater than (in the positive semi-definite

ordering sense)

∑

i,j i<j

∆i∆j

{

E
[

UiU
′
i

]

+ E
[

UjU
′
j

]

− E
[

Ui

]

E
[

U ′j

]

− E
[

Uj

]

E
[

U ′i

]}

. (21)

Observe that for all i < j, we have

E
[

UiU
′
i

]

+ E
[

UjU
′
j

]

− E
[

Ui

]

E
[

U ′j

]

− E
[

Uj

]

E
[

U ′i

]

º E
[

Ui

]

E
[

U ′i

]

+ E
[

Uj

]

E
[

U ′j

]

− E
[

Ui

]

E
[

U ′j

]

− E
[

Uj

]

E
[

U ′i

]

= E
[

Ui − Uj

]

E
[

U ′i − U ′j

]

º 0.

In other words, all the terms in the sum in Equation (21) are positive semi-definite, and thus

the following matrix is positive definite,

H Â











. . . 0

−fQ(yi)Φi(y)

0
. . .











.
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B.2 Proposition 4

Proof. We use the results from Proposition 3. Without loss of generality, we can assume that

I = {1, . . . , n}, since when I is smaller, we can conduct the same calculations of Proposition 3

with the subset I of contracts.

We assume that y is a critical point of the variance, i.e.
dV arΠN

yi
(y) = 0 for i = 1, . . . , n.

Proposition 3 implies that Φi(y) = 0 for all i, and thus the Hessian is definite positive. Since

the variance is twice continuously differentiable, the critical point is a strict minimum.

B.3 Proposition 5

Proof. Before starting this proof, define the norm ‖ · ‖∞ in Rn
+, i.e.

‖y‖∞ = max
i
|yi|.

Consider for every k = 1, . . . , n the portfolio where yk−1 < yk = yk+1 = . . . = yn = y(k).

In other words, the n − k highest inequality constraints of the feasible set are tight. We

claim that there exists an Mk such that, for y(k) > Mk, the variance is non-decreasing as we

increase y(k). To see this, we look at the derivative of the variance as a function of y(k). Since

Covar[Zi, Zj ] ≥ 0 for all pairs (i, j) and yj ≥

∫ yj

0
FQ(u)du, we have

dV arΠN

dy(k)
= FQ(y(k))



































E[(Zk + . . .+ Zn)
2]y(k) − E[Zk + . . .+ Zn]

2

∫ y(k)

0
FQ(u)du

+E[Z0(Zk + . . .+ Zn)](y(k) +

∫ ∞

y(k)

FQ(u)du

FQ(y(k))
)− E[Z0]E[Zk + . . .+ Zn]E[Q]

+
∑

j≤k−1

{

E[(Zk + . . .+ Zn)Zj ]yj − E[Zk + . . .+ Zn]E[Zj ]
∫ yj

0
FQ(u)du

}



































≥ FQ(y(k))



















E[(Zk + . . .+ Zn)
2]y(k) − E[Zk + . . .+ Zn]

2

∫ y(k)

0
FQ(u)du

+E[Z0(Zk + . . .+ Zn)](y(k) +

∫ ∞

y(k)

FQ(u)du

FQ(y(k))
)− E[Z0]E[Zk + . . .+ Zn]E[Q]



















The expression
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E[(Zk + . . .+ Zn)
2]y(k) − E[Zk + . . .+ Zn]

2

∫ y(k)

0
FQ(u)du

+E[Z0(Zk + . . .+ Zn)](y(k) +

∫ ∞

y(k)

FQ(u)du

FQ(y(k))
)− E[Z0]E[Zk + . . .+ Zn]E[Q]

is strictly increasing and tends to +∞ when y(k) → +∞. Thus, there is Mk > 0 such that

dV arΠN

dy(k)
≥ 0 for y(k) > Mk.

By writing M = max{M1, . . . ,Mn,y
0
n,y

1
n}, define the compact set

B =
{

y

∣

∣

∣
0 ≤ y1 ≤ . . . ≤ yn ≤M

}

.

Observe that the set is compact because it is closed and bounded in a finite-dimensional space.

By construction, for every point y ∈ F\B, we can find a point y′ ∈ B with V arΠN (y) ≥

V arΠN (y′). This can be done by defining y′i = M for any i such that yi > M .

The function V arΠN (·) is twice differentiable in the bounded set B, and this implies that

the sets

Lc =
{

y ∈ B
∣

∣

∣
V arΠN (y) ≤ c

}

are compact sets, since the variance is a continuous function. By increasing c, the level sets Lc

increase in the inclusion sense.

By contradiction, assume that the level sets Lc of the variance are not connected, for some

c = a ≥ 0, i.e. La has at least two connected components. Let C0 and C1 be two unconnected

components of La, and take y0 ∈ C0 and y1 ∈ C1. The variance on B is a continuous function

on a closed finite-dimensional set, and hence attains a maximum over B. This implies that for

some c, big enough, Lc = B, which connects y0 and y1.

We can now define b the largest c such that y0 and y1 cannot be connected through a

continuous path in Lc, i.e., they belong to two different connected parts of Lc. In this definition,

b is a supremum. We can define for all n ≥ 0, two sequences in B, pn and qn that solve

min ‖p− q‖∞

subject to

{

p and y0 are connected in Lb−1/n

q and y1 are connected in Lb−1/n

This is possible because Lb−1/n is a closed set. These sequences belong to the compact set

Lb, thus, by the Bolzano-Weierstrass theorem, they have adherence points. We can then extract

a subsequence of (pn, qn) such that both pn and qn converge to a point ȳ that belongs to Lb,

but not to any Lb−1/n. This implies that V ar(ȳ) = b.
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Define I as the set of indexes such that ȳi > ȳi−1 and AI as in Equation (15). We claim that

ȳ is a I-unconstrained critical point. If this was not the case, then, since the variance is twice

differentiable, we could redirect the path that connects y0 to y1 in Lb avoiding the variance

level b. That is, for some n, find a path that connects y0 to y1 in Lb−1/n. Such a path exists

when the first derivative of the variance (as a function of the variables zj used in Definition

1) at that point is non-zero. We can thus apply Proposition 4 to establish that ȳ is a local

minimum when the feasible set is AI .

In addition, for i /∈ I, it must be that
dV arΠN

dyi
≥ 0, since otherwise we could, again, redirect

the path that connects y0 to y1 in Lb avoiding the variance level b. This implies that ȳ is a

local minimum for the variance.

However, the sequence pn tends to ȳ with a variance always strictly smaller that b. This is

a contradiction, and thus the level sets Lc must be connected.

B.4 Proposition 6

Proof. We have that for all i = 1, . . . , n, from Equation (10)

dEΠN

dyi
= −ai + FQ(yi)E[Zi],

where ai = vi − vi+1.

Using Proposition 3, we also know that

dV arΠN

dyi
= FQ(yi)Φi(y).

Thus, by writing Ψi(y) = E[Zi]− λΦi(y), we have that

dU

dyi
= −ai + FQ(yi)Ψi(y).

Moreover, using again Proposition 3, we know that

( d2U

dyidyj

)

(i,j)
≺











. . . 0

−fQ(yi)Ψi(y)

0
. . .











.

In addition, when for all i, i = 1, . . . , n, ai ≥ 0, we can use the arguments of Proposition 4

to show that, for any set I, whenever some portfolio y is an I-unconstrained critical point of

the utility, it is a strict local maximum of the utility over AI . Intuitively, for I = {1, . . . , n},
dU

dyi
= 0 implies Ψi(y) ≥ 0, and hence the Hessian is negative definite.
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The proof is completed using the same arguments as that of Proposition 5, and Corollary

1.

28


