
6.037, IAP 2019—Streams 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.037—Structure and Interpretation of Computer Programs

IAP 2019

Streams

Streams

The following source will let you experiment with streams in DrRacket:

#lang racket

(define-syntax cons-stream

(syntax-rules ()

((_ a b)

(cons a (delay b)))))

(define stream-car car)

(define stream-cdr (lambda (s) (force (cdr s))))

Simple Streams:

Zeros: (0 0 0 0 0 0

(define zeros

Ones: (1 1 1 1 1 1

(define ones

Natural numbers (called ints): (1 2 3 4 5 6

(define ints

What happens if you use cons instead of cons-stream?

Stream operators

We’d like to be able to operate on streams to modify them and combine them with other streams.
For example, to do element-wise addition or multiplication:

(define (add-streams s1 s2) (map2-stream + s1 s2))

(define (mul-streams s1 s2) (map2-stream * s1 s2))

(define (div-streams s1 s2) (map2-stream / s1 s2))

Write map2-stream:

(define (map2-stream op s1 s2)

6.037, IAP 2019—Streams 2

Another possible operation is multiplying every element of the stream by a constant factor:

(define (scale-stream x s)

Implement the stream of factorials, which goes (1 1 2 6 24 120 ...:

(define facts

Power Series

We can approximate functions by summing terms of an appropriate power series. A power series
has the form: ∑

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

By selecting appropriate an, the series converges to the value of a function. One particularly useful
function for which this is the case is ex which has the following power series:

ex = 0! +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

Since power series involve an infinite summation, of which we might only care about the first couple
terms, they are an excellent problem to tackle with streams. The stream will encode the coefficients
an. For example, to represent the function f(x) = 3, we’d use a stream whose first element was 3,
and the rest are zeros. The following two procedures come in handy:

(define (powers x)

(cons-stream 1 (scale-stream x (powers x))))

(define (sum-series s x n)

(define (sum-helper s sum n)

(if (= n 0)

sum

(sum-helper (stream-cdr s) (+ sum (stream-car s)) (- n 1))))

(sum-helper (mul-streams s (powers x)) 0 n))

Write an expression that computes a stream to represent the power series that converges to f(x) =
2x + 5:

(define two-x-plus-five

Write an expression that computes the stream for ex:

6.037, IAP 2019—Streams 3

(define e-to-the-x

To compute e5 using 20 terms, we’d call (sum-series e-to-the-x 5 20).

Since the stream represents a function, we can write operations which work on functions and try to
implement them in terms of the coefficients of the series. One such operation is integration. The
integral of an infinite polynomial is also an infinite polynomial, but the coefficients will be different.
In particular, we’ll want our integration function to return a stream whose constant term (first
element) is missing, as it can’t actually compute it from the series. We’ll always remember to add
a constant term on before using it; the result of integrate-series starts with the co-efficient of x1,
not x0.

(define (integrate-series s)

Write a new definition of ex using integrate-series (Hint: what is the integral of ex?)

(define e-to-the-x

Given that we can build ex this way, implement sin and cos in a similar fashion:

(define sine

(define cosine

Bonus Round Problem: Another operation is function multiplication. This involves multiplying
two infinite polynomials, which is not the same as mul-streams, as that only does elementwise
multiplication.

(define (mul-series s1 s2)

Then this should look interestingly simple:

(add-streams (mul-series sine sine)

(mul-series cosine cosine))

