Goals of the Class

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science
- ...which isn’t about computers
- ...nor actually a science
- This is actually a class in computation

Prerequisites

- High confusion threshold
- Some programming clue
- A copy of Racket (Formerly PLT Scheme / DrScheme)
 http://www.racket-lang.org/
- Free time
- Project 0 is out today
- Due on Thursday!
- Mail to 6.037-psets@mit.edu
- Collaboration with current students is fine, as long as you note it

Some History

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996
- R6RS in 2007
- 6.001 last taught in 2007
- 6.037 first taught in 2009

The Book (“SICP”)

- Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman
- http://mitpress.mit.edu/sicp/
- Not required reading
- Useful as study aid and reference
- Roughly one lecture per chapter

Key ideas

- Procedural and data abstraction
- Conventional interfaces & programming paradigms
 - Type systems
 - Streams
 - Object-oriented programming
- Metalinguistic abstraction
 - Creating new languages
 - Evaluators
Computation is Imperative Knowledge

“How to” knowledge

To approximate \(\sqrt{x} \) (Heron’s Method):
- Make a guess \(G \)
- Improve the guess by averaging \(G \) and \(\frac{x}{G} \)
- Keep improving until it is good enough

\[
\begin{align*}
x &= 2 & G &= 1 \\
\frac{x}{G} &= 2 & G &= \frac{(1+2)}{2} = 1.5 \\
\frac{x}{G} &= \frac{4}{3} & G &= \frac{\left(\frac{4}{3} + \frac{4}{1.5}\right)}{2} = 1.4166 \\
\frac{x}{G} &= \frac{24}{17} & G &= \frac{\left(\frac{24}{17} + \frac{24}{1.4166}\right)}{2} = 1.4142
\end{align*}
\]
Describing “How to” knowledge

Need a language for describing processes:
- Vocabulary – basic primitives
- Rules for writing compound expressions – syntax
- Rules for assigning meaning to constructs – semantics
- Rules for capturing process of evaluation – procedures

Representing basic information

- Numbers
 - As floating point values
 - In IEEE 754 format
 - Stored in binary
 - In registers
 - Made up of bits
 - Made of logic gates
 - Implemented by transistors
 - In silicon wells
 - With electrical potential
 - Of individual electrons
 - With mass, charge, spin, and chirality
 - Whose mass is imparted by interaction with the Higgs field
 - ...

Assuming a basic level of abstraction

- We assume that our language provides us with a basic set of data elements:
 - Numbers
 - Characters
 - Booleans
- It also provides a basic set of operations on these primitive elements
- We can then focus on using these basic elements to construct more complex processes

Rules for describing processes in Scheme

- Legal expressions have rules for constructing from simpler pieces – the syntax.
- (Almost) every expression has a value, which is “returned” when an expression is “evaluated.”
- Every value has a type.
- The latter two are the semantics of the language.
Language elements – primitives

Self-evaluating primitives – value of expression is just object itself:
- **Numbers**: 29, −35, 1.34, 1.2e5
- **Strings**: “this is a string” “odd #$@%#$ thing number 35”
- **Booleans**: #t, #f

Built-in procedures to manipulate primitive objects:
- **Numbers**: +, −, *, /, >, <, ≥, ≤, =
- **Strings**: string-length, string=?
- **Booleans**: and, or, not

Language elements – combinations

How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren
 - Expression whose value is a procedure
 - Other expressions
 - Close paren

This type of expression is called a combination
- Evaluate it by getting values of sub-expressions, then applying operator to values of arguments.
- You now know all there is to know about Scheme syntax! *(almost)*

Names for built-in procedures
- +, −, *, /, =, ...
- What is the value of them?
- + → #<procedure:+>
- Evaluate by looking up value associated with the name in a special table – the environment.
Note the recursive definition – can use combinations as expressions to other combinations:

\((+ (+ 2 3) 4) \) \(\rightarrow \) 10

\((* (+ 3 4) (- 8 2)) \) \(\rightarrow \) 42

In order to abstract an expression, need a way to give it a name

\(\text{(define score 23)} \)

This is a special form
- Does not evaluate the second expression
- Rather, it pairs the name with the value of the third expression
- The return value is unspecified

To get the value of a name, just look up pairing in the environment

\(\text{(define score 23)} \)

\(\text{score} \) \(\rightarrow \) undefined

\(\text{(define total (+ 12 13))} \)

\(\text{total} \) \(\rightarrow \) 23

\(\text{(* 100 (/ score total))} \)

\(\rightarrow \) 92

(5 + 6)

\(\rightarrow \) procedure application: expected procedure,

given: 5; arguments were: #\<procedure:+> 6

((+ 5 6))

\(\rightarrow \) procedure application: expected procedure,

given: 11 (no arguments)

(* 100 (/ score total))

\(\rightarrow \) reference to undefined identifier: total
Rules for evaluation:
- If **self-evaluating**, return value
- If a **name**, return value associated with name in environment
- If a **special form**, do something special
- If a **combination**, then
 - Evaluate all of the sub-expressions, in any order
 - Apply the operator to the values of the operands and return the result

Mathematical operators are just names

- (+ 3 5) → 8
- (define fred +) → undefined
- (fred 3 6) → 9

- + is just a name
- + is bound to a value which is a procedure
- line 2 binds the name fred to that same value

All names are names

- (+ 3 5) → 8
- (define + *) → undefined
- (+ 3 5) → 15

- There's nothing "special" about the operators you take for granted, either!
- Their values can be changed using define just as well
- Of course, this is generally a horrible idea

Making our own procedures

- To capture a way of doing things, create a procedure:

 (lambda (x) (* x x))

- (x) is the list of **parameters**
- (* x x) is the **body**
- lambda is a special form: create a procedure and returns it
Substitution

- Use this anywhere you would use a built-in procedure like `+`:
 `((\lambda (x) (* x x)) 5)`
- Substitute the value of the provided arguments into the body:
 `(* 5 5)`
- Can also give it a name:
 `(define square (\lambda(x) (* x x)))`
 `(square 5) → 25`
- This creates a loop in our system, where we can create a complex thing, name it, and treat it as a primitive like `+`

Interaction of `define` and `lambda`

```
(lamba (x) (* x x))
→ #\<procedure>
(define square (lambda (x) (* x x)))
→ undefined
(square 4)
→ (* 4 4)
→ 16
```

“Syntactic sugar”:
```
(define (square x) (* x x))
→ undefined
```

Lambda special form

- Syntax: `(\lambda (x y) (/ (+ x y) 2))`
- 1st operand is the parameter list: `(x y)`
 - a list of names (perhaps empty)
 - determines the number of operands required
- 2nd operand is the body: `(/ (+ x y) 2)`
 - may be any expression
 - not evaluated when the lambda is evaluated
 - evaluated when the procedure is applied

Rules for evaluation:
- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special.
 - If a combination, then
 - Evaluate all of the sub-expressions, in any order
 - Apply the operator to the values of the operands and return the result

Rules for applying:
- If primitive, just do it
- If a compound procedure, then substitute each formal parameter with the corresponding argument value, and evaluate the body
Meaning of a lambda

```
(define x (lambda () (+ 3 2)))
x
(x)
```

The value of a lambda expression is a procedure

```
→ undefined
```

What does a procedure describe?

Capturing a common pattern:

- `(λ 3 3)`
- `(λ 25 25)`
- `(λ foobar foobar)`
- `(λ x x)`

Name for the thing that changes Common pattern to capture

Modularity of common patterns

Here is a common pattern:

```
(sqrt (+ (* 3 3) (* 4 4)))
(sqrt (+ (* 9 9) (* 16 16)))
(sqrt (+ (* 4 4) (* 4 4)))
```

Here is one way to capture this pattern:

```
(define square (lambda (x) (× x x)))
(define pythagoras
    (lambda (x y)
        (sqrt (+ (square x) (square y)))))
```

Why?

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)
- Isolates (abstracts away) details of computation within a procedure from use of the procedure
- May be many ways to divide up:

```
(define square (lambda (x) (× x x)))
(define pythagoras
    (lambda (x y)
        (sqrt (+ (square x) (square y)))))
```

```
(define square (lambda (x) (× x x)))
(define pythagoras
    (lambda (x y)
        (sqrt (+ (square x) (square y)))))
```
A more complex example

To approximate \sqrt{x}:

1. Make a guess G
2. Improve the guess by averaging G and $\frac{x}{G}$.
3. Keep improving until it is good enough

Sub-problems:
- When is “close enough”?
- How do we create a new guess?
- How do we control the process of using the new guess in place of the old one?

Procedural abstractions

“When the square of the guess is within 0.001 of the value”

```
(define close-enough?
  (lambda (guess x)
    (< (abs (- (square guess) x))
      0.001)))
```

Note the use of the `square` procedural abstraction from earlier!

Procedural abstractions

```
(define average
  (lambda (a b) (/ (+ a b) 2)))

(define improve
  (lambda (guess x)
    (average guess (/ x guess))))
```

Why this modularity?

- `average` is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:
    ```
    (define average
      (lambda (a b) (/ (+ a b) 2)))
    ```
 - Could redefine as:
    ```
    (define average
      (lambda (x y) (* (+ x y) 0.5)))
    ```
- There’s actually a difference between those in Racket (exact vs inexact numbers)
- No other changes needed to procedures that use `average`
- Also note that parameters are internal to the procedure – cannot be referred to by name outside of the lambda
Controlling the process

- Given x and guess, want $(improve \ guess \ x)$ as new guess
- But only if the guess isn’t good enough already
- We need to make a decision – for this, we need a new special form

 (if $predicate$ $consequent$ $alternative$)

The if special form

- Evaluator first evaluates the $predicate$ expression
- If it returns a true value ($#t$), then the evaluator evaluates and returns the value of the $consequent$ expression
- Otherwise, it evaluates and returns the value of the $alternative$ expression
- Why must this be a special form? Why can’t it be implemented as a regular lambda procedure?

Using if

- So the heart of the process should be:

 (define (sqrt-loop guess x)
 (if (close-enough? guess x)
 guess
 (sqrt-loop (improve guess x) x)))
- But somehow we need to use the value returned by improve as the new guess, keep the same x, and repeat the process
- Call the sqrt-loop function again and reuse it!

Putting it together

- Now we just need to kick the process off with an initial guess:

 (define sqrt
 (lambda (x)
 (sqrt-loop 1.0 x)))

 (define (sqrt-loop guess x)
 (if (close-enough? guess x)
 guess
 (sqrt-loop (improve guess x) x)))
Testing the code

- How do we know it works?
- Fall back to rules for evaluation from earlier

Substitution model

Rules for evaluation:
- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special.
- If a combination, then
 - Evaluate all of the sub-expressions, in any order
 - Apply the operator to the values of the operands and return the result

Rules for applying:
- If primitive, just do it
- If a compound procedure, then substitute each formal parameter with the corresponding argument value, and evaluate the body

The substitution model of evaluation

... is a lie and a simplification, but a useful one!

A canonical example

Compute \(n \) factorial, defined as:

\[n! = n(n-1)(n-2)(n-3) \ldots 1 \]

- How can we capture this in a procedure, using the idea of finding a common pattern?
Recursive algorithms

- Wishful thinking
- Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking
- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem
- This is just finding the common pattern; but here, solving the bigger problem involves the same pattern in a smaller problem

Decompose the problem
- Solve a smaller instance
- Convert that solution into desired solution
 \[n! = n(n-1)(n-2) \ldots = n[(n-1)(n-2) \ldots] = n \cdot (n-1)! \]

\[
\text{(define fact (lambda (n) (* n (fact (- n 1)))))}
\]

Identify non-decomposable problems
- Must identify the “smallest” problems and solve explicitly
- Define 1! to be 1

Minor difficulty

\[
\text{(define fact}
 \begin{align*}
 & (\lambda (n) (\times n (\text{fact } (- n 1)))) \\
 & \text{fact 2} \\
 & (\times 2 (\text{fact 1})) \\
 & (\times 2 (\times 1 (\text{fact 0}))) \\
 & (\times 2 (\times 1 (\times 0 (\text{fact } -1)))) \\
 & (\times 2 (\times 1 (\times 0 (\times -1 (\text{fact } -2))))) \\
 & \ldots
 \end{align*}
\]

Recursive algorithms

- Wishful thinking
- Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking
- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem
- This is just finding the common pattern; but here, solving the bigger problem involves the same pattern in a smaller problem

Decompose the problem
- Solve a smaller instance
- Convert that solution into desired solution
 \[n! = n(n-1)(n-2) \ldots = n[(n-1)(n-2) \ldots] = n \cdot (n-1)! \]

\[
\text{(define fact (lambda (n) (* n (fact (- n 1)))))}
\]

Identify non-decomposable problems
- Must identify the “smallest” problems and solve explicitly
- Define 1! to be 1

Have a test, a base case, and a recursive case
\[
\text{(define fact}
 \begin{align*}
 & (\lambda (n) (\begin{align*}
 & \text{if } (- n 1) \\
 & 1 \\
 & (\times n (\text{fact } (- n 1))))\end{align*}))
 \end{align*}
\]

More complex algorithms may have multiple base cases or multiple recursive cases
(define fact (lambda (n)
 (if (= n 1) 1 (* n (fact (- n 1)))))

(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 (if #f 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
(* 3 2)
6

Effects of recursive algorithms

Recursive algorithms consume more space with bigger operands!

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 1)))
...
24 (fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
...
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 2)))))))
...
40320

An alternative

Try computing 101!
101 * 100 * 99 * 98 * 97 * 96 * ... * 2 * 1

How much space do we consume with pending operations?

Better idea: count up, doing one multiplication at a time

- Start with 1 as the answer
- Multiply by 2, store 2 as the current answer, remember we’ve done up to 2
- Multiply by 3, store 6, remember we’re done up to 3
- Multiply by 4, store 24, remember we’re done up to 4
- ...
- Multiply by 101, get 94259477598359420851623124482936749562
 3127947025437683278935341697759916221476503087
 861591803469116234900035499598336979063026324 000000000000000000000000
- Realize we’re done up to the number we want, and stop

This is an iterative algorithm – it uses constant space

Iterative algorithms as tables

<table>
<thead>
<tr>
<th>product</th>
<th>done</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>120</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- First row handles 1 cleanly
- product becomes product * (done + 1)
- done becomes done + 1
- The answer is product when done = max
The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper computes the next row
- And the if statement checks the end condition and output value

Recursive algorithms have pending operations

Recursive factorial:

```scheme
(define (fact n)
  (if (= n 1) 1
    (* n (fact (- n 1)))))
```

(fact 4)

`(4 (* 3 (* 2 (fact 1))))`

Pending operations make the expression grow continuously.

Iterative algorithms have no pending operations

Iterative factorial:

```scheme
(define (ifact-helper product done max)
  (if (= done max)
      product
      (ifact-helper (* product (+ done 1))
                    (+ done 1)
                    max)))

(ifact-helper 1 1 4)
(ifact-helper 2 2 4)
(ifact-helper 6 3 4)
(ifact-helper 24 4 4)
```

Fixed space because no pending operations
Iterative processes

- Iterative algorithms have constant space
- To develop an iterative algorithm:
 1. Figure out a way to accumulate partial answers
 2. Write out a table to analyze:
 - initialization of first row
 - update rules for other rows
 - how to know when to stop
 3. Translate rules into Scheme
- Iterative algorithms have no pending operations

Summary

- Lambdas allow us to create procedures which capture processes
- Procedural abstraction creates building blocks for complex processes
- Recursive algorithms capitalize on “wishful thinking” to reduce problems to smaller subproblems
- Iterative algorithms similarly reduce problems, but based on data you can express in tabular form

Recitation Time!

Reminders
- Project 0 is due Thursday
- Submit to 6.037-psets@mit.edu
- http://web.mit.edu/alexmv/6.037/
- E-mail: 6.001-zombies@mit.edu